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The control of stationary convective instabilities in the rotating disk boundary layer via
a time-periodic modulation of the disk rotation rate is investigated. The configuration
provides an archetypal example of a three-dimensional temporally periodic boundary layer,
encompassing both the von Kármán and Stokes boundary layers. A velocity–vorticity
formulation of the governing perturbation equations is deployed, together with a numerical
procedure that utilises the Chebyshev-tau method. Floquet theory is used to determine the
linear stability properties of these time-periodic flows. The addition of a time-periodic
modulation to the otherwise steady disk rotation rate establishes a stabilising effect. In
particular, for a broad range of modulation frequencies, the growth of the stationary
convective instabilities is suppressed and the critical Reynolds number for the onset
of both the cross-flow and Coriolis instabilities is raised to larger values than that
found for the steady disk without modulation. An energy analysis is undertaken, where
it is demonstrated that time-periodic modulation induces a reduction in the Reynolds
stress energy production and an increase in the viscous dissipation across the boundary
layer. Comparisons are made with other control techniques, including distributed surface
roughness and compliant walls.

Key words: boundary layer control, boundary layer stability, absolute/convection instability

1. Introduction

This paper is concerned with the control of stationary convective instabilities in the
rotating disk boundary layer via a time-periodic modulation of the disk rotation rate.
The steady flow on a rotating disk (without periodic modulation) develops when a disk
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of infinite extent rotates beneath an otherwise stationary body of fluid. The disk motion
creates a thin boundary layer, whereby fluid near the disk centre spirals radially outwards,
that is in turn replaced by an axial flow directed towards the disk surface. The resulting flow
admits a similarity solution to the Navier–Stokes equations in cylindrical coordinates that
was first derived by von Kármán (1921). Thus, the flow over a rotating disk is often referred
to as the von Kármán flow and provides a canonical example of a three-dimensional
boundary layer.

The von Kármán flow displays qualitatively similar stability mechanisms to those found
in the boundary layer over a swept wing, as both flow configurations are susceptible to
an inviscid cross-flow instability (Gregory, Stuart & Walker 1955). Thus, strategies for
controlling disturbance development in the rotating disk boundary layer may be used to
identify control technologies that maintain laminar flow past a swept wing. Since the von
Kármán flow has certain practical advantages over the swept wing configuration, including
its experimental amenability, it is common practice to conduct laminar flow control studies
on the rotating disk before extending the applications to complex swept wing geometries.
However, it is important to emphasise that there are several differences between the two
flow configurations. The rotating disk boundary layer is affected by Coriolis forces that
are not present in the flow over a swept wing. Additionally, the former system permits an
azimuthal periodicity that is not found in the latter flow configuration.

As stated in the review by Lingwood & Alfredsson (2015), the rotating disk and family
of related flows have many applications beyond the scope of swept wing boundary layers.
Rotating flows encompass a range of complex three-dimensional configurations, including
atmospheric and oceanic flows, rotating-cavity flows and computer storage devices.
In electrochemistry, the rotating disk electrode is utilised to perform hydrodynamic
voltammetry (Ahn et al. 2014, 2016). In part, it is the simplicity of the model that has made
the von Kármán flow an attractive candidate for studies of some of these more general
three-dimensional boundary layers.

Using a china clay visualisation technique, Gregory et al. (1955) observed the cross-flow
instability or type I mode as 28–32 stationary spiral vortex structures relative to the rotating
disk surface. The number of cross-flow vortices is directly related to the integer-valued
azimuthal mode number n that represents the periodicity of the disturbance in the
azimuthal direction. Experimental studies by Kobayashi, Kohama & Takamadate (1980)
and Jarre, Le Gal & Chauve (1996) drew similar conclusions to Gregory et al. (1955),
noting that stationary cross-flow modes n ∈ [30, 32] dominated the early stages of the
laminar–turbulent transition process. Mack (1975) and Malik (1986) investigated the
stability of the von Kármán flow using linear analysis and determined neutral conditions
for the onset of the stationary cross-flow instability. It was determined by Malik (1986)
and subsequently confirmed by many others (Dhanak, Kumar & Streett 1992; Cooper
& Carpenter 1997; Lingwood 1997; Garrett et al. 2016) that this form of instability first
appears for a Reynolds number Re ≈ 286. (A formal definition for the Reynolds number
Re is given below in (2.7).)

In addition to the cross-flow instability, the rotating disk boundary layer is susceptible to
several other types of instability. As a consequence of the curvature and Coriolis effects,
a type II instability develops that is viscous in nature (Faller & Kaylor 1966; Malik 1986).
A third type III mode was discovered by Mack (1975) that propagates radially inwards
and is spatially damped. Modes I and II are both classified as convective instabilities, as
the disturbance is convected radially downstream away from the location where it first
appears. The primary goal of this investigation is to control these convectively unstable
disturbances and in particular stationary cross-flow waves, via a time-periodic modulation
applied to the disk rotation rate.
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A region of absolute instability was identified by Lingwood (1995, 1997) for a Reynolds
number Re ≈ 507.3, whereby the disturbance grows in time about all radial positions.
Utilising a homogeneous flow approximation that neglects the radial dependence of the
basic state, it was shown that this form of instability forms due to the coalescence of the
type I and III modes. The effect of radial inhomogeneity and the impulse response of linear
disturbances was subsequently investigated by Davies & Carpenter (2003) and Thomas &
Davies (2018) via direct numerical simulations. It was determined that disturbances only
become globally linearly unstable for parameter settings significantly greater than that
associated with the onset of absolute instability. Moreover, these global linearly unstable
disturbances were characterised by a faster than exponential growth.

Numerous investigations on the rotating disk have implemented control strategies, with
the aim to suppress the growth of boundary layer instabilities and delay the onset of
transition to turbulence. For instance, Dhanak et al. (1992) and Lingwood (1997) applied
uniform suction at the disk surface to control the convective and absolute instabilities,
respectively. Cooper & Carpenter (1997) modelled a disk with a compliant surface and
found this to have a significant stabilising effect on the type I cross-flow instability.
However, the effects on the type II Coriolis instability were more complex, with wall
compliance promoting unstable behaviour in many instances. More recently, Cooper
et al. (2015) and Garrett et al. (2016) used surface roughness to delay the onset of the
type I instability, whereby roughness modelling was achieved via a spatial averaging of
the undisturbed flow. Though similar to the observations on wall compliance, the type
II instability was again destabilised. More recently, Miller et al. (2020) found that a
stabilising effect can be established by a heated disk with a temperature-dependent viscous
fluid.

The motivation for the current investigation, whereby the disk rotation rate undergoes
a small time-periodic modulation, originates from the earlier study by Thomas et al.
(2011) who found that a small level of oscillation in an otherwise steady flow can bring
about a stabilising effect. Thomas et al. (2011) illustrated this stabilising effect for the
flow in an oscillating channel by coupling the Stokes layer to the plane Poiseuille flow.
For very large channel half-widths (or very high frequencies of oscillation), modulation
promoted instability, which is consistent with the behaviour observed by Hall (1975) and
Von Kerczek (1982). However, for sufficiently small channel half-widths (or frequencies),
time-periodic modulation of the plane Poiseuille flow was found to increase the Reynolds
number for the onset of linear instability. Thus, these time-modulated unidirectional flows
were stabilised. These particular results complement the earlier investigations of Kelly &
Cheers (1970) and Von Kerczek (1976), who found a similar stabilising effect in modulated
plane Couette flow. Furthermore, Rosenblat (1959) undertook a study on a torsionally
oscillating disk, while Wise & Ricco (2014) found that turbulent drag in a channel flow
can be reduced via the application of oscillating disks.

The Stokes layer is the archetypal model for investigating unsteady flow behaviour and
develops when a planar surface oscillates back and forth. An early review on time-periodic
flows was given by Davis (1976), while Von Kerczek & Davis (1974) and Hall (1978)
applied linear stability analyses to the respective finite and semi-infinite Stokes layers.
In the latter investigation, linear stability calculations based on Floquet theory assume
perturbations to the time-periodic base flow of the form exp(μt)f , for a time-periodic
function f and a Floquet exponent μ that encompasses the net growth (or decay) of
the disturbance. Hall (1978) was unable to locate any linearly unstable disturbances for
the range of Reynolds numbers that the computational resources permitted at the time.
However, following the advancement of computer technology, Blennerhassett & Bassom
(2002) were able to locate the critical conditions for the onset of linear instability.
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These calculations were later confirmed separately by Luo & Wu (2010) and Thomas et al.
(2010), while Thomas et al. (2014) investigated the impulse response and spatiotemporal
development of linear disturbances via direct numerical simulations. Cowley (1987) and
Hall (2003) used quasi-steady (Q-S) instability theory to study the large Reynolds number
behaviour in the Stokes layer. Quasi-steady theory is an approximation of linear analyses,
whereby the time-periodic flow is frozen and the phase of the time within the oscillation
cycle is treated as a parameter. The attraction of this approach is that it allows the
prediction of an instantaneous growth rate at each instant during the time-periodic motion.
Indeed, the frozen profiles are found to become highly unstable at Reynolds numbers below
that found by Blennerhassett & Bassom (2002) using Floquet theory. Moreover, Luo & Wu
(2010) found that eigenfunctions computed using Floquet theory could be approximated
by the corresponding Q-S eigenfunctions.

