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Abstract
A family of sets is said to be intersecting if any two sets in the family have non-empty intersection. In 1973,
Erdős raised the problem of determining the maximum possible size of a union of r different intersecting
families of k-element subsets of an n-element set, for each triple of integers (n, k, r). We make progress
on this problem, proving that for any fixed integer r� 2 and for any k� ( 1

2 − o(1))n, if X is an n-element
set, and F =F1 ∪F2 ∪ · · · ∪Fr , where each Fi is an intersecting family of k-element subsets of X, then
|F |� (n

k

) − (n−r
k

)
, with equality only if F = {S⊂ X:|S| = k, S∩ R �= ∅} for some R⊂ X with |R| = r. This is

best possible up to the size of the o(1) term, and improves a 1987 result of Frankl and Füredi, who obtained
the same conclusion under the stronger hypothesis k< (3− √

5)n/2, in the case r = 2. Our proof utilizes
an isoperimetric, influence-based method recently developed by Keller and the authors.

2010 MSC Codes: 05D05

1. Introduction
Let [n]:= {1, 2, . . . , n}, and let (

[n]
k

)
:= {S⊂ [n]:|S| = k}.

If X is a set, we letP(X) denote the power-set of X. A familyF ⊂P([n]) is said to be 1-intersecting
(or just intersecting) if for any A, B ∈F , we have A∩ B �= ∅.

One of the best-known theorems in extremal combinatorics is the Erdős–Ko–Rado theorem
[8], which bounds the size of an intersecting subfamily of

([n]
k
)
.

Theorem 1.1. (Erdős–Ko–Rado, 1961). Let k, n ∈Nwith k< n/2. IfF ⊂ ([n]
k
)
is intersecting, then

|F |� (n−1
k−1

)
. Equality holds only if

F =
{
S ∈

(
[n]
k

)
: j ∈ S

}

for some j ∈ [n].
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In 1987, Frankl and Füredi [12] considered the problem, first raised by Erdős [7] in 1973, of
determining the maximum possible size of a union of r 1-intersecting subfamilies of

([n]
k
)
, for each

triple of integers (n, k, r). They proved the following.

Theorem 1.2. (Frankl and Füredi, 1986). If F ⊂ ([n]
k
)
is a union of two intersecting families, and

n> 1
2 (3+ √

5)k≈ 2.62k, then |F |� (n
k
) − (n−2

k
)
. Equality holds only if

F =
{
S ∈

(
[n]
k

)
:S∩ {i, j} �= ∅

}
for some distinct i, j ∈ [n].

They give an example which shows that the upper bound in Theorem 1.2 does not hold if n0 �
n� 2k+ c0

√
k, where n0, c0 > 0 are absolute constants with n0 sufficiently large and c0 sufficiently

small; this disproved a conjecture of Erdős in [7].
In this paper, we prove the following strengthening and generalization of Theorem 1.2.

Theorem 1.3. For each integer r� 2, there exists a constant C = C(r) ∈N such that the following
holds. Let n� 2k+ Ck2/3, and let F ⊂ ([n]

k
)
be a union of at most r 1-intersecting families. Then

|F |� (n
k
) − (n−r

k
)
, and equality holds only if F = {S ∈ ([n]

k
)
:S∩ R �= ∅} for some R ∈ ([n]

r
)
.

We note that even in the case r = 2, the conclusion of Theorem 1.3 was previously known to
hold only in the case n− 2k��(k) (i.e. only in the case k/n� 1/2− �(1)). For the first time, we
prove it for n− 2k= o(k) (i.e. for k/n� 1/2− o(1)), for any fixed r� 2, though the correct rate
of growth of the o(k) term here remains open. We conjecture that the conclusion of Theorem 1.3
holds for n� 2k+ c

√
k for c= c(r) sufficiently large; this would be best possible up to the value

of c, as evidenced by the aforementioned construction of Frankl and Füredi. It would be of great
interest to determine the extremal families for every triple of integers (n, k, r).

We remark that if F ⊂P([n]) is a union of at most r 1-intersecting subfamilies of P([n]), then
|F |� 2n − 2n−r. This was first proved by Kleitman [17] and is an easy consequence of the FKG
inequality (see Lemma 3.4); it is sharp, as evidenced by taking F = ∪r

i=1{S⊂ [n]:i ∈ S}. In fact, we
will use this bound in our proof of Theorem 1.3.

