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We consider two multiclass discriminatory process sharing (DPS)-like time-shared
M/G/1 queuing systems in which the weight assigned to a customer is a function
of its class as well as (1) the attained service of the customer in the first system
and (2) the residual processing time of the customer in the second system. We
study the asymptotic slowdown, the ratio of expected sojourn time to the service
requirement, of customers with very large service requirements. We also provide
various results dealing with ordering of conditional mean sojourn times of any
two given classes. We also show that the sojourn time of an arbitrary customer of
a particular class in the standard DPS system (static weights) with heavy-tailed
service requirements has a tail behavior similar to that of a customer from the
same class that starts a busy period.

1. INTRODUCTION AND DISCUSSION OF RELATED LITERATURE

The standard egalitarian processor sharing (EPS) system is an example of a time-
shared system in which the weight given to a customer remains static throughout its
sojourn. One can device complex schemes of allocating weights to a customer in a
time-shared system. Age-based1 [resp. residual processing time (RPT) based] sche-
duling policy forms an important class of time-shared systems in which the weight
of a customer at any point in time during its sojourn depends on its age (resp.
RPT) at that time instant. There are many examples emphasizing practical importance
and applicability of age-based and RPT-based schemes. See [2, 3, 7, 8, 17] for prop-
erties of SRPT (shortest remaining processing time first), which minimizes the
number of active flows sample-pathwise and, as a consequence, the mean transfer
delay. Reference 7 advocates the SRPT scheduler for web servers. References [11
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and 16] provide instances of age-based scheduling in data networks in which a (poss-
ibly virtual) scheduler implements a weighted round-robin scheduling by associating
a weight, say W(x), with a customer (connection) that is to transfer its xth packet (thus,
x21 is the age of the connection at that time instant). Of particular interest is the form
W(x) ¼ xa for 2a ,1. Table 1 shows the standard scheduling policies that various
values of a provide. Here TCP-CA and TCP-SS represent respectively the congestion
avoidance and slow-start phases of TCP (the congestion control protocol used in the
Internet). LAS stands for least assigned service first system and FCFS for the first
come–first served system. Reference 11 shows that TCP provides a mechanism of
implementing age-based scheduling schemes in a distributed fashion using its
concept of window evolution. This is similar to using round-robin to achieve EPS.
A similar table can be arrived at by assuming that the weight of a customer depends
on its residual processing time, RPT, instead of its age. SRPT will then be obtained
as one extreme point ( just like LAS was obtained for age-based scheduling). In prin-
ciple, one need not restrict attention to TCP-CA and TCP-SS only; many other window
evolution schemes have already been proposed in the computer networks literature
(e.g., the HighSpeed TCP [6] and Scalable TCP [9]). Considering a bottleneck link
in the Internet with several classes of connections, each identified by its congestion
control protocol, we naturally end up with a multiclass age-based scheduling system.

If T(x) denotes the expected sojourn time of a customer of size x in a queuing
system, then its expected slowdown, as defined in [8], is given by T(x)/x. Using
this performance metric, [8] argued that the EPS system is fair since the expected
slowdown of any customer is 1/(12r), irrespective of its service requirement
(here, r is the load on the system). Now, since the LAS (resp. SRPT) policies
provide absolute priorities to jobs with smaller attained (resp. remaining) service,
one might think that these policies discriminate against jobs with large service
requirements. This motivated Theorem 1 in [8], which states that if the second
moment of service requirement is finite, then for very large service requirements,
the expected slowdowns are the same in EPS, LAS, and SRPT systems. This result
is important, as it establishes that in LAS and SRPT systems, the large jobs, although
temporarily penalized, are ensured the same performance as in the fair EPS system.

Yet another important insight that one gets from Theorem 1 or [8] is that in LAS
and SRPT, large jobs are effectively served only when there is no other customer in the
system. This motivated another result, Theorem 2 of [8], which states that the results of
Theorem 1 of [8] can be thought of as being the worst-case performance achievable for
large jobs (because the large jobs are effectively served only in isolation, thus getting

TABLE 1. Specific Values of the Parameter a to Achieve Some of the Standard
Scheduling Disciplines

Policy
LAS EPS TCP-CA TCP-SS FCFS

a 21 0 0.5 1 1
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least possible attention), and the other work-conserving scheduling policies will do no
worse, thus ensuring that the asymptotic slowdown is at most 1/(12r).

A recent article [1] studied the asymptotic slowdown for the standard discri-
minatory process sharing (DPS) system [5] with a finite second moment of
service requirement distribution. They found that, as opposed to the EPS system
(which is a DPS system with only one class), the expected sojourn time of customers
from a given class does not grow in a strictly linear fashion. If Tj(x) denotes
the expected sojourn time of class j customers with service requirement of x units,
then

Tj(x) ¼ x

1� r
þ uj(x),

where uj(x) is a monotone nondecreasing function. The quantity limx!1 uj(x) is
called the asymptotic bias in the expected sojourn time of class j customers. The
asymptotic bias is shown to be a finite quantity that depends on the second
moments (of service requirements) and weights of the other classes. This finiteness
of asymptotic bias implies that the asymptotic slowdown in the case of a DPS
system is again 1/(12r) for all classes of customers. The results of [1] can be seen
as a generalization of results of [8] to the case of DPS system (where the weight of
a customer does not change over time).

Note that in SRPT (resp. LAS), the server gives all its attention to the customer(s)
with shortest RPT (resp. age). Instead of working only with these kinds of extremal
policies, we assume a general age-based (resp. RPT-based) server sharing mechanism
with LAS (resp. SRPT) as its special case. In particular, we assume that in the age-
based (resp. RPT-based) scheduling system, the weight of a class j customer that
has an age (resp. RPT) of x is given by weight function vj(x); clearly, static but class-
dependent weights give us the standard DPS system of [1]. For such systems, we study
the asymptotic slowdown and asymptotic bias under the assumption of a finite second
moment for service requirement distribution. We have refrained from making a com-
parison by changing the weight functions vj(.), given only the huge degree of
freedom that makes such a comparison an unintelligible bunch of statements (this
was not the case in the single-class system and has been beautifully done in [8]).
Instead, we stop at providing expressions for the asymptotic bias and slowdown,
which can be used at will to make such a comparison.

This article can be thought of as an extension of the results presented in [1] to
incorporate dynamically changing weights assigned to active customers. For a DPS
system with static weights (gi for a class i customer, 1 � i � K), the following
results were obtained in [1]. Here, Ti(x) represents the mean sojourn time of a class
i customer that requires x units of service.

† [1, Lemma 1] If r , 1 and gk . 0, then Tk(x) , 1 for all x , 1.
† [1, Thm. 2] If gk � gl, then Tk(x) � Tl(x) for all x.
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† [1, Prop. 2] If gk � gl, then

(P1) Tk(gkx) � Tl(glx),

(P2)
Tk(gkx)

gkx
� Tl(glx)

glx
:

† [1, Thm. 3] Let E[Xj
2], the second moment of service requirement distribution

of class j customers, be finite for all j. Then,

lim
x!1

Tk(x)
x
¼ 1

1� r
,

lim
x!1

Tk(x)� x

1� r

� �
¼

P
j=k

lj

�
1� gk

gj

�
E[X2

j ]

2(1� r)2 :

The reader is referred to [1] for an interesting interpretation of properties (P1) and
(P2). Note that the underlying assumption in the above results is that the second
moment of the service requirement distribution is finite for all the classes. We will
also be adhering to this assumption in the present piece of work.

