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SUMMARY
We present an optimal gain scheduling control design for bipedal walking with minimum tracking
error. We obtained a linear approximation by linearizing the nonlinear hybrid dynamic model about
a nominal periodic trajectory. This linearization allows us to identify the linear model as a linear
periodic system. An optimal feedback was designed using Bellman’s dynamic programming. The
linear periodic system allows us to determine a linear quadratic regulator (LQR) for a single period
and to set the Hamilton-Jacobi-Bellman (HJB) function in a linear quadratic form. In this way, the
dynamic programming yielded an admissible continuous gain scheduling that was designed with
regard to the hybrid dynamics of the system. We tuned the optimization parameters such that the
tracking error and the average energy consumption are minimized. Due to linearization, we were able
to examine the stability of the approximated periodic system achieved by the periodic gain according
to Floquet’s theory, by calculating the monodromy matrix of the closed-loop hybrid system. In
addition to determining stability, the eigenvalues of this approximated monodromy matrix allowed
us to evaluate the settling time of the system. This approach presents a direct method for optimal
solution of locomotion control according to a given reference trajectory.

KEYWORDS: Bipedal locomotion; Linearization; Floquet theory; Dynamic programming; LQR;
Periodic linear system.

1. Introduction
Human bipedal locomotion is a highly efficient process as demonstrated by McGeer’s famous passive
walker.1 A substantial part of the power required for locomotion is generated from inertia and gravity
and only a small amount of actuation power is needed to propel the body forward. Although walking
is natural, bipedal locomotion is a complicated problem for control design. This is mainly due to the
biped system being a nonlinear system characterized by an equilibrium trajectory, meaning that biped
locomotion stability is achieved dynamically. These phenomena make the common control design
methods of LTI systems irrelevant and force us to look for more advanced solutions. The known
approaches can be divided into several types: quasi-static approaches and the dynamic approaches.
The quasi-static approach is such that a set of equilibrium equations is solved for every time-step
to find appropriate control inputs for a specific configuration. This method ensures stability since it
relies on an equilibrium. However, it also results in an unnatural and energy wasteful gait. A more
advanced solution, which also relies on an equilibrium principle, is Vukobratović’s zero moment point
(ZMP)2that also takes the inertia forces into account to stabilize the robot.

The dynamic approach obtains a more natural gait, because like human locomotion, it relies on
a dynamic stability. Using this approach for gaining stable locomotion, it is important to design a
controller that yields an accurate control signal. When an appropriate controller is obtained, it creates
a more natural locomotion. This approach’s main obstacle is the non-linearity of the model describing
the system’s dynamics, thus requiring a nonlinear control solution. Various solutions were suggested
for obtaining an appropriate control for dynamic nonlinear biped systems. The classic control approach
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is to force the biped to track on a desired trajectory. Chevallereau et al.3introduced a control for a
point-feet biped that tracks over an optimal trajectory4 for a particular biped. According to their
suggestion, the tracking is not on the reference motion but only on the geometric evolution, while the
time scaling parameter, defined as the sequence of the biped configurations, is controlled. An advanced
solution for a similar point-feet biped was suggested by Plestan et al.5 A linearization via feedback
associated with a set of virtual constraints enables an asymptotically stable locomotion for a point-
feet under-actuated biped. Stabilization is achieved using a definition of angular momentum about
the stance leg tip as a Lyapunov function, and it was numerically examined with the use of Poincaré
map. This approach yields a fine independent stable walking, due to the virtual constraints defining
the stability and the desired functionality of the robot. Another approach was presented by Braun and
Goldfarb.6 The desired generalized forces’ vector is considered as a linear PD feedback that operates
according to the functionality expected from the system (e.g. torso angle, maximum knee extension,
etc.). Locomotion of a seven-link biped was divided into four different states. Constant ‘stiffness’ and
‘damping’ coefficients of the feedback, and constant attraction points for the proportional control,
were chosen for every state. In this way, a natural and efficient locomotion of a biped with feet is
obtained.