The primary aim for the following investigation is to ascertain the viability of
controlling stationary convective instabilities (type I cross-flow and type II Coriolis) in
the rotating disk boundary layer via a time-periodic modulation of the disk rotation rate.
Perturbations to the temporally periodic flow are decomposed into the Floquet mode form,
with disturbance development modelled using the numerical formulation and methods
developed by Davies & Carpenter (2001) and Morgan & Davies (2020).

The remainder of this investigation is outlined as follows. The von Kármán flow subject
to time-periodic modulation is modelled in the subsequent section. In § 3, the behaviour of
the flow is investigated in the high-frequency limit with a small modulation amplitude. A
linear stability study based on Floquet theory is undertaken in § 4, while an energy analysis
of the disturbance structure that utilises the Q-S flow approximation is carried out in § 5.
Finally, conclusions are given in § 6.

2. Unsteady base flow

2.1. Non-dimensionalisation
The similarity solution for the steady laminar flow over an infinite rotating disk with a
constant rotation rate Ω∗

0 , was first formulated by von Kármán (1921). In the following,
we describe the necessary modifications to the base flow that arise with the inclusion
of a time-periodic modulation. Cylindrical polar coordinates are used, where r∗, θ and z∗
denote the radial, azimuthal and wall-normal directions. (An asterisks denotes dimensional
quantities.) The dimensional velocity field is defined by U∗ = (U∗, V∗, W∗), while ν∗
and Ω∗(t∗) denote the kinematic viscosity of the fluid and the unsteady angular velocity
of the disk, respectively. Due to the inherent azimuthal periodicity of the problem, the
dependence on the azimuthal θ -direction is removed from the velocity field U∗.

The unsteady base flow is computed in a non-rotating frame of reference. This strategy
is implemented to facilitate the numerical solution that is based on Chebyshev methods
(outlined in § 2.2). Boundary conditions on the disk surface are defined as

U∗ = W∗ = 0, V∗ = r∗Ω∗(t∗) on z∗ = 0, (2.1a–c)

while in the far field they are

U∗ → 0 and V∗ → 0 as z∗ → ∞. (2.1d,e)

A small time-periodic modulation is applied to the constant disk rotation rate Ω∗
0 to give

the total unsteady disk rotation rate

Ω∗(t∗) = Ω∗
0 + λφ∗ cos(φ∗t∗ − π/2), (2.2)
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where λ and φ∗ denote the angular displacement and frequency of the modulation,
respectively. The unsteady component of (2.2) has been shifted by a phase π/2, so that
time t∗ = 0 is matched to the steady state. Moreover, in the instance λ = 0, the steady von
Kármán flow (without time-periodic modulation) is recovered.

There are two length scales associated with the system that are based on the constant
rotation rate Ω∗

0 and the modulation frequency φ∗. These are, respectively, referred to as
the von Kármán and the Stokes length scales,

δ∗
k =

√
ν∗

Ω∗
0

and δ∗
s =

√
2ν∗

φ∗ . (2.3a,b)

(The subscript notation k and s references scales based on the von Kármán layer and the
Stokes layer, respectively.) Additionally there are three temporal scales to consider. A local
time scale is defined as the ratio of the circumferential speed of the rotating disk r∗

LΩ∗
0 and

the von Kármán length scale δ∗
k ,

τ l
k = r∗

LΩ∗
0 t∗

δ∗
k

, (2.4a)

for a reference radius r∗
L, while a global time scale is characterised by the constant disk

angular velocity
τ

g
k = Ω∗

0 t∗. (2.4b)

A third time scale is based on the modulation frequency as follows:

τs = φ∗t∗. (2.4c)

In the subsequent analysis, the amplitude of the time-periodic modulation is assumed to
be small. Thus, units of length are scaled on the von Kármán length scale (2.3a), while
non-dimensional time is specified by (2.4a).

The dimensional unsteady base flow is defined as

U∗(r∗, z∗, t∗) = (r∗Ω∗
0 F(z, τ ), r∗Ω∗

0 G(z, τ ), δ∗
k Ω∗

0 H(z, τ )), (2.5)

where F, G and H represent the non-dimensional unsteady velocity profiles along the
three coordinate directions. (Note that the subscript k and superscript l notation in the
non-dimensional time term τ have been dropped for simplicity.) Scaling the velocity field
U∗ on the circumferential speed of the disk r∗

LΩ∗
0 gives the following definition for the

non-dimensional unsteady velocity field U = (U, V, W) as

U(r, z, τ ) =
(

r
Re

F(τ, z),
r

Re
G(τ, z),

1
Re

H(τ, z)
)

, (2.6)

where the Reynolds number Re, associated with the constant disk rotation rate Ω∗
0 , is given

as

Re = r∗
LΩ∗

0 δ∗
k

ν∗ = r∗
L

δ∗
k

= rL. (2.7)

A second, so-called Stokes Reynolds number Res, related to the time-periodic modulation
of the disk, is defined as

Res = λr
∗
Lφ∗δ∗

s

2ν∗ = λrL

√
φ∗

2Ω∗
0

= εRe√
2ϕ

, (2.8)

where the non-dimensional frequency ϕ = φ∗/Ω∗
0 corresponds to the number

of cycles of time-periodic modulation during one full rotation of the disk.
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The dimensionless parameter

ε = λφ
∗

Ω∗
0

=
√

2ϕRes

Re
, (2.9)

represents the modulation amplitude.
On substituting (2.5) into the Navier–Stokes equations in cylindrical coordinates, the

following system of differential equations for F, G and H is derived:

∂F
∂τ

= 1
Re

(
∂2F
∂z2 + G2 − F2 − H

∂F
∂z

)
, (2.10a)

∂G
∂τ

= 1
Re

(
∂2G
∂z2 − 2FG − H

∂G
∂z

)
, (2.10b)

∂H
∂z

= −2F, (2.10c)

which is solved subject to the boundary conditions

F(0, τ ) = H(0, τ ) = 0, G(0, τ ) = 1 + ε cos
( ϕ

Re
τ − π

2

)
(2.11a–c)

and

F → 0, G → 0 as z → ∞. (2.11d,e)

Thus, velocity profiles are fully specified by the Reynolds number Re, the non-dimensional
modulation frequency ϕ and amplitude ε. (The steady von Kármán flow is recovered by
setting ε = 0.)

As our primary goal is to control stationary convective instabilities in the rotating
disk boundary layer via the application of a small time-periodic modulation to the disk
rotation rate, we restrict ε ≤ 0.2 for the remainder of this investigation. This ensures
that the modulation is small relative to the constant disk rotation rate. Furthermore,
the corresponding Stokes Reynolds number Res is small relative to that found by
Blennerhassett & Bassom (2002) for the onset of linear instability in the semi-infinite
Stokes layer, Res ≈ 707. Thus, the time-periodic modulation implemented here is unlikely
to introduce any new forms of instability (other than those disturbances already present in
the steady von Kármán flow). Validation for this particular argument is given in Morgan
(2018).