We remark also that the problem considered here is closely related to the well-known Erdős
matching conjecture. Recall that the matching number m(F) of a family F ⊂P([n]) is defined to
be the maximum integer s such that F contains s pairwise disjoint sets. The 1965 Erdős matching
conjecture [6] asserts that if n, k, s ∈N with n� (s+ 1)k and F ⊂ ([n]

k
)
withm(F)� s, then

|F |�max
{(

n
k

)
−

(
n− s
k

)
,
(
k(s+ 1)− 1

k

)}
.

This conjecture remains open. Erdős himself proved the conjecture for all n sufficiently large
depending on k and s, i.e. for all n� n0(k, s). The bound on n0(k, s) was lowered in several works:
Bollobás, Daykin and Erdős [3] showed that n0(k, s)� 2sk3, Huang, Loh and Sudakov [15] showed
that n0(k, s)� 3sk2, and Frankl and Füredi (unpublished) showed that n0(k, s)=O(ks2). One of
the most significant results on the problem to date is the following theorem of Frankl [11].

Theorem 1.4. (Frankl, 2013). Let n, k, s ∈N such that n� (2s+ 1)k− s, and let F ⊂ ([n]
k
)
such

that m(F)� s. Then |F |� (n
k
) − (n−s

k
)
. Equality holds if and only if there exists S ∈ ([n]

s
)
such that

F =
{
F ∈

(
[n]
k

)
:F ∩ S �= ∅

}
.
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Frankl and Kupavskii [13] recently proved that

n0(k, s)�
5
3
ks− 2

3
s

for all s� s0 (for some absolute constant s0), strengthening Theorem 1.4 for s sufficiently large.
Clearly, if F ⊂ ([n]

k
)
is a union of at most r 1-intersecting families, then m(F)� r, so

Theorem 1.4 implies the conclusion of Theorem 1.3 under the (stronger) condition n� (2r + 1)
k− r.

Our proof techniques. Our main tool is the following ‘stability’ version of Theorem 1.3.

Theorem 1.5. There exists an absolute constant C0 > 0 such that the following holds. Let r, k ∈N

with k� C0r2, let s� C0
√
log k, let t ∈N with t� s2k/n, let n� 2k+ s

√
k, and let F ⊂ ([n]

k
)
be a

family satisfying μ1/2(F↑)� 1− 2−r and

|F |�
(
n
k

)
−

(
n− r
k

)
−

(
n− r − t
k− 1

)
.

Then there exists R ∈ ([n]
r
)
such that

|{S ∈F :S∩ R= ∅}|� 2r exp
( − �

(
s2k/n

))(n− r
k

)
.

Here, for F ⊂P([n]), we write F↑:= {S⊂ [n]:T ⊂ S for some T ∈F} for the up-closure of F .
For 0< p< 1 and G ⊂P([n]), μp(G) denotes the p-biased measure of G, defined in Section 2
below.

Roughly speaking, our strategy for proving Theorem 1.5 is as follows. Instead of working with
the uniform measure on

([n]
k
)
, we consider the up-closure F↑ of our family F , and we work

with the p-biased measure on P([n]), where p≈ k/n. It is well known that μp(F↑) approximately
bounds |F |/(nk) from above, for an appropriate choice of p. More precisely, we choose p to be
slightly larger than k/n, and use the lower bound on |F | to show that μp(F↑)≈ 1− (1− p)r .
Combined with the fact that μ1/2(F↑)� 1− 2−r , this implies an upper bound on the derivative
of the function q �→ μq(F↑), at some q ∈ (p, 1/2). But by Russo’s lemma, this derivative is precisely
Iq[F↑], the influence of F↑ with respect to the q-biased measure; we deduce that Iq[F↑] is close
to its minimum possible value. We then use a recent structure theorem for families with small
influence (proved in [5]) to deduce that F↑ must be close (with respect to the q-biased measure)
to a family of the form {S⊂ [n]: S∩ R �= ∅}, for some R ∈ ([n]

r
)
. Finally, we deduce from this thatF

is almost contained in a family of the form {S ∈ ([n]
k
)
: S∩ R �= ∅}. Note that a similar strategy was

used to obtain the stability results in [4]; indeed, we use here some of the lemmas from that paper.
We deduce Theorem 1.3 from Theorem 1.5 using a combinatorial ‘bootstrapping’ argument,

involving an analysis of cross-intersecting families.

2. Definitions, notation and tools
2.1 Definitions and notation
In this paper, all logarithms are to the base 2. A dictatorship is a family of the form

{S⊂ [n]: j ∈ S} or
{
S ∈

(
[n]
k

)
: j ∈ S

}
for some j ∈ [n].
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For j ∈ [n], we write

Dj:=
{
S ∈

(
[n]
k

)
: j ∈ S

}
for the corresponding dictatorship. If R⊂ [n], we write SR:= {S⊂ [n]: R⊂ S}, and we write
ORR:= {S⊂ [n]: S∩ R �= ∅}.

