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Three-dimensional numerical simulation is used to investigate intermittency in
incompressible weak magnetohydrodynamic turbulence with a strong uniform
magnetic field b0 and zero cross-helicity. At leading order, this asymptotic regime
is achieved via three-wave resonant interactions with the scattering of a wave on a
2D mode for which k‖ = 0. When the interactions with the 2D modes are artificially
reduced, we show numerically that the system exhibits an energy spectrum with k−3/2

⊥ ,
whereas the expected exact solution with k−2

⊥ is recovered with the full nonlinear
system. In the latter case, strong intermittency is found when the vector separation
of structure functions is taken transverse to b0. This result may be explained by the
influence of the 2D modes whose regime belongs to strong turbulence. In addition
to shedding light on the origin of this intermittency, we derive a log-Poisson law,
ζp= p/8+ 1− (1/4)p/2, which fits the data perfectly and highlights the important role
of parallel current sheets.
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1. Introduction

One of the most striking features of strong hydrodynamic (HD) turbulence is the
presence of both a complex chaotic spatial/temporal behaviour and a remarkable
degree of coherence. The small-scale correlations of turbulent motion are known to
show significant deviations from the Gaussian statistics usually expected in systems
with a large number of degrees of freedom (She, Jackson & Orszag 1988). This
phenomenon, known as intermittency, has been the subject of much research and
controversy since its first experimental observation in 1949 (Batchelor & Townsend
1949). It still challenges any tentative rigorous analytical description from first
principles (i.e. the Navier–Stokes equations). Intermittency can be measured by
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means of the probability density function (PDF) of the velocity differences between
two points separated by a distance `. In the presence of intermittency, PDFs develop
increasingly stretched and fatter tails when ` decreases within the inertial range,
showing the increasing probability of large extreme events. This non-self-similarity of
PDFs in HD reflects the fact that the energy dissipation of turbulent fluctuations is
not space-filling but concentrated in very intense vorticity filaments (Douady, Couder
& Brachet 1991).

Recently, growing attention has been given to the study of intermittency in the
weak turbulence (WT) regime (Falcon, Fauve & Laroche 2007). WT is the study of
the long-time statistical behaviour of a sea of weakly interacting nonlinear dispersive
waves, for which a natural asymptotic closure may be obtained. The energy transfer
between waves occurs mostly among resonant sets of waves, and the resulting
energy distribution, far from a thermodynamic equilibrium, is characterized by a wide
power-law spectrum that can be derived exactly (Nazarenko 2011). WT is a very
common natural phenomenon, studied, for example, in nonlinear optics (Dyachenko
et al. 1992), superfluid helium and processes of Bose–Einstein condensation (Lvov,
Nazarenko & West 2003), rotating fluids (Galtier 2003; Mininni & Pouquet 2010) and
space plasmas (Galtier 2006). Intermittency has been observed in situations where
coherent structures such as sea foam (Newell & Zakharov 1992) or freak ocean waves
(Janssen 2003) are present. In these particular examples, intermittency is linked to the
breakdown of the weak nonlinearity assumption induced by the WT dynamics itself
and therefore cannot be considered as an intrinsic property of this regime. A priori,
intermittency seems to be at odds with classical WT theory (Zakharov, L’Vov &
Falkovich 1992) because of the random phase approximation, which allows the
asymptotic closure and resultant derivation of the WT equations. For example, in fast
rotating HD turbulence (i.e. weak inertial wave turbulence) a self-similar behaviour is
found from structure functions both numerically and experimentally (van Bokhoven
et al. 2009; Mininni & Pouquet 2010). In this case, vorticity filaments are aligned
with the rotation axis, which means, in particular, that the presence of structures
is not necessarily indicative of intermittency. The classical WT theory has been
extended to the case of random amplitudes (with phases and amplitudes statistically
independent), and with the introduction of generating functions the time evolution
equation for the PDF of the amplitudes has been derived for three- and four-wave
processes (Choi, Lvov & Nazarenko 2004; Nazarenko 2011). When wave breaking
is present, intermittency is predicted with the tail of the PDF arbitrarily far from the
exponential distribution required by the Gaussian form. This type of intermittency in
Fourier space has been observed numerically and experimentally (Lvov, Nazarenko &
Pokorni 2006; Denissenko, Lukaschuk & Nazarenko 2007).