Our approach is based on the classic linearization method. The advantage of using the linearization
approach, compared to the approaches mentioned above, is that it simplifies the control design.
Linearization is the immediate choice when handling nonlinear systems since it allows us to handle
nonlinear systems with linear systems tools. While in most cases, linearization is performed about
an isolated operating point, in the current development, linearization was performed about a nominal
stable trajectory. If the trajectory depends explicitly on time then the new system can be recognized
as a linear time-variant system. Moreover, if the trajectory is periodic, the linearized system can be
recognized as a linear periodic system. This recognition eases the development of the feedback control
and the stability analysis of the closed loop system. The control design, however, is not simple since the
dynamic model is a hybrid, i.e. a combination of continuous and instantaneous phases. Furthermore,
part of the walking cycle (the impact phase) is not directly controlled. Therefore, the feedback of the
controlled phase needs to be designed in a manner that the uncontrolled phase can be successfully
managed by the close-loop system and that the system will stay periodically stable. To accomplish
this goal, we used methods from the optimal control field.

An optimal feedback, based on Bellman’s dynamic programming, was designed to obtain
minimum tracking error according to a human reference trajectory. One major problem with dynamic
programming is that the Hamilton-Jacobi-Bellman (HJB) function is unknown for the majority
of the systems. In order to manage this problem, Jacobson7 designed an algorithm established
on differential dynamic programming that can numerically find the neighboring optimality. Using
Jacobson’s algorithm, Liu et al.8 designed a periodic optimal control and applied it on a bipedal
robot system. Todorov et al.9 suggested a local dynamic programming that iteratively finds the
neighboring optimality. In contrast, our linearization allows us to define the HJB function in a linear
quadratic form. The dynamic programming is associated with a linear quadratic regulator (LQR) as
a minimization criterion which enables to analytically obtain a continuous optimal gain scheduling.
With the recognition of the system as a linear periodic one, the optimization can also be preformed
for a single walking cycle, such that the optimal control will be an appropriate periodic control with
no dependence on the number of steps desired. However, the major problem is that continuous LQR
is not designed for hybrid systems, and therefore, cannot handle the instantaneous changes that occur
when the swing leg hits the ground. This problem does not enable periodic stability. To obtain the
desired periodic stability, we have suggested here a simple fix for the LQR’s terminal condition so that
the system will not diverge after impact, but will be maintained in proximity to the desired trajectory.
This fix is possible due to the linearized hybrid model, and yields a stable periodic gain scheduling,
designed with regard to the hybrid dynamics of the system.

Another advantage of using linearization and the linear-periodic recognition is that the stability of
the periodic gain can be analytically examined off-line using Floquet’s theory. Unlike examining the
discrete Poincaré map used by Plestan et al.5 and others3,10 during simulation, with our method we
calculate the monodromy matrix of the close-loop linear hybrid system for a given feedback, due to
the linearized hybrid model. This allows us to verify the stability of the system off-line. Moreover,
this method also allows for the evaluation of the system’s settling time, according to the dominant
eigenvalue of the monodromy matrix.
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Fig. 1. Planar bipedal model. Angles θC, θR1, θR2, θL1 and θL2 are the angles of the torso, right thigh, right
shank, left thigh and left shank, respectively. MR1, MR2, ML1, ML2 and MA are the torques at the right hip,
right knee, left hip, left knee and right ankle, respectively. Forces Fx and Fy are the friction force and the normal
reaction exerted on the biped’s body by the walking surface, respectively.

2. Bipedal Model
The biped’s structure is a five-link planar structure (Fig. 1) which includes a torso, two thighs and
two shanks. All links are attached by revolute joints, and actuators are placed at all joints. Two
supplementary actuators are placed at the legs tips, and act when the leg touches the ground. These
two actuators simulate an actuated ankle during the contact with the ground, where the mass-less
foot stays horizontal (‘flat-foot’ state) throughout the entire walking cycle. Neglecting the feet’s mass
and tilt, yields a point feet model that is fully-actuated. These assumptions were used to simplify the
model and examination of the suggested control law, avoiding the problem of under-actuation.

