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ABSTRACT

The class of distortion riskmetrics is defined through signed Choquet inte-
grals, and it includes many classic risk measures, deviation measures, and
other functionals in the literature of finance and actuarial science. We obtain
characterization, finiteness, convexity, and continuity results on general model
spaces, extending various results in the existing literature on distortion risk
measures and signed Choquet integrals. This paper offers a comprehensive
toolkit of theoretical results on distortion riskmetrics which are ready for use
in applications.
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1. INTRODUCTION

In this paper, we study distortion riskmetrics on general model spaces. A
distortion riskmetric is a real-valued functional ρ with the following form:

ρ(X )=
∫ 0

−∞
(h(P(X ≥ x))− h(1)) dx+

∫ ∞

0
h(P(X ≥ x)) dx, (1.1)

where h is a function of bounded variation on [0, 1] with h(0)= 0 and X is a
random variable in the domain of ρ; a precise definition is given in Definition 1
below.

Let us first explain our somewhat unusual choice of terminology, “distor-
tion riskmetrics.” Clearly, the term “distortion” addresses the dominating role
played by the (not necessarily monotone) distortion function h in (1.1), whereas
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the term “riskmetrics” is chosen to distinguish ρ from the classic notions of
risk measures and deviation measures. For instance, risk measures are often
required to be monotone and translation invariant in the sense of Artzner
et al. (1999), and deviation measures are required to be convex in the sense
of Rockafellar et al. (2006). Insurance risk measures and premium principles
are typically assumed to be monotone with some other properties as in, for
example, Gerber (1974) or Wang et al. (1997). Our notion of distortion risk-
metrics does not require monotonicity, translation invariance, or convexity,
and it unifies risk measures, deviation measures, and many other functionals in
the literature of finance and insurance.

This paper is not the first to study functionals in (1.1) in risk management.
Historically, such functionals, assuming monotonicity, were studied by Yaari
(1987) in the economic literature and by Denneberg (1994) and Wang et al.
(1997) in the actuarial literature. More recently, for nonmonotone h, Wang
et al. (2020) called the functional in (1.1) a signed Choquet integral on the space
L∞ of bounded random variables. To be precise, a signed Choquet integral
refers to the right-hand side of (1.1). We note that a signed Choquet integral
should be interpreted as an “integral,” thus a mathematical operation, and not
a functional. Mathematically, signed Choquet integrals can be formulated for
any random variable, leading to a finite, infinite, or undefined value in (1.1),
whereas a distortion riskmetric is defined on a domain of financial relevance.
The difference is negligible if the study is confined to L∞, but it becomes deli-
cate in the case of a larger space such as an Lp-space; see Section 2. Moreover,
the term “distortion riskmetric” better describes the practical purpose of these
functionals in risk management. For the above reasons, we decided to invent
the term “distortion riskmetrics,” which will hopefully be the standard term for
the object in (1.1) in the future.

As hinted above, monotone (increasing) distortion riskmetrics have been
studied for decades under different names: the L-functionals (Huber and
Ronchetti, 2009) in statistics, Yaari’s dual utilities (Yaari, 1987) in deci-
sion theory, distorted premium principles (Denneberg, 1994; Wang et al.,
1997 and Denuit et al., 2005) in insurance, and distortion risk measures
(Kusuoka, 2001 and Acerbi, 2002) in finance. Some specific examples of dis-
tortion risk measures include the Value-at-risk (VaR), the Expected Shortfall
(ES, or TVaR/CVaR), the performance measures in Cherny and Madan
(2009), the GlueVaR in Belles-Sampera et al. (2014), and the economic
risk measures in Kou and Peng (2016). Nonmonotone examples of signed
Choquet integrals include the mean–median deviation, the Gini deviation,
the interquantile range, some deviation measures of Rockafellar et al. (2006),
and the Gini Shortfall of Furman et al. (2017). We collect some examples of
one-dimensional distortion riskmetrics in Table 1.

Moreover, distortion riskmetrics serve as the building block of law-
invariant convex risk functionals in the sense that any law-invariant convex
risk functional can be written as a supremum of signed Choquet integrals plus
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TABLE 1

SOME EXAMPLES OF ONE-DIMENSIONAL DISTORTION RISKMETRICS

name (notation) formula for X ∈X and parameters
distortion function for t ∈ [0, 1]

domain X convex? monotone?

mean (E) E[X ]
t

L1 yes yes

Value-at-Risk
(VaRα)

F−1X (α), α ∈ (0, 1)
1{t>1−α}

L0 no yes

ES/TVaR/CVaR
(ESα)

1
1− α

∫ 1

α

F−1X (t) dt, α ∈ (0, 1)
t

1−α
∧ 1

L0,1 yes yes

Gini deviation
1
2
E[|X ∗ −X ∗∗|]

t− t2
L1 yes no

mean-median
deviation

min
x∈R

E[|X − x|]
t∧ (1− t)

L1 yes no

essential supremum
(ess sup)

F−1X (1)
1{0<t≤1}

L0,∞ yes yes

essential infimum
(ess inf)

F−1+X (0)
1{t=1}

L∞,0 no yes

range F−1X (1)− F−1+X (0)
1{0<t<1}

L∞ yes no

inter-quantile range
(IQRα)

F−1+X (α)− F−1X (1− α), α ∈ [1/2, 1)
1{1−α≤t≤α}

L0 no no

inter-ES range
(IERα)

ESα(X )+ESα(−X ), α ∈ (0, 1)
t

1−α
∧ 1+ α−t

1−α
∧ 0

L1 yes no

Range Value-at-Risk
(RVaRα,β )

1
β − α

∫ β

α

F−1X (t) dt, 0< α < β < 1
(t−1+β)+

β−α
∧ 1

L1 no yes

Gini Shortfall
(GSλ

α)
ESα(X )+ λE[|X ∗α −X ∗∗α |]

α ∈ (0, 1), λ≥ 0

t
1−α
∧ 1+ 2λt(1−t−α)+

(1−α)2

L0,1 λ≤ 1/2 λ≤ 1/2

proportional hazard
principle/MAXVAR

1
α

∫ 1

0
(1− t)(1−α)/αF−1X (t) dt, α ≥ 1

t1/α

∪p>αL1,p ⊂X yes yes

dual power
principle/MINVAR α

∫ 1

0
tα−1F−1X (t) dt, α ≥ 1

1− (1− t)α
∪q>1/αLq,1 ⊂X yes yes

GlueVaR
ω1ESα(X )+ω2ESβ (X )+ω3VaRα(X )

0< α ≤ β < 1, (ω1,ω2,ω3) ∈�3

ω1( t
1−α
∧ 1)+ω2( t

1−β
∧ 1)+ω31{t>1−α}

L0,1 no yes

Notation. F−1X (α)= inf{x ∈R : P(X ≤ x)≥ α} for α ∈ (0, 1] and F−1+X (α)= inf{x ∈R : P(X ≤ x)> α}
for α ∈ [0, 1). Lp,q = {X ∈L0 :X− ∈Lp, X+ ∈Lq} for p, q≥ 0. �n = {(x1, . . . , xn) ∈ (0, 1)n : x1 + · · · +
xn = 1} is the interior of the standard n-simplex. X∗,X∗∗ are iid copies of X and X∗α ,X∗∗α are iid copies
of F−1X (Uα) where Uα ∼U[α, 1].
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constants (Liu, F. et al., 2020), and this includes all law-invariant convex risk
measures in Föllmer and Schied (2016) and all law-invariant deviation mea-
sures in Grechuk et al. (2009), as well as the classic mean variance and mean
standard deviation principles in insurance.