2.2. Numerical solution
Numerical solutions to the system of (2.10) and (2.11) are obtained using the following
procedure. The three velocity components F, G and H are defined on the semi-infinite
physical domain z ∈ [0, ∞) and mapped onto the computational domain η ∈ (0, 1] via the
coordinate transformation

η = l
l + z

, (2.12)

where l is a stretching factor. For this investigation l = 4, and several checks were
performed to ensure that this particular choice for l did not influence the stability
calculations.
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As a consequence of the decision to model the unsteady base flow in a non-rotating
frame and the boundary conditions (2.11), velocity fields F and G are expanded using an
odd Chebyshev series

q(z, τ ) =
M∑

k=1

qk(τ )T2k−1(η), (2.13a)

where Tk is the kth Chebyshev polynomial. On the other hand, the wall-normal velocity
component H is expanded as an even Chebyshev series

q(z, τ ) = 1
2

q0 +
M∑

k=1

qk(τ )T2k(η). (2.13b)

Furthermore, the coordinate transformation (2.12) allows derivatives with respect to the
wall-normal z-direction to be reformulated as

∂

∂z
= −η2

l
∂

∂η
and D2 = ∂2

∂z2 = η2

l

(
η2 ∂2

∂η2 + 2η
∂

∂η

)
. (2.14a,b)

Thus, after setting H̃ = η2H, the system of (2.10) is recast as

∂F
∂τ

− 1
Re

D2F = 1
Re

(
G2 − F2 + H̃

l
∂F
∂η

)
, (2.15a)

∂G
∂τ

− 1
Re

D2G = 1
Re

(
−2FG + H̃

l
∂G
∂η

)
, (2.15b)

∂H̃
∂η

= 2
η

H̃ + 2lF. (2.15c)

Equation (2.15c) can be solved using an integrating factor to give

H̃ = 2lη2
∫ η

0

F
η′2 dη′, (2.16)

while the remaining two (2.15a) and (2.15b) require the implementation of a
time-marching procedure. The temporal integration is performed via a three-point
backward difference scheme of the form(

∂f
∂τ

)l

= 1
2Δτ

(3f l − 4f l−1 + f l−2) for f l = f |τ=lΔτ , (2.17)

and a time-step Δτ . Additionally, all terms on the right-hand side of (2.14a,b) are treated
explicitly via a predictor–corrector method.

Finally, second-order derivatives D2 are treated implicitly to enhance the numerical
stability of the scheme.
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Figure 1. Velocity profiles F, G and H as a function of the wall-normal z-direction, for the Reynolds number
Re = 500, modulation amplitude ε = 0.2 and frequency ϕ = 10 for (a) τ/T = 0, (b) τ/T = π/2, (c) τ/T = π

and (d) τ/T = 3π/2.

∂F(0,τ/T)
∂z

∂G(0,τ/T)
∂z

ε τ/T = 0 π/2 π 3π/2 0 π/2 π 3π/2

0 0.5102 0.5102 0.5102 0.5102 −0.6159 −0.6159 −0.6159 −0.6159
0.001 0.5101 0.5105 0.5104 0.5100 −0.6181 −0.6181 −0.6137 −0.6137
0.01 0.5083 0.5125 0.5121 0.5080 −0.6380 −0.6381 −0.5938 −0.5937
0.05 0.5008 0.5220 0.5220 0.4991 −0.7263 −0.7270 −0.5056 −0.5049
0.1 0.4917 0.5343 0.5298 0.4885 −0.8370 −0.8383 −0.3954 −0.3940
0.2 0.4741 0.5607 0.5503 0.4692 −1.0587 −1.0612 −0.1755 −0.1726

Table 1. Numerical values of the base flow fields ∂F/∂z and ∂G/∂z, at the disk wall z = 0 and four points
in time τ/T , for the Reynolds number Re = 500, modulation frequency ϕ = 10 and variable modulation
amplitudes ε.

Equations (2.15a) and (2.15b) are integrated twice with respect to the mapped variable
η to give∫ η

0

∫ η′

0

(
3

2Δτ
− D2

)
Fl+1 dη′′ dη′ =

∫ η

0

∫ η′

0

(
2

Δτ
Fl − 1

2Δτ
Fl−1 + Rl

F

)
dη′′ dη′,

(2.18a)∫ η

0

∫ η′

0

(
3

2Δτ
− D2

)
Gl+1 dη′′ dη′ =

∫ η

0

∫ η′

0

(
2

Δτ
Gl − 1

2Δτ
Gl−1 + Rl

G

)
dη′′ dη′,

(2.18b)

where RF and RG encompass all terms on the right-hand side of (2.15a) and (2.15b),
respectively. Moreover, the velocity field H is defined explicitly in terms of F via (2.16).
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0 0.2 0.4 0.6
τ/T

0.8 1.0

z = 0

z = 0.1

z = 0.25

0.7

0.8

0.9

1.0G (z)

1.1

1.2

Figure 2. Temporal evolution of the azimuthal component G of the base flow, for z = 0 (solid line), z = 0.1
(dashed) and z = 0.25 (chain), over one period of time-periodic modulation. The Reynolds number Re = 500,
modulation amplitude ε = 0.2 and frequency ϕ = 10.

The Chebyshev polynomial representation allows the integral expressions (2.18) to be
recast as matrix operators, while the time-marching procedure is achieved using matrix
inversion and multiplication operations. A pseudo-spectral fast Fourier transform (FFT)
is then utilised to transform quantities between the physical and Chebyshev space. In
all subsequent numerical calculations, M = 64 Chebyshev points were used to accurately
compute the velocity profiles F, G and H. Several tests were performed for larger values
of M to ensure numerical convergence was achieved. Further details of the numerical
procedure are described in Morgan (2018).

Figure 1 displays the three velocity fields F, G and H as a function of the wall-normal
z-direction, about four points in time during the modulation cycle, for the Reynolds number
Re = 500, modulation amplitude ε = 0.2 and frequency ϕ = 10. Here T = 2πϕ/Re
denotes one full cycle of the time-periodic modulation. The illustration demonstrates that
modulation of the disk rotation rate brings about a considerable change to the azimuthal
velocity field G, while the radial F and wall-normal H components are less affected. The
corresponding temporal evolution of the azimuthal velocity field G is plotted in figure 2
about three wall-normal z-locations, which further demonstrates the significant variation
in this particular velocity component during the modulation cycle. Table 1 lists numerical
values of the base flow fields ∂F/∂z and ∂G/∂z, at the disk wall and four points in time,
for the above parameter settings and several other modulation amplitudes ε.

3. High-frequency limit for small modulation amplitudes

Before undertaking a linear stability study on the effects of time-periodic modulation,
we consider the behaviour of the base flow in the high-frequency ϕ-limit with small
modulation amplitudes ε. Hence, we assume the non-dimensional modulation frequency
ϕ 
 1, while the modulation amplitude ε � 1. The three velocity fields F, G and H are
then expanded in ascending powers of ε as

F(z, τ ) = F0(z, τ ) + εF1(z, τ ) + ε2F2(z, τ ) + · · · , (3.1a)

G(z, τ ) = G0(z, τ ) + εG1(z, τ ) + ε2G2(z, τ ) + · · · , (3.1b)

H(z, τ ) = H0(z, τ ) + εH1(z, τ ) + ε2H2(z, τ ) + · · · . (3.1c)
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On substituting (3.1) into the system of (2.10) and equating coefficients of order ε, we
obtain the following set of equations:

∂F1

∂τ
= 1

Re

(
∂2F1

∂z2 + 2 (G0G1 − F0F1) − H1
∂F0

∂z
− H0

∂F1

∂z

)
, (3.2a)

∂G1

∂τ
= 1

Re

(
∂2G1

∂z2 − 2 (F0G1 + G0F1) − H1
∂G0

∂z
− H0

∂G1

∂z

)
, (3.2b)

∂H1

∂z
= −2F1, (3.2c)

subject to the boundary conditions

F1(0, τ ) = H1(0, τ ) = 0, G1(0, τ ) = cos
( ϕ

Re
τ − π

2

)
(3.3a–c)

and
F1 → 0, G1 → 0 as z → ∞. (3.3d,e)

The zeroth-order terms F0, G0 and H0 are obtained by equating coefficients of order ε0.
The subsequent system of equations is identical to (2.10), with the exception of the removal
of the time τ -dependence. Hence, solutions for F0, G0 and H0 correspond to the steady
von Kármán flow.

