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Abstract
We present a statistical framework for generating predicted dynamic networks based on the observed
evolution of social relationships in a population. The framework includes a novel and flexible procedure
to sample dynamic networks given a probability distribution on evolving network properties; it permits
the use of a broad class of approaches to model trends, seasonal variability, uncertainty, and changes in
population composition. Current methods do not account for the variability in the observed historical
networks when predicting the network structure; the proposed method provides a principled approach to
incorporate uncertainty in prediction. This advance aids in the designing of network-based interventions,
as development of such interventions often requires prediction of the network structure in the presence
and absence of the intervention. Two simulation studies are conducted to demonstrate the usefulness
of generating predicted networks when designing network-based interventions. The framework is also
illustrated by investigating results of potential interventions on bill passage rates using a dynamic network
that represents the sponsor/co-sponsor relationships among senators derived from bills introduced in the
U.S. Senate from 2003 to 2016.

Keywords: dynamic network; congruence class model; prediction; co-sponsorship network

1. Introduction
Complex social systems in which individual-level outcomes of interest are interdependent are
increasingly represented as networks. In some systems, such as those involving transmission of
sexual diseases, the dependencies among people—represented as nodes in a network—are not
permanent, but form and dissolve over time, leading to changes in the network topology. In this
report, we present an approach to predict the topological evolution of the network based on the
observed historical network data. Specifically, we assume the evolving network is observed at dis-
crete times t = 0, . . . , k, and we want to predict the network for times t = {k+ 1, . . . , k+m}.
The primary advance in our proposed approach is a method to generate a dynamic network,
i.e., networks for times t = {k+ 1, . . . , k+m}, from a broad class of probability distributions.
The method allows investigators to model long-term and seasonal trends in the evolution of the
network structure—as observed in networks at times t = 0, . . . , k—and to use these models to
generate predicted networks in ways that incorporate uncertainty in the topology of the predicted
networks.

There are several frameworks for modeling the dynamic network that enable generating pre-
dicted networks. One such framework consists of the stochastic actor-oriented models, models
that define continuous-time Markov processes to govern the formation or dissolution of edges
(Snijders, 2017; Stadtfeld, 2018). Another common framework embeds network information into
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a low-dimensional latent space (Sewell & Chen, 2015). The third models dynamic networks
through extensions to the static exponential random graph model (ERGM) (Frank & Strauss,
1986). These include temporal ERGMs (TERGMs) and separable TERGMs (STERGMs) (Hanneke
et al., 2010; Krivitsky & Handcock, 2013). There is also research based on matrix completion for
estimating the network structure of partially observed static networks that incorporates uncer-
tainty; we are, however, not aware of extensions to dynamic networks (Chatterjee et al., 2015).
To our knowledge, current methods do not allow estimates of the level of uncertainty in the
predicted network structure for times t = {k+ 1, . . . , k+m} to be based on the variability in
the observed networks at times t = 0, . . . , k. Incorporating the observed historical variability of
network properties is important for predicting network structure.

Significant methodological challenges exist in designing interventions that modify network
structure. A primary challenge is the lack of general theory that connects network properties
to outcomes of network processes, such as disease propagation. Considerable research has been
devoted to investigating this relationship; however, the focus has mostly been on static networks.
Pellis et al. (2015) commented on the need for additional research on dynamic networks in the
context of epidemiological investigations. In the absence of theory, modeling time trends in out-
comes requires modeling the entire evolution of the network. Therefore, assessing the potential
impact of an intervention requires prediction of the network structure in the presence and absence
of the intervention. Such an approach was used in the design and monitoring of a large ran-
domized community controlled trial, the Botswana Combination Prevention Program, which
investigates whether implementation of a combination of prevention interventions reduces HIV
incidence (Wang et al., 2014).

Our proposed approach allows investigators to predict the dynamic network structure using
historical data on the network prior to the implementation of the intervention. It also enables
investigators to adjust the probability distribution of network properties targeted for modification
by the intervention in order to generate predicted networks in its presence. Comparing results
from simulations modeling processes operating on networks in the presence and absence of an
intervention allows for the evaluation of its potential impact.

Our proposed method is described in Sections 2–4; comparison with (S)TERGMs in Section 5;
and applied to simulation studies and an analysis of an observed network in Sections 6 and 7,
respectively. Specifically, Section 2 introduces network terminology, Section 3 provides a concep-
tual framework for generating predicted dynamic networks, and Section 4 provides details of the
method to sample dynamic networks. Section 5 provides technical details of (S)TERGMs and a
simulation study comparing the proposed method with STERGMs. Section 6 demonstrates how
generating predicted dynamic networks is useful in the investigation of interventions designed to
modify network properties. Section 7 illustrates the method through an analysis of a dynamic net-
work that represents the sponsor/co-sponsor relationships among senators indicated from bills
introduced in the U.S. Senate from 2003 to 2016. The network structures for the 108–113th
Senates (2003–2014) are used to predict the dynamic network structure for the 114th Senate
(2015–2016). Section 7 also demonstrates the usefulness of the method in predicting hypothetical
effects of interventions that modify the level of bipartisan support of bills–specifically the number
of ties between senators of different parties in the sponsor/co-sponsor networks. Section 8 dis-
cusses the limitations of the procedure and provides suggestions for further research. An R library
to use the proposed methods is available by request.1

2. Network terminology
We represent a population and connections among its members at time t as a network, denoted
as gt = (Vt , Et), where the sets Vt and Et represent individuals and their connections at time t,
respectively. The network gt can be equivalently represented as a binary adjacency matrix with
dimensions equal to the size of the set Vt ; therefore, gt has dimensions |Vt| × |Vt|, where |Z|
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denotes the size of set Z. Let gt[i, j]= 1 indicate that there is a relationship between individuals
i ∈Vt and j ∈Vt at time t, i.e., (i, j) ∈ Et , while gt[i, j]= 0 indicates that there is no relationship, i.e.,
(i, j) /∈ Et . Let nt(i) be the individuals with connections to individual i, i.e., nt(i)= {j : gt[i, j]= 1}.
Let Gt be the entire space of networks with Vt as nodes.

Mixing patterns describe the tendency for individuals in networks to be connected to others
that are like (or unlike) them based on their particular characteristics; we consider only discrete
characteristics. Let mi(gt) represent the vector of discrete characteristics for individual i in net-
work gt . We consider only a single characteristic, political party affiliation, but the methods and
formulas permit investigation of multiple characteristics. Letm(gt)= (m1(gt), · · · ,m|Vt |(gt)) be a
vector containing the characteristics of all individuals. The characteristic distribution, denoted
as M(gt), is a vector representing the number of individuals with these characteristics over
all individuals; the kth entry represents the number of individuals having characteristic k, i.e.,
Mk(gt)=

∑|Vt |
i=1 I{mi(gt)=k}.

We define a discrete-time dynamic network as a sequence of 2 or more static networks rep-
resenting the evolution of social relationships in a population; we will refer to a discrete-time
dynamic network simply as a dynamic network in this report. We refer to the number of static
networks in a dynamic network as its length. We consider a dynamic network model in which
the network at time t is a single draw from a probability distribution that conditions on the
networks at times t − 1, . . . , t − k, denoted as PGt (Gt = gt|gt−1, . . . , gt−k), where Gt is a random
variable with support Gt . The probability distribution is based on network properties that char-
acterize salient features of the evolving network; we refer to these network properties as essential
network properties of the system. Although there have been recent methodological advances to
assess whether a network model adequately characterizes a system (Hunter et al., 2008; Hanneke
et al., 2010; Schweinberger, 2012), additional research in this area is still needed; in practice, the
assessment may require simulation studies and guidance from subject matter experts.