We assume that at the moment the swing leg touches the ground the stance leg lifts off, so there
is no double support phase. Thus, the biped’s locomotion is a combination of two phases: a single
support phase and an impact phase. This division of the point-feet locomotion is suggested in previous
works.3,5

2.1. Single support model
Single support phase is where one leg touches the ground and supports the body, while the other leg
swings forward. Assuming that during single support phase, the stance leg’s tip does not rebound
or slip, we can say that the contact point acts as a pivot. This assumption yields another revolute
constraint and reduces the system by two Cartesian DOF. Hence, the generalized coordinates’ vector
in this case is q = [ θC θR1 θL1 θR2 θL2 ]T . According to this generalized coordinate vector and by
using Lagrange dynamics,11 we obtain the nonlinear model

A(q)q̈ + C(q, q̇)q̇ + G(q) = Bu (1)

where A(q) is the inertia matrix, C(q, q̇) is the Coriolis matrix and G(q) is the vector of gravity
forces. B is a constant matrix that maps the actuators torques’ vector u(t) to the generalized forces
space. This set of differential equations can be presented in a state space presentation

ẋ(t) = f (x(t)) + g(x(t)) · u =
[

q̇

−A−1(q) [C(q, q̇)q̇ + G(q)]

]
+

[
0

A−1(q)B

]
u (2)

where x(t) is the state vector xT (t) = [
qT (t) q̇T (t)

] ∈ Rn.
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2.2. Impact model
Impact occurs when the swing leg strikes the ground. We assume that the impact is instantaneous and
there is no rebounding or slipping of the colliding leg during the impact. An additional assumption is
that since impact is instantaneous, the configuration does not change during impact, but the velocities
can change instantaneously. Using these assumptions, the change in the conjugate angular momentum
may be used to describe the dynamics of the impact.5,12 Using the unconstrained model (i.e. without
the pivot constrain) while assuming that actuators cannot generate impulse torques, the angular
momentum is given by

Au(q+
u )q̇+

u − Au(q−
u )q̇−

u = BF (q−
u )F imp

G (3)

where q−
u and q+

u denotes the configurations before and after impact, respectively. Au is the inertia
matrix of the unconstrained model, and BF is a matrix that maps the impact forces vector F

imp
G to the

unconstrained generalized coordinates space. Since the configuration does not change during impact,
we can substitute q+

u = q−
u in Eq. (3). Another equation can be obtained from the no rebounding and

slipping assumption

BT
F (q−

u )q̇+
u = 0 (4)

From this assumption we may also express the generalized coordinates qu in terms of the generalized
coordinates q of the single support model qT

u = [
ZT (q) qT

]
, where Z(q) is the geometric reference

between the impact point and the hip.

Z(q) =
[

xG − l2 sin θL2 − l1 sin θL1

yG + l2 cos θL2 + l1 cos θL1

]
(5)

where l1 and l2 are, the thigh’s and shank’s lengths respectively, and (xG, yG) are the coordinates of
the impact point. By combining Eqs. (3) and (4) we can obtain the impact model in state space and
in terms of x(t):

x(t+k ) = h(x(t−k )) =
[

q(t−k )
[05×2 I5×5]α · q̇(t−k )

]
(6)

where

α =
[
−A−1

u BF

(
BT

F A−1
u BF

)−1
BT

F + I7×7

] [
∂
∂q

Z(q−)
I5×5

]
(7)

2.3. Hybrid model
Both models, single support and impact, constitute the hybrid dynamic model

{
ẋ(t) = f (x(t)) + g(x(t))u(t), tk < t < tk+1

x(t+k ) = h(x(t−k )), k = 1, 2, . . .
(8)

The hybrid model is a combination of a continuous model and a discrete-instantaneous model that
describe the dynamics of the locomotion in its two phases.