We already mentioned that characterization and various properties of dis-
tortion riskmetrics are studied on L∞ by Wang et al. (2020). As a follow-up
of the previous work, the main purpose of this paper is to extend the domain
of distortion riskmetrics to more general spaces, including Lp-spaces for p ∈
[1,∞). In many applications, risk measures such as the industry standard VaR
and ES are defined on spaces beyond L∞ to include unbounded loss distribu-
tions, for example, normal, Pareto, or t-distributions. Furthermore, for many
convex risk measures, their natural domains on which key properties are pre-
served are Banach spaces much larger than L∞; see, for example, Filipović and
Svindland (2012), Pichler (2013) and Liebrich and Svindland (2017). Indeed,
there is an extensive literature on risk measures defined on general spaces (e.g.,
Delbaen, 2002; Föllmer and Schied, 2002 and Ruszczyński and Shapiro, 2006)
and in particular on Lp-spaces (Frittelli and Rosazza Gianin, 2002) or Orlicz
spaces (Cheridito and Li, 2009). Different from the previous literature, we con-
sider many functionals that are not necessarily monotone or convex. Notably,
as a special example, the interquantile range (see Table 1) is not monotone,
convex, or Lp-continuous, but it is a popular measure of dispersion in statis-
tics, and it belongs to the class of distortion riskmetrics. Finally, we extend
distortion riskmetrics to a multidimensional setting, where the concepts of elic-
itability and convex level sets have been popular recently; see Fissler and Ziegel
(2016), Frongillo and Kash (2018) and Wang and Wei (2020).

Most results in this paper are similar to those in the literature in terms of
both statements and proofs, and our findings that these results hold on general
spaces are not surprising. However, most of the results in previous literature on
L∞, especially those in Wang et al. (2020), may not be convenient to directly
use in practice where most applications require results on more general spaces
of random variables. As such, more general results are in need, and this paper
can be viewed as a convenient toolkit for future studies and applications of
distortion riskmetrics. Nevertheless, there are several additions to the existing
literature. The similarity of this paper with Wang et al. (2020) and the new
results of this paper are summarized in Table 2.

Below we briefly explain the new results. First, an ES-based representation
of convex distortion riskmetric ρ in Theorem 5 is new to the literature. Four
other new results, all requiring the considered domain to be larger than L∞,
are the finiteness condition in Proposition 1, the domain of convex distortion
riskmetrics in Proposition 3, the existence of dominating convex functionals in
Theorem 4, and the Lp-continuity in Proposition 4. Moreover, the condition in
Theorem 6 is slightly weakened compared to a similar result on L∞ in Wang
et al. (2020).

The paper is organized as follows. In Section 2, we collect basic definitions
needed for our paper and present a functional characterization of distortion
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TABLE 2

COMPARISON WITH RESULTS IN WANG et al. (2020).

Corresponding results New results

This paper Wang et al. (2020) This paper
(on general spaces) (on L∞) (on general spaces)

Theorem 1 ←→ Theorem 1 Proposition 1
Theorem 2 ←→ Theorem 2 Proposition 3
Proposition 2 ←→ Lemmas 2 and 3 Theorem 4
Theorem 3 ←→ Theorem 3 Theorem 5
Theorem 6 ←→ Theorem 4 Proposition 4

riskmetrics. In Section 3, results related to convexity, convex order consistency,
and mixture concavity are presented. Section 4 contains results on continuity
properties of distortion riskmetrics, and Section 5 extends the discussions to
the multidimensional setting. To facilitate the main purpose of the paper as a
toolkit, most proofs are self-contained and are relegated to the appendix.

2. DISTORTION RISKMETRICS AND THEIR CHARACTERIZATION

2.1. Notation and definition

Throughout the paper, let (�,A, P) be an atomless probability space. Two
random variables X and Y have the same distribution under P is denoted by

X d=Y . For x, y ∈R, we write x∨ y=max{x, y}, x∧ y=min{x, y}, x+ = x∨ 0
and x− = (− x)∨ 0. For p ∈ [1,∞), Lp is the space of random variables with
finite p-th moment, and L∞ is that of essentially bounded random variables.
Throughout, the set X ⊃L∞ is a law-invariant convex cone, that is, for all
random variables X and Y ,

1. if X ∈X and X d=Y , then Y ∈X ;
2. if X ∈X , then λX ∈X for all λ > 0;
3. if X ,Y ∈X , then X +Y ∈X .

Let M be the set of distribution functions of random variables in X . For F ∈
M, X ∼ F means that X ∈X has distribution F . Denote by FX the distribution
function of the random variable X . We define the left-continuous generalized
inverse of F (left-quantile) as

F−1(t)= inf{x ∈R : F(x)≥ t}, t ∈ (0, 1],
while the right-continuous generalized inverse of F (right-quantile) is defined as

F−1+(t)= inf{x ∈R : F(x)> t}, t ∈ [0, 1).
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For simplicity, we also let F−1(0)= F−1+(0) and F−1+(1)= F−1(1).
Next, we define the distortion riskmetric using the signed Choquet integral

(Choquet, 1954) on a general space denoted by

H= {h : h maps [0, 1] to R, h is of bounded variation, h(0)= 0}.

Definition 1. A functional ρh :X →R, whose domain X ⊃L∞ is a law-invariant
convex cone, is a distortion riskmetric if there exists h ∈H such that ρh(X )=∫
X dh ◦ P, where ∫

X dh ◦ P is a signed Choquet integral defined by
∫
X dh ◦ P=

∫ 0

−∞
(h(P(X ≥ x))− h(1)) dx+

∫ ∞

0
h(P(X ≥ x)) dx. (2.1)

The function h is called the distortion function of ρh.

Generally, the two integrals in (2.1) may not be finite, and hence
∫
X dh ◦ P

may be infinite or even not well defined (i.e., ∞−∞). We emphasize that
according to our definition, a distortion riskmetric ρh :X →R is only defined
when

∫
X dh ◦ P is finite (i.e., both integrals are finite), and hence the two terms

“distortion riskmetrics” and “signed Choquet integrals” are no longer inter-
changeable, in contrast to the case of L∞ studied by Wang et al. (2020). In
other words, X and h have to be compatible, making (2.1) finite. In Section
2.2, we will give a sufficient condition for (2.1) to be finite. The notion of a
distortion function h we use in this paper is broader than the classical sense in
which h is assumed increasing with h(1)= 1.

For a given distortion riskmetric ρh :X →R, the distortion function h ∈H
is unique. To see this, suppose that ρh1 (X )= ρh2 (X ) for all X ∈X . Choose a
random variable X ∼Bernoulli(p) with a fixed p ∈ [0, 1]. It follows that

ρhi (X )= hi(p)+
∫ ∞

1
hi(0) dx= hi(p), i= 1, 2.

Since p is arbitrary, we get h1 = h2 on [0, 1].

Remark 1. A distortion riskmetric ρh can be equivalently expressed as

ρh(X )=
∫ 0

−∞
(h(P(X > x))− h(1)) dx+

∫ ∞

0
h(P(X > x)) dx. (2.2)

Indeed, since P(X > x)= P(X ≥ x) almost everywhere on R, we know h(P(X >

x))= h(P(X ≥ x)) almost everywhere on R.

2.2. Quantile representation and finiteness of signed Choquet integrals

The quantile representation of signed Choquet integrals is obtained in Lemma
3 of Wang et al. (2020) on L∞ and Theorems 4 and 6 of Dhaene et al. (2012)
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for increasing h. Combining the above results, we have the following quantile
representation of signed Choquet integrals on a general space with distortion
functions not necessarily increasing.