A family F ⊂P([n]) is said to be increasing (or an up-set) if it is closed under taking supersets,
that is, whenever A⊂ B and A ∈F , we have B ∈F ; it is said to be decreasing (or a down-set) if it is
closed under taking subsets.

If F ⊂P([n]) and l ∈ [n], we write F (l):= {F ∈F :|F| = l}. Hence, for example,

(ORR)(k) =
{
S ∈

(
[n]
k

)
: S∩ R �= ∅

}
.

If F ⊂P([n]), we define the dual family F∗ by F∗ = {[n] \A:A /∈F}. We denote by F↑ the
up-closure of F , i.e. the minimal increasing subfamily of P([n]) which contains F .

If F ⊂P([n]) and C ⊂ B⊂ [n], we define FC
B := {S ∈P([n] \ B) : S∪ C ∈F}.

A family F ⊂P([n]) is said to be a subcube if F = {S⊂ [n]: S∩ B= C}, for some C ⊂ B⊂ [n],
and it is said to be an increasing subcube if F = {S⊂ [n]: B⊂ S}, for some B⊂ [n].

We say a pair of families A, B ⊂P([n]) are cross-intersecting if A∩ B �= ∅ for any A ∈A and
any B ∈ B.

If X is a set andA⊂ X, we write 1A for the indicator function ofA, i.e., the Boolean function

1A: X → {0, 1}, 1A(x)=
{
1 if x ∈A,
0 if x /∈A.

By identifying {0, 1}n with P([n]) in the usual way (identifying a vector x ∈ {0, 1}n with the set
{i: xi = 1} ⊂ [n]), we may identify Boolean functions on {0, 1}n with Boolean functions on P([n]),
and therefore with subfamilies of P([n]). We will sometimes write Boolean functions on {0, 1}n
using the AND (∧) and OR (∨) operators. Hence, for example,

f :{0, 1}n → {0, 1}, f (x1, . . . , xn) �→ x1 ∨ (x2 ∧ x3)
corresponds to the subfamily {S⊂ [n]:1 ∈ S or {2, 3} ⊂ S} ⊂P([n]).

For p ∈ [0, 1], the p-biased measure on P([n]) is defined by

μp(S)= p|S|(1− p)n−|S| for all S⊂ [n].
In other words, we choose a random set by including each j ∈ [n] independently with probability
p. For F ⊂P([n]), we define μp(F)= ∑

S∈F μp(S).
We remark that if C ⊂ B⊂ [n], then μp(FC

B ) refers to the p-biased measure on P([n] \ B), not
on P([n]), since we regard FC

B as a subset of P([n] \ B).
If f :P([n])→ {0, 1} is a Boolean function, we define the influence of f in direction i (with respect

to μp) by

Inf pi [ f ]:= μp({S⊂ [n]: f (S) �= f (S�{i})}).
We define the total influence of f (with respect to μp) by Ip[ f ]:= ∑n

i=1 Inf
p
i [ f ].

Similarly, if A⊂P([n], we define the influence of A in direction i (with respect to μp) by
Inf pi [A]:= Inf pi [1A], and we define total influence ofA (with respect to μp) by Ip[A]:= Ip[1A].

2.2 Tools
We will use the following ‘biased version’ of the Erdős–Ko–Rado theorem, first obtained by
Ahlswede and Katona [1] in 1977.
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Theorem 2.1. Let 0< p� 1/2. Let F ⊂P([n]) be an intersecting family. Then μp(F)� p. If p<

1/2, then equality holds if and only if F = {S⊂ [n]:j ∈ S} for some j ∈ [n].

We will use the following special case of the well-known inequality of Harris [14] (which is
itself a special case of the FKG inequality [9]).

Lemma 2.2. (Harris). Let 0< p< 1. Then for any increasing sets A, B ⊂P([n]), μp(A∩ B)�
μp(A)μp(B). The same inequality holds ifA and B are decreasing.

By repeatedly applying Lemma 2.2, one immediately obtains the following well-known corol-
lary.

Corollary 2.3. Let r ∈N, let 0< p< 1, and supposeA1, . . . ,Ar ⊂P([n]) are increasing. Then

μp(A1 ∩ · · · ∩Ar)�
r∏

i=1
μp(Ai).