3. Linearization
The hybrid model (7) is nonlinear and therefore we performed a linearization of the single support and
impact models about a nominal equilibrium trajectory xe(t). By deriving the single support model (2)
in deviations of �x(t) = x(t) − xe(t), a linear model is obtained. Since xe(t) is a function of time and
changes uniformly with respect to it, the linearized model can be classified as a linear time-variant
system

�ẋ(t) = Ã(t)�x(t) + B̃(t)�u(t) (9)
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where Ã(t) = ∂f (x(t))/∂x(t)|x(t)=xe(t) and B̃T (t) = [
05×5 −BT AT (qe)

]
. The matrices of the

linearized model are in bold and are additionally denoted by a tilde to distinguish them from the
nonlinear model matrices. Furthermore, xe(t) is also periodic, such that xe(t) = xe(t + T ). We can
therefore conclude that (8) is a linear periodic system, satisfying Ã(t) = Ã(t + T ), B̃(t) = B̃(t + T ).

In a similar fashion, linearization for the impact model can be obtained

�x(t+k ) = H̃�x(t−k ) (10)

where H̃ = ∂h(x)/∂x|x=x−
e

. For a symmetric constant velocity walking, the system (9) is a linear
time-invariant system, such that H̃(kT ) = const, for all natural k.

As a result of the linearization of these two subsystems, the hybrid nonlinear model (7) is
transformed to the following linear hybrid model

{
�ẋ(t) = Ã(t)�x(t) + B̃(t)�u(t), tk < t < tk+1

�x(t+k ) = H̃�x(t−k ), k = 1, 2, . . .
(11)

This approximated linear model is the model that will be used in the following development.
Matrices Ã and H̃ are nonsingular. There is a possibility that for certain postures of the robot
singularity could happen, however, we avoided these possibilities for the reference trajectory.

4. Optimal Control Design
Defining the desired outputs of the system, the connection between the output vector y(t) and the
state vector x(t) is given by y(t) = Cx(t), where C is a constant coefficients matrix. The state vector
contains the angular configuration and the angular velocities of the generalized coordinates. Generally,
the demand is for a correct geometric evolution according to the prescribed reference trajectory r(t),
while the velocities are less important. However, due to the transfer at the impact moment, it is
important that the velocities after impact will more or less correspond to the referenced post-impact
initial conditions. Therefore, the velocities should also be considered as the desired outputs. Hence,
matrix C is 10 × 10 identity matrix, and we can identify that y(t) ≡ x(t).

Through optimization, we will try to minimize the tracking error e(t) between the system’s output
y(t) and the reference signal r(t). According to the identity between y(t) and x(t), e(t) = x(t) − r(t).

4.1. Linear quadratic regulator (LQR)
Kalman’s Linear Quadratic Regulator (LQR)13 enables us to regulate between values inside the
vectors that should be minimized. The advantages of the linear quadratic form will be appreciated in
the continuation when the optimization strategy will be developed. The optimization goal is to achieve
minimum tracking error throughout the walking cycle. As previously stated, agreement between the
pre-impact state and the post-impact state is necessary. Therefore, the LQR for a single step in the
time interval

[
t0, tf

]
is defined in a finite-horizon form

L = 1

2
eT (tf )Pf e(tf ) + 1

2

∫ tf

t0

[
eT (τ )Qe(τ ) + uT (τ )Ru(τ )

]
dτ (12)

where Pf , Q ∈ R10×10 and R ∈ R5×5 are diagonal constant coefficients matrices, defining the
minimization ‘weights’ of the minimized variables. Minimization of the magnitude of the actuators’
torques u(t) is done to obtain minimum energy consumption and also to prevent an infinity solution.