Define η(gt|gt−1 · · · , gt−k) to be the function that maps gt ∈ Gt to the values of the essential net-
work properties conditional on gt−1, . . . , gt−k. Let cx = η−1(x|gt−1, . . . , gt−k), the inverse image
of the function of η(gt|gt−1, . . . , gt−k), i.e., cx = {gt : η(gt|gt−1, . . . , gt−k)= x, gt ∈ Gt}; we refer to
cx as a congruence class of Gt for the specified essential network properties. Let PCt (Ct) be the
probability distribution of essential network property values where Ct is a random variable for
the vector of real values that are associated with the congruence classes of Gt . The relationship
between PGt and PCt is shown below:

PCt (η(gt|gt−1 . . . , gt−k))=
∑

g∈cη(gt |gt−1...,gt−k)

PGt (g|gt−1, . . . , gt−k). (1)

3. Dynamic network prediction framework
The proposed network prediction method has three components. The first identifies essential
network properties by defining the mapping η : Gt →R

p, where p is the number of essential
network properties. As discussed in Krivitsky & Handcock (2013), it may be useful to specify
two types of essential network properties; one of these aids in characterizing the cross-sectional
properties of the network, and the other, its longitudinal properties. We follow this approach
and refer to cross-sectional and longitudinal properties as static and dynamic essential network
properties, respectively. The former consists of properties that are calculable based only on gt ;
the latter are those that require information on previous networks in order to be calculated. Let
ηs(gt) and ηd(gt| . . . , gt−k) denote the mapping from Gt to the values of the static and dynamic
essential network properties, respectively, where k denotes the number of previous networks

https://doi.org/10.1017/nws.2020.24 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2020.24


Network Science 577

necessary to compute the dynamic essential network properties. Note that η(gt|gt−1 . . . , gt−k)=
(ηs(gt), ηd(gt|gt−1 . . . , gt−k)).

The distinction between the two types of essential network properties can be illustrated using
the U.S. sponsor/co-sponsor network. Static properties provide information on the number of
relationships between U.S. Senators at each time point, e.g., during January 2016; by contrast,
dynamic properties provide information on the number of relationships in January 2016 that per-
sisted to February 2016, i.e., the rate of evolution in the dynamic network. Dynamic properties
can capture the rate of evolution in the system, not only overall but also with regard to specific
types of relationships (e.g., relationships between members of the same political party or between
members of different parties).

There are both practical and theoretical reasons for stratifying the essential network properties
into two categories. As mentioned by Krivitsky & Handcock (2013), the practical reason is that
information about the static and dynamic properties of a network are often derived from distinct
sources. Therefore, it may be necessary to model the functional form of these properties sepa-
rately. Regarding the theoretical reason, the functional form of the equation necessary to sample
from a DCCM (shown later in Equation (7)) relies on the model for the specific essential network
properties; the approaches to derive or estimate the functional forms differ between static and
dynamic essential network properties (details are provided in Section 7 and Appendix).

Recent statistical advances in dynamic networks complement our proposedmethod as they can
be used to guide selection of the essential network properties (Hanneke & Xing, 2007; Hanneke
et al., 2010; Krivitsky & Handcock, 2013; Paul & O’Malley, 2013; Snijders, 1996). Also of impor-
tance is recent work on assessing goodness-of-fit (GOF) for static networks (Hunter et al., 2008)
and for temporal networks (Hanneke et al., 2010; Schweinberger, 2012). These advances can aid
in identifying and validating the selected set of essential network properties; as mentioned above,
additional research is needed in the area of assessing GOF. We use the method as proposed in
Hanneke et al. (2010) to assess GOF for the U.S. Senate Bill data.

The second component is modeling and predicting essential network properties, i.e., specifying
PCt . The framework presented in this paper provides the flexibility needed to specify the probabil-
ity of observing a network with particular values for the selected essential network properties using
a range of techniques, including techniques for modeling evolving trends and seasonal variability.

The first component (identifying essential network properties) does not provide a probability
of observing a network at time t, but only specification of the properties that are used to com-
pute that probability. Therefore, our framework requires two distinct decisions about the use of
prior networks for modeling dynamic networks. The first is the number of prior networks that are
used to define the dynamic essential network properties. Use of only the previous network would
require that the persistence of an edge (i, j) ∈ gt−1 until time t does not depend on whether the
edge was present at time t − 2 (or any other earlier time). The second is the collection of observed
historical networks to use to estimate the joint distribution of essential network properties at time
t, i.e., estimate PCt . The choice of which prior networks to use for each of these two decisions can
differ. For example, we might make the assumption stated above that the persistence of a relation-
ship at time t depends only on its presence at time t − 1; nonetheless, the estimate for the number
of relationships at time t and of the subset of relationships that existed at both times t and t − 1
might usefully be based on historical averages dating back years or decades.

The third component is the generation of networks according to the probability distribution
PGt , which is based on the predicted distribution of the essential network properties, PCt ; this
relationship is shown in Equation (1). In essence, this component maps back to the network space
Gt fromR

p by sampling networks from the probability distribution PGt . The three components of
this framework are illustrated in Figure 1.
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Figure 1. A conceptual illustration of the prediction framework consisting of three components: identify essential network
properties, forecast properties, and generate predicted networks.

4. Dynamic Congruent Class Model
4.1 Congruence Class Model
To maximize the flexibility of the methods used to estimate the predictive distribution for the
network properties, we propose a general procedure to generate networks based on a model by
Goyal et al. (2014); we refer to it as the Congruence Class Model (CCM). We extend the CCM,
a method for static network generation, to dynamic networks and refer to this extension as the
Dynamic Congruence Class Model (DCCM). The CCM and the DCCM allow investigators to
generate networks consistent with a broad class of probability distributions on essential network
properties. Below, we review the key concepts of the CCM.

The CCM partitions the space of graphs with N nodes, GN , into congruence classes, i.e., all
graphs in a partition have the same values of essential network properties. The probability dis-
tribution on GN for the CCM requires specification of PC , the probability mass function for the
congruence classes defined by the essential network properties; as mentioned above, PC (η(g)) is
the total probability of all networks that are elements in cη(g), i.e.,

PC (η(g))=
∑

g∗∈cη(g)
PG (g∗) (2)

Since the congruence classes represent the partition of the spaceGN based on essential network
properties, two networks within a congruence class must have the same probabilities of being
observed. Therefore, the probability distribution on GN for the CCM is the following:

PG (g) =
(

1
|cη(g)|

)
PC (η(g)) (3)

where |cη(g)| denotes the number of networks with essential property values equal to η(g).
The flexibility of the CCM results from the fact that the investigator can choose the probability

mass function on congruence classes, PC . The CCM allows a broad range of models, including
both parametric and nonparametric, in the assignment of these probability mass functions.
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4.2 Dynamic Congruent Class Model
In the DCCM, the congruence classes are defined by both the static and dynamic essential network
properties; by contrast, the CCM is based only on the former. We denote cx as cy,z when it is
necessary to separate the vector of values for the static and dynamic essential network properties
as shown in Equation (4).

cy,z|gt−1,··· ,gt−k = {gt : ηs(gt)= y
ηd(gt|gt−1 · · · , gt−k)= z, and gt ∈ Gt} (4)

Adapting Equation (3) for the DCCM, the probability mass function on the space Gt is the
following:

PGt (gt|gt−k, . . . gt−n) ∝
(

1
|cη(gt |gt−1,...gt−k)|

)
× PCt (η(gt|gt−1, . . . , gt−k)) (5)

In the following sections, the congruence class of a network gt is restricted so that it only
depends on the previous network, gt−1. Therefore, the probability mass function in Equation (5)
simplifies to the following:

PGt (gt|gt−1) =
(

1
|cη(gt |gt−1)|

)
× PCt (η(gt|gt−1)) (6)

The decision to assume a Markov (or some other) process in defining the dynamic essential net-
work properties does not restrict the collection of networks used to estimate the probability mass
function on congruence classes, PCt . This flexibility allows the model to incorporate long-term
and seasonal trends as well as degrees of uncertainty that vary over time based on the historical
data.