The same inequality holds ifA1, . . . ,Ar are decreasing.

The following ‘biased isoperimetric inequality’ is well known; it appears for example in [16].

Theorem 2.4. If 0< p< 1 andA⊂P([n]) is increasing, then

pIp[A]�μp(A) logp (μp(A)). (2.1)

We will need the following ‘stability’ version of Theorem 2.4, proved by Keller and the authors
in [5].

Theorem 2.5. For each η > 0, there exist C1 = C1(η), c0 = c0(η)> 0 such that the following holds.
Let 0< p� 1− η, and let 0� ε � c0/ ln (1/p). LetA⊂P([n]) be an increasing family such that

pIp[A]�μp(A)( logp (μp(A))+ ε).

Then there exists an increasing subcube C ⊂P([n]) such that

μp(A�C)� C1ε ln (1/p)
ln (1/(ε ln (1/p)))

μp(A).

We will need the well-known lemma of Russo [18], which relates the derivative of the function
p �→ μp(A) to the total influence Ip(A), where A⊂ {0, 1}n is increasing.

Lemma 2.6. (Russo’s lemma). LetA⊂P([n]) be increasing, and let 0< p0 < 1. Then

dμp(A)
dp

∣∣∣
p=p0

= Ip0 [A].

We need the following lemma from [4], which follows from Russo’s lemma and Theorem 2.4.

Lemma 2.7. If A⊂P([n]) is increasing, then the function p �→ logp (μp(A)) is monotone non-
increasing on (0, 1).

We will also need the following Chernoff bound.
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Lemma 2.8. Let n ∈N, let 0< δ, p< 1 and let X ∼ Bin (n, p). Then

Pr [X � (1− δ)np]< e−δ2np/2. (2.2)

The following lemma (combined with the Chernoff bound (2.2)) will allow us to bound |G|/(nk)
from above in terms of μp(G↑), where G ⊂ ([n]

k
)
and p is slightly larger than k/n.

Lemma 2.9. Let k, n ∈N, let 0< α, p< 1 and let G ⊂ ([n]
k
)
be a family with |G| = α

(n
k
)
. Then

μp(G↑)� α Pr[Bin (n, p)� k].

Proof. For each l� k, the local LYM inequality (see e.g. [2, §5]) implies that |(G↑)(l)|/(nl)�
|G|/(nk) = α. Hence,

μp(G↑)�
n∑
l=k

pl(1− p)n−lα

(
n
l

)

= α Pr[Bin (n, p)� k],
as required.

Finally, we need the following immediate consequence of a lemma of Hilton (see [10]).

Lemma 2.10. Let n, k, l, t ∈N with k+ l� n. LetA⊂ ([n]
k
)
, B ⊂ ([n]

l
)
be cross-intersecting families.

If |A|� (n
k
) − (n−t

k
)
, then |B|� (n−t

l−t
)
.

3. Proofs of the main results
Our first aim is to prove Theorem 1.5; for this, we need some preliminary lemmas.

Lemma 3.1. Let s> 0 and let t ∈N with t� s2k/n. Let n, k ∈N with n� 2k+ s
√
k, and let p=

(k/n+ 0.5)/2. If F ⊂ ([n]
k
)
with

|F |�
(
n
k

)
−

(
n− r
k

)
−

(
n− r − t
k− 1

)
,

then
μp(F↑)� 1− (1− p)r − exp (− �(s2k/n)).

Proof. The Kruskal–Katona theorem implies that

(F↑)(l) �
(
n
l

)
−

(
n− r
l

)
−

(
n− r − t
l− 1

)
= |(x1 ∨ x2 ∨ · · · ∨ xr−1 ∨ (xr ∧ (xr+1 ∨ xr+2 ∨ · · · ∨ xr+t)))(l)|

for any l� k. It follows that

μp(F↑)�μp(x1 ∨ x2 ∨ · · · ∨ xr−1 ∨ (xr ∧ (xr+1 ∨ xr+2 ∨ · · · ∨ xr+t)))− Pr[Bin (n, p)< k]
= 1− (1− p)r − p(1− p)r+t−1 − Pr[Bin (n, p)< k].

The Chernoff bound in Lemma 2.8 (applied with δ = 1− k/(np)= �(s
√
k/n)), together with our

condition on t, completes the proof.
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Lemma 3.2. Let r, n ∈N, let 0< p< 1/2 and let 0< η < 1. If A⊂P([n]) is increasing with
μ1/2(A)� 1− 2−r and

μp(A)� 1− (1− p)r − η,

then there exists p′ ∈ (p, 1/2) such that

Ip
′
[A]� Ip

′
[x1 ∨ · · · ∨ xr]+ η

0.5− p
.