Weak magnetohydrodynamic (MHD) turbulence differs significantly from other WT
cases because of the remarkable role played by the 2D modes, for which k‖ = 0
(k is the wavevector in Fourier space and the subscript ‖ indicates the component of
k parallel to the guide field b0). Since Alfvén waves have frequencies ω±k = ±k‖vA
(with vA the Alfvén speed) and only counter-propagating waves can interact, the
three-wave resonance condition, ω+k1

+ ω−k2
= ω±k3

and k1 + k2 = k3, implies that at
least one mode must have k‖ = 0 (Shebalin, Matthaeus & Montgomery 1983; Ng
& Bhattacharjee 1996), which corresponds analytically to the appearance of a δ(k‖)
function (Galtier et al. 2000). Thus, this mode acts as a catalyst for the nonlinear
interactions. The situation is different for other systems, such as rotating turbulence,
where the WT theory does not allow such 2D–3D mode interactions. Such interactions
are nevertheless possible, and possibly non-negligible, but their origins are different
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(Scott 2014). The 2D MHD mode is not a wave but rather a form of 2D condensate
with a characteristic Alfvén time τA ∼ 1/(k‖vA)=+∞, and cannot be treated by WT.
The standard way to overcome this complication has been to assume that the k‖
spectrum of Alfvén waves is continuous across k‖ = 0. Under this assumption, a k−2

⊥
energy spectrum was predicted analytically in the simplest case of zero cross-helicity
with a direct cascade towards small scales (Galtier et al. 2000, 2002). This prediction
has been confirmed observationally (Saur et al. 2002) and numerically (Bigot, Galtier
& Politano 2008b; Boldyrev & Perez 2009). Note, however, the inherent difficulty,
when using a finite periodic numerical box, in smoothly approaching k‖ = 0, due to
discretization of modes, and obtaining a contribution of the three-wave resonance
condition equivalent to a pure δ(k‖) function.

In this article, we investigate weak MHD turbulence through high-resolution
3D numerical simulations. We use higher-order statistical tools to demonstrate the
presence of intermittency in the cascade direction and show that this property can
be understood via a log-Poisson law where the influence of the 2D modes, which
belong to strong turbulence, is included. As far as we know, this is the first time that
intermittency results for MHD have been shown in the WT regime.

2. Numerical set-up

The incompressible MHD equations in the presence of a uniform magnetic field b0
read:

∂tz± ∓ b0∂‖z± + z∓ · ∇ z± =−∇P∗ + ν3∆
3z±, (2.1)

where z±= v±b (with ∇ · z±=0) are the fluctuating Elsässer fields, v the plasma flow
velocity, b the normalized magnetic field (b→√µ0ρ0 b, with ρ0 a constant density
and µ0 the magnetic permeability), P∗ the total (magnetic plus kinetic) pressure
and ν3 the hyperviscosity (a unit magnetic Prandtl number is taken). The MHD
model offers a powerful description of large-scale astrophysical plasmas, including
solar/stellar winds, accretion flows around black holes and intracluster plasmas in
clusters of galaxies (Biskamp 2003). Most often such plasmas are turbulent, with
an incompressible energetically dominant component, and embedded in a large-scale
magnetic field.