As mentioned earlier, our contribution in this article is to extend all of the above
results to a multi-class system with dynamically changing weights. Yet another
novelty of the present article is a straightforward approach that yields the more
general results with relatively less effort ([1] derives and uses a conservation law
for DPS to establish the above results). This approach also has the advantage of pro-
viding significant insights into working of such server-sharing systems. We also
provide conservation laws for the system under consideration.

Our results support the intuition that in a time-shared system, the asymptotic slow-
down (the ratio of sojourn time and the service requirement) of a tagged customer is
essentially determined by the customers arriving after the arrival of the tagged customers.

The main results of this article are presented in Sections 2 and 4. In Section 2 we
present analysis for conditional mean sojourn times in a multiclass system with
dynamic age-dependent weights. Section 4 deals with conditional mean sojourn times
in a DPS system with dynamic RPT-dependent weights. Proofs of RPT-based schedul-
ing are similar to those of age-based scheduling; hence, they are omitted.

As a slight digression from the main theme of this work, for the special case of
DPS with static weight and Pareto distributed service requirements, we also show in
Section 3 that the sojourn time of an arbitrary customer behaves like the sojourn time
of a customer starting a busy period. The implications of this result are also discussed.

2. DPS WITH AGE-BASED SCHEDULING

Let there be K customer classes, indexed 1, 2, . . . , K. Class i, 1 � i � K, customers
arrive to the system according to a Poisson process with rate li. The arrival processes
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of different classes are independent of each other. The service requirements of customers
from class k have distribution Fk(.); Fk

c(x) ¼ 12Fk(x) is the probability that service
requirement of a class k customer exceeds x units. We will assume that Fk(.) has infinite
support, has mean E[Xk] (or sometimes we only use Ek) and has finite second
moment E[Xk

2]. A customer of class i that has attained an age of x units is assigned a
weight vi(x). At any time instant, the active customers receive a share of server in pro-
portion to their respective weights. We will assume that 0 , vi(x) , 1 for all i and
all 0 � x , 1. For the classical DPS system of [12], vi(x) ; gi. We use the following
notation:

Nj(x) is the mean number of class j customers with attained service of at most x
present in the steady state (hence, also at customer arrival instants).

Tj(x) is the mean sojourn time of a class j customer requiring x amount of service.

Uj(x) denotes the mean sojourn time of a class j customer that starts a busy period
and requires x amount of service. This is also the amount of service imparted to
the customer and its descendants.2

Ck,j( y, z, x) is the contribution of a class k customer (and its descendants) to the
sojourn time of a class j customer until the instant when a customer of class j has
attained an age of x units and such that at the initial time a customer of class k
(resp. j) had age of y (resp. z). Clearly, z � x.

v̂iðxÞ ¼
Ð x

u¼0ð1=viðuÞÞ du so that dðv̂iðxÞÞ=dx ¼ 1=viðxÞ:

Note that Ck,j( y, z, x) is defined without reference to other customers in the system;
this helps us in studying the evolution of age of any customer with respect to one
tagged customer. The next lemma reports this formally.

LEMMA 1: If at an instant in time there is a customer of class j having an age of y and
also present in the system is a customer of class i having age of z, then the age of cus-
tomer of class j at the instant when the customer of class i has attained an age of x
units (with x � z) is (assuming both of the customers have enough service require-
ment for this to happen)

Vj,i(y, z, x) ¼ v̂�1
j (v̂j(y)þ v̂i(x)� v̂i(z)),

irrespective of the dynamics of other customers.

PROOF: See Appendix A. B

THEOREM 1: For an M/G/1 queue with age-based scheduling, the following hold:

Nk(y) ¼ lk

ðy

x¼0
Tk(x)dFk(x)þ Tk(y)Fc

k(y)

� �
: ð1Þ
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2.

Ck,j(y, z, x) ¼
ð1

v¼y

ðv^Vk,j(y,z,x)

u¼y
1þ

XK
l¼1

llCl,j(0,Vj,k(z, y, u), x)

" #
du

dFk(v)
Fc

k(y)

¼
ðVk,j(y,z,x)

u¼y
1þ

XK
l¼1

llCl,j(0,Vj,k(z, y, u), x)

" #
Fc

k(u)
Fc

k(y)
du:

3.

Uj(x) ¼ xþ
ðx

u¼0

XK
l¼1

llCl,j(0, u, x) du:

4.

Tj(x) ¼ Uj(x)þ
ð1

u¼0

XK
k¼1

Ck,j(u, 0, x) dNk(u):

PROOF: See Appendix B. B

REMARKS:

1. Since Nk(.) is expressed in terms of Tk(.), we get, using the expression for
Uj(x),

Tj(x) ¼ xþ
ðx

u¼0

XK
l¼1

llCl,j(0, u, x) duþ
ð1

u¼0

XK
k¼1

Ck,j(u, 0, x)lkFc
k(u) dTk(u):

We can use the method of repeated substitution to get an infinite series expan-
sion for Tj(x) in terms of the functions C�,�(., ., .). However, such an expansion
does not furnish significant information directly.

2. An important point to be observed is that in Theorem 1, we have effectively
decomposed Tj(x) into two components: (1) the contribution of the existing
customers and their descendants and (2) the contribution of the customer
itself and its descendants. The second component is the term Uj(x). It
turns out that, for file size distributions with a finite second moment, the
asymptotic properties of the function Tj(.) is determined by the second com-
ponent only (i.e., Uj(.)); the first component remains bounded by a finite
quantity.

THEOREM 2: If r , 1, then the following hold:
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1.

Ck,j(y, z, x) � 1
1� r

ð1

u¼0
u

dFk(uþ y)
Fc

k(y)
, independent of x and j,

Ck,j(y, z, x) bx!1

1
1� r

ð1

u¼0
u

dFk(uþ y)
Fc

k(y)
:

2. Uj (x) � x/(12r).
3.

(a) Tj(x) exists and is bounded for each class j and x,1.
(b) If R̄ is the expected total remaining work in steady state, then

Tj(x)2Uj(x) � R̄/(12r), 8x.
(c) Tj(x)� Uj(x) bx!1 R=(1� r) ¼

P
l llE[X2

l ]
� 	

=2(1� r)2.

PROOF: See Appendix C. B

The results of Theorem 2 correspond to [1, Lemma 1] and [1, Theorem 3].
Slight difference here is that [1, Theorem 3] deals with Tj(x)� x=1� r while we
look at Tj(x)2Uj(x). Thus, we see that the (average) contribution of the existing cus-
tomers to the sojourn time of a newly arriving customer is bounded above by a finite
quantity.

2.1. Main Result and Discussions

THEOREM 3: Under conditions of Theorem 2, we have the following:

1.

x

1� r
� Uj(x)!x!1

X
l
llFl;j;

where

Fl,j ¼
1

1� r
lim
x!1

ðx

u¼0
El �

ðVl,j(0,u,x)

y¼0
Fc

l (y) dy

� �
du:

2.

lim
x!1

Tj(x)� x

1� r
¼ R

1� r
�
X

l
llFl,j:
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PROOF: See Appendix D. B

REMARKS:

1. We have obtained a general expression for the asymptotic behavior of sojourn
times. Other known results (for standard DPS queue, etc.) can be easily
obtained using our expression.