Proof. By Russo’s lemma (Lemma 2.6 above), we have
0.5∫
p

Iq[A] dq= μ1/2(A)− μp(A)� 1− 2−r − (1− (1− p)r)+ η.

Hence,
0.5∫
p

(Iq[A]− Iq[x1 ∨ · · · ∨ xr]) dq� η.

This implies that for some p′ ∈ (p, 0.5) we have

Ip
′
[A]− Ip

′
[x1 ∨ · · · ∨ xr]�

η

0.5− p
,

as required.

Lemma 3.3. There exist absolute constants δ0, ε0, C2 > 0 such that the following holds. Let 0�
δ < δ0, 0� ε < ε0 and 1/4� p< p′ < 1/2. If A⊂P([n]) is increasing with μ1/2(A)� 1− 2−r,
μp(A)� 1− (1− p)r(1+ δ) and

Ip
′
[A]− Ip

′
[x1 ∨ · · · ∨ xr]� ε(1− p′)r ,

then there exists R ∈ ([n]
r
)
such that

μp′(A∅

R )� C2(ε + δ).

Proof. Note that for any family B ⊂P([n]), we have Ip′[B]= I1−p′[B∗]. Hence, by hypothesis, we
have

I1−p′
[A∗]− r(1− p′)r−1 = I1−p′

[A∗]− I1−p′
[x1 ∧ · · · ∧ xr]� ε(1− p′)r .

SinceA∗ is increasing and μ1/2(A∗)= 1− μ1/2(A)� 2−r , by Lemma 2.7 we have

μ1−p′(A∗)� (μ1/2(A∗))log1/2 (1−p′) � (1− p′)r .
Similarly, since μ1−p(A∗)= 1− μp(A∗)� (1− p)r(1+ δ), we have

μ1−p′(A∗)� (μ1−p(A∗))log1−p (1−p′) � ((1− p)r(1+ δ))log1−p (1−p′) � (1− p′)r(1+ 3δ),

provided δ0 is sufficiently small. Therefore,

μ1−p′(A∗) log1−p′ (μ1−p′(A∗))� (1− p′)r log1−p′ ((1− p′)r(1+ 3δ))� (r − 11δ)(1− p′)r.

It follows that

(1− p′)I1−p′
[A∗]− μ1−p′(A∗) log1−p′ (μ1−p′(A∗))� (ε + 11δ)μ1−p′(A∗).
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Applying Theorem 2.5 (with η = 1/4, with 1− p′ in place of p and with ε + 11δ in place of ε)
to the familyA∗, we see that there exists R⊂ [n] such that

μ1−p′(A∗�SR)� C2(ε + δ)(1− p′)r , (3.1)

where C2 > 0 is an absolute constant, provided ε0, δ0 are sufficiently small. We claim that |R| = r.
Indeed, if |R| > r, then

μ1−p′(A∗�SR)�μ1−p′(A∗)− μ1−p′(SR)� (1− p′)r − (1− p′)r+1 = p′(1− p′)r,
contradicting (3.1) provided ε0, δ0 are sufficiently small. Similarly, if |R| < r, then

μ1−p′(A∗�SR)�μ1−p′(SR)− μ1−p′(A∗)
� (1− p′)r−1 − (1+ 3δ)(1− p′)r

= (1− p′)r−1(p′ − 3(1− p′)δ),
again contradicting (3.1) provided ε0, δ0 are sufficiently small. This proves the claim. It follows
that

μp′(A∅
R)= (1− p′)−rμp′(A \ORR)

� (1− p′)−rμp′(A�ORR)
= (1− p′)−rμ1−p′(A∗�SR)
� C2(ε + δ),

as required.

Proof of Theorem 1.5. Let n, k, r, s and t be as in the statement of the theorem, where C0 is to be
chosen later. Let F ⊂ ([n]

k
)
be a family satisfying μ1/2(F↑)� 1− 2−r and

|F |�
(
n
k

)
−

(
n− r
k

)
−

(
n− r − t
k− 1

)
.

Let p= (k/n+ 0.5)/2. By Lemma 3.1, we have

μp(F↑)� 1− (1− p)r − exp (− �(s2k/n)).

Applying Lemma 3.2 with η = exp (− �(s2k/n)) andA=F↑, yields p′ ∈ (p, 1/2) such that

Ip
′
[F↑]� Ip

′
[x1 ∨ · · · ∨ xr]+ exp (− �(s2k/n))

0.5− p
.