In the high-frequency ϕ-limit, the flow evolves on a scale proportional to the Stokes
layer thickness δ∗

s . Thus, using (2.3) and (2.4c) we set

z̃ = z
δ

and τ̃ = ϕ

Re
τ, (3.4a,b)

for δ = √
2/ϕ � 1. Hence, (3.2) is rewritten as

∂F1

∂τ̃
= 1

2

(
∂2F1

∂ z̃2 + 2δ2 (G0G1 − F0F1) − δ

(
H1

∂F0

∂ z̃
+ H0

∂F1

∂ z̃

))
, (3.5a)

∂G1

∂τ̃
= 1

2

(
∂2G1

∂ z̃2 − 2δ2 (F0G1 + F1G0) − δ

(
H1

∂G0

∂ z̃
+ H0

∂G1

∂ z̃

))
, (3.5b)

∂H1

∂z
= −2δF1, (3.5c)

while the boundary conditions (3.3) are given as

F1(0, τ̃ ) = H1(0, τ̃ ) = 0, G1(0, τ̃ ) = cos(τ̃ − π/2) (3.6a–c)

and
F1 → 0, G1 → 0 as z̃ → ∞. (3.6d,e)

Expanding the first-order velocity fields F1, G1 and H1 in ascending powers of δ as

F1(z̃, τ̃ ) = F0
1(z̃, τ̃ ) + δF1

1(z̃, τ̃ ) + δ2F2
1(z̃, τ̃ ) + · · · , (3.7a)

G1(z̃, τ̃ ) = G0
1(z̃, τ̃ ) + δG1

1(z̃, τ̃ ) + δ2G2
1(z̃, τ̃ ) + · · · , (3.7b)

H1(z̃, τ̃ ) = H0
1(z̃, τ̃ ) + δH1

1(z̃, τ̃ ) + δ2H2
1(z̃, τ̃ ) + · · · , (3.7c)
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Control of the rotating disk via time-periodic modulation

transforms the system of (3.5) into the form

∂Fk
1

∂τ̃
= 1

2

(
∂2Fk

1
∂ z̃2 + 2(G0Gk−2

1 − F0Fk−2
1 ) − Hk−1

1
∂F0

∂ z̃
− H0

∂Fk−1
1

∂ z̃

)
, (3.8a)

∂Gk
1

∂τ̃
= 1

2

(
∂2Gk

1
∂ z̃2 − 2(F0Gk−2

1 + G0Fk−2
1 ) − Hk−1

1
∂G0

∂ z̃
− H0

∂Gk−1
1

∂ z̃

)
, (3.8b)

∂Hk
1

∂z
= −2Fk−1

1 , (3.8c)

where the kth superscript denotes the order of the terms in the δ expansion.
Setting k = 0 in (3.8) gives the zeroth-order terms in δ as

∂F0
1

∂τ̃
= 1

2
∂2F0

1
∂ z̃2 ,

∂G0
1

∂τ̃
= 1

2
∂2G0

1
∂ z̃2 ,

∂H0
1

∂ z̃
= 0, (3.9a–c)

which subject to the boundary conditions (3.6) gives

F0
1 = H0

1 = 0, (3.10)

and
G0

1 = e−z̃ cos(τ̃ − z̃ − π/2). (3.11)

Thus, in the high-frequency, low-amplitude limit, the azimuthal velocity component G1 is
approximated by the Stokes solution for the flow established by a planar oscillating plate.
Furthermore, the first-order azimuthal component G1 is at least an order of magnitude in
δ greater than the corresponding radial F1 and wall-normal H1 velocity components.

Hence, for small amplitude ε, high-frequency ϕ modulations, the flow behaviour on a
time-periodically modulated rotating disk is characterised by the addition of a Stokes layer
to the azimuthal component of the steady rotating disk boundary layer,

(F(z̃, τ̃ ), G(z̃, τ̃ ), G(z̃, τ̃ )) ≈ (F0(z̃), G0(z̃) + ε e−z̃ cos(τ̃ − z̃ − π/2), H0(z̃)). (3.12)

This is similar to that implemented by Thomas et al. (2011) for the flow in a
two-dimensional oscillating channel. Furthermore, this particular observation is in
excellent agreement with the numerical solutions depicted in figure 1, where variations
brought about by the time-periodic modulation are considerably greater in the azimuthal
G velocity field than the other two components.

In order to verify the above analysis, the system of (2.10) was solved numerically for
modulation amplitudes ε = 0.1 and ε = 0.2, and frequencies 0 < ϕ ≤ 100 at step intervals
Δϕ = 0.25. The numerical solution for the azimuthal velocity field G was then separated
into its steady G0 and unsteady components Gu: G = G0 + Gu. (The steady solution G0
was obtained by solving for the von Kármán flow with the time dependence removed
from (2.10).) Figure 3 displays the maximum absolute error E between the exact unsteady
velocity component Gu and the analytic Stokes layer solution G0

1

E = max
τ̃,z̃

|Gu − G0
1|, (3.13)

across the boundary layer and over one modulation period T . As expected, the error E is
greatest for low frequencies of modulation. Nevertheless, the error is still relatively small
compared with the modulation amplitude ε. As the modulation frequency ϕ increases,
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ε = 0.2

0
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Figure 3. Maximum absolute error E = maxτ̃,z̃ |Gu − G0
1| as a function of the non-dimensional modulation

frequency ϕ, between the unsteady part Gu of the azimuthal velocity field and the analytic Stokes layer solution
G0

1, for modulation amplitudes ε = 0.1 (solid line) and ε = 0.2 (dashed).

the error E decreases rapidly. Furthermore, the error appears to increase linearly with
ε. Thus, for suitable modulation amplitudes ε and frequencies ϕ, the unsteady flow on
a modulated rotating disk can be approximated by (3.12). Nevertheless, throughout the
subsequent linear stability analyses, this approximation is not necessary, and the base flow
is computed numerically by directly solving (2.10).

4. Linear stability analysis

The linear stability of disturbances in the rotating disk boundary layer is modelled in
a rotating frame of reference using the numerical formulation developed by Davies &
Carpenter (2001). (Recall that the base flow velocity profiles were computed in the
non-rotating frame to facilitate the implementation of the numerical method based on
Chebyshev series expansions.) As a consequence of the change in reference frame, the base
flow (2.6) must first undergo a transformation. This comprises a change in the boundary
conditions (2.1c,e) for the azimuthal velocity component G as

V∗ = 0 on z∗ = 0 and V∗ → −r∗Ω∗(t∗) as z∗ → ∞, (4.1)

and by setting

Gr = Gnr −
(

1 + ε cos
( ϕ

Re
τ − π

2

))
. (4.2)

Subscripts r and nr denote the rotating and non-rotating reference frames, respectively.
Additionally, Coriolis and curvature effects are included in the governing perturbation
equations.

In the subsequent local linear stability analysis, the homogeneous flow approximation
is implemented, whereby the radial dependence of the base flow (2.6) is ignored. This
amounts to the replacement of the radial coordinate r with the Reynolds number Re.
Hence, the base flow (2.6) is given as

U(z, τ ) =
(

F(τ, z), G(τ, z),
1

Re
H(τ, z)

)
. (4.3)
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Control of the rotating disk via time-periodic modulation

4.1. Velocity–vorticity formulation
Linear stability analysis is performed using the vorticity-based formulation developed by
Davies & Carpenter (2001) that requires the Chebyshev-tau method used by Bridges &
Morris (1984) and Cooper & Carpenter (1997). Velocity and vorticity perturbations to the
homogeneous base flow (4.3) are denoted by

u = (ur, uθ , uz) and ξ = (ξr, ξθ , ξz). (4.4a,b)

Following Davies & Carpenter (2001), perturbation fields are separated into primary
(ξr, ξθ , uz) and secondary variables (ur, uθ , ξz). The three primary variables are then
given as solutions of the following equations that are fully equivalent to the linearised
Navier–Stokes equations:

∂ξr

∂t
+ 1

r
∂Nr

∂θ
− ∂Nθ

∂z
− 2

Re

(
ξθ + ∂uz

∂r

)
= 1

Re

((
∇2 − 1

r2

)
ξr − 2

r2
∂ξθ

∂θ

)
, (4.5a)

∂ξθ

∂t
+ ∂Nr

∂z
− ∂Nz

∂r
+ 2

Re

(
ξr − 1

r
∂uz

∂θ

)
= 1

Re

((
∇2 − 1

r2

)
ξθ + 2

r2
∂ξr

∂θ

)
, (4.5b)

∇2uz = 1
r

(
∂ξr

∂θ
− ∂(rξθ )

∂r

)
, (4.5c)

where

N = (Nr, Nθ , Nz) = (∇ × U) × u + ξ × U, (4.6)

and

∇2 = ∂2

∂r2 + 1
r

∂

∂r
+ 1

r2
∂2

∂θ2 + ∂2

∂z2 . (4.7)

Secondary variables (ur, uθ , ξz) are expressed in terms of the primary variables by
rearranging the definition for vorticity and the solenoidal condition as follows:

ur = −
∫ ∞

z

(
ξθ + ∂uz

∂r

)
dz, (4.8a)

uθ =
∫ ∞

z

(
ξr − 1

r
∂uz

∂θ

)
dz, (4.8b)

ξz = 1
r

∫ ∞

z

(
∂(rξr)

∂r
+ ∂ξθ

∂θ

)
dz. (4.8c)