2. Finiteness of Fl,j is not required for the validity of Theorem 3 (the result
remains valid trivially if Fl,j ¼1 for some l ). In fact, one can easily see
that Fl,j ¼1 cannot be ruled out or cannot be considered as an undesirable
scenario, as it is a possibility for systems of practical importance. A trivial
example is when the weight function vj(x) is of the form (x þ 1)a with a

!1, and vl(x) ¼ 1, approaching FCFS scheduling for the class j customer
(for which Uj(x)/x! 1 for any service requirement distribution). A nontri-
vial example is when vj(x) ¼ x þ 1 and vl(x) ¼ 1, like in the Slow-Start
phase of TCP, when the bandwidth sharing gets locked on to the initial
state. Indications of these observations are already in [10]. In the case
Fl,j ¼1 for some l, it is seen that the asymptotic slowdown is

lim
x!1

Uj(x)
x
¼ 1

1� r
�
X

l

ll

1� r
lim
x!1

1
x

ðx

u¼0
El �

ðVl,j(0,u,x)

y¼0
Fc

l (y) dy

� �
du

.
1

1� r
,

implying a larger share of server being allocated to class j customers in the
presence of class l jobs.

3. Consider the busy period in which the tagged customer (with service require-
ment x) arrives. Let the customers in this busy period be identified by their
arrival sequence in the busy period. For the ith arriving customer in this busy
period, let Di denote the (random) set of its descendants; we will follow the con-
vention that i [ Di. Let Ce denote the set of customer index that the tagged
arrival found in the system on its arrival. Let the index of the tagged customer
in the busy period be the integer-valued random variable T. Clearly, DT ,
<i[Ce

Di; in particular, T [ <i[Ce Di. Let Cs denote the set of all the custo-
mers that the tagged customer sees in the system during its sojourn; note that
Cs ¼ (<i[Ce

Di). Clearly, Ce , Cs and Cs , <i[Ce
Di. We also need to

keep in mind that DT need not be contained in Cs, as the family of descendants
of the tagged customer might have new arrivals after its departure as well.

The idea now is decompose the sojourn time of the tagged customer by
looking at the contribution to the sojourn time of the tagged customer by the
following:

(a) Descendants of customers who were present in the system at the arrival
instant of the tagged customer, but are not descendants of the tagged
customer. This is the set Cs\DT.
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(b) Descendants of the tagged customer itself (i.e., Cs > DT).
By contribution here we mean the amount of service given to the custo-

mers of these sets during the sojourn of the tagged customer.
The expected contribution of these two sets are then Tj(x)2Uj(x) and

Uj(x), respectively.
4. Part 3 of Theorem 2 says that the expected contribution from the

(descendants of the) existing customers remains bounded above by the
mean residual busy period length. Further, this bound is achieved as
the service requirement of the tagged customer increases to very large
value. This is intuitive because we are assuming that the weight given to
any customer is strictly positive during its sojourn; this ensures that the
descendants of the existing customers get served at a strictly positive rate
and, hence, the stability of the system implies that any such family dies out
eventually.

It thus follows that the asymptotic bias in the sojourn time of a customer
can come only from the contribution of the descendants of the tagged custo-
mer itself (i.e., the Uj(x) term). This is confirmed by Theorem 3.

5. Part 1 of Theorem 3 is clearly intuitive because as x!1, Cl,j(0, u, x) is essen-
tially the expected busy period length with the exceptional first service [18]
(the first customer is from class l ).

6. Recall the way we had to write Eq. (D.1) of Appendix D in order to study
the asymptotic property of x/(12r)2Uj(x). We were not able to apply the
monotone or dominated convergence theorems to the expression preceding
Eq. (D.1). The problem essentially was that even though for any given u,
the quantity Cl,j(0, u, x)!x!1 El/(12r), one cannot claim the same for
Cl,j(0, x 2 u, x). The reason for asymptotic bias is the incomplete busy
period started by a class l customer that arrives to the system when the
tagged customer has u amount of remaining service. It is then clear that the
contribution of such a class l customer will be less than the busy period
with exceptional first service. Further, the relative weights and the service
requirement distributions of the various classes will now play an important
role, the reason being that if the weight of the tagged customer is decreasing
with its age, then the other customers will grab most of the server share from it
and, hence, their contribution will be closer to the mean busy period with
exceptional first service. Whereas if the weight of tagged customer increases
with age, the contribution from other customers will be less. This effect is
observed in a simulation study not reported here.

7. It was observed in [13] that large sojourn time in the EPS system with the
light-tailed service requirement is essentially due to “work brought along
by customers arriving during the sojourn time of the tagged customer” (i.e.,
large cardinality of the set (<i[Ce

Di)\Ce). The result of Theorem 2 suggests
(although a formal proof is not yet available to us) that essentially it is because
of the large cardinality of DT. Note that both of these sets of customers arrive
during the sojourn of the tagged customer.
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8. The breakup of the sojourn time that we have used helps us in understanding
the asymptotic property of the sojourn times by only looking at the contri-
bution of the descendants of the tagged customer, forgetting about the contri-
bution of the existing customers. This is a significant simplification since most
of the difficulty in such asymptotic analysis is caused when considering the
contribution of descendants of the existing customers. In a recent article
[14], we used this approach to prove tail equivalence between the sojourn
time of a customer starting a busy period and the service requirement distri-
bution for a single-class age-based scheduling system.

2.2. Ordering of Sojourn Times

The function Vj,i( y, z, x) plays a central role in obtaining several interclass orderings
of Tk(.) to be presented in the article. This function allows us to study the relative evol-
ution of age of two customers while forgetting about the other customers in the
system. We now present some structural properties of this function, most of which
are under the following condition:

C1 : Vj,i(y, z, x) . Vj,j(y, z, x) for all x, y, and z � x:

Condition C1 amounts to requiring that a class j customer does better against a class i
customer compared to its standing against a class j customer.

Let Vj,i(x) W Vj,i(0; 0; x), then we have the following:

Lemma 2: For a multiclass age-based scheduling system, we have the following:

Property 1:

C1, v̂ i(x)� v̂ i(z) . v̂ j(x)� v̂ j(z):

Property 2:

C1, d

dx
v̂ i(x) .

d

dx
v̂ j(x) (i:e:;vi(x) , vj(x) for all x):

Property 3:

C1) Vk,i(y, z, x) . Vk,j(y, z, x) for all k, x, y, and z � x:

Property 4:

C1) Vi,k(y, z, x) , Vj,k(y, z, x), for all k, x, y, and z � x:

A. A. Kherani240

https://doi.org/10.1017/S0269964808000144 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964808000144


Property 5:

dVj,i(x)
dx

¼ vj(Vj,i(x))
vi(x)

:

Property 6: Cl,k( y, z, x) is a decreasing function of z.

PROOF: See Appendix E. B

We list an explanation of the results of Lemma 2.

Property 2: This is intuitive, as it says that C1 is possible iff the weight given to a
class j customer with age x is larger than that given to a class i customer.

Property 3 and 4: In casevk(.) is a nondecreasing function, it is clear that, in view of
property 2, a class k customer would do better against a class i customer in comparison
to its performance against a class j customer. However, properties 3 and 4 are valid in
an even more general setting. Hence, these two properties cannot be seen as intuitive
corollary to property 2, except for the case where vk(.) is a nondecreasing function.