As closed-form expressions for |cη(gt |gt−1)| are not available, sampling from Gt according to the
probability mass function in Equation (6) is performed by using a Metropolis-Hastings algorithm
(MH), a type of Markov Chain Monte Carlo (MCMC) procedure. To generate the network at
the tth step, gt , the algorithm starts by proposing a network, gpt , based on the current state of
the MCMC algorithm, denoted as g′

t , by toggling the existence of an edge (on or off) in g′
t . If the

proposed network is accepted, based on Equation (7) below, the algorithm sets the current state
g′
t = gpt and uses gpt as the basis of the next proposal; otherwise, it remains on the current state
and uses g′

t as the basis of the next proposal. The algorithm continues for a set number of pro-
posals, and the final element of the chain is assigned to gt . The algorithm produces an irreducible
Markov chain among all graphs in Gt . The equation for the acceptance probability for the MH
algorithm is the following:

P(Accept gpt|g′
t , gt−1)=min

(
1,

f
(
cη(gpt |gt−1), cη(g′

t |gt−1)
)

f
(
cη(g′

t |gt−1), cη(gpt |gt−1)
) × PCt

(
cη(gpt |gt−1)

)
PCt

(
cη(g′

t |gt−1)
)
)

(7)

where f (cx, cx′) is the average number of elements in cx′ that are valid proposals from an element
g ∈ cx. The non-standard acceptance probability formula in the MH algorithm arises because
the DCCMs focus on congruence classes. Equation (7) is identical to the acceptance probabil-
ity derived in Goyal et al. (2014) except for the modification to the definition of the congruence
classes that permits inclusion of dynamic essential network properties.

5. Comparison with (S)TERGMs
5.1 Theory
Although TERGMs share certain features with the proposed DCCM, there is an important dif-
ference that makes DCCM particularly useful for network prediction—the ability to specify the
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functional form of network properties. In order to illustrate the distinction between TERGMs and
DCCMs, it is helpful to review the formulation of TERGMs. Equation (8) shows the PMF for
TERGMs.

PG (G= gt|ω)= 1
Z(ω, gt−1, . . . , gt−k)

exp
(
ωTη(gt , gt−1, . . . , gt−k)

)
(8)

where ω is a vector of model parameters and Z(ω, gt−1, . . . , gt−k) is a normalizing constant
given the model parameters and previous networks; similar to the DCCM, η(gt , . . . , g1) is a
function mapping networks {gt , . . . , g1} to real values of network properties. A TERGM (when
nodal covariates are nominal) can be formulated as a DCCM by specifying the following for
PCt (η(gt|gt−1, . . . , gt−k)):

PCt (η(gt|gt−1, . . . , gt−k))=
|cη(gt |gt−1,...gt−k)|

Z
(
ω, gt−1, . . . , gt−k

) exp(ωTη(gt , gt−1, . . . , gt−k)
)

(9)

Therefore, TERGMs restrict PCt to a specific functional form; by contrast, the functional form for
DCCMs is unrestricted. The form associated with TERGMs arises by maximizing the entropy
subject to constraints that specify only the mean of each network property (Newman, 2010).
Therefore, when other constraints (such as limits on the variance of network properties) are
present in the system being modeled by the dynamic network, TERGMs can be a poor fit for the
data. In addition, the formulation of TERGMs results in a one-to-one correspondence between
network properties and sufficient statistics, i.e., there is one parameter for each network property;
this correspondence is not necessary for DCCMs.

STERGMs are a subclass of TERGMs that separates the formation and dissolution of edges in
the dynamic network process. The primary motivation for developing STERGMs, as described
by Krivitsky & Handcock (2013), is that the process for edge formation may differ from that for
edge dissolution; this approach is advantageous in that one can postulate explicit models for both
processes.

5.2 Simulation
We illustrate the difference between STERGMs and DCCMs through a simple example. Initialize
g1 as an Erdős–Rényi random graph with a population of 500 and a density of 1/500. Generate gt
by deleting and forming ndt and nft edges, respectively, at random from gt−1, where ndt , nft ∼
Poisson(λ). Based on this process, we simulate a dynamic network of length 20, denoted as
gλ
obs = {gλ

1 , · · · , gλ
20}, for a specific value of λ. We assume that this dynamic network is observed by

investigators and that the goal is to predict the next 200 future graphs based on gλ
obs; we evaluate

the usefulness of the STERGM and DCCM frameworks for making this prediction.
Based on this network generation process, the essential network properties are the number of

edges that form and dissolve at each time step. Equivalently, we can specify the essential network
properties as network density of graph gt and the number of edges that did not change between
time steps t − 1 and t, referred to as stability in Hanneke et al. (2010). These two sets of essen-
tial network properties are equivalent because if one knows the number of number of edges that
formed and dissolved between time steps t − 1 and t, one can calculate the network density of
graph gt and stability given gt−1; the converse is also true.

To specify a STERGM, we use the former specification for the essential network properties.
As STERGMs impose a one-to-one correspondence between network properties and sufficient
statistics, the only required sufficient statistic for the formation process is the number of edges that
form between times t − 1 and t. Similarly, for the dissolution process, the only required sufficient
statistic is the number of edges that dissolved between times t − 1 and t. No other modeling choice
is necessary to specify a STERGM. To fit a STERGM, we use the ‘tergm’ package in R (Krivitsky &
Handcock, 2019).
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Figure 2. Simulation results for the observed graphs as well as those predicted by STERMs and DCCMs. The top left panel
shows scatterplots for the mean network density averaged over all the 20 replications for a given value of λ; that is, each
point represents a distinct value of λ. The x-axis is the mean value for the observed graphs, and the y-axis is the average
mean value for the predicted graphs generated by the DCCM (blue points) and STERGM (red points). The bottom left panel
shows scatterplots for the average variance associated with the observed (x-axis) and predicted (y-axis) dynamic networks
for the network density statistic stratified by network generation method and λ. The right side shows similar information as
the left side for the stability statistic.

To specify a DCCM, we use the later specification described above for the essential net-
work properties. DCCMs also require a functional form of the essential network properties,
PCt (η(gt|gt−1, . . . , gt−k)), which is chosen by the investigator; this step is the critical distinc-
tion between DCCMs and STERGMs. Any form for PCt can be specified (such as one based
on the Poisson distribution or STERGMs), but for this illustration, we assume PCt follows
a multivariate normal distribution. To fit a DCCM, we need to estimate the parameters of
PCt (η(gt|gt−1, . . . , gt−k)); we do so in this illustration by having the mean and variance of the
multivariate normal equal to the observed mean and variance across the graphs in gλ

obs. We set the
covariance to 0, which is consistent with the generative process.