Moreover, since the rotating disk is rigid, the no-slip conditions on the disk surface

ur = uθ = uz = 0 on z = 0, (4.9)

can be reformulated using the definitions for ur and uθ as the following integral constraints
on the primary variables ξr and ξθ :∫ ∞

z

(
ξθ + ∂uz

∂r

)
dz = 0 and

∫ ∞

z

(
ξr − 1

r
∂uz

∂θ

)
dz = 0. (4.10a,b)

Furthermore, as per Davies & Carpenter (2001), all velocity and vorticity perturbation
fields are assumed to vanish in the far-field limit, z → ∞.
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4.2. Floquet theory
Since the base flow (4.3) is time-dependent, perturbations q = (u, ξ) are decomposed into
the form

q(r, θ, z, τ ) = exp(μτ + i(αr + nθ))q̂(z, τ ) + c.c., (4.11)

where q̂ is time-periodic with the same period T as the disk modulation and c.c. denotes
the complex conjugate. Due to the circumferential periodicity of the disk, the azimuthal
mode number n = βRe is an integer. However, for practical purposes it is treated as a
continuous parameter, similar to the azimuthal wavenumber β that is more commonly
used in linear stability studies (Lingwood 1995; Cooper & Carpenter 1997; Cooper et al.
2015). The parameters α and μ denote the radial wavenumber and Floquet exponent of
the disturbance, respectively. Spatial growth is encompassed in the imaginary part of α,
while the real part of μ specifies the temporal growth of the perturbation. Additionally,
all terms of O(1/Re2) and higher are neglected, to ensure compatibility with earlier local
linear stability studies.

The time-periodic function q̂ is decomposed into Fourier harmonics as

q̂(z, τ ) =
∞∑

m=−∞
qm(z) exp(imϕτ/Re), (4.12)

where the factor ϕ/Re ensures the harmonics have the same period as q̂. Similarly, the
unsteady base flow (4.3) is decomposed into Fourier harmonics as

U(z, τ ) = U0(z) +
∞∑

k=−∞
Uk(z) exp(ikϕτ/Re), (4.13)

where U0 represents the steady von Kármán flow.
Numerical solutions are then obtained by truncating the number of harmonics in

the two infinite series expressions (4.12) and (4.13) to finite values NF and NB,
respectively. Substituting (4.11) with the truncated series expressions (4.12) and (4.13),
into the governing perturbation (4.5), establishes a coupled system of ordinary differential
equations given by the dispersion relationship

D(μ, α; Re, n) = 0. (4.14)

The system of (4.14) is solved numerically using the methods outlined in Morgan & Davies
(2020), whereby perturbations are represented using the Chebyshev series expansion
(2.13). The dispersion relationship (4.14) is then integrated twice with respect to the
mapped variable η (recall (2.12)), resulting in a numerical eigenvalue problem that is
solved using the eigensolver routines in MATLAB.

There are two distinct types of analysis that may be undertaken. A temporal approach
consists of specifying the radial wavenumber α ∈ R and calculating the complex valued
Floquet exponent μ. On the other hand, a spatial analysis is achieved by setting μ ∈ R

and computing the complex valued wavenumber α. Since our primary aim is to suppress
the growth of convectively unstable disturbances, and in particular stationary cross-flow
vortices, a spatial analysis is undertaken.

4.3. Numerical validation
In the earlier Floquet stability study by Blennerhassett & Bassom (2002) on the
semi-infinite Stokes layer, numerical convergence was achieved for Fourier harmonics
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Control of the rotating disk via time-periodic modulation

NB

NF 1 2 3 4

1 0.3199 + 0.0198i 0.3199 + 0.0198i 0.3199 + 0.0198i 0.3199 + 0.0198i
2 0.3227 + 0.0170i 0.3227 + 0.0170i 0.3227 + 0.0170i 0.3227 + 0.0170i
4 0.3227 + 0.0167i 0.3227 + 0.0167i 0.3227 + 0.0167i 0.3227 + 0.0167i
6 0.3280 + 0.0193i 0.3280 + 0.0193i 0.3280 + 0.0193i 0.3280 + 0.0193i
8 0.3280 + 0.0193i 0.3280 + 0.0193i 0.3280 + 0.0193i 0.3280 + 0.0193i
10 0.3280 + 0.0193i 0.3280 + 0.0193i 0.3280 + 0.0193i 0.3280 + 0.0193i

Table 2. Radial wavenumber α, for variable harmonics NF in (4.12) and NB in (4.13). The modulation
frequency ϕ = 6 and amplitude ε = 0.2, for the stationary type I cross-flow instability with the Reynolds
number Re = 300 and azimuthal mode number n = 20.

NF = 0.8αRes, which was typically greater than 200. Hence, significant computational
resources were required to accurately determine conditions for linear instability. However,
for the current study we do not anticipate any O(Re) separation between the time scales
of the base flow and the disturbance, at least for those small modulation amplitudes
ε modelled herein. Following careful calculations it was determined that a six (or
greater) decimal place accuracy was realised, by setting the number of harmonics in the
perturbation field (4.12) and base flow (4.13) as NF = 6 and NB = 4, respectively (see
table 2 for a list of radial wavenumbers α computed for variable NF and NB). Thus, the
computational requirements are significantly reduced. Additionally, setting the number
of wall-normal Chebyshev polynomials, M = 64, was sufficient to ensure numerical
convergence. Further details of the validation checks are presented in Morgan (2018).

4.4. Stationary convective disturbances
In addition to the Reynolds number Re, modulation amplitude ε and frequency ϕ (that
fully specify the base flow (4.3)), a spatial analysis of the dispersion relationship (4.14)
is based on the azimuthal mode number n and Floquet exponent μ. Since stationary
cross-flow vortices play a significant role in the early stages of laminar–turbulent transition
on a rotating disk (Gregory et al. 1955), the following analysis is limited to stationary
disturbances by setting the Floquet exponent μ = 0. The dispersion relationship (4.14)
is then used to determine the complex valued radial wavenumber α, where a negative
imaginary part corresponds to unstable behaviour.

Stationary disturbances will be stabilised by the application of time-periodic modulation
to the disk rotation rate, if

αs
i < αm

i , (4.15)

where αs
i and αm

i denote the radial growth rates without and with modulation, respectively.
(Note that the inequality is as given in (4.15), as a consequence of radial growth occurring
when αi is negative.)

Differences in the radial growth rates

Δαi = αm
i − αs

i , (4.16)

are plotted in figure 4 as a function of the modulation frequency ϕ, for two modulation
amplitudes ε. Results correspond to the Reynolds number Re = 500 and azimuthal mode
number n = 32, while a positive (negative) valued Δαi indicates a reduction (increase)
in the radial growth rate and a stabilising (destabilising) effect. This particular azimuthal
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Figure 4. Variation in the radial growth rate, Δαi, as a function of the modulation frequency ϕ, for the
stationary type I cross-flow instability with the Reynolds number Re = 500 and azimuthal mode number
n = 32. The modulation amplitude ε = 0.1 (solid) and ε = 0.2 (dashed), while Δαi > 0 indicates a reduction
in the radial growth rate and a stabilising effect.

mode number was chosen to illustrate disturbance behaviour, since earlier investigations
found this mode to be the most significant in the laminar–turbulent transition process.
With the exception of very small modulation frequencies, Δαi is always positive. Hence,
time-periodic modulation of the disk rotation rate is stabilising and reduces the growth of
the stationary cross-flow vortex. A peak level of stabilisation is observed for frequencies
ϕ ∼ 8, while modulation is found to have a negligible effect for very high frequencies.
Thus, there is an optimal range of frequencies ϕ for which a considerable level of flow
control is realised.

Figure 5 displays neutral stability curves for stationary disturbances in both the (Re, αr)-
and (Re, n)-planes, with the modulation frequency ϕ = 6 in 5(a,b) and ϕ = 10 in 5(c,d).
Results are plotted for modulation amplitudes ε = 0.1 (dashed) and ε = 0.2 (chain), while
solid lines depict the solutions corresponding to the steady von Kármán flow without
time-periodic modulation. (As the base flow (2.6) is dependent on the Reynolds number
Re, it was necessary to compute the velocity profiles F, G, H at every Re step in the neutral
stability calculations.) Solutions demonstrate that the stabilising effect observed in figure 4
for the type I cross-flow instability is not an isolated occurrence, but is found for a range of
modulation parameter settings (ε, ϕ), Reynolds numbers Re and azimuthal mode numbers
n. Furthermore, the neutral stability curves indicate that the type II Coriolis instability is
marginally stabilised when modulating the disk with a frequency ϕ = 6, but undergoes a
significant stabilisation in the instance ϕ = 10. (The type II instability is evidenced by
those secondary protrusions near Re = 450 and n = 20.) Thus, contrary to other flow
control methods, such as surface roughness (Cooper et al. 2015; Garrett et al. 2016) and
wall compliance (Cooper & Carpenter 1997) that could only be used to control the type
I mode, time-periodic modulation stabilises both the stationary cross-flow and Coriolis
instabilities.