Provided C0 is sufficiently large, we may apply Lemma 3.3 with δ = 2r exp (− �(s2k/n)) and

ε = exp (− �(s2k/n))
(0.5− p)(1− p′)r

� 2r
√
k

s
exp (− �(s2k/n))� 2r exp (− �(s2k/n)),

yielding

μp′((F↑)∅R )� 2r exp (− �(s2k/n)) (3.2)

for some p′ ∈ (p, 1/2) and some R ∈ ([n]
r
)
.

Applying Lemma 2.9 with G = (F↑)∅R , with n− r in place of n, and with p′ in place of p, we
obtain

|F∅

R |(n−r
k

) �
μp′((F↑)∅R )

Pr[Bin (n− r, p′)� k]
. (3.3)
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Applying the Chernoff bound in Lemma 2.8 with n− r in place of n, and with δ:= 1− k/(p′(n−
r))= �(s

√
k/n), we obtain

Pr[Bin (n− r, p′)� k]> 1− exp (− �(s2k/n)). (3.4)

Combining (3.2), (3.3) and (3.4), we obtain

|F∅

R |(n−r
k

) <
μp′((F↑)∅R )

1− exp (− �(s2k/n))
� 2r exp (− �(s2k/n)),

completing the proof of Theorem 1.5.

Before proving Theorem 1.3, we need some additional lemmas.

3.1 The FKG bound
We need the following well-known upper bound on the p-biased measure of the union of r
1-intersecting subfamilies of P([n]); we provide a proof for completeness.

Lemma 3.4. If F1, . . . ,Fr ⊂P([n]) are intersecting families, and 0< p� 1/2, then

μp(F1 ∪ · · · ∪Fr)� 1− (1− p)r .

Proof. By replacing Fi with F↑
i for each i, if necessary, we may assume that each Fi is increasing.

For each i, since Fi is intersecting, Theorem 2.1 implies that μp(Fi)� p, and therefore μp(F c
i )�

1− p. Hence, using Corollary 2.3 (applied to the down-sets F c
1, . . . ,F c

r ), we have

μp(F1 ∪ · · · ∪Fr)= 1− μp(F c
1 ∩ · · · ∩F c

r )� 1−
r∏

i=1
μp(F c

i )� 1− (1− p)r ,

as required.

Clearly, Lemma 3.4 is sharp, as can be seen by taking Fi = {S⊂ [n]:i ∈ S} for each i ∈ [r].

3.2 Upper bounds on linear combinations of sizes of cross-intersecting families
Lemma 3.5. For each constant C1 > 0, there exists a constant C2 = C2(C1)> 0 such that the
following holds. Let

n
C1

< k1 <
n
2

− C2,
n
C1

< k2 <
n
2

− C2

with |k1 − k2|� C1, and let t0 ∈N with

t0 � C2/ log
(
n− k1
k1

)
.

Suppose that

G1 ⊂
(
[n]
k1

)
, G2 ⊂

(
[n]
k2

)

are cross-intersecting families with

|G1|�
(
n− t0
k1 − t0

)
.
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Then

|G2| + C1|G1|�
(
n
k2

)
,

and equality holds only if G1 = ∅.

Proof. Choose t ∈N such that (
n− t − 1
k1 − t − 1

)
� |G1|�

(
n− t
k1 − t

)
.

Note that

t� t0 � C2/ log
(
n− k1
k1

)
.

By Lemma 2.10, we have

|G2|�
(
n
k2

)
−

(
n− t − 1

k2

)
.

So it suffices to prove that (
n− t − 1

k2

)/(
n− t
k1 − t

)
> C1.

Observe that (
n− t − 1

k2

)/(
n− t
k1 − t

)
= �C1

((
n− t
k1

)/(
n− t
k1 − t

))
,

and(
n− t
k1

)/(
n− t
k1 − t

)
= (n− k1) · (n− k1 − 1) · . . . · (n− k1 − t + 1)

(k1) · (k1 − 1) · . . . · (k1 − t + 1)
�

(
n− k1
k1

)t
� 2C2 .

Hence, (
n− t − 1

k2

)/(
n− t
k1 − t

)
= �C1

((
n− t
k1

)/(
n− t
k1 − t

))
= �C1 (2

C2 )> C1,

provided C2 is sufficiently large depending on C1, as required.