Lemma 1. For h ∈H and X ∈L0 such that
∫
X dh ◦ P is well defined (it may take

values ±∞),
(i) if h is right-continuous, then

∫
X dh ◦ P= ∫ 1

0 F
−1+
X (1− t) dh(t);

(ii) if h is left-continuous, then
∫
X dh ◦ P= ∫ 1

0 F
−1
X (1− t) dh(t);

(iii) if F−1X is continuous on (0, 1), then
∫
X dh ◦ P= ∫ 1

0 F
−1
X (1− t) dh(t)=∫ 1

0 F
−1+
X (1− t) dh(t).

Now we focus on Lp-spaces for p ∈ [1,∞]. Define a set of distortion
functionsH1 as

H1 = {h ∈H : h is absolutely continuous on [0, ε)∪ (1− ε, 1] for some ε ∈ (0, 1)}.
Note that H1 excludes only special examples such as the essential supremum,
the essential infimum, and the range in Table 1. Moreover, noticing that h is
differentiable almost everywhere on [0, 1] due to bounded variation, we let

Hq =
{
h ∈H1 : h′ ∈Lq((0, ε)∪ (1− ε, 1)) for some ε ∈ (0, 1)} ,

where h′ is (in a.e. sense) the derivative of h and q is the conjugate of p ∈ [1,∞]
(i.e., 1/p+ 1/q= 1). Next, we give a sufficient condition for ρh to be well
defined, which is almost necessary in case that h is concave.

Proposition 1. For p ∈ [1,∞), q being its conjugate,

(i)
∫
X dh ◦ P is finite for all X ∈Lp if h ∈Hq;

(ii) if h ∈H is concave and
∫
X dh ◦ P is finite for all X ∈Lp, then h ∈Hr for all

r< q.

As a consequence of Proposition 1, if h ∈H is absolutely continuous and∫ 1
0 |h′(t)|q dt<∞, then

∫
X dh ◦ P is finite for all X ∈Lp. In particular, the case

p= q= 2 gives a sufficient condition for the finiteness of
∫
X dh ◦ P for X ∈L2.

2.3. Characterization and basic properties

Before we further characterize distortion riskmetrics, we list some terminology
and properties for random variables and functionals. Recall that random vari-
ables X and Y are comonotonic if there exists �0 ∈A with P(�0)= 1 such that
for each ω,ω′ ∈�0,

(X (ω)−X (ω′))(Y (ω)−Y (ω′))≥ 0.
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A functional ρ :X →R may satisfy the following properties, where the state-
ments hold for all random variables X ,Y ∈X .

(a) Law-invariance: ρ(X )= ρ(Y ) for X d=Y .
(b) Comonotonic-additivity: ρ(X +Y )= ρ(X )+ ρ(Y ) if X and Y are comono-

tonic.
(c) Continuity at infinity: limM→∞ ρ((X ∧M)∨ (−M))= ρ(X ).
(d) Uniform sup-continuity: For any ε > 0, there exists δ > 0, such that |ρ(X )−

ρ(Y )|< ε whenever ess sup |X −Y |< δ, where ess sup ( · ) is the essential
supremum in Table 1.

The above four properties are satisfied by distortion riskmetrics, and more-
over, they indeed characterize distortion riskmetrics, similarly to the case of
bounded random variables studied by Wang et al. (2020) and the case of
increasing Choquet integrals in Wang et al. (1997) and Kou and Peng (2016),
all based on a classic result of Schmeidler (1986).

Theorem 1. A functional ρ :X →R is law-invariant, comonotonic-additive, con-
tinuous at infinity and uniformly sup-continuous if and only if ρ is a distortion
riskmetric.

Remark 2. From the proof of necessity part of Theorem 1 in Appendix A, we
can see a distortion riskmetric ρh :X →R is, in fact, Lipschitz-continuous with
respect to L∞-norm with Lipschitz constant TVh, the total variation of h on [0, 1].
This continuity is stronger than uniform sup-continuity. This point will be further
developed in Section 4.

Below we present some basic properties of distortion riskmetrics which
are useful in later sections. They are well established for random variables
in L∞ and h ∈H. In what follows, a functional ρ is said to be increasing
(or decreasing) if X ≤Y almost surely implies ρ(X )≤ ρ(Y ) (or ρ(X )≥ ρ(Y ),
respectively). The terms “increasing” and “decreasing” in this paper are always
in the nonstrict sense.

Proposition 2. For h, h1, h2 ∈H,

(i) if h1(1)= h2(1), then h1 ≤ h2 on [0, 1]⇔ ρh1 ≤ ρh2 on X . In particular, h1 =
h2 on [0, 1]⇔ ρh1 = ρh2 on X ;

(ii) ρh is increasing (resp. decreasing) if and only if h is increasing (resp.
decreasing);

(iii) for all c ∈R and X ∈X , ρh(X + c)= ρh(X )+ ch(1);
(iv) for all λ > 0 and X ∈X , ρh(λX )= λρh(X );
(v) for all X ∈X , ρh(−X )= ρĥ(X ), where ĥ : [0, 1]→R is given by ĥ(x)=

h(1− x)− h(1) for all x ∈ [0, 1].
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3. CONVEXITY, CONVEX ORDER CONSISTENCY, AND MIXTURE
CONCAVITY

In this section, we study the important class of convex distortion riskmet-
rics and their related properties. A functional ρ :X →R is convex if ρ(λX +
(1− λ)Y )≤ λρ(X )+ (1− λ)ρ(Y ) for all X ,Y ∈X and λ ∈ [0, 1]. As shown in
Theorem 3 of Wang et al. (2020), the following properties: convexity, convex
order consistency, and mixture concavity, on L∞, are equivalent to concavity
of the distortion function. We establish a similar result on general spaces, as
well as a few new results on convex distortion riskmetrics.

We first justify that for a convex distortion riskmetric, if its domain X is
a linear space, then it is contained in L1; hence, it makes sense to confine our
study to subsets ofL1. Note also thatL1 is the canonical space for law-invariant
convex risk measures (e.g., Filipović and Svindland, 2012).

Proposition 3. Suppose that X is a linear space and ρh :X →R is a convex
distortion riskmetric. Then X ⊂L1 unless ρh = 0 on X .

The assumption that X is a linear space in Proposition 3 is not dispensable.
An important example is the ES in Table 1 at level α ∈ (0, 1), defined as

ESα(X )= 1
1− α

∫ 1

α

F−1X (t) dt, X ∈X , (3.1)

where its domain X can be chosen as {X ∈L0 :X+ ∈L1}, which is larger than
L1. In addition, we let ES0 =E which is finite on L1 and ES1 be the essential
supremum which is finite on the set of random variables bounded from above.
For α ∈ [0, 1], ESα is a convex distortion riskmetric with distortion function h
given by

h(t)= t
1− α

∧ 1, t ∈ [0, 1], α ∈ [0, 1)

and h(t)= 1{t>0} if α = 1. These facts will be useful later.
Next, we fix some terminology. A random variable X is said to be smaller

than a random variable Y in convex order, denoted by X ≤cxY , if E[φ(X )]≤
E[φ(Y )] for all convex φ :R→R, provided that both expectations exist. For a
functional ρ :X →R and all random variables X ,Y ∈X , ρ is quasi-convex if
ρ(λX + (1− λ)Y )≤ ρ(X )∨ ρ(Y ) for all λ ∈ [0, 1]; ρ is convex order consistent if
ρ(X )≤ ρ(Y ) for X ≤cxY . For a law-invariant functional ρ, define ρ̃ :M→R

such that ρ̃(F)= ρ(X ) where X ∼ F , and ρ is concave on mixtures if ρ̃ is
concave. The following result characterizes convex order using distortion risk-
metrics. For a version of this result for increasing h, see Theorem 5.2.1 of
Dhaene et al. (2006).
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Theorem 2. For all random variables X ,Y ∈L1, X ≤cx Y if and only if ρh(X )≤
ρh(Y ) for all concave functions h ∈H such that X and Y are in the domain of ρh.