Neutral stability curves are replotted in figure 6 over a reduced (Re, αr) range for both
ϕ = 6 and ϕ = 10. The behaviour near the onset of the type I cross-flow instability and the
type II Coriolis instability are shown in figure 6(a,c) and figure 6(b,d), respectively. The
illustration further demonstrates the strong stabilising effect of time-periodic modulation
on the cross-flow instability. However, the effect on the Coriolis instability is only
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Figure 5. Neutral stability curves for the onset of stationary disturbances in the (Re, αr)- and (Re, n)-planes.
(a,b) The modulation frequency ϕ = 6; (c,d) ϕ = 10. The modulation amplitude ε = 0 (solid), ε = 0.1
(dashed) and ε = 0.2 (chain).

noticeably different in the instance ϕ = 10. Moreover, results suggest that the stabilising
effect found for the cross-flow instability increases as the modulation amplitude ε

increases.
The above analysis was extended to encompass a range of modulation frequencies ϕ

and two modulation amplitudes: ε = 0.1 and ε = 0.2. Critical conditions for the onset
of the stationary convective instability were then determined, with the critical Reynolds
number Rec and azimuthal mode number nc plotted in figure 7. The horizontal chain lines
depict the critical conditions obtained for the rotating disk without modulation, where
Rec ≈ 285.6 and nc ≈ 22. The calculations for ε = 0 are consistent with those found in
the earlier linear stability studies by Malik (1986) and Lingwood (1997), amongst many
others. Table 3 presents numerical values for Rec and nc, alongside the critical radial
wavenumber αc, for several modulation (ε, ϕ) settings. In all instances modelled, the most
unstable disturbance corresponds to the cross-flow instability (given in bold); the type II
Coriolis instability (given in brackets) emerges at significantly larger Reynolds numbers.
Thus, the cross-flow instability is the most unstable form of disturbance and will ultimately
be responsible for bringing about the early stages of laminar–turbulent transition on the
modulated rotating disk. Furthermore, time-periodic modulation increases the Reynolds
number for the onset of unstable behaviour, with a peak stabilising effect achieved for
frequencies ϕ ∼ 8. However, for modulation frequencies ϕ > 25, the stabilising effect is
negligible. Finally, the critical azimuthal mode number nc for linear instability is only
marginally affected by modulating the disk rotation rate.

Optimum modulation frequencies ϕ are presented in table 4 that establish the greatest
level of stabilisation for both the type I cross-flow instability (bold) and type II Coriolis
instability (italics). Numerical calculations indicate that different modulation frequencies
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Figure 6. Same as figure 5 but over a reduced (Re, αr) range, highlighting the behaviour near (a,c) the type
I cross-flow instability and (b,d) the type II Coriolis instability. (a,b) The modulation frequency ϕ = 6; (c,d)
ϕ = 10. The modulation amplitude ε = 0 (solid), ε = 0.1 (dashed) and ε = 0.2 (chain).

(ε, ϕ) Rec nc αc

(0, −) 285.55 (439.95) 22.04 (20.59) 0.382 (0.132)

(0.1, 6) 291.01 (440.43) 22.70 (20.81) 0.388 (0.133)

(0.1, 8) 291.78 (446.23) 22.62 (20.95) 0.384 (0.132)

(0.1, 10) 290.01 (448.32) 22.20 (20.95) 0.377 (0.132)

(0.1, 12) 288.34 (447, 87) 22.15 (20.92) 0.379 (0.132)

(0.2, 6) 305.98 (440.78) 24.00 (21.31) 0.394 (0.136)

(0.2, 8) 309.16 (464.69) 24.60 (21.76) 0.400 (0.130)

(0.2, 10) 304.75 (475.48) 22.51 (21.90) 0.340 (0.128)

(0.2, 12) 297.22 (474.38) 22.28 (21.77) 0.363 (0.128)

Table 3. Critical conditions for the onset of the stationary type I cross-flow instability (bold) and type II
Coriolis instability (brackets). The cross-flow mode is the most dangerous in all instances modelled.

are required to achieve the maximum stabilisation effect for the two forms of instability.
While we might expect optimum ϕ to be the same for both forms of instability, the
differences reported in table 4 can be explained by noting that the two instabilities are
brought about by very different mechanisms and so can be expected to react differently to
the imposed modulation frequency. The cross-flow instability is inviscid in nature and is
associated with an inflection point in the mean velocity profiles. On the other hand, the
Coriolis instability is essentially viscous and is destabilised by the Coriolis forces present
within the rotating disk boundary layer.
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Figure 7. (a) Critical Reynolds number Rec and (b) azimuthal mode number nc for the stationary type I
cross-flow instability, as a function of the modulation frequency ϕ. The modulation amplitude ε = 0.1 (solid
line) and ε = 0.2 (dashed). Solutions corresponding to the steady von Kármán flow are indicated by the
horizontal chain lines.

ε ϕ Rec

0 — 285.55
0.1 7.80 291.80
0.2 8.73 310.02
0 — 439.95
0.1 10.45 448.40
0.2 10.73 476.20

Table 4. Optimum modulation frequencies ϕ that establish the greatest level of stabilisation for the type I
cross-flow instability (bold) and type II Coriolis instability (italics).

5. Energy analysis

Following the approach of Cooper & Carpenter (1997) on wall compliance and Cooper
et al. (2015) and Garrett et al. (2016) on surface roughness, an integral energy equation
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for linear disturbances to the base flow U = (U, V, W) is derived. This allows us to assess
the physical mechanisms behind the stabilising effect brought about by the application of
time-periodic modulation to the disk rotation rate.

5.1. Formulation
In order to compute the energy balance across a full period of modulation, a Q-S
formulation is adopted, whereby the homogeneous base flow (4.3) is frozen at each
time-step. Thus, time τ is treated as a parameter, and the Floquet mode structure (4.11)
is replaced by the simpler normal mode form

q(r, θ, z, τ ) = q̃(z) exp(i(αr + nθ − ωτ)) + c.c., (5.1)

which is more commonly utilised in local stability studies on the steady rotating disk.
The radial wavenumber and azimuthal mode number are again denoted by α and n, while
the frequency ω = 0 for stationary disturbances. On substituting (5.1) into the governing
perturbation (4.5), a single system of ordinary differential equations is established, given
by the dispersion relationship

D(ω, α; Re, n, τ ) = 0, (5.2)

which is solved using the numerical methods outlined in § 4. By imposing the Q-S flow
approximation, the stability problem is cast as a series of locally defined systems for a
succession of different basic states at each phase during the modulation cycle.

The energy equation is formulated by multiplying the three linearised momentum
equations by the respective velocity perturbation fields u = (ur, uθ , uz), and summing
together to give the following equation for the kinetic energy:

(
∂K
∂t

+ U
∂K
∂r

+ V
r

∂K
∂θ

+ W
∂K
∂z

)
= −uruz

∂U
∂z

− uθuz
∂V
∂z

− u2
z
∂W
∂z

− u2
r
∂U
∂r

− u2
θU
r

−
(

∂

∂r
(urp) + 1

r
∂

∂r
(uθp) + ∂

∂z
(uzp) + urp

r

)
+
(

∂

∂xi
(ujσij) − σ ij

∂uj

∂xi

)
, (5.3)

where p represents the pressure perturbation field, K = (u2
r + u2

θ + w2)/2, repeated
suffices indicate summation and σij denotes the viscous stress terms

σij = 1
Re

(
∂ui

∂xj
− ∂uj

∂xi

)
. (5.4)

The O(1/Re2) terms have been neglected for consistency with the Floquet analysis
presented in § 4.
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Control of the rotating disk via time-periodic modulation

By averaging over a single azimuthal mode number n and integrating across the
boundary layer, azimuthal θ -derivatives are removed from (5.3) to give

∫ ∞

0

⎛
⎜⎜⎝∂K̄

∂t
+ U

∂K̄
∂r︸ ︷︷ ︸

(A)

+ ∂ ( ¯urp)

∂r︸ ︷︷ ︸
(B)

− ∂

∂r
( ¯urσ11 + ¯uθσ12 + ¯uzσ13)︸ ︷︷ ︸

(C)

⎞
⎟⎟⎠ dz

=
∫ ∞

0

(
− ¯uruz

∂U
∂z

− ¯uθuz
∂V
∂z

− ū2
z
∂W
∂z

)
dz︸ ︷︷ ︸

(I)

−
∫ ∞

0

( ¯
σij

∂uj

∂i

)
dz

︸ ︷︷ ︸
(II)

−
∫ ∞

0

( ¯urp
r

)
dz+(uzp)w︸ ︷︷ ︸

(III)

−(urσ31+uθσ32)w︸ ︷︷ ︸
(IV)

−
∫ ∞

0

(
W

∂K̄
∂z

+ ū2
r
∂U
∂r

+
�u2
θU
r

)
dz

︸ ︷︷ ︸
(V)

.