Property 6: This property uses the fact that d Vj,k( y, z, x)/dz , 0, which, again, is
not intuitive for general functions vj(.) and vk(.). For example, one might expect
an increase in Vj,k( y, z, x) with an increase of d . 0 in z if both vk (.) and vj (.)
are decreasing functions so that class j customer might gain more service with an
increase in z. However, it turns out that such a gain is nullified by the d decrease
in the class k customer timeline.

THEOREM 4: If C1 holds, then the following hold:

1. For all k, x, y, and z, Ck,i( y, z, x) . Ck,j( y, z, x).
2. For all x, Ti(x) � Tj(x).
3. If it is also true that dVj,i (x)/dx � 1 for all x, then for all x, Ti(x) � Tj(Vj,i (x)).

PROOF: See Appendix F. B

Clearly, results of Theorem 4 are the equivalents of Theorem 2 of and [1] (P1) of
[1, Prop. 2]. Note the additional condition dVj,i(x)/dx � 1 required to obtain the
equivalent of (P1) of [1, Prop. 2]. In the case of [1], this condition is not required
because for classical DPS, Vj,i (x) ¼ gjx/gi so that

dVj,i(x)
dx

¼ gj

gi
¼ vj(x)

vi(x)
� 1

holds trivially under condition C1 in view of the results of Lemma 2.
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An attempt to generalize (P2) of [1, Prop. 2] requires another definition:
The discounted weight of a customer of class j at an age of u with respect to a later
age y � u is

Dj(y, u) W
vj(u)

y
:

THEOREM 5: If C1 is true and if it also holds that Dj(Vj,i(x), Vj,i (u)) � Di(x, u) for all
x and u � x, then, for all x,

Ti(x)
x
� Tj(Vj,i(x))

Vj,i(x)
:

PROOF: See Appendix G. B

Again, for classical DPS, it is easily shown that Dj(Vj,i(x), Vj,i (u)) ¼ Di(x, u) for
any i and j; hence, this condition was not required in [1].

3. DPS WITH STATIC WEIGHT

We now consider a DPS system where class i customers have a static weight gi . 0.
We will be assuming that the service requirement distribution of class i is Pareto dis-
tributed with mean E[Xi] and some shape parameter zi [ (1, 2). For the DPS system
with static weights, it is easily shown that

lim
x!1

Ui(x)
x
¼ 1

1� r
:

Note that this result has been obtained using the expression for Fl,j from the previous
section, not from the results of [1], as now we are dealing with an infinite second
moment of the service requirement distribution.

Now, if we use Vi(x) to denote the second moment of the sojourn time of a class i
customer with service requirement x starting a busy period, we can write

Vi(x)� Ui(x)2 ¼
X

j

lj

ðx

u¼0
V (j,i)

c (u, x) du,

where

V (j,i)
c (u, x) ¼ G(j,i)

2 (u, x)

þ
ð1

y¼0

X
k

lk

ðy^(gj(x�u)=gi)

z¼0
V (k,i)

c (uþ giz=gj, x) dzdFj(y)
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and

G(j,i)
2 (u, x) ¼

ð1

y¼0

ðy^(gj(x�u)=gi)

z¼0
1þ

X
k

ljCk,i(0, uþ giz=gj, x)

 !
dz

" #2

� dFj(y):

These relations can be interpreted (and have been obtained) in same way as those of
Theorem 1.

The main result of this section relates the tail of the probability distribution of the
random variable Ui (the sojourn time of a class i customer starting a busy period) to
the probability distribution of the service requirement distribution of class i customer
(denoted by a generic random variable Xi)

THEOREM 6: For a DPS queue with static weights and Pareto distributed service
requirements,

lim
x!1

P

�
Ui .

x

1� r

�
P(Xi . x)

¼ 1:

PROOF: The proof follows the approach in [14] (which gives the tail equivalence
for a single class of customer and is not easily extended to a general multiclass
age-based scheduling system). In particular, we show that G2

( j,i)(u, x) � Vc
( j,i) (u,

x)�G2
( j,i) (u, x)/(12r). For the special case of DPS with static weight, it is easy

to see that Vc
( j,i) (u, x) is a function only of x2u; similarly for G2

( j,i) (u, x).
This implies that for the DPS system with static weights, Vi(x)2Ui(x)2 ¼

P
j ljÐ

u¼0
x Vc

( j,i) (u) du, with G2
( j,i) (u) � Vc

( j,i) (u) � G2
( j,i) (u)/(12r). Now, since Ck,i

(.,.,.) is bounded above by E[Xk]/(12r), the mean busy period with first customer
from class k, we see that G2

( j,i) (u) ¼
Ð

y¼0
1 [r/(12r)]2 [ y ^ (gj u/gi)]

2 dFj( y),
implying that the asymptotic behavior of G2

( j,i) (u) is like that of u22zj. This
implies that the asymptotic behavior of Vi(x)2Ui(x)2 is like x32zi or, written in
a different manner, is like x22(zi21). Since we are assuming that for all i, zi [
(1, 2), we see that zi21 . 0. Thus, we can invoke Theorem 2.3 of [15] to get
the desired result. B

This result can be seen as a refinement of the result of [4], in which the authors
show the tail equivalence for the sojourn time of an arbitrary class j customer and its
service requirement distribution. Our result says that the sojourn time of a class j cus-
tomer that starts a busy period also has same behavior as that of an arbitrary class j
customer. This again supports our approach of looking at the sojourn time of a cus-
tomer starting a busy period when working with a time-shared system.
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4. DPS WITH RPT-BASED SCHEDULING

Let there be K customer classes. Classes are indexed 1, 2, . . . , K. Class i, 1 �
i � K, customers arrive to the system according to a Poisson process with rate
li. The arrival processes of different classes are independent of each other. A
customer of class i that has an RPT of x units is assigned a weight vi(x). At
any time instant, the active customers receive a share of server in proportion to
their respective weights. We will assume that 0 , vi(x) , 1 for all i, 1 � i �
K, and all 0 � x , 1. Since most of the results are parallels of those of
Section 2, we do not provide an explanation of results in this section. The
similarity of results in age-based and RPT-based systems is not surprising in
view of the fact that the classical DPS system is common to both the families.
The proofs of results given in this section are very similar to those for age-
based scheduling; hence, we are not providing them. We here the following
notation:

Nj(x) is the mean number of class j customers with RPT of at most x present in the
steady state (hence, also at customer arrival instants).

Tj(x) is the mean sojourn time of a class j customer requiring x amount of
service.

Uj(x) is the mean sojourn time of a class j customer that starts a busy period and
requires x amount of service. This is also the amount of service imparted to the
customer and its descendants.

Ck,j( y, x) is the contribution of a class k customer (and its descendants) to the
sojourn time of a class j customer until the instant when the customer of class
j has attained an age of 0 units and such that at the initial time the customer of
class k (resp. j) had age of y (resp. x).

v̂iðxÞ ¼
Ð x

u¼0ð1=viðuÞÞ du so that dv̂iðxÞ=dx ¼ 1=viðxÞ.