However, the minimization criterion (11) in its current form does not ensure a stable periodic control
for the hybrid system and therefore we suggesting the following fix. It is clear that tf refers to the pre-
impact moment t−k . Moreover, it can be said that the reference trajectory’s and the nominal equilibrium
trajectory’s terminal entries, r(tf ) and xe(tf ), are identical. Hence, according to this identity and by
using the linearized impact model (9), it can be defined that e(tf ) ≡ �x(t−k ) = H̃−1�x(t+k ). According
to periodicity, the post-impact equilibrium state is the equilibrium’s initial value xe(t+k ) = xe(t0). We
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then can write the finite horizon criterion as

1

2
eT (tf )Pf e(tf ) = 1

2

(
x(t+k ) − xe(t0)

)T
H̃−T Pf H̃−1

(
x(t+k ) − xe(t0)

)
(13)

This expression will be used in the following Riccati equation development.

4.2. Dynamic programming
Bellman’s dynamic programming method enables us to obtain a periodic gain scheduling such that it
will generate the appropriate locomotion according to the reference trajectory. One problem in using
dynamic programming is the HJB function which is mostly unknown. However, we can overcome
this difficulty by using the linearized model.

According to Bellman’s principle of optimality,14 the HJB function is defined as the minimal
cost-to-go with regard to the initial conditions. Derivations of the HJB function with respect to time
yield the well known partial differential equation:

v∗
t (x∗(t), t) = − min

u(t)

[
L(x∗(t), u(t), t) + v∗

x (x∗(t), t)F (x∗(t), u(t), t)
]

(14)

where (∗) denotes the optimal value. As previously mentioned, the problem is that the HJB function
v(x(t), t) is unknown for most of the systems. However, due to Kalman’s LQR, we may consider the
HJB function in a linear quadratic form. Therefore, we can use the linearized single-support model
(8). Consequently, the HJB function for the tracking problem is

v(x(t), t) = 1

2
xT S(t)x + V T (t)x (15)

where S(t) ∈ Rn×n is a symmetric matrix, and V (t) ∈ Rn, both derived from the following Riccati
equation. Performing derivations of Eq. (14) with respect to time and the state vector x and substituting
them with the linear single support model in Eq. (13) we obtain:

1

2
xT Ṡ(t)x + V̇ T (t)x = − min

u(t)

[
1

2
(x − r(t))T Q (x − r(t))

+1

2
uT (t)Ru(t) + [

xT S(t) + V T (t)
] [

Ã(t)�x + B̃(t)�u(t)
]]

(16)

A minimum value is obtained by a derivation of Eq. (15) with respect to the control signal u(t)
and equalizing it to zero. Isolating u(t) from the obtained expression we obtain the optimal control
expression

u(t) = K(t)x(t) − r̃(t) (17)

where K(t) = −R−1B̃T (t)S(t), represents the optimal scheduled gain, and r̃(t) = R−1B̃T (t)V (t),
represents the optimal reference vector. By substituting Eq. (16) in Eq. (15) and by comparing
coefficients x and xT x, we obtain a set of Riccati equations:

Ṡ(t) = S(t)B̃(t)R−1B̃T (t)S(t) − S(t)Ã(t) − ÃT (t)S(t) − Q, S(tf ) = H̃−T Pf H̃−1

(18)
V̇ (t) = (

B̃(t)R−1B̃T (t)S(t) − Ã(t)
)T

V (t) + Qxe(t), V (tf ) = H̃−T Pf xe(t0)

Solving these equations yields the solution for the optimal control signal u(t).
Although Ã(t) and B̃(t) are periodic, the Riccati equation’s variables, S(t) and V (t), are not

necessarily periodic. However we assume that the solution of the Riccati equation is periodic (or
close to being periodic), such that the feedback control (16) is an appropriate optimal periodic
control. This assumption will be more accurate when the settling time will be smaller than the period
terminal time tf . Simulations verified the reliability of this assumption.
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Table I. Biped’s parameters. mC, m1 and m2 are the masses of the torso and the
thigh and shank limbs, respectively. The moments of inertia, IC, I1 and I2, are
calculated about the COMs of the torso, thigh and shank respectively, that are
distant by rC, r1 and r2, respectively, from a distal joint. l1 and l2 are the lengths

of the thigh and shank limbs, respectively.

mC (kg) m1 (kg) m2 (kg) IC

(
kg · m2

)
I1

(
kg · m2

)
I2

(
kg · m2

)
50.4 8.85 3.45 1.596 0.199 0.047
rC (m) r1 (m) r2 (m) l1 (m) l2 (m)
0.285 0.176 0.188 0.406 0.432

Table II. Optimization parameters.