For the fitted STERGM and DCCM, we generated a dynamic network of length 200 that
represents times {t = 21, . . . , t = 220}. Over these 200 predicted graphs, we compute the mean
and variance for network density and stability. We repeated the process of generating a
dynamic network 20 times, yielding have 20 dynamic networks of length 200 for both the
fitted STERGM and DCCM for a given value λ. Finally, we set λ to the following values:
1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100.

Figure 2 shows the simulation results for the observed graphs as well as those predicted by
STERMs and DCCMs. The top left panel shows scatterplots for the mean network density aver-
aged over all the 20 replications for a given value of λ; that is, each point represents a distinct value
of λ. The x-axis is the mean value for the observed graphs, and the y-axis is the average mean value
for the predicted graphs generated by the DCCM (blue points) and STERGM (red points). The
bottom left panel shows scatterplots for the average variance associated with the observed (x-axis)
and predicted (y-axis) dynamic networks for the network density statistic stratified by the network
generation method and λ. The right side shows similar information as the left side for the stability
statistic.
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Both DCCM and STERGM produced dynamic networks for which predicted mean network
density (top left) and stability (top right) matched the observed values; this is illustrated by the fact
that scatterplots followed closely the x= y line. Nonetheless, the mean stability value for dynamic
networks generated by STERGMs is further from the x= y line compared to those generated
by DCCMs. For the variance of network density and stability (bottom panels), DCCMs pro-
duced dynamic networks with values that are closely correlated with those observed. STERGMs,
however, do not appear to capture the observed variances associated with gλ

obs for the network
properites of network density and stability; this is due to the fact that the functional form of
STERGMs does not constrain the simulated networks to have a variance thatmatches the observed
variance.

Next, we compare the runtime performance of the DCCM and STERGM. In the illustration,
the DCCM has to estimate the mean and variance of a multivariate normal distribution; however,
more complex distributions could have been selected with longer estimation times. In addition,
the estimation time for STERGMs depends heavily on the length of the observed dynamic net-
work; we limited this length to 20 due to long estimation runtime of STERGMs for greater lengths.
For these reasons, we focus on the time to generate a dynamic network of length 100 after the
model has been fit. At each time step, DCCMs sample a single network; however, STERGMs
sample two networks (a formation and a dissolution network) and then combine them. Both the
DCCM and STERGMs draw these networks using a MCMC algorithm. If we set the burn-in as
5,000,000 steps for each of these networks, then DCCMs and STERGMs generate a single dynamic
network of length 100 in approximately 318 and 285 seconds, respectively, based on a Intel Core
i7-4600U CPU @ 2.10GHz.

This simple example illustrates the advantage of the DCCM in allowing a flexible approach
(parametric and non-parametric) for specifying the functional form of network properties,
PCt (η(gt|gt−1, . . . , gt−k)), shown in Equation (5). Therefore, the DCCMmodels the distribution—
and therefore the variance—associated with network properties in the observed graphs in models
of the predicted graphs; this capability is further demonstrated in Section 7 for a more complex
dynamic network.

6. Value of predicting networks: Simulation studies
The usefulness of the proposed approach lies in its ability to predict networks—not simply col-
lections of network properties. In this section, we demonstrate the value of generating collections
of predicted dynamic networks for the evaluation of interventions intended to modify network
topology. The two simulation studies we discuss show that the association between dynamic
network properties and outcomes can be complex even in simple settings. Both studies present
interventions that are focused on reducing the spread of an infectious disease. However, the
examples are general enough to represent complex systems across many settings.

6.1 Simulation study 1
The simulation study in this section mimics interventions intended to decrease the number of
contacts during an epidemic of a communicable disease; the simulations use a simple susceptible-
infected (SI) epidemic model for disease spread. Each simulation models a population of 1,000,
where initially five individuals are infected with the disease. At each time step, individuals form
new contacts and dissolve existing contacts; those infected may spread the disease to uninfected
contacts. The DCCM is used to control the formation and dissolution of contacts. The model used
a single static essential network property, number of edges, and a single dynamic essential network
property, stability. We modeled PCt using a multivariate normal.

Six interventions are investigated in six simulations; the only difference among them is the rate
at which the number of contacts in the population decreases. A seventh simulation, in which the

https://doi.org/10.1017/nws.2020.24 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2020.24


Network Science 583

Figure 3. Example 1. The thin lines in the left panel of figure show the number of edges over time for all of the simulations;
each of the seven interventions was simulated 20 times; the seven thick lines show the average number of edges over time
for each of the interventions. The thin lines in the right panel of figure show the number infected over time for all of the
simulations; similarly, the seven thick lines show the average number infected over time for each of the interventions.

mean number of contacts does not decrease, represents the absence of an intervention. At the
start of each simulation, the contact networks have a mean of 1,500 edges. At the end, the mean
number of edges for each of the six intervention simulations are 0, 250, 500, 750, 1,000, and 1,250;
for the seventh, it remains at 1,500 edges. For all simulations, an average of 90% of the edges
persisted between consecutive networks. The variance for the number of edges was based on the
assumption that each had an equal probability of forming; for the number of edges, persisting
variance was based on assuming all edges had an equal probability of dissolving.

The thin lines in the left panel of Figure 3 show the number of edges over time for all of the
simulations; each of the seven settings was simulated 20 times. The seven thick lines show the
average number of edges over time for each of the settings. For each setting, the average line and
the variability around it indicate that the proposed method is performing as expected in modeling
the static essential network property; diagnostic plots (not shown) demonstrate that the proposed
method is also correctly modeling the dynamic essential network property. The thin lines in the
right panel of Figure 3 show the number infected over time for all of the simulations; similarly,
the seven thick lines show the average number infected over time for each of the settings.

The association between the essential network properties and the number infected does not
lend itself to characterization by a precise mathematical relationship. The curves shown in the
right panel all have a slightly different shape, which makes it difficult to specify a precise math-
ematical relationship between the network topology and the cumulative infected over time.
Simulations of this type, however, would permit an investigator to assess the potential impact
of the six interventions by comparing the results of each of them (settings 1–6) to the results for
the absence of the intervention (setting 7). This comparison is possible because of our ability to
generate entire networks.

6.2 Simulation study 2
This section describes simulation of interventions intended to control a communicable disease
epidemic by decreasing the cumulative number of contacts while keeping constant the total length
of time in relationships. This study setup is similar to that above: it models a population of 1,000,
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Figure 4. Example 2. The total number infected for each simulation for varying values of the probability that an edge persists
between two time points.

of whom five individuals are initially infected, assumes the same essential network properties, and
uses an SI epidemic model to simulate the disease spread.

This study interventions impacts the probability that an edge persists between two time points;
this probability ranges from 0 to 1. We assume that in the absence of intervention, the probability
is zero. Throughout each simulation, the dynamic network has a mean of 800 edges; the variance
for the essential network properties was based on the same assumptions as in the previous simula-
tion study. Figure 4 depicts the total number infected for each simulation for varying values of the
probability that an edge persists between two time points. As above, it would be difficult to derive
a precise mathematical description of the relationship between these two quantities. However, the
simulation study permits an investigator to assess the potential impact of an intervention designed
to decrease the cumulative number of contacts by comparing the results for each of the simulated
interventions to that representing the absence of the intervention. Once again, this comparison is
made possible by the ability to generate entire networks.