Let Vj,i( y, z, x) be the RPT of a customer of class j at the instant when a
customer of class i has an RPT of x units and such that at the initial time the
customer of class j (resp. i) had a RPT of y (resp. z � x). Here, we assume
that x � Vi,j(z, y, 0); that is, the class j customer does not finish before the
class i customer reduces its RPT from z to x. In the case that x � Vi,j(z, y, 0),
we use the convention that Vj,i( y, z, x) ¼ 0. Then, using the proof of Lemma
1, we can show that

Vj,i(y, z, x) ¼ v̂�1
j (v̂j (y)þ v̂i (x)� v̂i (z)):

Let Vj,i(x) W inf (y : Vj,i(y, x, 0) ¼ 0); that is, Vj,i(x) is the RPT of a class j cus-
tomer such that it finishes at the same instant as a customer of class i that had an RPT
of x initially. Thus, Vj;iðxÞ ¼ v̂�1

j ðv̂iðxÞÞ.
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THEOREM 7: For an M/G/1 queue with RPT-based scheduling, we have the
following:

1.

Nk(y) ¼ lk Tk(y)Fc
k(y)þ

ðy

x¼0
Tk(x) dFk(x)

� �
:

2.

Ck,j(y, x) ¼
ðy

u¼Vk,j(y,x,0)
1þ

XK

l¼1
ll

ð1

z¼0
Cl,j(z,Vj,k(x, y, u)) dFl(z)

� �
du:

3.

Uj(x) ¼ xþ
ðx

u¼0

XK

l¼1
ll

ð1

z¼0
Cl,j(z, u) dFl(z) du:

4.

Tj(x) ¼ Uj(x)þ
ð1

y¼0

XK

k¼1
Ck,j(y, x) dNk(y):

THEOREM 8: For any given k, j, y, and x, we have the following:

1. Ck,j( y, x) � y/(12r), independent of the value of x. Further, Ck,j( y, x)bx!1

y/(12r).
2. If r , 1, then Uj(x) � x/(12r).
3. If r , 1, then Tj(x) exists and is bounded for each class j and x , 1.

Further, we have the following:
(a) Tj(x) 2 Uj(x) � R̄/(12r).
(b) Tj(x) 2 Uj(x)bx!1 R̄/(12r).

As of now, we do not have an exact equivalent of Theorem 3; that
is, we do not have a closed-form expression for the asymptotic bias for the
quantity Uj(x). An indirect expression can always be found in the following
manner.
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THEOREM 9: Under conditions of Theorem 8, we have the following:

1.

x

1� r
� Uj(x)!x!1 Cj ¼

X
l
ll

ð1

u¼0

El

1� r
�
ð1

z¼0
Cl,j(z, u) dFl(z)

� �
du

� 0:

2.

limx!1 Tj(x)� x

1� r
¼ R

1� r
� Cj:

We now present some structural properties of the function Vj,i( y, z, x). We will
need the following condition, whose interpretation is similar to C1 of age-based
scheduling,

C2 : Vj,i(y, z, x) . Vj,j(y, z, x) for all x, y, and z � x:

Also, let Vj,i(x) W Vj,i(0, 0, x). We now have a lemma equivalent of Lemma 2.

LEMMA 3:

1. C2, v̂i(x)� v̂i(z) . v̂j(x)� v̂j(z):
2. C2, d

dx v̂i(x) , d
dx v̂j(x) (i.e., vi(x).vj(x)).

3. C2)Vk,i( y, z, x) . Vk,j( y, z, x) for all k, x, y, and z � x.
4. C2)Vi,k( y, z, x) , Vj,k( y, z, x) for all k, x, y, and z�x.
5. Cl,k( y, z) is an increasing function of z.
6. C2, Vj,i(x) � x.

THEOREM 10:

1. C2) Ck,i( y, x),Ck,j( y, x) for all k, y, and x.
2. C2) Ti(x) , Tj(x) for all x.
3. If Vj,i(x).x for all x, and if (dVj,i(u)/du) � 1 for all u, then, for all x,

Ti(x) , Tj(Vj,i(x)):
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Define the discounted weight of a customer of class j at an age of u with respect to
a later age y � u as

Dj(y,u) W
vj(u)

y
:

LEMMA 4:

1
Vj,i(x)

dVj,i(u)
du

,
1
x

iff Dj(Vj,i(x),Vj,i(u)) , Di(x, u):

PROOF: The proof follows from the observation that (dVj,i(u)/du) ¼ (vj(Vj,i(u))/
vi(u)). B

THEOREM 11: If Vj,i(x).x for all x, y, and z�x and if it holds that Dj(Vj,i(x),
Vj,i(u)) � Di(x, u) for all x and u � x, then, for all x,

Ti(x)
x
� Tj(Vj,i(x))

Vj,i(x)
:

5. CONSERVATION LAWS

For any single-server queue with K job classes, let Rk(t) be the unfinished work at
time t of class k jobs and let R(t) ¼

P
j¼1
K Rj(t) denote the total unfinished work in

the system. For any work-conserving discipline, the unfinished work in the system
is the same, say R̄, regardless of the scheduling discipline employed. In the particular
case of age-based or RPT-based scheduling, this implies that the total unfinished
work in the system (R(t)¼

P
j¼1
K Rj(t)) is independent of the particular details of

the weight functions (vk(.); k ¼ 1, . . . ,K). In the following, we obtain conservation
laws for age-based and RPT-based scheduling.

THEOREM 12: For the system under consideration with age-based scheduling,

XK
k¼1

lk

ð1

y¼0
Tk(y)Fc

k(y) dy ¼ R:

PROOF: See Appendix H. B

THEOREM 13: For the system under consideration with RPT-based scheduling,

XK
k¼1

lk

ð1

y¼0
Tk(y)Fc

k(y) dy ¼ R:
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Notice that the conservation law is the same for both age-based and
RPT-based scheduling disciplines. This can be explained by the fact that the DPS
queue with class-dependent static weights is common to both of these scheduling
disciplines.

Notes

1. Age of a customer at any point in time is the amount of service received by the customer (i.e., its
attained Service.)

2. By descendants of a customer we mean those jobs that arrive during the time the customer or any of
its descendants are getting served. Thus, a customer is also a descendant of itself.
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APPENDIX A
Proof of Lemma 1

Let xi(t) (resp. xj(t)) be the age of the class i (resp. j) customer under consideration at time
instant t. Since the choice of time is arbitrary, we can let the initial time be zero so that
xj(0) ¼ y and xi(0) ¼ x. It is then easily seen that

dxj(t)
dt
¼ vj(xj(t))

C(t)
and

dxi(t)
dt
¼ vi(xi(t))

C(t)
;

where C(t) is the cumulative weight of all the customers present at time t, so that

dxj(t)
dxi(t)

¼ vj(xj(t))
vi(xi(t))

:

Solving this differential equation, we see that

v̂j(xj(t))� v̂j(xj(0)) ¼ v̂i(xi(t))� v̂i(xi(0)):

Substituting the initial values, we get the desired result.

APPENDIX B
Proof of Theorem 1

1. Associate with the jth arriving customer of class k a time function fj(u) that takes the
value 1 when this customer is in the system and has an attained service at most y
units; fj(u) ¼ 0 otherwise. Then

Nk(y) ¼ lim
t!1

1
t

ðt

u¼0

X1
j¼1

fj(u) du ¼ lk lim
M!1

1
M

XM
j¼1

ð1

u¼0
fj(u) du

� �
,

where the second equality follows from Brumelle’s theorem [18]. Let Xj be the total
service requirement of the jth arriving customer of class k. Then

lim
M!1

1
M

XM

j¼1

ð1

u¼0
fj(u) du

� �
¼ lim

M!1

1
M

XM

j¼1

ð1

x¼0
I{Xj¼x}

ð1

u¼0
fj(u) du

� �
dx

¼ lim
M!1

1
M

XM

j¼1

ð1

x¼y
I{Xj¼x}

ð1

u¼0
fj(u) du

� �
dx
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þ lim
M!1

1
M

XM
j¼1

ðy

x¼0
I{Xj¼x}

ð1

u¼0
fj(u) du

� �
dx

¼ Fc
k (y)Tk(y)þ

ðy

x¼0
Tk(x) dFk(x)

� �
:

The last equality follows because if Xj � y, then the random variable
Ð

u¼0
1 fj(u)

du is the same in distribution as the sojourn time of a customer requiring y units
of service, otherwise (i.e., if Xj ¼ x , y), the random variable

Ð
u¼0
1 fj(u) du is the

same in distribution as the sojourn time of a customer requiring x units of
service.