In the following theorem, we present six equivalent conditions about con-
vexity of a distortion riskmetric on a general space, similar to Theorem 3 of
Wang et al. (2020). Recall that X is a law-invariant convex cone containing
L∞. In the following result, we further assume X ⊂L1 as discussed above.

Theorem 3. For a distortion riskmetric ρh :X →R where X ⊂L1, the follow-
ing are equivalent: (i) h is concave; (ii) ρh is convex order consistent; (iii) ρh
is subadditive; (iv) ρh is convex; (v) ρh is quasi-convex; (vi) ρh is concave on
mixtures.

A few well-known characterization results in risk management can be
directly obtained from Theorems 1 and 3. For a history of these results, see
Föllmer and Schied (2016). Following the terminology of Föllmer and Schied
(2016), we say a functional ρ :X →R is cash-invariant if ρ(X + c)= ρ(X )+ c
for all X ∈X and c ∈R. A coherent risk measure is a functional that is
increasing, cash-invariant, positively homogeneous, and convex.

Corollary 1. Suppose that X ⊂L1. A functional ρ :X →R is law-invariant,
increasing, cash-invariant, continuous at infinity, and comonotonic-additive if and
only if ρ is a distortion riskmetric ρh for an increasing h with h(1)= 1. In addition,
ρ satisfies any of the properties (ii)–(vi) in Theorem 3 if and only if h is concave,
and in that case ρ is a coherent risk measure.

Note that in Corollary 1, we do not assume uniform sup-continuity as it
is implied by monotonicity and cash invariance. In case X =L∞, continuity
at infinity can also be removed from the statement. In Corollary 1, ρ = ρh is
a distortion risk measure or a dual utility (Yaari, 1987). If h is concave, then
ρ = ρh is commonly known as a spectral risk measure; see Acerbi (2002) where
h is additionally assumed to be continuous at 0.

In the next result, we consider the relationship between a distortion risk-
metric ρh and a convex one dominating ρh. For this purpose, we introduce the
concave envelope h∗ : [0, 1]→R of h ∈H, defined as

h∗(t)= inf {g(t) : g ∈H, g≥ h, g is concave on [0, 1]} .
One can check that h∗ is concave, h∗(0)= 0 and h∗(1)= h(1); see Wang et al.
(2020) for a simple justification. Theorem 3 yields that ρh∗ :X →R is a convex
distortion riskmetric if X ⊂L1. We also know that ρh∗ ≥ ρh on their common
domain due to Proposition 2. The next theorem shows that ρh∗ is actually the
smallest law-invariant, convex, and continuous-at-infinity functional dominat-
ing ρh; note that it is not obvious whether such a functional exists and whether
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it is a distortion riskmetric. Below, we say that ρh∗ is finite on X , if the signed
Choquet integral

∫
X dh∗ ◦ P is finite for all X ∈X .

Theorem 4. For a distortion riskmetric ρh :X →R where X ⊂L1, if ρh∗ is finite
on X , then ρh∗ is the smallest law-invariant, convex, and continuous-at-infinity
functional dominating ρh. If ρh∗ is not finite on X , then there is no real-valued
law-invariant, convex, and continuous-at-infinity functional dominating ρh.

Theorem 4 implies in particular that ESα in (3.1) is the smallest law-
invariant and continuous-at-infinity convex functional dominating VaRα

(Table 1); see Theorem 9 of Kusuoka (2001) and Theorem 4.67 of Föllmer
and Schied (2016) for this statement on the set of bounded random variables.

In the next result, we establish a new ES-based representation of con-
vex distortion riskmetrics, which covers the classic ES-based representation
of coherent distortion risk measures in Theorem 4.93 of Föllmer and Schied
(2016) on L∞. As far as we are aware of, the representation (3.2) is new to the
literature.

Theorem 5. A functional ρ :X →R where X ⊂L1 is a convex distortion risk-
metric if and only if there exist finite Borel measures μ, ν on [0, 1] such
that

ρ(X )=
∫ 1

0
ESα(X ) dμ(α)+

∫ 1

0
ESα(−X ) dν(α). (3.2)

Moreover, if ρ is increasing, then we can take ν = 0.

Remark 3. In case ν in (3.2) satisfies β := ∫ 1
0

1
1−α

dν(α)<∞, using the equality

ESα(−X )= 1
1− α

(αES1−α(X )−E[X ]), X ∈L1,

we can rewrite (3.2) as

ρ(X )=
∫ 1

0
ESα(X ) dμ̂(α)− βE[X ], X ∈X , (3.3)

where μ̂ is another finite Borel measure on [0, 1]. Note that the condition β <∞
is not automatically satisfied for a general convex distortion riskmetric ρ. An
example of a convex distortion riskmetric that does not admit the form in (3.3) is
ρ :L∞→R, X �→−F−1X (0). Note that ρ admits the form in (3.2) with μ= 0 and
ν = δ1, where δ1 is the point-mass at 1; of course, β =∞ in this case.

Finally, we mention the related concept of the convex level sets (CxLS)
property. A functional ρ has CxLS if the level set {F ∈M : ρ̃(F)= x} of ρ̃ is
convex for each x ∈R. The CxLS property is a necessary condition for the
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notions of elicitability, identifiability, and backtestability; see Wang and Wei
(2020, Section 6) for an explanation. The above three concepts, referring to the
quality and validity of risk forecasts, are notably popular in current banking
regulation and model risk management. We refer to Gneiting (2011), Fissler
and Ziegel (2016), and Acerbi and Szekely (2017) for more discussions on these
concepts. Theorem 1 of Wang and Wei (2020) characterizes a signed Choquet
integral with CxLS on a convex set M that contains all three-point distribu-
tions, which naturally applies to our distortion riskmetrics on general spaces.
In short, up to a constant multiplier, distortion riskmetrics with CxLS only
have three forms: the mean, a mixture of left and right α-quantiles, α ∈ (0, 1),
and a mixture of the essential supremum and the essential infimum.

4. CONTINUITY OF DISTORTION RISKMETRICS

In this section, we examine continuity of distortion riskmetrics. It is already
shown in Remark 2 that a distortion riskmetric is Lipschitz-continuous with
respect to L∞-norm. Namely, for h ∈H and X ,Y ∈X ,

|ρh(X )− ρh(Y )| ≤ ess sup |X −Y | ·TVh,

where TVh is the total variation of h on [0, 1].
We are then interested in continuity of a distortion riskmetric with respect

to convergence in distribution, or equivalently, weak convergence in the set
of distributions M. This is closely related to robustness of a risk functional
in risk management; see Krätschmer et al. (2014). Before stating the result of
such continuity, we write the following relevant definition of h-uniform inte-
grability. Given a convex cone X and h ∈H, a set D⊂X is called h-uniformly
integrable if

lim
k↓0

sup
X∈D

∫ k

0
|F−1X (1− t)| dh(t)= 0

and

lim
k↑1

sup
X∈D

∫ 1

k
|F−1X (1− t)| dh(t)= 0.

Note that h-uniform integrability reduces to the usual uniform integrability
when h ∈H is linear and nonconstant in some neighborhoods of 0 and 1. We
give the following result for continuity of distortion riskmetrics with respect to
convergence in distribution.

Theorem 6. For h ∈H and X ,X1,X2, · · · ∈X , suppose that Xn→X in distribu-
tion as n→∞ and the set {X ,X1,X2, . . . } is h-uniformly integrable. If for all t ∈
(0, 1), either s �→ h(s) or s �→ F−1X (1− s) is continuous at t, then ρh(Xn)→ ρh(X )
as n→∞.
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Next, we consider the Lp-continuity of distortion riskmetrics (i.e., conti-
nuity with respect to the Lp-norm, defined as ||X ||p = (E[|X |p])1/p, X ∈Lp).
We give a sufficient condition for a distortion riskmetric to be Lp-continuous
without assuming convexity of the functional, as is typically done in the
literature.