Equation (2.1) is computed using the pseudo-spectral solver TURBO (Teaca et al.
2009; Meyrand & Galtier 2012) with periodic boundary conditions in all three
directions. The nonlinear terms are partially de-aliased using a phase-shift method.
Two situations will be considered: the full equations (case A) with 15362 × 128
collocation points (while the resolution in the parallel direction is coarser – since
the parallel cascade is negligible – the computation box has a dimensional aspect
ratio equal to one in real space) and the case where the interactions with the 2D
modes are artificially reduced (case B; same spatial resolution as case A). In case
B the reduction is obtained by imposing v̂(k⊥, k‖ = 0) = b̂(k⊥, k‖ = 0) = 0 at each
time step (where ˆ denotes the Fourier transform). Note that it does not entirely
preclude interactions between the 2D modes (k‖ = 0) and other wave modes (k‖ > 0).
Indeed, as this is a pseudo-spectral simulation, during computation in real space of
the nonlinear term (which happens at each iteration), the 2D modes might be fed
by wave modes. Thus we cannot exclude totally (although it is certainly relatively
small) the effect of the 2D modes on the nonlinear dynamics. The initial state
consists of isotropic magnetic and velocity field fluctuations with random phases,
such that the total cross-helicity is zero, and the kinetic and magnetic energies are
equal to 1/2 and localized at the largest scales of the system (mostly wavenumbers
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FIGURE 1. (a) Snapshot of the magnetic field modulus (on a linear scale) in a
section perpendicular to b0 (case A). (b) Close-up of the current density modulus (on a
logarithmic scale) corresponding to the marked (square) region in (a). The line integral
convolution technique (Cabral & Leedom 1993) reveals a hierarchy of current sheets as
well as the formation of less intense filaments.

k ∈ [2, 4] are initially excited). There is no external forcing and we fix ν3= 4× 10−15

and b0 = 20. Note that the use of hyperviscosity might influence the intermittency
properties by reducing them when the degree of hyperviscosity increases (Spyksma,
Magcalas & Campbell 2012). Our analysis is systematically made at a time when the
mean dissipation rate reaches its maximum, which corresponds to t∗ = 2196τA with
τA= 1/(3b0) (this value is taken because energy is maximum at k‖= 3). An important
parameter for our simulations is the ratio χ between the Alfvén wave time and the
nonlinear time, i.e.

χ ∼ k⊥|z⊥|
k‖b0

, (2.2)

which must be small (χ � 1) in the WT regime (thus the 2D modes do not belong
to this regime). We have checked that this condition is satisfied in the range of scales
where WT is studied (in fact χ < 0.03 for every wavenumber (k⊥, k‖) with k‖ 6= 0).
Note that the initial energies of the 2D modes are taken to be zero in order to favour a
dynamics dominated by wave modes. With our (isotropic) initial conditions, anisotropy
will develop such that energy will fill the Fourier space with, in particular, k⊥� k‖.
This development is independent of the aspect ratio of the numerical box.

3. Results

Figure 1(a) shows a snapshot of the magnetic field modulus in a section
perpendicular to b0 for case A. The large-scale coherent structures are mostly the
signature of the initial condition, whereas the incoherent small-scale structures are
produced by the nonlinear dynamics and the direct energy cascade. It is thought that
the presence of such patchy structures is a signature of the weak MHD turbulence
regime (we have checked that they are not present in case B). A close-up of the
current density modulus is also given (figure 1b). It reveals a hierarchy of current
sheets, which are the dominant dissipative structures. Interestingly, we also see the
formation of less intense filaments.