7. Senate bills 2003–2016
The longitudinal network data represent relationships between U.S. Senators as derived from bills
introduced during the U.S. 108–114th Senate. Each bill introduced in the U.S. Senate has a sin-
gle senator who serves as the sponsor of the bill; other senators may be associated with the bill
as co-sponsors. A co-sponsorship network for month t is generated by forming an undirected
edge between the sponsoring senator and each of the co-sponsoring senators for bills introduced
in month t. Prior research on the association between the topology of the co-sponsorship net-
work and key legislation outcomes (Kirkland & Gross, 2014). Fowler (2006) and Kirkland (2011)
showed that network measures can predict a legislator’s success. In addition, the overall topol-
ogy of the network is associated with the amount of legislation that Congress passes (Tam Cho &
Fowler, 2010).

We use the bills introduced during the 108–113th Senate to predict the networks during the
114th Senate. The next three subsections follow the conceptual framework outlined in Section 3
and Figure 1. Sections 7.1 and 7.2 identify and predict the essential network properties; Section 7.3
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generates networks based on predicted estimates from the model developed in Section 7.2.
Section 7.4 investigates the GOF of the model to assess whether the modeled properties are suffi-
cient to characterize the data. Section 7.5 demonstrates the usefulness of the method in predicting
hypothetical effects of an intervention.

7.1 Identifying essential network properties
A salient feature in formation of collaborations among U.S. Senators is party affiliation (Hanneke
et al., 2010). We model three static essential network properties that capture mixing patterns
between the two major political parties, Democratic and Republican; senators designated as inde-
pendent or socialist were assigned as Democrats. As the total number of senators fluctuated over
the time intervals (e.g., Illinois only had one senator during December 2008) as did the number
affiliated with each political party, we model the properties in a way that is compatible with these
data. The static essential network properties we model are the average number of edges that link
senators according to party affiliation as defined below:

ηDDs (gt)= |{Eij : Eij ∈ gt ,mi(gt)=D, andmj(gt)=D}|/MD(gt) (10)

ηDRs (gt)= |{Eij : Eij ∈ gt ,mi(gt)=D, andmj(gt)= R}|/MD(gt) (11)

ηRRs (gt)= |{Eij : Eij ∈ gt ,mi(gt)= R, andmj(gt)= R}|/MR(gt), (12)

where vector m(gt) represents the political affiliation for each node in gt , i.e., mi(gt) ∈ {D, R} is
the political affiliation for node i (D for Democrat and R for Republican), andMD(gt) andMR(gt)
are the number of Democrat and Republican senators, respectively, in network gt . Let ηs(gt)=
(ηDDs (gt), ηDRs (gt), ηRRs (gt)).

The vector for dynamic essential network properties, ηd(gt|gt−1), describes the stability
between gt and gt−1 for each pair of political affiliations, (D,D), (D,R), and (R,R); the rea-
son for specifying three dynamic essential network properties as opposed to one is to avoid
“churn”, as described in Krivitsky & Handcock (2013). The term ηd(gt|gt−1) consists of the aver-
age number of common edges in gt and gt−1 that link: (1) a Democrat to another Democrat,
(2) Democrat to a Republican, and (3) Republican to another Republican and denoted as
ηDDd (gt|gt−1), ηDRd (gt|gt−1), and ηRRd (gt|gt−1), respectively. The formulas for dynamic essential
network properties are presented below:

ηDDd (gt|gt−1)=|{Eij : Eij ∈ gt , Eij ∈ gt−1,mi =D, andmj =D}|/MD(gt) (13)

ηDRd (gt|gt−1)=|{Eij : Eij ∈ gt , Eij ∈ gt−1,mi =D, andmj = R}|/MD(gt) (14)

ηRRd (gt|gt−1)=|{Eij : Eij ∈ gt , Eij ∈ gt−1,mi = R, andmj = R}|/MR(gt). (15)

Let η(gt|gt−1)= {ηDDs (gt), ηDRs (gt), ηRRs (gt), ηDDd (gt|gt−1), ηDRd (gt|gt−1), ηRRd (gt|gt−1)}. The black
lines in the top three plots of Figure 5 depict the values of ηs, while the bottom three plots depict ηd
for the 108–113th Senates. We excluded the dynamic essential network property values where the
months t − 1 and t are associated with different senate terms, and set the value to zero in Figure 5
to retain the same time scale as the static essential network properties.

7.2 Predicting network statistics
We develop a model to predict η(gt) for the 114th Senate using data from the 108 to 113th
Senates. The prediction model is used to specify PCt for t ∈ {January 2015, . . . , December 2016}.
LetX(t) be the vector of random variables associated with the static and dynamic essential network
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Figure 5. U.S. Senate Network Statistics. The black lines depict the values of η(gt|gt−1)= {ηDDs (gt), ηDRs (gt), ηRRs (gt),
ηDDd (gt|gt−1), ηDRd (gt|gt−1), ηRRd (gt|gt−1)} for the 108–113th Senate. The shaded sections represent the 109, 111, and 113th
Senates, while the non-shaded sections represent the 108, 110, and 112th.

properties; X(t) is composed of the three random variables for the static properties, denoted as
YDD
s (t), YDR

s (t), and YRR
s (t), and three random variables for the dynamic properties, denoted as

ZDD
d (t), ZDR

d (t), and ZRR
d (t).

An advantage of the DCCM is that the development of the prediction model for η(gt) does
not require the Markov assumption used in defining the dynamic essential network statistics; we
use all of the historical networks from the 108–113th Senates and denote this collection as �gh. We
base our predictions of each component of X(t) on an autoregressive moving average (ARMA)
model with a seasonal component in order to capture the periodic fluctuations of the network
statistics associated with the congressional election cycle. The seasonal ARMA(p, q)(P,D)s model
for YDD

s (t) has the following form:

�(Bs)φ(B)YDD
s (t)= �(Bs)θ(B)Wt (16)

where

�(B)= 1−
P∑
j=1

�jBjs (17)

φ(B)= 1−
p∑

j=1
φjBj (18)

�(Bs)= 1−
Q∑
j=1

�jBjs (19)

θ(B)= 1−
q∑

j=1
θjBj (20)

BYDD
s (t)= YDD

s (t − 1), and (21)

Wt =Normal(0, σ 2) (22)

A separate ARMA(p= 3, q= 1)(P = 2,Q= 1)24 model—a model with p= 3 autoregressive
terms and q= 1 moving-average term and a seasonal component with P = 2, Q= 1 and period of
s= 24 months—was used to model each of the static essential network properties, YDD

s (t), YDR
s (t),

and YRR
s (t). For the dynamic essential network properties, ZDD

d (t), ZDR
d (t), and ZRR

d (t), we fit the
samemodel except the seasonal component had a period of s= 23months; we excluded the values
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Figure 6. U.S. Senate Network Statistics. The black lines depict the values of η(gt|gt−1)= {ηDDs (gt), ηDRs (gt), ηRRs (gt),
ηDDd (gt|gt−1), ηDRd (gt|gt−1), ηRRd (gt|gt−1)} for the 108–114th Senate. The shaded sections represent the 109, 111, and 113th
Senates, while the non-shaded sections represent the 108, 110, and 112th Senates. The areas defined by the blue regions
represent the predicted intervals.

where the months t − 1 and t are associated with different senate terms. In order to combine these
separate models, we use the product distribution. Therefore,