Qq diag (1.5 7 13 5 2)
R diag (3e – 5 8e – 6 5e – 6 8e – 5 1e – 6
Pf diag (5e – 4 5e – 4 5e – 4 9e – 4 1e – 5 0 6e – 4 5e – 6 6e – 5 3e – 5)

5. Simulation and Results
In order to simulate walking, human locomotion measurements15 were used as an equilibrium
trajectory for the linearization and as the tracked reference trajectory. Only the evolutions of the
thigh and shank limbs were considered since the feet are assumed to be not tilting. The torso was
constrained to bend forward at an angle of 10 degrees. Although this is not the optimal trajectory for
the considered model, it is appropriate enough to use for examining the suggested control law. Since
it is a stable human trajectory with similar characteristics, we assumed that the control law is robust
enough to cope with the small deviations from the optimal trajectory. The robot’s parameters are
such that they have the same characteristics as a human which was taken from one of the reference
trajectories.16 The parameters taken are presented in Table I. We used human measurements as a
reference trajectory under the assumption that the right parameter approximations will achieve a
stable trajectory although, not an optimal one.

To obtain appropriate results, it was important to choose the values of the optimization parameters
properly. Since we use a regulator, any value that will give the desired performance in one aspect may
violate it in another. For example, a high preference for a minimal tracking error will cause a higher
power demand to maintain the error in the minimum value. However, it is not necessarily true in
the multibody system where sometimes reducing or increasing a coefficient will achieve something
opposite than expected, for better or for worse. Therefore, searching for optimal coefficients is done
not only intuitively but also by trial and error. The results presented are for a single set of parameters
that after several attempts yielded the desired results. However, these suggested parameters are not
necessarily the optimal ones. It is possible that other values in the large space of the optimization
parameters may result in better results.

Since the velocity tracking throughout the single support phase is not desired, the parameters in
Q that multiply the velocities in �x(t) are zeroed. Hence, only the diagonal sub-matrix (denoted by
Qq) of the first five components on the diagonal of Q are tuned, while the last five components are
zeroed. The orders of magnitude of the optimization parameters were determined according to the
minimization preferences. In general, all tracking error needed to be zeroed while the torques should
have some magnitude. Therefore, the R elements get a lower order of magnitude than the Qq and Pf

elements. Inside Qq , the parameter of the torso’s angle gets a lower value since the torso needs to
maintain its position only in the neighborhood of the constrained angle. After this first determination,
the values were tuned to improve the results.

While simulating the walking, it was important to ensure that the preliminary assumptions are
not violated. Therefore, during the simulation, the program verified that the terms Fy > 0 and∣∣Fx/Fy

∣∣ < μ were fulfilled. If any of these terms were violated, the simulation was ordered to stop,
and the parameters were then tuned.

The set of parameters determined after several attempts is presented in Table II. Running
simulations with these values yielded the fine walking process, described in Fig. 2 by the configuration
flow.
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Fig. 2. Configuration flow of five steps.

Fig. 3. Thigh and shank angles for the first four steps. Solid lines represent the swing leg’s elements while
dashed lines represent the stance leg elements. The assumption of symmetric locomotion allowed using the
same model for both legs while switching initial conditions between legs after impact.