Proposition 4. For p ∈ [1,∞) and continuous h ∈H, a distortion riskmetric ρh :
Lp→R is Lp-continuous if h ∈Hq where q is the conjugate of p.

We remark that all convex distortion riskmetrics (i.e., the ones with con-
cave h by Theorem 3) on Lp are Lp-continuous; see Rüschendorf (2013,
Corollary 7.10) for the Lp-continuity of the finite-valued convex risk measures
on Lp.

5. MULTIDIMENSIONAL DISTORTION RISKMETRICS

In this section, we discuss distortion riskmetrics in a multidimensional set-
ting. The importance of multidimensional riskmetrics arises in a statistical
context, where multidimensional forecasting and elicitation of statistical quan-
tities (jointly) have become a popular topic; see Lambert et al. (2008), Fissler
and Ziegel (2016) and Frongillo and Kash (2018). Here, multidimensionality
refers to the range, rather than the domain, of the riskmetrics; in other words,
our riskmetrics map X to R

d for some d ≥ 2. This formulation is motivated
by the statistical applications mentioned above, and in particular, estimating,
forecasting, and testing multiple quantities depending on a random object.

In this section, we simply extend the results in Section 2 to multidimensional
distortion riskmetrics. There is essentially nothing new; nevertheless, in view
of the importance of multidimensional riskmetrics and their applications, we
collect some basic results. The distortion riskmetrics of dimension d ≥ 2 are
defined as follows.

Definition 2. A d-dimensional distortion riskmetric ρh :X →R
d is defined as

ρh(X )= (ρh1 (X ), . . . , ρhd (X )),

where h= (h1, . . . , hd) ∈Hd. Obviously, each ρhi for i= 1, . . . , d is a one-
dimensional distortion riskmetric on X .

Properties (a)–(d) in Section 2.3 can be equivalently formulated for
d-dimensional distortion riskmetrics. More precisely, ρh :X →R

d with h=
(h1, . . . , hd) satisfies some of the properties (a)–(d) in Section 2.3 if and only
if each one-dimensional distortion riskmetric ρhi , i= 1, . . . , d, satisfies the
respective properties. We can now provide the characterization result for
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multidimensional distortion riskmetrics. The same representation on L∞ is
given by Proposition 5 of Wang and Wei (2020).

Proposition 5. A functional ρ :X →R
d is law-invariant, comonotonic-additive,

continuous at infinity, and uniformly sup-continuous if and only if ρ is a
d-dimensional distortion riskmetric.

Similarly to Theorem 6, the continuity of multidimensional distortion
riskmetrics with respect to weak convergence is summarized below.

Proposition 6. Let h= (h1, . . . , hd) with hi ∈H, i= 1, . . . , d. For X ,X1,X2, · · · ∈
X , suppose that Xn→X in distribution as n→∞ and the set {X ,X1,X2, . . . } is
hi-uniformly integrable for all i= 1, . . . , d. If for any given i= 1, . . . , d and for
all t ∈ (0, 1), either s �→ hi(s) or s �→ F−1X (1− s) is continuous at t, then ρh(Xn)→
ρh(X ) as n→∞.

Convexity and concavity cannot be naturally formulated for multidimen-
sional functionals due to the lack of complete order in R

d . On the other hand,
the CxLS property can be naturally defined for multidimensional functionals.
Similarly to Section 3, a multidimensional functional ρ has CxLS if the level
set {F ∈M : ρ̃(F)= x} is convex for each x ∈Rd . As in the case of dimension
one, multidimensional CxLS serves as a necessary condition for multidimen-
sional elicitability, and hence it is important in the recent study of statistical
elicitation.

Unlike the other properties in this section, which do not need new mathe-
matical treatment for multidimensional distortion riskmetrics, the multidimen-
sional CxLS is highly nontrivial to study or characterize. For instance, one-
dimensional distortion riskmetrics with CxLS are characterized by Theorem 1
of Wang and Wei (2020), whereas a full characterization of multidimensional
distortion riskmetrics with CxLS is a well-known difficult open question; see
Fissler and Ziegel (2016) and Kou and Peng (2016). As far as we are aware
of, the only existing characterization result on multidimensional distortion
riskmetrics is given in Theorem 2 of Wang and Wei (2020), which identi-
fies the form of ρh such that (ρh, VaRα) has CxLS; note that (ρh, VaRα) is a
two-dimensional distortion riskmetric.

Remark 4. Another direction of multidimensional generalization of riskmetrics is
to consider mappings from X d to Rm where m is a positive integer, usually equal
to d or 1. This relates to the study of measures of multivariate risks; see, for
example, Embrechts and Puccetti (2006). Our formulation in this section should
not be confused with the above one. We stick to the domainX for the main reason
that probability distortion is usually defined and well understood in dimension
one; see the recent work Liu, P. et al. (2020) for a characterization of probability
distortion in dimension one.
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APPENDIX A. PROOFS OF ALL RESULTS

Proof of Lemma 1. (i) and (ii) can be obtained by combining the results of Lemma 3 in
Wang et al. (2020) and Theorems 4 and 6 of Dhaene et al. (2012). We only prove (iii). We
first suppose that h is right-continuous. Since F−1X is continuous on (0, 1), we have

F−1X (1− t)= F−1+X (1− t), for all t ∈ [0, 1].

It then follows from (i) that

∫
X dh ◦ P=

∫ 1

0
F−1+X (1− t) dh(t)=

∫ 1

0
F−1X (1− t) dh(t).

Then suppose that h is left-continuous. According to (ii), it is straightforward that

∫
X dh ◦ P=

∫ 1

0
F−1X (1− t) dh(t).

Then consider a general h. Since h is of bounded variation, it has countably many
points of discontinuity. Then we can always decompose h= hr + hl , where hr and hl are
right-continuous and left-continuous parts of h, respectively. From (2.1), it is obvious that

∫
X d(ah1 + bh2) ◦ P= a

∫
X dh1 ◦ P+ b

∫
X dh2 ◦ P

for all h1, h2 ∈H and a, b ∈R. According to the above discussion,

∫
X dh ◦ P=

∫
X dhr ◦ P+

∫
X dhl ◦ P

=
∫ 1

0
F−1X (1− t) dhr(t)+

∫ 1

0
F−1X (1− t) dhl(t)=

∫ 1

0
F−1X (1− t) dh(t).

The other equality is similar. �
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Proof of Proposition 1.

(i) Recall the quantile representation of the integral
∫
X dh ◦ P,

∫
X dh ◦ P=

∫ 1

0
F−1+X (1− t) dhr(t)+

∫ 1

0
F−1X (1− t) dhl(t). (A1)

We show finiteness of the first term in (A1) and finiteness of the second term follows
similarly. For any ε ∈ (0, 1) such that h is absolutely continuous in [0, ε)∪ (1− ε, 1] and

h′ ∈Lq((0, ε)∪ (1− ε, 1)),

we have |F−1+X (1− t)|<∞ for all t ∈ [ε, 1− ε]. It follows that
∣∣∣∣∣
∫ 1−ε

ε

F−1+X (1− t) dhr(t)
∣∣∣∣∣ <∞

since h is of bounded variation. It then suffices to show that∣∣∣∣
∫
[0,ε)∪(1−ε,1]

F−1+X (1− t) dhr(t)
∣∣∣∣=

∣∣∣∣
∫
[0,ε)∪(1−ε,1]

F−1+X (1− t)h′r(t) dt
∣∣∣∣ <∞.