PCt (X(t)= (yDDs (t), yDRs (t), yRRs (t), zDDd (t), zDRd (t), zRRd (t))| �gh)=⎧⎨
⎩


k∈{DD,DR,RR}P(Yk
s (t)= yks (t)| �gh) if t = January 2015


k∈{DD,DR,RR}P(Yk
s (t)= yks (t)| �gh) ∗ P(Zk

d(t)= zkd(t)| �gh) else,
(23)

where P(Yk
s (t)= yks (t)| �gh) and P(Zk

d(t)= zkd(t)| �gh) are based on an ARMA(p= 3, q= 1)(P =
2,Q= 1)24 and ARMA(p= 3, q= 1)(P = 2,Q= 1)23 models, respectively, and k ∈ {DD,DR, RR}.
The models were fit using the R package Forecast (Hyndman, 2013). Based on the ARMA
model, the predicted distribution for each essential and stability network property follows a nor-
mal distribution. Therefore, PCt (X(t)) can be represented as the following multivariate normal
distribution:

PCt (X(t))=MVN(μt ,�t) (24)

For purposes of illustration, we set �t so that two standard deviations cover 50% of the predic-
tion interval; using a �t for which two standard deviations cover 95% of the prediction interval
would have large uncertainty and therefore reduce the clarity of the figures (no modification of
the method is required to use other standard deviations, such as ones which would cover 90% or
95% of the prediction interval). In Figure 6, the areas defined by the blue regions represent the
revised prediction intervals.

As our framework places only minimal restrictions on the selection of model for X(t), an inves-
tigator could select the most appropriate model, such as a vector autoregressive or non-Gaussian
models without modification to the method. We chose simple models for clarity of presentation.

7.3 Generation of predicted networks
7.3.1 Overview
This section describes the generation of networks that represent the predicted sponsor/co-sponsor
relationships between senators for the 114th Senate for the months January, 2015 to December,
2016. Using Equation (6), the probability distribution for the predicted networks, PGt (gt|gt−1), is
the following:
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Figure 7. U.S. Senate Network Statistics. The black lines depict the values of η(gt|gt−1)= {ηDDs (gt), ηDRs (gt), ηRRs (gt),
ηDDd (gt|gt−1), ηDRd (gt|gt−1), ηRRd (gt|gt−1)} for the 108–114th Senate. The shaded sections represent the 109, 111, and 113th
Senates, while the non-shaded sections represent the 108, 110, and 112th Senates. The areas defined by the red regions
represent the 2.5% and 97.5% quantiles of η applied to the predicted dynamic networks.

PGt (Gt = gt|gt−1) =
(

1
|cη(gt |gt−1)|

)
× PCt (X(t)= η(gt|gt−1)) (25)

where X(t)∼MVN(μt ,�t) is estimated in the previous section.

7.3.2 Results
The procedure described in the Appendix was used to generate dynamic networks predict-
ing the evolution of the co-sponsor relationships for bills introduced from January 2015
to December 2016, i.e., the 114th Senate. Each dynamic network is composed of 24 static

networks—one for each month. The procedure was repeated 500 times. Let �gpredi denote the

ith generated predicted dynamic network, where �gpredi [t] represents the network at time t ∈
{January 2015,. . ., December 2016}. To evaluate the procedure, the predicted dynamics net-
works generated by our model are compared to the estimated probability distribution of essential
network properties, i.e., PCt , shown in Equation (24). To conduct this evaluation, we calculate
ηDDs (gt), ηDRs (gt), ηRRs (gt), ηDDd (gt|gt−1), ηDRd (gt|gt−1), and ηRRd (gt|gt−1) for all of the generated pre-
dicted dynamic networks. Let �yDDs (t) denote a vector for ηDDs at time t for all predicted dynamic
networks, i ∈ {1, . . . , 500}, i.e.,

�yDDs (t)= {ηDDs ( �gpred1 [t]), . . . , ηDDs ( �gpred500 [t])} (26)

Similarly, define �yDRs (t), �yRRs (t), �zDDd (t), �zDRd (t), and �zRRd (t).
The red region in the top plot of Figure 7 represents 2.5% and 97.5% quantiles of �yDDs (t) at each

time point t ∈ {January 2015,. . ., December 2016}. The five subsequent plots represent 2.5% and
97.5% quantiles of �yDRs (t), �yRRs (t), �zDDd (t), �zDRd (t), and �zRRd (t). The blue regions in Figure 6 display
the 2.5% and 97.5% quantiles of the network property values based on the estimated probability
distribution of essential network properties, i.e., PCt . The red regions Figure 7 and blue regions
in Figure 6 are nearly identical. Therefore, Figure 7 provides evidence that networks generated by
the proposed method are appropriate; this result is expected as we were able to calculate f (Cg , Ch)
exactly. See Appendix for details.
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Figure 8. Goodness-of-fit Plots. The black lines depict the values for the 108–114th Senate of the following network prop-
erties: number of triangles, number of 2-stars, number of 3-stars, and alternating k-stars. The blue regions represent the
2.5%–97.5% quantiles of network statistics calculated from the simulated predicted networks.

7.4 Goodness-of-fit
Hanneke et al. (2010) proposed an extension of the approach by Hunter et al. (2008) to evaluate
GOF heuristically; we use their method to assess the fit of the predicted networks. Hunter et al.
(2008) and Hanneke et al. (2010) used the same networks to build a model and assess its fit. The
general approach is to compare values of network properties that were not included in the model
between the true and model-generated networks; this approach can be sensitive to the network
properties chosen as there is no set of “basis” network properties that can guarantee that one
has identified the complete set of essential properties. This approach shares similarities with the
network classification method by Airoldi et al. (2011). We visually inspect the differences, but
statistical tests can be applied, such as a Chi-squared test if the values can be binned. As our focus
is on forecasting networks, there are challenges in assessing GOF. In our analysis, however, the
predicted 114th Senate sponsorship networks are actually fully observed, but were excluded from
our modeling; therefore, we are able to base our GOF on a comparison of the true networks to
those we predicted. We consider the approach particularly useful since poor fit can arise from
either (1) important essential network properties that are missing in the model or (2) a network
structure of the 114th Senate that is fundamentally different from the previous Senates.

Figure 8 shows the values of four additional network properties that were not explicitly
modeled: number of triangles (T(g)), number of 2-stars (S2(g)), number of 3-stars (S3(g)), and
alternating k-stars (AK(g)). The expressions for these four network properties are:

T(g)=
∑
i,j,k∈g

Ieij∈E(g)Ieik∈E(g)Iejk∈E(g) (27)

Si(g)=
∑
i∈g

(∑
j∈g Ieij∈E(g)

i

)
(28)

AK(g)=
i=n−1∑
i=2

(− 1)iSi/τ i−2 (29)

The black line in each plot of Figure 8 depicts the observed values for a network property for the
108–114th Senate. Each red region represents the 2.5%–97.5% quantiles of the network statistics
calculated from the simulated predicted networks. The first plot provides the number of triangles;
the bottom three plots are related to degree distribution. The number of triangles, 2-star, and
3-star statistics from the simulated predicted networks appear to fit the observed network statistics
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Figure 9. Passage of Bills. The ηDRs (gt) values for the 108–114th are shown on the x-axis; color coded by congressional term.
The y-axis shows the proportion of bills introduced in the Senate that passed the Senate by month. The blue line shows the
loess curve.

closely, except for the early months of 2015. The number of relationships in the network during
the early months of 2015 was higher than historical averages, which may indicate that the lack of
fit was due to a change in the network structure for the 114th Senate compared to prior terms. We
note that in 2015, control of the Senate shifted from Democratic to Republican for the first time
since 2006. There seems to be a good fit with the alternating k-star property.