We shall quantify the turbulence statistics by introducing the bi-dimensional
axisymmetric Elsässer energy spectra E±(k⊥, k‖), which are linked to the Elsässer
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FIGURE 2. Transverse wavenumber Elsässer energy spectra,
∫ 50

1 E+(k⊥, k‖)dk‖ (red) and
E−(k⊥, k‖ = 0) (black) for case A. The former spectrum is also shown when it is
compensated by k2

⊥ (inset). The wavelet spectrum from the sampled slices (see text) is
also shown (blue). The shaded area corresponds to the scales for which the intermittency
study is conducted.

energies E± = 〈z±2〉/2 of the system (〈 〉 denotes an integration over the physical
space) by the double integral E± = ∫∫ E±(k⊥, k‖)dk⊥dk‖. Figure 2 shows the results
for case A. In order to improve the statistics the spectrum E+ is plotted after an
integration from k‖ = 1 to 50 (red curve). In this way we suppress the contribution
of the 2D modes and limit the cumulative contribution of the dissipative parallel
scales, which can eventually alter the scaling law at the smallest scales. A spectrum
compatible with the WT prediction in k−2

⊥ is clearly observed (see inset). Hence,
this observation and the small value of χ (not shown) may be considered as a clear
signature of WT. In addition, we plot the spectrum E− for the 2D modes (black
curve) in order to show that it behaves very differently, possessing a flat spectrum.
The spectrum E− (or E+ in the latter case) behaves similarly, as is expected for zero
cross-helicity. Note that the −2 spectrum appears only after a transition in which
the scaling is shallower (∼−3/2). A possible interpretation of this transition is that,
in order to emerge, WT needs a sufficient amount of resonant triadic interactions
(otherwise one can fall in the discrete WT regime (Nazarenko 2011)), which can be
found only at sufficiently small scales.

The detection of the WT regime can also be made directly from the wavenumber–
frequency spectrum. In order to do this, during a time window around t∗, we follow
the magnetic energy fluctuations in Fourier space at a given k⊥ (=64 to be in the
inertial range) and for k‖ between 0 and ±64. Then, we perform a time-Fourier
transform of these signals and build the dispersion relation ω(k‖). The result is
shown in figure 3. As we can see, the signal is mainly concentrated near the
linear dispersion relation of the Alfvén wave, confirming that the waves are weakly
nonlinear. The weak nonlinear effects manifest themselves in a broadening of the
(ω, k‖)-distribution with respect to the ω = 2k‖b0 curve. This result suggests that we
are not in the discrete regime of WT (Nazarenko 2011). Importantly, we also see
the contribution of coherent structures which correspond to a band at constant low
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FIGURE 3. Wavenumber–frequency spectrum of the magnetic energy fluctuations at k⊥ =
64. The colour map is normalized to the maximal value of the spectrum at each fixed
k‖. Note the presence of a factor 1/2 in the frequency normalization because the energy
(square of a field) is used.

frequency. Interestingly the same kind of observation has been made in the context
of Bose–Einstein condensates (Nazarenko & Onorato 2007).

We use wavelet coefficients to define the Elsässer field increments, denoted by
δz±(x, `⊥), between two points separated by a vector `⊥ transverse to b0. For more
details on the wavelet method used and the justifications for using it please refer to
Kiyani et al. (2013). Intermittency can be investigated through the PDFs of these
increments for different spatial lags `⊥. We do not report an intermittency analysis
for vector separations along b0 because the corresponding range of scales is too
narrow. The results from this analysis are shown in figure 4. For case A (a), strong
intermittency is revealed through the development of more extended and heavier
tails at a shorter distance `⊥. The result is drastically different when the interaction
with the 2D modes is artificially reduced (case B, b) – in this case intermittency is
strongly reduced, with PDFs approaching closer to a Gaussian form. Removing the
interactions between the 2D modes and other wave modes is equivalent theoretically
to removing the three-wave resonant interactions which support the WT dynamics.
Therefore, what we see in case B is mainly the result of the non-resonant (including
quasi-resonant) triadic interactions, which are asymptotically negligible in the pure
regime of WT (the contribution of four-wave resonances can be discarded because it
leads theoretically to a steep −7/3 spectrum (Sridhar & Goldreich 1994) that is not
observed – see below).