Since X ∈Lp, the right-quantile F−1+X ∈Lp([0, 1]). Note that h′r ∈Lq((0, ε)∪ (1− ε, 1))
and 1/p+ 1/q= 1. By Hölder’s inequality,∣∣∣∣

∫
[0,ε)∪(1−ε,1]

F−1+X (1− t)h′r(t) dt
∣∣∣∣

≤
∫
[0,ε)∪(1−ε,1]

|F−1+X (1− t)| · |h′r(t)| dt

≤
(∫

[0,ε)∪(1−ε,1]
|F−1+(1− t)|p dt

) 1
p

(∫
[0,ε)∪(1−ε,1]

|h′r(t)|q dt
) 1
q

<∞.

We then conclude that ∣∣∣∣∣
∫ 1

0
F−1+X (1− t) dhr(t)

∣∣∣∣∣ <∞.

By similar arguments, | ∫ 1
0 F
−1
X (1− t) dhl(t)|<∞ holds naturally. Therefore,

∫
X dh ◦ P

is finite.
(ii) Concavity of h implies that h is absolutely continuous on (0, 1). Suppose that h is not

continuous at 0. Take X0 ∼N(0, 1) and X =X1/p
0 . It follows that F−1X (1)=∞. By

Lemma 1 (iii),

∣∣∣∣
∫
X dh ◦ P

∣∣∣∣=
∣∣∣∣∣
∫ 1

0
F−1X (1− t) dh(t)

∣∣∣∣∣=∞,

which leads to a contradiction. Therefore, h is continuous at 0. Continuity of h at 1 holds
analogously. h is thus absolutely continuous on [0, 1]. Since h is of bounded variation,
we can always use Jordan decomposition h= h+ − h−, where h+ and h− are increasing
functions. Moreover, h can always be decomposed into h= hr + hl . It then suffices to
prove the property for all increasing and right-continuous h.
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Since h is concave, we have h′ ∈L1([0, 1]). Let

q′ = sup{r≥ 1 : h′ ∈Lr((0, ε)∪ (1− ε, 1)) for some ε ∈ (0, 1)}

and suppose for the purpose of contradiction that q′ < q. Note that we have q′/(q′ − 1)
> p. Hence, there exists δ > 0 such that

q′ + δ < q and
q′

q′ + δ − 1
> p.

Let q∗ = q′ + δ and p∗ = q∗/(q∗ − 1)> p. Note that q∗p/p∗ = (q′ + δ − 1)p< q′.
Construct a random variable X such that

∣∣∣F−1X (1− t)
∣∣∣= |h′(t)| q

∗
p∗ ,

for almost everywhere t ∈ [0, 1]. This is always possible due to concavity of h, which
implies that h′ is decreasing and h′ has countably many discontinuity points. Since
q∗p/p∗ < q′, we have h′ ∈L(q∗p/p∗)((0, ε)∪ (1− ε, 1)) for some ε > 0, and hence X ∈Lp.
Noting that h′ �∈Lq∗ ((0, ε)∪ (1− ε, 1)), we have

∣∣∣∣
∫
[0,ε)∪(1−ε,1]

F−1X (1− t)h′(t) dt
∣∣∣∣=

∫
[0,ε)∪(1−ε,1]

|h′(t)|
q∗
p∗ +1dt=

∫
[0,ε)∪(1−ε,1]

|h′(t)|q∗dt=∞,

which leads to a contradiction. Therefore, q′ ≥ q. �

Proof of Theorem 1.

(i) “⇒”: For all X ∈X , we define a random variable

XM =X1{|X |≤M} +M1{X>M} −M1{X<−M}, M ≥ 0.

Since ρ is continuous at infinity, we have ρ(XM )→ ρ(X ). Note that XM ∈L∞ for any
M ≥ 0. It follows from Theorem 1 of Wang et al. (2020) that on L∞, the law-invariant,
comonotonic-additive and uniformly sup-continuous functional ρ can be represented
by a signed Choquet integral

ρ(XM )=
∫ 0

−∞
(h(P(XM ≥ x))− h(1)) dx+

∫ ∞
0

h(P(XM ≥ x)) dx

=
∫ 0

−M
(h(P(X ≥ x))− h(1)) dx+

∫ M

0
h(P(X ≥ x)) dx, (A2)

where h ∈H. Specifically, h(t)= ρ(1{U<t})<∞ for t ∈ [0, 1], where U is a uniform
random variable on [0, 1]. LettingM→∞, we have

ρ(X )=
∫ 0

−∞
(h(P(X ≥ x))− h(1)) dx+

∫ ∞
0

h(P(X ≥ x)) dx.

(ii) “⇐”: Law-invariance is straightforward. Comonotonic-additivity follows from (A1),
since the left- and right-quantiles are well known to be comonotonic-additive (see
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Proposition 7.20 of McNeil et al., 2015 for the case of left-quantile). Continuity at
infinity holds simply by

ρh(XM )=
∫ 0

−∞
(h(P(XM ≥ x))− h(1)) dx+

∫ ∞
0

h(P(XM ≥ x)) dx

=
∫ 0

−M
(h(P(X ≥ x))− h(1)) dx+

∫ M

0
h(P(X ≥ x)) dx M→∞−−−−→ ρh(X ).

To see the uniform sup-continuity, we take any two random variables X ,Y ∈X . By
representation (A1), we have

|ρh(X )− ρh(Y )|

≤
∣∣∣∣∣
∫ 1

0

(
F−1+X (1− t)− F−1+Y (1− t)

)
dhr(t)

∣∣∣∣∣+
∣∣∣∣∣
∫ 1

0

(
F−1X (1− t)− F−1Y (1− t)

)
dhl(t)

∣∣∣∣∣
≤ ess sup |X −Y | ·TVh,

where TVh is the total variation of the function h on [0, 1]. �

Proof of Proposition 2.

(i) Sufficiency is straightforward from the definition of distortion riskmetrics. Necessity
can be checked by Bernoulli random variables.

(ii) “⇒”: We take X =1{U≤t1} andY =1{U≤t2} for all t1, t2 ∈ [0, 1] such that t1 ≤ t2, where
U ∼U[0, 1]. Then we have X ≤Y . Suppose that ρh is increasing (resp. decreasing).
We have h(t1)= ρh(X )≤ ρh(Y )= h(t2) (resp. h(t1)= ρh(X )≥ ρh(Y )= h(t2)). Thus h is
increasing (resp. decreasing).
“⇐”: For any random variables X ,Y ∈X such that X ≤Y , we have P(X ≥ x)≤ P

(Y ≥ x) for all x ∈R. If h is increasing (resp. decreasing), then h(P(X ≥ x))≤ h(P(Y ≥
x))
(resp. h(P(X ≥ x))≥ h(P(Y ≥ x))) for all x ∈R. It implies that ρh(X )≤ ρh(Y )
(resp. ρh(X )≥ ρh(Y )).

(iii) For all c ∈R, we first calculate

ρh(c)=
∫ 0

−∞
(h(P(c≥ x))− h(1)) dx+

∫ ∞
0

h(P(c≥ x)) dx

=
∫ 0

0∧c
(− h(1)) dx+

∫ 0∨c

0
h(1) dx= ch(1).

Note that any random variable X ∈X and c are comonotonic. By comonotonic-
additivity of ρh, we have ρh(X + c)= ρh(X )+ ρh(c)= ρh(X )+ ch(1).

(iv) For all λ > 0 and all X ∈X ,

ρh(λX )=
∫ 0

−∞
(h(P(λX ≥ x))− h(1)) dx+

∫ ∞
0

h(P(λX ≥ x)) dx

=
∫ 0

−∞
(h(P(X ≥ 1

λ
x))− h(1)) dx+

∫ ∞
0

h(P(X ≥ 1
λ
x)) dx

= λ

∫ 0

−∞
(h(P(X ≥ u))− h(1)) du+ λ

∫ ∞
0

h(P(X ≥ u)) du= λρh(X ).