2. This part follows by first conditioning on the remaining service requirement of the class
k customer using the variable v and then summing up the contribution of any arrivals
when the class k customer increases its age from u to uþdu [so that the age of the class j
customer now is Vj,k(z, y, u) and, of course, the age of the newly arriving customer is
zero].

3. This part follows from a reasoning similar to the one presented in step 2. Here, u con-
ditions on the age of the class j customer and Cl,j(0, u, x) accounts for the contribution
of any arrival of class l customer when the class j customer increases its age from u to
u þ du (such an arrival has probability ll du).

4. This part follows in a way similar to that used for Uj(x); the only difference is that
we also need to consider the contribution of the customers that were present at the
instant of arrival of the class j customer. Using the PASTA property, a class j customer
will see an average of dNk(u) customers of class k that have their age in the interval
[u, uþdu].

APPENDIX C
Proof of Theorem 2

1.

Ck,j(y, z, x) ¼
ðVk,j(y,z,x)

u¼y
1þ

XK
l¼1

llCl,j(0,Vj,k(z, y, u), x)

" #
Fc

k (u)
Fc

k (y)
du

�
ð1

u¼y
1þ

XK
l¼1

llCl,j(0,Vj,k(z, y, u), x)

" #
Fc

k (u)
Fc

k (y)
du

¼
ð1

u¼y

Fc
k (u)

Fc
k (y)

duþ
XK
l1¼1

ll1

ð1

u1¼y
Cl1,j(0,Vj,k(z, y, u1), x)

Fc
k (u1)

Fc
k(y)

du1

�
ð1

u¼y

Fc
k (u)

Fc
k (y)

duþ
XK
l1¼1

ll1

ð1

u1¼y

" ð1

u2¼0

Fc
k (u2)

Fc
k (0)

du2:
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þ
XK
l2¼1

ll2

ð1

u2¼0
Cl2,j(0,Vj,l1 (Vj,k(z, y, u1), 0, u2), x)

Fc
l1 (u2)

Fc
l1

(0)
du2

#

� Fc
k (u1)

Fc
k (y)

du1:

Proceeding similarly by repeatedly substituting the upper bound on Cp,q(.,.,.), we get

Ck,j(y, z, x) � uk(y)þ
XK
l1¼1

ll1uk(y)ul1 (0)þ
XK
l1¼1

XK
l2¼1

ll1ll2uk(y)ul1 (0)ul2 (0)

þ � � � þ uk(y)
XK
l1¼1

� � �
XK
ln¼1

ll1 � � �llnul1 (0)uln (0)

" #
þ � � � ,

where for any l and y, ul( y) ¼
Ð

u¼y
1 (Fl

c(u)/Fl
c( y)) du. Clearly,

P
l¼1
K ll ul(0) ¼

P
l¼1
K llÐ

u¼y
1 Fl

c(u) du¼r. Hence, Ck,j( y, z, x) � uk( y)/(12r). It is also easily shown that
ul( y) ¼

Ð
z¼0
1 z (dFl(zþy)/Fl

c( y)).
Further, since 0 , vk(x) , 1 for all k and x, it follows that Vk,j( y, z, x)bx!1 1

so that the upper bounds used above are achieved in each level of substitution because
the last argument of Cp,q(., ., .) is always x. The second part thus follows. Other way to
see this is that the quantity Cl,j (0, ., .) is bounded above by a finite quantity [i.e., (

Ð
u¼0
1

Fl
c(u) du)/(12r)], independent of value of x, so that one can apply the dominated con-

vergence theorem to

Ck,j(y, z, x) ¼
ðVk,j(y, z, x)

u¼y
1þ

XK
l¼1

llCl,j(0,Vj,k(z, y, u), x)

" #
Fc

k (u)
Fc

k (y)
du

and let limit x!1 to get

Ck,j(y, z, 1) ¼
ð1

u¼y
1þ

XK
l¼1

llCl,j(0,Vj,k(z, y, u), 1)

" #
Fc

k (u)
Fc

k (y)
du: (C:1)

This implies, in particular,

Ck,j(0, z, 1) ¼
ð1

u¼0
1þ

XK
l¼1

llCl,j(0,Vj,k(z, 0, u) ,1)

" #
Fc

k (u) du:

Repeated substitution of the expression for Cp,q(0, ., 1) above implies that

Ck,j(0, z, 1) ¼
Ð1

u¼0 Fc
k(u) du

1� r
:

Note that the above limit is independent of z. Substituting this expression in Eq. (C.1),
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we get

Ck,j(y, z, 1) ¼
ð1

u¼y

Fc
k (u)

(1� r)Fc
k(y)

du ¼
ð1

u¼y

u dFc
k (u)

(1� r)Fc
k (y)

:

2.

Uj(x) ¼ xþ
ðx

u¼0

XK
l¼1

llCl,j(0, u, x) du

� xþ
ðx

u¼0

XK
l¼1

ll
1

1� r

ð1

z¼0
z dFl(z) du

¼ xþ rx

1� r

¼ x

1� r
:

3.

Tj(x) ¼ Uj(x)þ
ð1

y¼0

XK
k¼1

Ck,j(y, 0, x) dNk(y)

� Uj(x)þ 1
1� r

ð1

y¼0

XK
k¼1

ð1

u¼0
u

dFk(uþ y)
Fc

k (y)
dNk(y):

Noting that the integral
Ð

u¼0
1 u (dFk(uþy)/Fk

c( y)) is just the expected remaining work in
the system of a class k customer with an attained service of y units, it follows that

ð1

y¼0

XK
k¼1

ð1

u¼0
u

dFk(uþ y)
Fc

k (y)
dNk(y)

is the total expected remaining work in steady state (denoted R̄), which is finite and
independent of the scheduling policy for r , 1, and we have

Tj(x) ¼ Uj(x)þ R

1� r
� xþ R

1� r
, 1:

The last part follows similarly using the previous result that the upper bound used
above is asymptotically achieved.
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APPENDIX D
Proof of Theorem 3

1. Recall that Uj(x) � x/(12r), implying that if there is an asymptotic bias (limit for
Uj(x)2x/(12r)), it has to be negative. Now,

x

1� r
� Uj(x) ¼

ðx

u¼0

XK
l¼1

ll
E[Xl]
1� r

� Cl,j(0, x� u, x)

� �
du, (D:1)

where E[Xj] is the mean service requirement of class-j customers. Now,

ðx

u¼0

E(Xl)
1� r

� Cl,j(0, u, x)

� �
du

¼
ðx

u¼0

E(Xl)
1� r

�
ðVl,j(0,u,x)

y¼0
1þ

XK
l¼1

lkCk,j(0,Vj,l(u, 0, y), x)