We further analyse intermittency through the symmetric structure functions:

Sp = 〈(δz+)p/2〉〈(δz−)p/2〉 =Cp`
ζ ( p)
⊥ , (3.1)

where ζ ( p) are the scaling exponents that are to be measured in the inertial range
(homogeneous axisymmetric turbulence is assumed) and Cp are some constants.
The unusual definition (3.1) for the structure functions is related to the exact solution
of the WT equations, which involves a power-law relation for the product of the
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FIGURE 4. PDFs of the Elsässer field increments (given by the wavelet coefficients) δz+
for case A (a) and B (b), and for four distances `⊥ (L0 is the size of the numerical
box) corresponding to the circles inside the shaded area in figure 2. The PDFs are shifted
vertically for clarity.

Elsässer spectra. This information will be used below to develop a WT intermittency
model. The study is conducted on several transverse planes and the fluctuations at
different scales `⊥ are calculated using the undecimated discrete wavelet transform
detailed in Kiyani et al. (2013); a 12-point wavelet was chosen to overcome the
limitations of normal two-point structure functions. Utilizing the periodic boundary
conditions of the simulation allows us to construct large contiguously sampled signals
in each plane; the ensemble of fluctuations is then constructed from a union of all
the fluctuations generated from the signal in each of the planes. This ensures that we
have a large sample to form our statistics. Figure 5 shows that case A is characterized
by strong intermittency such that ζ ( p) cannot be fitted with a trivial (linear) law,
nor by the MHD log-Poisson model previously derived (Müller, Biskamp & Grappin
2003, equation (3)) when g= 2 (hereafter MBG-weak) or g= 4 (hereafter MBG-IK),
which correspond respectively to weak (Galtier et al. 2000) and strong (Kraichnan
1965) turbulence (with δz ∼ `1/g

⊥ ). We also report the scaling exponents for case B,
which behave differently as a result of the k‖= 0 modes being removed. Interestingly,
for case B, the data follow the same curvature as the strong MHD turbulence model
(MBG-IK) and, as can be seen from the value of ζ (2), are compatible with a k−3/2

⊥
spectrum. Note that in this case elongated structures (current sheets) are also present.
Also, the origin of the −2 scaling found in case A seems not to be linked to any
field discontinuities (since then we should probably get a k−2

⊥ spectrum for case B).
We want to build a model that fits the exact solution of WT (energy spectrum

in k−2
⊥ ), which in physical space implies ζ (2) = 1. Even if this power-law relation

between the Fourier and physical spaces is not mathematically exact, it is clearly
observed in figure 5 and can be considered as an excellent constraint for the
intermittency model. Following the original development (She & Leveque 1994)
we then define:

Sp =Cp〈εp/2〉`p/2
⊥ , (3.2)

where 〈ε〉 is the mean dissipation rate of energy and 〈εp/2〉 ∼ `µp/2
⊥ . The latter relation

is the so-called refined similarity hypothesis (Kolmogorov 1962). The log-Poisson
distribution for the dissipation leads to the general relation (She & Leveque 1994;
Biskamp 2003):

µm =µ(m)=−m∆+C0(1− βm), (3.3)
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FIGURE 5. Scaling exponents ζ ( p) for cases A and B with a superimposed plot of the
log-Poisson model (equation (3.4)) for C0 = 1.08. The models MBG-weak and MBG-IK
are also plotted (see details in text) for comparison. The errors quoted correspond to one
standard error of the parameter fits.