Figure 3 represents the angles of the thigh and the shank throughout the first four steps. The solid
lines represent the stance leg’s elements while the dashed lines represent the swing leg’s elements.
Symmetric walking assumption enables us to use the same model for every step only by replacing the
initial conditions between the legs after impact. The continuity between the solid and dashed lines
at the impact moments can be clearly seen. The results of the tracking square error can be used to
observe the behavior of the system at steady state. It will be more convenient to examine the system’s
global behavior by presenting the sums of square errors for every cycle - ē2

k = ∫ tk+1

tk
e2(τ )dτ . Figure 4

shows the summed square errors over 10 steps, where it can be seen that after five steps the summed
square errors of all elements are constant, and the system reaches a steady state. In the sense of
nonlinear systems, this is the stage where the close-loop system gets its limit cycle.

Figures 5–7 show the torques generated by the actuators. The graph shown in Fig. 7 represents
only the stance ankle torque. The swing ankle torque is zero since the actuator is placed on the open
edge of the swing leg, and therefore does not work in this stage.

The high initial value of the ankle torque is caused by the initial conditions which were taken from
the reference trajectory.15

6. Stability
By using an approximated linear model, stability analysis can be done using the Floquet’s principle17

for linear periodic systems. According to this principle, a linear periodic system is considered
to be asymptotically stable if all the monodromy matrix’s eigenvalues (also called characteristic
multipliers), are inside the unit circle. The monodromy matrix for our particular hybrid linear system
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Fig. 4. Summed square errors over 10 steps.

Fig. 5. Torques at the hips for the first six steps.

Fig. 6. Torques at the knees for the first six steps.

https://doi.org/10.1017/S0263574714002586 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714002586


1820 Optimal periodic gain scheduling for bipedal walking with hybrid dynamics

Fig. 7. Torques at the stance ankle for the first six steps.

is given by18,19

� = �s(T , 0) · H̃ (19)

where �s(T , 0) is the transition matrix of the close-loop system in its single support phase.
Calculation of the eigenvalues of this matrix can also be used to evaluate the settling time of the

periodic system,20 according to �‘s dominant eigenvalue: ts ∼= −5T/ ln (max {|λi |}); i = 1, ..., n.
For the parameters presented in Table II, the evaluated settling time was 3.1 seconds, whereas in

Fig. 4 it seems that steady state is achieved after five cycles that correspond to about 2.5 seconds.
However, the evaluation refers only to the approximated linear system. Moreover, because Fig. 1
refers only to the discrete times, it is very likely that the steady state is achieved somewhere between
2.5 and 3 seconds. Therefore, the inaccuracy of the settling time evaluation is reasonable and it can
be considered to be in good agreement with the results.21

7. Discussion
We have shown that a linearization approach can be useful for the control design of dynamical hybrid
systems, and a periodic feedback can be analytically obtained according to a periodic linearized
hybrid model. In addition, it enabled us to examine the stability of the hybrid dynamic system
before conducting a simulation, by only examining the monodromy’s eigenvalues that are calculated
according to the designed output feedback. This stability analysis also allows us to predict the settling
time. By choosing the LQR’s optimization parameters carefully, we can obtain an admissible gain
scheduling according to the reference trajectory. Moreover, except for the instantaneous changes at
the cycles’ edges, the control signals are continuous and do not suffer from ‘bang-bang’ effects as
sometimes happens with nonlinear systems.

However, the torques’ magnitudes are slightly elevated as compared to those of a human with the
same parameters. There are some possible explanations for these results. It is clear that since the
reference trajectory is taken from human measurements it does not constitute an optimal trajectory for
a point feet biped with the parameters taken. Hence, there are some disagreements between the natural
dynamics of the model and its constrained trajectory. Another explanation is that the optimal feedback
was obtained according to a linear approximation. Since the feedback was eventually activated on a
nonlinear system, its response may be different than that of a linear system’s response. Considering
these circumstances, the results are very reasonable.

More satisfying results may be obtained by planning the optimal trajectory for the current model
and using it as a reference trajectory. Alternatively, a complete dynamic model that includes feet and
refers to all of the characteristics of the human’s locomotion may be determined. This kind of model
will be more in tune with the human reference trajectory and will reduce the torques generated by
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the actuators. By applying the methods used in this paper, more optimal results should be obtained.
These suggestions will be considered in future studies.
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