(v) This property is already shown in the proof of Lemma 1 (ii). �
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Proof of Proposition 3. Since ρh is convex onX , we know that it is convex on L∞, which
implies that h is concave by Theorem 3 of Wang et al. (2020).

Suppose that there exists X ∈X such that E[|X |]=∞. Note that E[|X |]=∞ implies
either E[X+]=∞ or E[X−]=∞. If E[X+]=∞, then Y =−X ∈X since X is a linear space,
and E[Y−]=∞. Similarly, if E[X−]=∞, then E[Y+]=∞. Therefore, we know that there
exist X ,Y ∈X such that E[X+]=E[Y−]=∞.

Take X ∈X with E[X+]=∞. Since

ρh(X )=
∫ 0

−∞
(h(P(X ≥ x))− h(1)) dx+

∫ ∞
0

h(P(X ≥ x)) dx ∈R,

both
∫ 0
−∞ (h(P(X ≥ x))− h(1)) dx and

∫∞
0 h(P(X ≥ x)) dx have to be finite. Since X is

unbounded from above, this implies that h is continuous at 0. Similarly, take Y ∈X with
E[Y−]=∞, and we obtain h is continuous at 1. Further by concavity, h is continuous on
[0, 1]. Using Lemma 1, we get

ρh(X )=
∫ 1

0
F−1X (1− t) dh(t).

There exists δ > 0 such that F−1X (1− ε)> 0 for all ε ∈ (0, δ). Moreover,

ε

∫ ε

0
F−1X (1− t) dt=∞

for all ε ∈ (0, δ). Let h′(t) be the right-derivative of h at t ∈ [0, 1). Assume that h′(0)> 0. Since
h is concave and continuous, there exists ε > 0 such that h′(t)> ε for t ∈ [0, ε]. It follows that

∫ ε

0
F−1X (1− t) dh(t)≥ ε

∫ ε

0
F−1X (1− t) dt=∞,

contradicting the fact that ρh(X ) is finite. Therefore, h′(0)≤ 0. Using similar arguments as
above for Y , we obtain h′(1)≥ 0 where h′(1) is the left derivative of h at 1. Since h is concave,
these two conditions imply that h= 0 on [0, 1], and hence ρh = 0 on X . �

Proof of Theorem 2.

(i) “⇒”: Suppose that X ≤cx Y . We first consider the case where h ∈H is increasing. For
an increasing concave function h ∈H, it is well known (e.g., Theorem 1 of Williamson,
1956) that there exists some finite Borel measure μ on [0, 1], such that

h(t)=
∫ 1

0

1
u
hu(t) dμ(u), t ∈ [0, 1], (A3)

where hu(t)= t∧ u for t, u ∈ [0, 1] and we use the convention hu(t)/u=1{t>0} if u= 0. By
the quantile representation of a distortion riskmetric,

ρhu (X )=
∫ u

0
F−1X (1− t) dt=

∫ 1

1−u
F−1X (u) du≤

∫ 1

1−u
F−1Y (u) du= ρhu (Y ),

where the third inequality holds by Theorem 3.A.5 of Shaked and Shanthikumar (2007).
It follows that

ρh(X )=
∫ 1

0

1
u
ρhu (X ) dμ(u)≤

∫ 1

0

1
u
ρhu (Y ) dμ(u)= ρh(Y ).
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When h ∈H is decreasing, similar to (A3), we have

h(t)=
∫ 1

0

1
1− u (hu(t)− t) dν(u), t ∈ [0, 1]

for some finite Borel measure ν on [0, 1] where the convention is (hu(t)− t)/(1− u)=
−1{t=1} if u= 1. By definition of X ≤cx Y , it implies that E[X ]=E[Y ]. It then follows
that

ρh(X )=
∫ 1

0

1
1− u (ρhu (X )−E[X ]) dν(u)≤

∫ 1

0

1
1− u (ρhu (Y )−E[Y ]) dν(u)= ρh(Y ).

For any concave function h on [0, 1], there always exists x̂ ∈ [0, 1], such that h(x̂)≥ h(x)
for all x ∈ [0, 1]. Then h can always be decomposed by h= h↑ + h↓, where

h↑(x)= h(x)1{0≤x<x̂} + h(x̂)1{x̂≤x≤1} and h↓(x)= [h(x)− h(x̂)]1{x̂≤x≤1}.
Notice that h↑ and h↓ are increasing and decreasing concave functions, respectively,
with

h↑(0)= h↓(0)= 0.

According to the above arguments, we have

ρh(X )= ρh↑ (X )+ ρh↓ (X )≤ ρh↑ (Y )+ ρh↓ (Y )= ρh(Y ).

(ii) “⇐”: Suppose that ρh(X )≤ ρh(Y ) for all concave functions h ∈H. For all t, u ∈ [0, 1],
choose a concave h ∈H such that h(t)= hu(t)= t∧ u. Then for all u ∈ [0, 1],

ρh(X )=
∫ 1

1−u
F−1X (u) du and ρh(Y )=

∫ 1

1−u
F−1Y (u) du.

It follows that
∫ 1

1−u
F−1X (u) du≤

∫ 1

1−u
F−1Y (u) du for all u ∈ [0, 1],

which is equivalent to X ≤cxY by Theorem 3.A.5 of Shaked and Shanthikumar
(2007). �

Proof of Theorem 3. (i)⇒ (ii) is shown by Theorem 2. We proceed in the order (ii)⇒
(iii)⇒ (iv)⇒ (v)⇒ (vi)⇒ (i), and the arguments are based on Theorem 3 of Wang et al.
(2020).

(ii)⇒ (iii): Take random variables X ,Y ,Xc,Yc ∈X , such that X d=Xc, Y d=Yc and
Xc and Yc are comonotonic. By Theorem 3.5 of Rüschendorf (2013), we have X +Y ≤cx
Xc +Yc. It then follows from law-invariance, comonotonic-additivity and convex order
consistency of ρh that

ρh(X +Y )≤ ρh(X
c +Yc)= ρh(X

c)+ ρh(Y
c)= ρh(X )+ ρh(Y ).

(iii)⇒ (iv): As ρh is positively homogeneous, subadditivity is equivalent to convexity.
(iv)⇒ (v): Directly from the definition of convexity and quasi-convexity.
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(v)⇒ (vi): Theorem 3 of Wang et al. (2020) gives that quasi-convexity of Ih on L∞
implies that h is concave. Concavity on mixtures follows directly from the concavity of h
by the definition of a distortion riskmetric.

(vi)⇒ (i): Theorem 3 of Wang et al. (2020) gives that mixture-concavity of Ih on L∞
implies that h is concave. �

Proof of Theorem 4. Suppose that ρ :X → (−∞,∞] is a law-invariant, convex, and
continuous-at-infinity functional dominating ρh. Using Theorem 5 of Wang et al. (2020),
we know that, on L∞, ρh∗ is the smallest law-invariant convex functional dominating ρh.
Therefore, ρ ≥ ρh∗ on L∞. If ρh∗ is finite onX , then both ρ and ρh∗ are continuous at infinity
on X , and hence ρ ≥ ρh∗ on X . If ρh∗ is not finite on X , then we know that

∫
X dh∗ ◦ P=∞

(but not −∞ since ρh∗ ≥ ρh) for some X ∈X . Let

XM =X1{|X |≤M} +M1{X>M} −M1{X<−M}, M ≥ 0.