where ∆ and β are linked to the co-dimension C0 of the dissipative structures such
that C0 = ∆/(1 − β). We shall consider the co-dimension as a free parameter that
will be estimated directly from the data. The system is closed by defining the value
of ∆, which is related to the dissipation of the most singular structures, such that
`−∆⊥ ∼ E∞/τ∞, where E∞ is the energy dissipated in these most singular structures
and τ∞ ∼ `/v` is the associated time scale. ∆ may be obtained by considering the
following remarks. Weak MHD turbulence behaves very differently from isotropic
MHD, because in the former case the regime is driven at leading order by three-wave
resonant interactions, with the scattering of two of these waves on a 2D/third mode.
(In fact, weak MHD turbulence is not applied in a thin layer around k‖ = 0 (Galtier
et al. 2000) where strong turbulence may be expected.) These 2D modes are also
important in characterizing dissipative structures (see figure 1): these structures,
which look like vorticity/current sheets, are strongly elongated along the parallel
direction and are therefore mainly localized around the k‖ = 0 plane in Fourier space.
If we assume that the dynamics of the 2D modes are similar to the dynamics of
two-dimensional strong turbulence, then it seems appropriate to consider that the time
scale entering in the intermittency relation may be determined by (Biskamp 2003)
v` ∼ `1/4

⊥ , hence the value ∆ = 3/4. Note that the importance of the 2D modes on
intermittency has already been emphasized in figure 4, where the PDFs are closer to
a Gaussian when the interactions with them are greatly reduced. Taking all this into
account, from (3.1) to (3.3) we finally obtain the intermittency model:

ζ ( p)= p
8
+C0 −C0

(
1− 3

4C0

)p/2

. (3.4)

The plot for this model is superimposed in figure 5(top, red line) for a fractal co-
dimension C0 = 1.08, which is the value that best fits the data (a nonlinear least-
squares regression is used). The model fits the numerical simulation perfectly, thus
we may infer that weak MHD turbulence is mainly characterized by vorticity/current
sheets. Note that the parameter β in this model measures the degree of intermittency:
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non-intermittent turbulence corresponds to β = 1, whereas the limit β = 0 represents
an extremely intermittent state in which the dissipation is concentrated in one singular
structure. According to the value obtained here, β ' 1/4 (with C0 ' 1), we might
conclude that weak MHD turbulence appears more intermittent than strong isotropic
MHD turbulence, for which β = 1/3.

4. Conclusion

This work presents numerical simulations of weak MHD turbulence. The key novel
result in this work is that, for the first time, strong intermittency is shown to exist
in such weakly interacting systems. The intermittency, as manifested in the statistical
scaling exponents ζ ( p), is modelled with a log-Poisson law that provides excellent
agreement with the results from the simulations. This model, which is a based on
the She–Leveque type intermittency model (She & Leveque 1994) with additional
physical insight from WT, allows one to make statements regarding the topology of
the structures responsible for the intermittency directly from the behaviour of the ζ ( p)
function. In the case of our work, where the 2D modes play a central role via the
dissipative structures, the model shows that the topology of these structures is very
much like parallel sheets. Our results are important with respect to the interpretation of
plasma turbulence observations and provide objective insights into the typically heated
discussions on what constitutes turbulence in systems such as plasmas, which host a
rich variety of waves and instabilities and at the same time are inherently nonlinear.
The results of our work confirm that the quintessential signature of turbulence in the
form of intermittency is not simply a property of strong turbulence, but may also be
found in a medium where WT is present (Nazarenko 2011). Incompressible MHD
is a unique example in WT because its dynamics, and so its existence, depends on
the 2D modes. Since the 2D modes via the resonance interactions are responsible for
intermittency, we can conclude that intermittency will always be found in weak MHD
turbulence.

An illustration of the potential impact of our results can be seen in solar physics,
where intermittency has been reported from a study of the magnetic field in active
regions of the solar photosphere(Abramenko et al. 2002), and where it is known that
a strong guide field is present, as indicated by the presence of coronal loops. This
intermittency could potentially be interpreted as a signature of the presence of a weak
MHD turbulence regime instead of a strong regime. This interpretation also has a
strong impact on coronal heating modelling (Bigot, Galtier & Politano 2008a).

In conclusion, contrary to common belief, the presence of intermittency in MHD
turbulence is not necessarily a proxy of strong turbulence – our results show that
intermittency alone cannot be the sole discriminator between weak and strong MHD
turbulence regimes.
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