3.3 Approximate containment in dictatorships
We now show that if F =F1 ∪ · · · ∪Fr with Fi ⊂

([n]
k
)
an intersecting family for each i ∈ [r], and

|F | ≈
(
n
k

)
−

(
n− r
k

)
,

then not only is F well approximated by (ORR)(k) for some R ∈ ([n]
r
)
, but in fact each Fi is well

approximated by a (different) dictatorship Dj (with j ∈ R). Specifically, we prove the following.

Lemma 3.6. There exists an absolute constant C0 > 0 such that the following holds. Let r, k ∈Nwith
k� C0r2, let s� C0

√
log k, let t ∈N with t� s2k/n, let n� 2k+ s

√
k, and let F =F1 ∪ · · · ∪Fr,

where Fi ⊂
([n]
k
)
is an intersecting family for each i ∈ [r]. If

|F |�
(
n
k

)
−

(
n− r
k

)
−

(
n− r − t
k− 1

)
,
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then there exists a set R ∈ ([n]
r
)
and a permutation π ∈ Sym(R) such that

|(Fi)∅{π(i)}|� 22re−�(s2k/n)
(
n− 1
k

)
for each i ∈ R.

Proof. First note that by Theorem 1.5, we have

|F∅

R |� 2re−�(s2k/n)
(
n− r
k

)

for some R ∈ ([n]
r
)
; without loss of generality, we may assume that R= [r]. Hence,

|F { j}
[r] |�

(
n− r
k− 1

)(
1− 2re−�(s2k/n) n− r − k+ 1

k

)

=
(
n− r
k− 1

)
(1− 2re−�(s2k/n))

for each j ∈ [r].
Note that for each j1 �= j2 ∈ [r], the families (Fi)

{ j1}
[r] , (Fi)

{ j2}
[r] are cross-intersecting. So we may

assume, without loss of generality, that

μ1/2(((Fi)
{ j}
[r] )

↑)� 1
2

for any j �= i.
Fix j ∈ [r]. By Lemma 2.9 together with the Chernoff bound (2.2), we have

μ1/2((F { j}
[r] )

↑)� 1− 2re−�(s2k/n).

Using Corollary 2.3, we have

1− μ1/2((F { j}
[r] )

↑)�
r∏

i=1
(1− μ1/2(((Fi)

{ j}
[r] )

↑))�
(
1
2

)r−1
(1− μ1/2(((Fj)

{ j}
[r] )

↑)).

Rearranging, we obtain

μ1/2(((Fj)
{ j}
{ j})

↑)�μ1/2(((Fj)
{ j}
[r] )

↑)� 1− 22re−�(s2k/n).

Hence

μ1/2(((Fj)∅{ j})
↑)� 22re−�(s2k/n)

and the lemma follows from Lemma 2.9 and the Chernoff bound (2.2).

Finally, we need the following easy combinatorial inequality.

Claim 3.7. Let F1, . . . ,Fr ⊂ ([n]
k
)
and let F =F1 ∪ · · · ∪Fr. Then

|F |�
(
n
k

)
−

(
n− r
k

)
+

r∑
j=1

(|(Fj)∅{ j}| − |((Fj)
{ j}
[r] )

c|),

where

((Fj)
{ j}
[r] )

c:=
(
[n]\[r]
k− 1

)
\(Fj)

{ j}
[r] .
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Proof. It suffices to prove that

1F (S)� 1OR[r] (S)+
r∑

j=1
(1(Fj)∅{ j}

(S)− 1
([n]\[r]k−1 )\(Fj)

{ j}
[r]
(S\{ j})) (3.5)

for all S ∈ ([n]
k
)
. (The statement of the claim then follows by summing (3.5) over all S ∈ ([n]

k
)
.) To

prove (3.5), observe that for any set S ∈ ([n]
k
)
, we have

1
([n]\[r]k−1 )\(Fj)

{ j}
[r]
(S\{ j})= 1⇒ S∩ [r]= { j} ⇒ 1OR[r] (S)= 1,

so the right-hand side of (3.5) is always non-negative. Hence, we may assume that S ∈F . Without
loss of generality, we may assume that S ∈F1. If |S∩ [r]|� 2 or S∩ [r]= {1}, then

1
([n]\[r]k−1 )\(Fj)

{ j}
[r]
(S\{ j})= 0 for all j ∈ [r], 1OR[r] (S)= 1,

so the right-hand side of (3.5) is at least 1, and we are done. If S∩ [r]= ∅, then
1
([n]\[r]k−1 )\(Fj)

{ j}
[r]
(S\{ j})= 0 for all j ∈ [r], 1(F1)∅{1}

(S)= 1,

so the right-hand side of (3.5) is at least 1, and we are done. Finally, if S∩ [r]= {i} for some i> 1,
then we have

1
([n]\[r]k−1 )\(Fj)

{ j}
[r]
(S\{ j})= 1

only if j= i, whereas 1OR[r] (S)= 1(F1)∅{1}
(S)= 1, so the right-hand side of (3.5) is at least 1, and we

are done.