" #
Fc

l (y) dy

" #
du

¼ 1
1� r

ðx

u¼0
E(Xl)�

ðVl,j(0,u,x)

y¼0
Fc

l (y) dy

� �
du

�
ðx

u¼0

ðVl,j(0,u,x)

y¼0

XK
k¼1

lk Ck,j(0,Vj,l(u, 0, y), x)� E½Xk�
1� r

� �
Fc

l (y) dy du:

(D:2)

Now,

ðx

u¼0

ðVl,j(0,u,x)

y¼0
Ck,j(0,Vj,l(u, 0, y), x)� E[Xk]

1� r

� �
Fc

l (y) dy du

¼
ðVl,j(0,0,x)

y¼0

ðv̂�1
j (v̂j(x)�v̂l(y))

u¼0
Ck,j(0,Vj,l(u, 0, y), x)� E[Xk]

1� r

� �
Fc

l (y) dy du

¼
ðVl,j(0,0,x)

y¼0

ðx

u¼Vl,j(0,0,y)
Ck,j(0, u, x)� E[Xk]

1� r

� �
Fc

l (y) dy du

¼
ðx

u¼0

ðVl,j(0,0,u)

y¼0
Ck,j(0, u, x)� E[Xk]

1� r

� �
Fc

l (y) dy du

¼
ðx

u¼0
El Ck,j(0, u, x)� E[Xk]

1� r

� �
~Fl(Vl,j(0, 0, u)) du

¼
ðx

u¼0
El Ck,j(0, x� u, x)� E[Xk]

1� r

� �
~Fl(Vl,j(0, 0, x� u)) du,

(D:3)

where F̃l(Vl,j(0, 0, u)) is the equilibrium distribution of Fl(.) (see [18]). The reason for
writing the last expression in terms of x2u instead of the second to last expression is
that we wish to let x!1, which is not justified for the second to last term (cannot use
either the dominated convergence theorem or the monotone convergence theorem).
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However, when working with the last expression, we can use the dominated conver-
gence theorem in the following manner: Observe that for any e.0,
(a)

Ck,j(0, xþ e� (uþ e), xþ e)~Fl(Vl,j(0, 0, xþ e� (uþ e)))

� Ck,j(0, x� u, x)~Fl(Vl,j(0, 0, x� u)),

(b)

E[Xk]
1� r

� Ck,j(0, xþ e, xþ e)

� �
~Fl(Vl,j(0, 0, xþ e))

� E[Xk]
1� r

� Ck,j(0, x, x)

� �
~Fl(Vl,j(0, 0, x)),

and
(c)

E[Xk]
1� r

� Ck,j(0, 0, x)

� �
~Fl(Vl,j(0, 0, 0)) ¼ 0:

The first inequality implies that the directional derivative of the function f (u,
x)¼Ck,j (0, x2u, x)F̃l(Vl,j(0, 0, x2u)) is positive along the direction (1, 1).
The second and third expressions give the ordering (with changing x) of the func-
tion f (x, u) evaluated at the extreme points (i.e., u ¼ 0 and u ¼ x). This three
expressions imply that the function (E[Xk]/(12r)2Ck,j (0, x2u, x)) F̃l(Vl,j(0,
0, x2u)) is monotone in x for any given u. Thus, we can invoke the monotone
convergence theorem to interchange the limit (x!1) and integral. This inter-
change implies, in particular, that

lim
x!1

ðx

u¼0
El Ck,j(0, x� u, x)� E[Xk]

1� r

� �
~Fl(Vl,j(0, 0, x� u)) du

¼ lim
x!1

ðx

u¼0
El Ck,j(0, x� u, x)� E[Xk]

1� r

� �
du,

since the function Vl,j(0, 0, (x2u)) is assumed to be strictly increasing in x. This
implies that, with the notation

zl,j ¼ limx!1

ðx

u¼0

E[Xl]
1� r

� Cl,j(0, u, x)

� �
du,

taking the limit x!1 in Eq. (D.2)

zl,j ¼ Fl,j þ El

X
k

lkzk,j,
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where

Fl,j ¼
1

1� r
limx!1

ðx

u¼0
E[Xl]�

ðVl,j(0,u,x)

y¼0
Fc

l (y) dy

� �
du

¼ El

1� r
limx!1

ðx

u¼0

~F
c
l (Vl,j(0, u, x)) du:

Summing the above expression for Fl,j over all values of l and taking limit x!1

in Eq. (D.1), we see that the asymptotic bias of x/(12r)2Uj(x) is

X
l

llzl,j ¼
X

l

ll Fl,j þ El

X
k

lkzk,j

 !
,

implying that

lim
x!1

x

1� r
� Uj(x) ¼

X
l

llzl,j ¼
X

l

llFl,j

1� r
:

2. This part follows from Theorem 2 and the limiting value of Uj(x)2x/(12r) obtained
above.

APPENDIX E
Proof of Lemma 2

1. Observe that v̂kðxÞ ¼
Ð x

u¼0ð1=vkðuÞÞ du is a strictly increasing function of x for
all k. Hence, Vj,i(y, z, x) . Vj,j(y, z, x), v̂�1

j (v̂j(y)þ v̂i(x)� v̂i(z)) . v̂�1
j (v̂j(y)þ

v̂j(y)þ v̂i(x)� v̂i(z) . v̂j(y)þ v̂j(x)� v̂j(z), v̂i(x)� v̂i(z) . v̂j(x)� v̂j(z)
v̂j(y)þ v̂i(x)� v̂i(z) . v̂j(y)þ v̂j(x)� v̂j(z), v̂i(x)� v̂i(z) . v̂j(x)� v̂j(z).

2. This is a simple corollary to the first assertion.
3. Vk;iðy; z; xÞ ¼ v̂�1

k ðv̂kðyÞ þ v̂iðzÞÞ . v̂�1
k ðv̂kðyÞ þ v̂jðxÞ � v̂jðzÞÞ ¼ Vkjðy; z; xÞ;

where the inequality follows from Lemma 2 and the fact that v̂kðxÞ is a strictly increas-
ing function of x for all k.

4. v̂iðVi;kðy;z;xÞÞ¼ v̂iðyÞþ v̂kðxÞ� v̂kðzÞ and v̂jðVi;kðy;z;xÞv̂k ¼ v̂jðyÞþ v̂kðxÞ�v̂kðzÞ.
Thus, v̂iðVi;kðy;z;xÞÞ� v̂iðyÞ¼ v̂jðVj;kðy;z;xÞÞ� v̂jðyÞ. In view of result of Lemma 2,
this is possible only if Vi;kðy;z;xÞ,Vj;kðy;z;xÞ.