7.5 Simulation of proposed intervention
Several political analysts have proposed that the increasing use of gerrymandering at the state
level to create congressional districts that favor the party in power has decreased bipartisanship
(Enten, 2018). Enten (2018) states that “Gerrymandering contributes to issues like the drop in
competitive elections, extremism and gridlock, but it’s far from their sole cause.” He goes on to
state: “What’s behind the disappearance of so many competitive districts? Gerrymandering is part
of the story...It’s clear that most redistricting schemes that ignore politics and race would yield
more competitive U.S. House districts—i.e., those with a partisan lean of 10 percentage points
or less—than we currently have.” He also quotes John Kasich in his 2016 state address: “Ideas
and merits should be what wins elections, not gerrymandering. When pure politics is what drives
these kinds of decisions, the result is polarization and division. I think we’ve had enough of that.
Gerrymandering needs to be [in] the dust bin of history.” While some states, such as California
have anti-gerrymandering laws, there is no such federal law in the United States.

Political polarization, resulting in part from gerrymandering, has been proposed as a cause of
congressional gridlock that has become the norm over the past several terms (Jacobson, 2016;
Carson et al., 2007). Degree of bipartisanship can be measured as the level of bipartisan support
of bills—specifically the number of ties between senators of different parties in the sponsor/co-
sponsor networks, i.e., values for ηDRs (gt). Figure 9 shows a direct association between ηDRs (gt) and
the proportion of bills introduced in the Senate that passed the Senate (a univariable regression
has a p-value of 0.0225).
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Figure 10. Scenario 1. The black lines depict the values of η(gt|gt−1)= {ηDDs (gt), ηDRs (gt), ηRRs (gt), η
DD
d (gt|gt−1), ηDRd (gt|gt−1),

ηRRd (gt|gt−1)} for the 108–114th Senate. The red-shaded sections represent the 109, 111, and 113th Senates, while the
non-shaded sections represent the 108, 110, and 112th Senates. The areas defined by the red regions on the green-shaded
section represent the predicted number of edges for the unobserved 115th Senate under scenario 1.

As passage of bills in the Senate is required for new laws and the operation of U.S. government;
it is of interest to investigate consequences of decreased bipartisan co-sponsoring of bills on their
probability of passage. We consider three hypothetical scenarios starting at the beginning of the
115th Senate. The first assumes that the essential network properties for the 115th Senate follow
the prediction model shown in Equation (24). The second and third make the same assumption,
except that the number of across-party relationships is reduced by 95% (perhaps resulting from
impact of factors like social media) and increased by 100%. The comparison of these three scenar-
ios provides an estimate of the impact on bill passing rates of increases or decreases in bipartisan
support compared to historically observed trends. Alternative scenarios with varying parameter
choices would be easy to investigate.

Predicting bill passage rates under these three scenarios requires two statistical models. The
first links covariates, including network properties, to the outcome of bill passage rates. These
rates may depend on lower level network properties, such as the amount of across-party relation-
ships, as well as higher order properties, such as centrality measures. In order to investigate this
each month, we developed a basic random forest model using the network properties modeled in
the previous section as well as variables for the number of components, size of the largest compo-
nent, eigenvalue centrality, the maximum value for closeness and betweenness, and the number of
individuals from each party.We use this model to illustrate the proposed framework and acknowl-
edge that additional research and modeling is necessary to improve accuracy of prediction. The
node purity metric, which indicates the importance of a variable in a random forest model, shows
that eigenvalue centrality has an importance similar to that of the amount of across-party rela-
tionships, which provides support for the notion that higher order network properties impact bill
passage rates in the U.S. Senate. This finding is in line with previous research that has demon-
strated correlation of centrality measures of the sponsor/co-sponsor network with the number of
amendments and the associated bills that a senator will pass (Fowler, 2006).

The second model predicts values of covariates that are included in the first model. Therefore,
we need to predict values for the network properties described in Equations (8)–(13) as well as
the number of components, size of the largest component, eigenvalue centrality, and the maxi-
mum value for closeness and betweenness; the number of individuals from each party is based on
counts at the start of the 115th Senate. For all three scenarios, the predicted values for network
properties described in Equations (8)–(13) are either specified by the prediction model developed
in Section 6.2 or through the assumptions of the scenarios. However, it is difficult to estimate
the remaining properties. Therefore, we use our framework to generate networks and use them
to estimate the remaining properties. Figures 10, 11, and 12 show that the proposed method can
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Figure 11. Scenario 2. The black lines depict the values of η(gt|gt−1)= {ηDDs (gt), ηDRs (gt), ηRRs (gt), η
DD
d (gt|gt−1), ηDRd (gt|gt−1),

ηRRd (gt|gt−1)} for the 108–114th Senate. The red-shaded sections represent those quantities for 109, 111, and 113th Senates,
while the non-shaded sections represent them for 108, 110, and 112th Senates. The areas defined by the red regions on the
green-shaded section represent the predicted values for the unobserved 115th Senate under scenario 2.

Figure 12. Scenario 3. The black lines depict the values of η(gt|gt−1)= {ηDDs (gt), ηDRs (gt), ηRRs (gt), ηDDd (gt|gt−1), ηDRd (gt|gt−1),
ηRRd (gt|gt−1)} for the 108–114th Senate. The red-shaded sections represent those quantities for 109, 111, and 113th Senates,
while the non-shaded sections represent them for 108, 110, and 112th Senates. The areas defined by the red regions on the
green-shaded section represent the predicted values for the unobserved 115th Senate under scenario 3.

generate networks under the three scenarios. Note, for the first scenario, is it possible to predict
the remaining properties by developing a time series models for each property.

Applying the first prediction model using the estimated covariates, we predict that the average
monthly pass rate would decline by 3.9% in scenario 2 compared to scenario 1 and increase by
3.6% for scenario 3 compared to scenario 1. These results imply a modest change in bills passing
the Senate if bipartisan support erodes or increases faster than predicted according to historically
observed trends.

8. Discussion
The proposed framework for predicting dynamic network allows for flexible modeling of the joint
distribution of essential network properties at time t based on previously observed networks.
This flexibility permits the use of a broad class of approaches to model trends, seasonal vari-
ability, uncertainty, and changes in population composition. The flexibility makes the method
particularly well suited to serve as a basis for designing potential interventions that modify net-
work topology as investigators are able to model changes in network properties that result from
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interventions and compare these changes to those based on historical network trends–as in our
illustration.

In addition to the application we present, there are a range of research areas where the proposed
method is applicable. One is investigation of the impact of inventions, such as treatment and
behavior changes, to mitigate the spread of diseases, e.g., in investigating the impact of reducing
sexual partner concurrency to reduce the spread of HIV. Reducing concurrency is tantamount to
reducing the degree of individuals in a sexual contact network below 2 at a point in time. Assessing
the impact of concurrency is challenging because modifying one network property (degree in
this example) will modify others as well, including higher-order network properties (Goyal &
De Gruttola, 2015). The reason for this modification is that individuals who cease concurrent
relationships may either form non-concurrent relationships or forgo relationships entirely for
periods of time—either possibility will impact higher-order network properties. The forming of
other non-concurrent relationships may lead to changes in degree assortativity in the network
(aggregated over time). High-order properties, in particular degree assortativity, have been shown
to impact disease spread (Pastor-Satorras et al., 2015). Therefore, as with the Senate example, it
is necessary to generate the entire network and not just summary statistics; estimates of higher
properties cannot be computed easily.