(5.5)

The w subscript in (III) and (IV) denotes a quantity evaluated at the disk wall, while
overbars denote a period-averaged quantity. Velocity perturbation fields u are given as
solutions of the dispersion relationship (5.2), while the pressure p perturbation field
is obtained by integrating the linearised z-momentum component of the Navier–Stokes
equations to give the formula

p =
∫ ∞

0

(
∂uz

∂t
+ U

∂uz

∂r
+ 1

rRe
∂(rξθ )

∂r

)
dz + Wuz. (5.6)

As described by Cooper and coauthors (Cooper & Carpenter 1997; Cooper et al. 2015;
Garrett et al. 2016), each term in (5.5) has a physical interpretation in terms of its
contribution to the system energy. On the left-hand side, (A) represents the average kinetic
energy convected by the radial component of the base flow, (B) the work done by the
pressure perturbation field and (C) the work done by the viscous stresses across some
internal boundary in the fluid. For the subsequent analysis, the latter term (C) is negligible.
On the right-hand side, (I) represents the Reynolds stress energy production, (II) the
viscous dissipation energy removal, (III) the pressure work, (IV) the contributions from
work done on the wall by viscous stresses and (V) the streamline curvature effects and the
three-dimensionality of the mean flow.

Equation (5.5) is normalised by the integrated mechanical energy flux to give

−2αi = −∂K
∂t

+ (P1 + P2 + P3)︸ ︷︷ ︸
(I)

+ D︸︷︷︸
(II)

+ (PW1 + PW2)︸ ︷︷ ︸
(III)

+ (S1 + S2 + S3)︸ ︷︷ ︸
(IV)

+ (G1 + G2 + G3)︸ ︷︷ ︸
(V)

, (5.7)

where all terms, including the mechanical energy flux, are time-dependent. In particular,
terms are time-periodic with a period T . Positive terms correspond to an energy
production, while negative terms are matched to the removal of energy from the
system. A disturbance is then amplified when the energy production exceeds the energy
dissipation from the system, which corresponds to a negative radial growth rate (αi < 0).
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All components of the energy balance equation (5.7) are then determined to identify those
terms that are most affected by the time-periodic modulation.

It was shown by the Cooper group (Cooper & Carpenter 1997; Cooper et al. 2015;
Garrett et al. 2016) that the energy production due to the Reynolds stress (P2) and
the viscous energy removal (D) dominate (5.7) for the steady von Kármán flow, while
S1, S2, S3 and PW2 are zero as a consequence of the boundary conditions. Furthermore,
the remaining terms are negligible, with the exception of the geometric terms G1 and G3
for the type II Coriolis instability.

For the periodically modulated rotating disk flow (4.3), Q-S perturbations (5.1) and by
extension the energy terms in (5.7), are computed over a full cycle T of the time-periodic
modulation. It is expected that quantities will vary across the period of modulation. Thus,
to help draw comparisons with the solutions of the steady von Kármán flow, terms are
averaged over one modulation period T , by computing the quantity

q̄ = 1
T

∫ T

0
q dτ. (5.8)

For instance, ᾱi denotes the time-averaged (T-A) radial growth rate over one modulation
period.

In the following analysis, we compute the energy terms in (5.7) for two specific flow
conditions that are matched to the type I cross-flow instability and the type II Coriolis
instability. In the former instance the Reynolds number Re = 500 and azimuthal mode
number n = 32, while in the latter case Re is unchanged but n = 20. The decision to focus
on these modes, and in particular the n = 32 cross-flow mode, was made as a consequence
of earlier experimental observations that found the early stages of laminar–turbulent
transition were dominated by azimuthal modes n ∈ [28, 32] (Gregory et al. 1955;
Kobayashi et al. 1980; Jarre et al. 1996). The effects of time-periodic modulation are then
determined for modulation amplitudes ε = 0.1 and 0.2, and frequencies ϕ = 6 and 10, and
solutions compared against those results obtained for the steady von Kármán flow. These
particular parameters were chosen as they correspond to a near optimal stabilisation of the
cross-flow and Coriolis instabilities (recall figures 4–7). Although this only illustrates the
effect of modulation on disturbance characteristics in a few specific instances, comparable
behaviour was observed for other modulation settings and flow conditions.

5.2. Stationary type I cross-flow instability
The disturbance evolution matching the conditions given above for the stationary
cross-flow instability are considered first. Figure 8(a) displays the variation of the radial
wavenumber α in the complex (αr, αi)-plane, while figure 8(b) depicts the temporal
evolution of the radial growth rate αi as a function of time τ . Solutions are plotted over
one full period of time-periodic modulation, for the modulation amplitude ε = 0.2 and
frequency ϕ = 10. The radial growth rate α obtained for the steady von Kármán flow
is indicated by the blue circular marker and solid blue line in the respective illustrations.
Cross and square markers in figure 8(a) display the Q-S and T-A solutions of the modulated
system, while the equivalent results in figure 8(b) are indicated by dashed and chain
lines. The Q-S radial growth rate αi fluctuates over the time interval shown. A minimum
and maximum growth rate are realised about the respective τ/T = 1/4 and τ/T = 3/4
stages of the modulation cycle, which coincides with the unsteady part of the disk
rotation rate (2.2) achieving a maximum and minimum, respectively (recall figure 2).
The corresponding T-A radial growth rate ᾱi indicates that a reduction in growth is
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Figure 8. Evolution of the radial wavenumber α, over one modulation period T , for the stationary type
I cross-flow instability with the Reynolds number Re = 500 and azimuthal mode number n = 32. The
modulation amplitude ε = 0.2 and frequency ϕ = 10. (a) The (αr, αi)-plane, (b) αi as a function of time τ/T .

achieved over a modulation period compared with the steady von Kármán flow. Hence,
time-periodic modulation of the disk rotation rate is stabilising, which is to be expected
given the earlier Floquet analysis.

The corresponding radial wavenumber α obtained via Floquet linear stability theory
is indicated by a star in figure 8(a), and coincides with the T-A wavenumber ᾱ

(square marker). Indeed, as shown in table 5, agreement between the Floquet and T-A
wavenumbers is realised to at least two decimal places for the above parameter settings
and in many other instances.

The evolution of the Reynolds stress energy production (P2) and viscous dissipation
(D) are plotted in figure 9, for modulation amplitudes ε = 0.1 and 0.2, and the modulation
frequency ϕ = 10. Line types for the steady and modulated systems are the same as that
given in figure 8. Quasi-steady solutions again fluctuate over the modulation cycle. The
energy production (P2) displays behaviour qualitatively similar to the above description
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ε ϕ Floquet α Time-averaged ᾱ

0.01 6 0.2814 − 0.0701i 0.2814 − 0.0701i
0.01 10 0.2814 − 0.0702i 0.2814 − 0.0701i
0.05 6 0.2812 − 0.0692i 0.2813 − 0.0684i
0.05 10 0.2815 − 0.0693i 0.2815 − 0.0691i
0.1 6 0.2807 − 0.0660i 0.2816 − 0.0632i
0.1 10 0.2821 − 0.0668i 0.2821 − 0.0662i
0.2 6 0.2795 − 0.0530i 0.2867 − 0.0482i
0.2 10 0.2846 − 0.0563i 0.2857 − 0.0565i

Table 5. Radial growth rates obtained using Floquet theory and via a time-averaging of the Q-S solutions, for
the stationary type I cross-flow instability with the Reynolds number Re = 500 and azimuthal mode number
n = 32.

of the radial growth rate αi. A minima and maxima are observed about the quarter and
three-quarter stages of the modulation cycle, which coincides with the time-periodic
modulation attaining, respectively, a maximum and minimum (recall (2.2) and figure 2).
The behaviour is reversed for the viscous dissipation, with maximum and minimum
absolute values realised about τ/T = 1/4 and τ/T = 3/4, respectively. This particular
feature of the energy balance is to be expected, as a reduction (increase) in the radial
growth rate will establish a comparable drop (rise) and rise (drop) in the respective
energy terms P2 and |D|. Furthermore, as the modulation amplitude ε increases, there
is a marginal increase in the maximum value of the energy production, while there
is a significant decrease in the corresponding minimum value. On the other hand, the
minimum absolute value of the viscous dissipation is relatively unchanged by increasing
ε, while there is a noticeable increase in the maximum absolute value. Since the energy
terms P2 and D are, respectively, positive and negative, and are matched to an energy
production and reduction, this behaviour would suggest that the stabilising effect induced
by modulating the disk rotation rate will become more pronounced as the modulation
amplitude ε increases. Finally, as ε increases, the T-A energy production (P̄2) decreases
and the T-A viscous dissipation (D̄) attains a larger absolute value. Hence, the T-A
calculations provide a further illustration of the stabilising effect brought about by the
time-periodic modulation.