5. This part is straightforward.
6. Differentiating with respect to z the expression for Ck,j( y, z, x) from Theorem 1,

dCk,j(y, z, x)
dz

¼
ðVk,j(y,z,x)

u¼y

XK
l¼1

ll
Cl,j(0, v, x)

dv







v¼Vj,k (z, y, u)

dVj,k(z,y,u)
dz

Fc
k (u)

Fc
k (y)

du
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þ dVk,j(y, z, x)
dz

1þ
XK
l¼1

llCl,j(0,Vj,k(z, y,Vk,j(y, z, x)), x)

" #

� Fc
k (Vk,j(y, z, x))

Fc
k (y)

:

It is easily shown that Vj,k(z, y, Vk,j( y, z, x)) ¼ x so that Cl,j (0, Vj,k (z, y, Vk,j

( y, z, x)), x) ¼ 0. Thus, we get

dCk,j(y, z, x)
dz

¼
ðVk,j(y,z,x)

u¼y

XK
l¼1

ll
Cl,j(0, v, x)

dv






v¼Vj,k (z, y, u)

dVj,k(z,y,u)
dz

Fc
k (u)

Fc
k (y)

du

þ dVk,j(y, z, x)
dz

:

Now it can also be seen that dVk,j( y, z, x)/dz � 0 and dVj,k(z, y, u)/dz � 0. Hence,
repeated substitution of the above expression for dC�,�(., z, .)/dz yields a solution for
dC�,�(.,z,.)/dz that is non-negative. The result follows.

APPENDIX F
Proof of Theorem 4

1.

Ck,i(y, z, x) ¼
ðVk,i(y,z,x)

u¼y
1þ

XK
l¼1

llCl,i(0,Vi,k(z, y, u), x)

" #
Fc

k (u)
Fc

k (y)
du

Ck,j(y, z, x) ¼
ðVk,j(y,z,x)

u¼y
1þ

XK
l¼1

llCl,j(0,Vj,k(z, y, u), x)

" #
Fc

k (u)
Fc

k (y)
du:

From previous lemmas and results,

Ck,i(y, z, x) �
ðVk,i(y,z,x)

u¼y
1þ

XK
l¼1

llCl,i(0,Vj,k(z,y, u), x)

" #
Fc

k (u)
Fc

k(y)
du

�
ðVk,i(y,z,x)

u¼y

Fc
k (u)

Fc
k (y)

du

þ
ðVk,j(y,z,x)

u¼y

XK
l¼1

llCl,i(0,Vj,k(z, y, u), x)
Fc

k (u)
Fc

k (y)
du:
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Thus, if Dk,i,j(y, z, x) W Ck,i(y, z, x)� Ck,j(y, z, x), then

Dk,i,j(y, z, x) .

ðVk,i(y,z,x)

u¼y

Fc
k (u)

Fc
k (y)

du

þ
ðVk,j(y,z,x)

u¼y

XK
l¼1

llDl,i,j(0,Vj,k(z, y, u), x)
Fc

k (u)
Fc

k (y)
du:

This equation can be solved for Dk,i,j( y, z, x) by the method of repeated substitution (as
this is the Fredholm equation), and since the additive term is positive here, it follows
that Dk,i,j( y, z, x) . 0 for all k, x, y, and z , x. The proof is complete.

2.

Ti(x) ¼ xþ
ðx

u¼0

XK
l¼1

llCl,i(0, u, x) duþ
ð1

y¼0

XK
k¼1

Ck,i(y, 0, x) dNk(y),

Tj(x) ¼ xþ
ðx

u¼0

XK
l¼1

llCl,j(0, u, x) duþ
ð1

y¼0

XK
k¼1

Ck,j(y, 0, x) dNk(y):

Since Cl,i( y, z, x) . Cl,j( y, z, x), the theorem follows.
3.

Cl,j(y,Vj,i(z),Vj,i(x)) ¼
ðVl,j(y,Vj,i(z),Vj,i(x))

u¼y

� 1þ
X

k

llCk,j(0,Vj,l(Vj,i(z), y, u),Vj,i(x))

" #

� Fc
l (u)

Fc
l (y)

du

Cl,i(y, z, x) ¼
ðVl,i(y,z,x)

u¼y
1þ

XK
k¼1

lkCk,i(0,Vi,l(z, y, u), x)

" #

� Fc
l (u)

Fc
l (y)

du:

Now,

Vl,j(y,Vj,i(z),Vj,i(x)) ¼ v̂�1
l (v̂l(y)þ v̂i(x)� v̂i(z)) ¼ Vl,i(y, z, x),

Vj,l(Vj,i(z), y, u) ¼ v̂�1
j (v̂j(Vj,i(z))þ v̂l(u)� v̂l(y))

¼ v̂�1
j (v̂i(z)þ v̂l(u)� v̂l(y)),

Vj,i(Vi,l(z, y, u)) ¼ v̂�1
j (v̂i(v̂

�1
i (v̂i(z)þ v̂l(u)� v̂l(y))))

¼ Vj,l(Vj,i(z), y, u):
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Using these relations and subtracting the expression for Cl,j( y,Vj,i(z), Vj,i(x)) from
that of Cl,i( y, z, x) obtained above, we get Fredholm equation in the quantity Cl,j( y,
Vj,i(z), Vj,i(x))2Cl,i( y, z, x) with zero additive constant. Repeated substitution then
shows that Cl,j( y, Vj,i(z), Vj,i(x))2Cl,i( y, z, x)20 is the only possible solution; that
is, Cl,j( y, Vj,i(z), Vj,i(x)) ¼ Cl,i( y, z, x) for all l, x, y, and z , x.

Now, it is also easily shown that Vj,i(x).x. Also,

Ti(x) ¼ xþ
ðx

u¼0

XK
l¼1

llCl,i(0, u, x) duþ
ð1

y¼0

XK
k¼1

Ck,i(y, 0, x) dNk(y);

Tj(Vj,i(x)) ¼ Vj,i(x)þ
ðVj,i(x)

u¼0

XK
l¼1

llCl,j(0, u,Vj,i(x)) du

þ
ð1

y¼0

XK
k¼1

Ck,j(y, 0,Vj,i(x)) dNk(y)

¼ Vj,i(x)þ
ðx

z¼0

XK
l¼1

llCl,j(0,Vj,i(z),Vj,i(x)) dVj,i(z)

þ
ð1

y¼0

XK
k¼1

Ck,j(y,Vj,i(0),Vj,i(x)) dNk(y):

Using the fact that Cl,j( y, Vj,i(z), Vj,i(x)) ¼ Cl,i( y, z, x) for all l, x, y, and z , x, the
theorem follows since dVj,i(x)/dx � 1.

APPENDIX G
Proof of Theorem 5

From the proof of Theorem 4,

Ti(x)
x
� Tj(Vj,i(x))

Vj,i(x)
¼
ðx

u¼0

XK
l¼1

llCl,i(0, u, x)
1
x
�

dVj,i(u)
du

Vj,i(x)

 !
du

þ
ð1

y¼0

XK
k¼1

Ck,i(y, 0, x) dNk(y)
1
x
� 1
Vj,i(x)

� �
:

Now,

1
x
� dVj,i(u)=du

Vj,i(x)
¼ 1

x
� vj(Vj,i(u))
vi(u)Vj,i(x)

¼ 1
vi(u)

(Di(x, u)� Dj(Vj,i(x),Vj,i(u))) � 0:
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The result follows using the additional fact that 1
x � 1=Vj,i(x)
� 	

� 0.

APPENDIX H
Proof of Theorem 12

From Theorem 1,

dNk(y)
dy

¼ lkFc
k (y)

dTk(y)
dy

:

Now, the expected unfinished work in the system at any instant is R̄ independent of the
scheduling discipline. This quantity for age-based scheduling is

R ¼
X

k

ð1

x¼0

ð1

y¼x
(y� x)

dFk(y)
Fc

k (x)
dNk(x),

where y is used to condition on the total service requirement of a customer that has an attained
age of x. The theorem follows using expression for dNk( y)/dy and simple math.
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