The impact of uncertainty in network property estimates associated with dynamic networks
has received little attention compared to other areas of network science. However, the existence of
sharp thresholds in relationships among properties for static networks has been well-documented
(Erdős & Rényi, 1960; Watts & Strogatz, 1998; Newman, 2010). Therefore, is it possible for a small
change in a given dynamic network property to have significant impact on processes operating
on the network. Further research is necessary to understand the impact of variability in network
properties has for predicting intervention impacts on social systems.

Additional methodological work is needed to evaluate the form of f (Cg , Ch) for additional net-
work statistics. The CCM has been expanded to bipartite networks (Goyal & De Gruttola, 2017);
it may be possible to apply similar approaches to extend the DCCM to include bipartite networks.
Further work is also required to develop dynamic essential network properties whose functions do
not depend only on features of the previous observed network, as making a Markov assumption
can have significant impact on epidemics models (Goyal et al., 2012). As shown in Section 6, the
proposed method provides greater flexibly than many existing network models in that it does not
require the probability distribution of the dynamic essential network properties to conform to the
Markov assumption.
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Appendix: Technical details for DCCM
The predicted networks were generated using a Metropolis–Hastings algorithm with target distribution based on Equation
(25). Use of Metropolis–Hastings algorithm requires evaluation of the acceptance probability, as described in Equation (7).
Since Equation (24) provides the probability mass function for PCt , we only need to calculate f (Cg , Ch).

Though our analysis considers mixing based on only political party membership, the equations below are generalized to
allow for mixing between individuals based on an arbitrary number of covariate patterns. We present the quantities for the
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four cases that must be evaluated in order to calculate f (cη(g′
t |gt−1), cη(gpt |gt−1)). Let edge (i, j) be the required edge toggle to

move from g′
t to gpt and let Sl,k(g)= {Eij : Eij ∈ g,mi = l, andmj = k}. The four cases are associated with whether (i, j) exists

in g′
t or gt−1 or both or neither.

Case 1: (i, j) ∈ g′
t and (i, j) ∈ gt−1. Therefore,

ηl,ks (gpt) ∗Mmi (g
′
t)= ηl,ks (g′

t) ∗Mmi (g
′
t)− I{mi=l,mj=k} (A1)

and

η
l,k
d (gpt |gt−1) ∗Mmi (g

′
t)= η

l,k
d (g′

t |gt−1) ∗Mmi (g
′
t)− I{mi=l,mj=k} (A2)

Toggling any edge in Sl,k(g′
t)
⋂

Sl,k(gt−1) would satisfy Equations (A1) and (A2); since this logic holds for any g ∈ cη(g′
t |gt−1)

and |Sl,k(g′
t)
⋂

Sl,k(gt−1)| is constant across g ∈ cη(g′
t |gt−1),

f (cη(g′
t |gt−1), cη(gpt |gt−1))= η

mi ,mj
d (g′

t |gt−1) ∗Mmi (g
′
t) (A3)

Case 2: (i, j) ∈ g′
t and (i, j) /∈ gt−1. Therefore,

ηl,ks (gpt) ∗Mmi (g
′
t)= ηl,ks (g′

t) ∗Mmi (g
′
t)− I{mi=l,mj=k} (A4)

and

η
l,k
d (gpt |gt−1) ∗Mmi (g

′
t)= η

l,k
d (g′

t |gt−1) ∗Mmi (g
′
t) (A5)

Any edge from Sl,k(g′
t)/Sl,k(gt−1) can be toggled to satisfy Equations (A4) and (A5). Again, because this reasoning holds for

any g ∈ cη(g′
t |gt−1) and because |Sl,k(g′

t)/Sl,k(gt−1)| is constant across g ∈ cη(g′
t |gt−1),

f (cη(g′
t |gt−1), cη(gpt |gt−1))= η

mi ,mj
s (g′

t) ∗Mmi (g
′
t)− η

mi ,mj
d (g′

t |gt−1) ∗Mmi (g
′
t) (A6)

Case 3: (i, j) /∈ g′
t and (i, j) ∈ gt−1. Therefore,

ηl,ks (gpt) ∗Mmi (g
′
t)= ηl,ks (g′

t) ∗Mmi (g
′
t)+ I{mi=l,mj=k} (A7)

and

η
l,k
d (gpt |gt−1) ∗Mmi (g

′
t)= η

l,k
d (g′

t |gt−1) ∗Mmi (g
′
t)+ I{mi=l,mj=k} (A8)

An edge from Sl,k(gt−1)/Sl,k(g′
t) can be toggled to satisfy Equations (A7) and (A8). Therefore,

f
(
cη(g′

t |gt−1), cη(gpt |gt−1)
)= η

mi ,mj
s (gt−1) ∗Mmi (g

′
t)− η

mi ,mj
d (g′

t |gt−1) ∗Mmi (g
′
t) (A9)

for similar reasons as the previous cases.

Case 4: (i, j) /∈ g′
t and (i, j) /∈ gt−1. Therefore,

ηl,ks (gpt) ∗Mmi (g
′
t)= ηl,ks (g′

t) ∗Mmi (g
′
t)+ I{mi=l,mj=k} (A10)

and

η
l,k
d (gpt |gt−1) ∗Mmi (g

′
t)= η

l,k
d (g′

t |gt−1) ∗Mmi (g
′
t) (A11)

An edge from all possible edges connecting an mi node to an mj node that is not in Sl,k(g′
t)
⋃

Sl,k(gt−1) can be toggled to
satisfy Equations (A10) and (A11). Therefore,

f
(
cη(g′

t |gt−1), cη(gpt |gt−1)
)=Mmi ,mj (g

′
t) ∗Mmi (g

′
t)− [ηmi ,mj

s (gt−1) ∗Mmi (g
′
t)

− η
mi ,mj
d (g′

t |gt−1) ∗Mmi (g
′
t)] (A12)

where

Mmi ,mj (g
′
t)=

⎧⎪⎨
⎪⎩
[(Mmi (g

′
t) ∗Mmj (g

′
t))− η

mi ,mj
s (g′

t) ∗Mmi (g
′
t)] if mi 	=mj(Mmi (g

′
t )

2
)− η

mi ,mj
s (g′

t) ∗Mmi (g
′
t) if mi =mj,

(A13)

for similar reasons as the previous cases. The calculations for f (cη(gpt |gt−1), cη(g′
t |gt−1)) are similar to f (cη(g′

t |gt−1), cη(gpt |gt−1)).

Cite this article: Goyal R. and De Gruttola V. (2020). Dynamic network prediction. Network Science 8, 574–595.
https://doi.org/10.1017/nws.2020.24

https://doi.org/10.1017/nws.2020.24 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2020.24
https://doi.org/10.1017/nws.2020.24

	Dynamic network prediction
	Introduction
	Network terminology
	Dynamic network prediction framework
	Dynamic Congruent Class Model
	Congruence Class Model
	Dynamic Congruent Class Model

	Comparison with (S)TERGMs
	Theory
	Simulation

	Value of predicting networks: Simulation studies
	Simulation study 1
	Simulation study 2

	Senate bills 2003–2016
	Identifying essential network properties
	Predicting network statistics
	Generation of predicted networks
	Overview
	Results

	Goodness-of-fit
	Simulation of proposed intervention

	Discussion