Figure 10 depicts the full energy balance of those terms given in (5.7), for the Reynolds
number Re = 500 and azimuthal mode number n = 32. Results are plotted for the steady
von Kármán flow and four time-periodically modulated systems that are based on the T-A
calculations. Similar to the steady von Kármán flow, the Reynolds stress energy production
and viscous dissipation energy removal are the most significant in all instances modelled.
All remaining terms are again negligibly small. Furthermore, figure 10 displays behaviour
comparable with the trends observed by Cooper & Carpenter (1997) on wall compliance,
and Garrett et al. (2016) on surface roughness. Similar to these other flow control
strategies, the stabilising effect brought about by time-periodic modulation corresponds
to a reduction in P̄2 and an increase in D̄. The illustration infers that the stabilising effect,
induced by modulating the disk rotation rate, is enhanced for larger modulation amplitudes
ε and frequencies ϕ ∼ 6, which is consistent with the earlier Floquet analysis.

The T-A Reynolds stress energy production and viscous dissipation are plotted in
figure 11 as a function of the azimuthal mode number n. Solutions correspond to
the stationary type I cross-flow instability, with the Reynolds number Re = 500 and
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Figure 9. Evolution of (a,b) the Reynolds stress energy production (P2) and (c,d) the viscous dissipation
(D) across one full period T of disk modulation. Modulation amplitudes ε are as given in the caption for
the modulation frequency ϕ = 10, for the stationary type I cross-flow instability with the Reynolds number
Re = 500 and azimuthal mode number n = 32.
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Figure 10. Energy balance terms in (5.7) for the stationary type I cross-flow instability with the Reynolds
number Re = 500 and azimuthal mode number n = 32. The solutions to the steady system (blue) are compared
against four time-periodically modulated systems based on the T-A computations.
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Figure 11. Variation in the T-A (a) Reynolds stress energy production (P̄2) and (b) the viscous dissipation (D̄)

with the azimuthal mode number n. Modulation amplitudes ε are as given in the caption for the modulation
frequency ϕ = 10 and the Reynolds number Re = 500. Solutions correspond to the stationary type I cross-flow
instability (P̄2 attains a maximum about n = 34.55, 35.13 and 36.33, for ε = 0, 0.1 and 0.2, respectively).
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Figure 12. Energy balance terms in (5.7) for the stationary type II Coriolis instability with the Reynolds
number Re = 500 and azimuthal mode number n = 20. The solutions to the steady system (blue) are compared
against four time-periodically modulated systems based on the T-A computations.

modulation frequency ϕ = 10. Results are plotted for three modulation amplitudes ε, over
the interval 30 ≤ n ≤ 40 that are the most unstable mode numbers for the given parameter
settings. There is a marked reduction and growth in the respective energy terms P̄2 and |D̄|,
for all azimuthal mode numbers n considered, which further emphasises the stabilising
effect brought about by modulating the disk rotation rate.

5.3. Stationary type II Coriolis instability
The above analysis was extended to the type II Coriolis instability, where the
Reynolds number Re = 500 and azimuthal mode number n = 20. Figure 12 depicts the
corresponding full energy balance terms in (5.7), with the modulation parameter settings
and colourbars the same as those given in figure 10. The T-A Reynolds stress energy
production and viscous dissipation energy removal again dominate the energy (5.7), while
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the geometric terms Ḡ1 and Ḡ3 are also significant. Unlike the earlier studies on surface
roughness (Cooper et al. 2015; Garrett et al. 2016) that observed an increase in the energy
production and a destabilisation of the Coriolis instability, time-periodic modulation
establishes a small reduction in the magnitude of P̄2 and an increase in the absolute value
of D̄. This behaviour is identical to the effect of modulation on the stationary cross-flow
instability, although the effect is less pronounced. Hence, modulating the disk rotation rate
acts to stabilise both the stationary type I and II instabilities.

6. Conclusions

The effects of time-periodic modulation on the development of linear stationary
disturbances in the rotating disk boundary layer have been investigated. Modulation was
achieved via the addition of a sinusoidal motion to the otherwise constant disk rotation
rate, while the modulation amplitude was sufficiently small to prevent the development
of unsteady instability mechanisms (Blennerhassett & Bassom 2002). Base flow profiles
were computed numerically for an extensive range of modulation frequencies and it was
determined that the azimuthal velocity field changes significantly as a consequence of
the time-periodic modulation. The radial and wall-normal components were less affected.
Furthermore, in the high-frequency, low-amplitude limit, the analysis indicates that the
basic state can be approximated by the addition of a Stokes layer to the azimuthal
component of the steady von Kármán flow.

Linear stability calculations based on Floquet theory (Morgan & Davies 2020) that
utilise the homogeneous flow approximation, suggest that time-periodic modulation can
establish a stabilising effect, and suppress the growth and onset of the stationary convective
instabilities. Indeed, it was shown that the critical Reynolds number Rec for the onset of
the type I cross-flow instability was raised to significantly larger values than that found
for the steady disk without modulation. An optimal level of flow control was realised for
modulation frequencies ϕ ∼ 8, while the effect of modulation was negligible for ϕ 
 25.
Furthermore, the type II Coriolis instability was also stabilised by modulating the disk
rotation rate, with the greatest stabilisation achieved for ϕ ∼ 10.

An energy analysis was undertaken to ascertain the physical mechanisms responsible
for stabilising the stationary cross-flow and Coriolis instabilities. A Q-S approach was
implemented and T-A flow characteristics were determined to aid comparisons with
solutions of the steady von Kármán flow. Similar to the earlier studies on wall compliance
(Cooper & Carpenter 1997) and surface roughness (Cooper et al. 2015; Garrett et al. 2016),
it was determined that time-periodic modulation induces a reduction in the Reynolds
stress energy production and an increase in the viscous dissipation. However, while
wall compliance and surface roughness were only found to control the type I cross-flow
instability (and destabilise the Coriolis instability), time-periodic modulation was found
to stabilise both stationary forms of convective instability. Hence, modulation of the disk
rotation rate may prove to be more beneficial as a control mechanism than these other flow
control technologies.

The unsteady base flow established by modulating the disk rotation rate can be described
exactly without the need for any modelling or averaging, as is the case for models based
on surface roughness (Cooper et al. 2015; Garrett et al. 2016). Though there is an analogy
between the roughness and modulated configurations, the roughness models implemented
by Cooper and coworkers required a spatial averaging of the basic state that only accounts
for second-order effects, since any change in the average basic state must be traced to
nonlinearity. The first-order effects, in which the roughness induces an oscillatory spatial
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variation of the base flow, are removed by the averaging. Whereas, similar to the studies on
plane Poiseuille flow (Thomas et al. 2011), the oscillatory variation – in time rather than
space – is fully retained in our study of the modulated rotating disk boundary layer. Thus,
the favourable stability results presented herein are better established than those that have
previously been published for disks with rough surfaces.

Although the stabilising effect brought about by the time-periodic modulation is
relatively weak (compared with other flow control strategies, i.e. mass suction (Lingwood
1997)), the modulation amplitudes considered in this study are comparatively small. Given
the favourable stabilising trends observed above, we might expect greater control benefits
to be realised for larger modulation amplitudes.

This study has focussed on the control of stationary convective instabilities, and in
particular the cross-flow vortex (Gregory et al. 1955) that is considered to be fundamental
in the early stages of laminar–turbulent transition on a rotating disk. The control of
travelling waves and absolute instability (Lingwood 1995) that may play a role in the
latter stages of transition have not been considered. Furthermore, the homogeneous
flow approximation was utilised here to simplify the modelling. Thus, the effect of
time-periodic modulation on the radially inhomogeneous flow and the corresponding
global stability characteristics are yet to be determined (Davies & Carpenter 2003;
Appelquist et al. 2015, 2016, 2018; Thomas & Davies 2018).
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