Proof of Theorem 1.3. Let F =F1 ∪ · · · ∪Fi, where Fi ⊂
([n]
k
)
is an intersecting family for

each i ∈ [r], and suppose that |F |� (n
k
) − (n−r

k
)
. Then F cannot contain r + 1 pairwise disjoint

sets, so by Theorem 1.4, if n� (2r + 1)k− r, we have |F |� (n
k
) − (n−r

k
)
, with equality only if

F = (ORR)(k) for some R ∈ ([n]
r
)
. Hence, we may assume throughout that n� (2r + 1)k− r − 1.

Moreover, by choosing C = C(r) to be sufficiently large, we may assume throughout that n� n0(r)
for any n0(r) ∈N.

By Theorem 1.5 (applied with s= C(r)k1/6, where C(r) ∈N is to be chosen later), Lemma 3.4
and Lemma 3.6, there exists a set R ∈ ([n]

r
)
and a permutation π ∈ Sym(R) such that

|(Fi)∅{π(i)}|� 22re−�(s2k/n)
(
n− 1
k

)
for each i ∈ R. Without loss of generality, we may assume that R= [r] and π = Id, so that

|(Fi)∅{i}|� 22re−�(s2k/n)
(
n− 1
k

)
(3.6)

for all i ∈ [r].
By Claim 3.7, we have

|F |�
(
n
k

)
−

(
n− r
k

)
+

r∑
j=1

(|(Fj)∅{ j}| − |((Fj)
{ j}
[r] )

c|). (3.7)

We now wish to apply Lemma 3.5. To this end, define

t0:=
⌈
C2( max{2r−1, 2r + 1})/ log

(
n− r − k

k

)⌉
,
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where C2( · ) is the function defined in Lemma 3.5. Since n� 2k+ C(r)k2/3 � 2k+ k2/3, and since
by assumption (2r + 1)k� n� n0(r), we have t0 =Or(k1/3), and therefore(

n− 1− (r + t0 − 1)
k− (r + t0 − 1)

)/(
n− 1
k

)
�

(
k− r − t0 + 2
n− r − t0 + 1

)r+t0−1

�
(

1
2r + 2

)r+t0−1

� exp (− �r(k1/3))
> 22r exp (− �(s2k/n)),

provided C = C(r) ∈N and n0 = n0(r) ∈N are chosen to be sufficiently large. Therefore, using
(3.6), for all j ∈ [r] and for all T ⊂ [r]\{ j}, we have

|(Fj)T[r]|� |(Fj)∅{ j}|

� 22re−�(s2k/n)
(
n− 1
k

)

<

(
n− 1− (r + t0 − 1)
k− (r + t0 − 1)

)

�
(

n− r − t0
k− |T| − t0

)
.

By our choice of t0, we have

t0 � C2( max{2r−1, 2r + 1})/ log
(
n− r − k+ |T|

k− |T|
)

for all j ∈ [r] and all T ⊂ [r]\{ j}. Hence, for any such j and T, we may apply Lemma 3.5 to the pair
of cross-intersecting families G1 = (Fj)T[r] and G2 = (Fj)

{ j}
[r] , with n− r in place of n,

C1 =max{2r−1, 2r + 1}, k− r + 1� k1 � k, k2 = k− 1,

and the above value of t0. This yields

|(Fj)∅{ j}| − |((Fj)
{ j}
[r] )

c|� 2r−1 max
T⊂[r]\{ j}

|(Fj)T[r]| − |((Fj)
{ j}
[r] )

c|� 0 (3.8)

for each j ∈ [r].
Combining (3.7) and (3.8) yields

|F |�
(
n
k

)
−

(
n− r
k

)
.

By hypothesis, we have

|F |�
(
n
k

)
−

(
n− r
k

)

and therefore

|F | =
(
n
k

)
−

(
n− r
k

)
,

so equality holds in (3.8) for each j ∈ [r]. Therefore, by Lemma 3.5, (Fj)T[r] = ∅ for all T ⊂ [r]\{ j},
i.e. (Fj)∅{ j} = ∅, so Fj ⊂Dj for all j ∈ [r]. Hence, F ⊂OR[r], so F = (OR[r])(k), as required.
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