Using (A2), ρ = ρh∗ on L∞ and
∫
X dh∗ ◦ P=∞, we have, asM→∞,

ρ(XM )= ρh∗ (XM )=
∫ 0

−M
(
h∗(P(X ≥ x))− h(1)) dx+

∫ M

0
h∗(P(X ≥ x)) dx→∞.

The continuity at infinity of ρ implies ρ(X )=∞, and hence ρ cannot be real valued
on X . �

Proof of Theorem 5. Note that X �→ESα(X ) and X �→ESα(−X ) are convex distortion
riskmetrics for all α ∈ [0, 1]. As a mixture of X �→ESα(X ) and X �→ESα(−X ), ρ defined
by (3.2) satisfies convexity, comonotonic-additivity, law-invariance, continuity at infinity,
and uniform sup-continuity. Hence, ρ is a convex distortion riskmetric. Next we show the
“only-if” statement. Denote by h the distortion function of ρ, which by Theorem 3 is a
concave function. Following the same argument in the proof of Theorem 2, we can write for
some finite Borel measures γ , ν on [0, 1],

h(t)=
∫ 1

0

1
α
hα(t) dγ (α)+

∫ 1

0

1
1− α

(hα(t)− t) dν(α), t ∈ [0, 1], (A4)

where hα(t)= t∧ α. Note that 1
α
hα is the distortion function of ES1−α . By Proposition 2, the

distortion function of X �→ESα(−X ) is given by

gα(t)= 1− t
1− α

∧ 1− 1= (α− t)∧ 0
1− α

= 1
1− α

(hα(t)− t), t ∈ [0, 1].

Therefore, (A4) gives

ρ(X )=
∫ 1

0
ES1−α(X ) dγ (α)+

∫ 1

0
ESα(−X ) dν(α), X ∈X .

Thus (3.2) holds with dμ(α)= dγ (1− α). �

Proof of Theorem 6. Since h ∈H is of bounded variation, it can be decomposed into
h= h+ − h− where h+ and h− are increasing functions. It then suffices to prove the result
for all increasing function h. We denote the distribution function of Xn by Fn for n ∈N.
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(i) If h is left-continuous and increasing, it induces a Borel measure μ on [0, 1] such that
h(t)=μ([0, t)), t ∈ [0, 1]. By quantile representation of a distortion riskmetric,

ρh(Xn)=
∫ 1

0
F−1n (1− t) dh(t) and ρh(X )=

∫ 1

0
F−1X (1− t) dh(t).

Since Xn→X in distribution, F−1n → F−1X almost everywhere on [0, 1], where F−1X is
continuous. Let

A= {t ∈ (0, 1) : s �→ F−1X (1− s) is not continuous at t}.
According to the assumption, h must be continuous on the set A, which implies μ has
no point mass on A and μ(A)= 0. It remains to consider the points 0 and 1. Notice that
h-uniform integrability implies that when μ({0})> 0, F−1n (1)→ F−1X (1) as n→∞ since
F−1n (1)= F−1X (1)= 0 for all n ∈N. Similarly, when μ({1})> 0, F−1n (0)→ F−1X (0)= 0 as
n→∞. Therefore, F−1n → F−1X μ-almost surely. In addition, h-uniform integrability
of {X1,X2, . . . } is equivalent to uniform integrability of {F−11 , F−12 , . . . } with respect
to the measure μ. It then follows from Vitali’s Convergence Theorem (Rudin, 1987,
p. 133) that ρh(Xn)→ ρh(X ) as n→∞.

(ii) If h is right-continuous, we define the Borel measure ν on [0, 1] by ν([0, t])= h(t), t ∈
[0, 1].

We write the distortion riskmetrics as

ρh(Xn)=
∫ 1

0
F−1+n (1− t) dh(t) and ρh(X )=

∫ 1

0
F−1+X (1− t) dh(t).

Note that the set

B= {t ∈ (0, 1) : s �→ F−1+X (1− s) is not continuous at t}
= {t ∈ (0, 1) : s �→ F−1X (1− s) is not continuous at t}.

This implies ν(B)= 0. By similar argument as (i), we get F−1+n → F−1+X ν-almost surely
and ρh(Xn)→ ρh(X ) as n→∞.

(iii) For a general h, we can write ρh by (A1), where hr and hl are taken such that the
collection of discontinuity points of hr and hl coincides with that of h. To see that it is
always possible, we define countable sets

C = {t ∈ [0, 1] : s �→ h(s) is not continuous at t},
C+ = {t ∈C : s �→ h(s) is right-continuous at t} and C− =C \C+.

Take

hr(x)=
∑
t∈C+

[h(t+)− h(t−)]1{x>t} + h(x)1{x/∈C} and hl(x)=
∑
t∈C−

[h(t+)− h(t−)]1{x≥t}

for x ∈ [0, 1]. Thus, hr and hl are as desired. It follows that
|ρh(Xn)− ρh(X )| ≤ |ρhr (Xn)− ρhr (X )| + |ρhl (Xn)− ρhl (X )|→ 0

as n→∞. This implies ρh(Xn)→ ρh(X ) as n→∞ in general. �
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Proof of Proposition 4. Suppose that we have random variables X1,X2, · · · ∈Lp such
that Xn→X in Lp as n→∞. Let Fn be the distribution function of Xn for n ∈N. Since
h ∈Hq, there exists ε ∈ (0, 1) such that h′ ∈Lq((0, ε)∪ (1− ε, 1)). Then we have

|ρh(Xn)− ρh(X )| ≤
∣∣∣∣
∫
[0,ε)∪(1−ε,1]

(F−1n (1− t)− F−1X (1− t)) dh(t)
∣∣∣∣

+
∣∣∣∣
∫
[ε,1−ε]

(F−1n (1− t)− F−1X (1− t)) dh(t)
∣∣∣∣ . (A5)

By Hölder’s inequality, the first term of (A5) satisfies
∣∣∣∣
∫
[0,ε)∪(1−ε,1]

(F−1n (1− t)− F−1X (1− t)) dh(t)
∣∣∣∣

≤
∫
[0,ε)∪(1−ε,1]

∣∣∣F−1n (1− t)− F−1X (1− t)
∣∣∣ · |h′(t)| dt

≤
(∫

[0,ε)∪(1−ε,1]

∣∣∣F−1n (1− t)− F−1X (1− t)
∣∣∣p dt

) 1
p

(∫
[0,ε)∪(1−ε,1]

|h′(t)|q dt
) 1
q n→∞−−−→ 0.

It remains to show the second term of (A5) converges to zero. Note that

∣∣∣∣
∫
[ε,1−ε]

(F−1n (1− t)− F−1X (1− t)) dh(t)
∣∣∣∣=

∣∣∣∣∣
∫ 1

0
(F−1n (1− t)− F−1X (1− t)) dh̃(t)

∣∣∣∣∣
= |ρh̃(Xn)− ρh̃(X )|,

where

h̃(t)=
⎧⎨
⎩
0 t ∈ [0, ε),
h(t)− h(ε) t ∈ [ε, 1− ε],
h(1− ε)− h(ε) t ∈ (1− ε, 1].

Clearly, {X ,X1,X2, . . . } is uniformly h̃-integrable since h̃ stays constant in some neighbor-
hood of 0 and 1. Also, Xn→X in Lp implies Xn→X in distribution and h̃ is continuous
due to h being continuous. It then follows from Theorem 6 that

|ρh̃(Xn)− ρh̃(X )|→ 0 as n→∞.

Therefore, the second term of (A5) also converges to zero.We conclude that ρh(Xn)→ ρh(X )
as n→∞, which proves the proposition. �

Proof of Proposition 5. The proposition follows by applying Theorem 2 to each
dimension of ρ. �

Proof of Proposition 6. The proposition follows by applying Theorem 6 to each
dimension of ρ. �
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