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Abstract

Rough volatility is a well-established statistical stylized fact of financial assets. This
property has led to the design and analysis of various new rough stochastic volatility
models. However, most of these developments have been carried out in the mono-asset
case. In this work, we show that some specific multivariate rough volatility models arise
naturally from microstructural properties of the joint dynamics of asset prices. To do
so, we use Hawkes processes to build microscopic models that accurately reproduce
high-frequency cross-asset interactions and investigate their long-term scaling limits.
We emphasize the relevance of our approach by providing insights on the role of micro-
scopic features such as momentum and mean-reversion in the multidimensional price
formation process. In particular, we recover classical properties of high-dimensional
stock correlation matrices.
Keywords: Rough volatility; multidimensional processes; microstructure; Hawkes pro-
cesses; limit theorems; high-dimensional correlation matrices
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1. Introduction

1.1. A microstructural viewpoint on rough volatility

It is now widely accepted that volatility is rough (see [11] and among others [6, 24]): the
log-volatility process is well-approximated by a fractional Brownian motion with small Hurst
parameter H ≈ 0.1, which corresponds to Hölder regularity of order H − ε, ε > 0. Furthermore,
rough volatility models capture key features of the implied volatility surface and its dynamics
(see [3, 9, 17]).

The macroscopic phenomenon of rough volatility is seemingly universal: it is observed
for a large class of financial assets and across time periods. This universality may stem from
fundamental properties such as market microstructure or no-arbitrage. This has raised interest
in building microscopic models for market dynamics which reproduce rough volatility at a
macroscopic scale. For us, the microscopic time scale is of the order of milliseconds, where
asset prices are jump processes, while the macroscopic scale is approximately of the order of
days, where asset prices appear essentially continuous.
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Hawkes processes, first introduced in [13, 14, 15] to model earthquake aftershocks, are
nowadays very popular to model the high-frequency dynamics of prices of financial assets
(see [2] for an overview of applications). In particular, the papers [8, 20, 21] successfully
establish a link between rough volatility and history-dependent Hawkes-type point processes
which reproduce the following properties:

(i) the no-statistical-arbitrage property (i.e. it is very hard to design strategies which are on
average profitable at the high-frequency scale);

(ii) the long-memory property of order flow, due to the splitting of large orders (meta-orders)
into smaller orders;

(iii) the high degree of endogeneity of financial markets (i.e. the large majority of market
activity (including price moves, cancellations, and market and limit orders) occurs in
response to previous market activity, as opposed to exogenous information such as
news).

We refer to [8, 12] for details about these three stylized facts. This Hawkes-based microscopic
framework can easily account for other features of markets: for example [22] examines the
issue of permanent market impact, [10] studies how a bid/ask asymmetry creates a negative
price/volatility correlation, and the so-called Zumbach effect is considered in [7].

Inspired by [8, 20, 21] the goal of this paper is to use Hawkes processes to find a micro-
founded setting of multivariate rough volatility which

(i) enforces no statistical arbitrage between multiple assets;

(ii) is consistent with the long-memory property of the order flow and the high degree of
endogeneity of financial markets; and

(iii) explains stylized facts from the microscopic price formation process, with a focus on the
structure of high-dimensional stock correlation matrices.

This approach enables us to characterize the type of price dynamics arising from these con-
straints. Readers interested in multivariate rough volatility may consult [5] for a general
construction of a class of affine multivariate rough covariance models. Our goal is more modest
here: we are interested in finding macroscopic dynamics originating from microscopic insights,
not in a full mathematical analysis of the class of possible models for multivariate rough volatil-
ity. Note also that in the concomitant work [18], the authors study weak solutions of stochastic
Volterra equations in a very comprehensive framework. Some of our technical results can be
derived from their general approach. In our setting, however, we provide simple and natural
proofs inspired by [8, 20, 21] this allows us to emphasize financial interpretations of the results,
which are the core of this work.

1.2. Modelling endogeneity of financial markets

For clarity, we first introduce the asymptotic framework which models the high endogeneity
of financial markets in the mono-asset case (as [1, 8, 20, 21]), before moving to the multivariate
setting of interest. At the high-frequency scale, the price is a piecewise constant process with
upward and downward jumps captured by a bi-dimensional counting process N = (

N1+,N1−),
with N1+ counting the number of upward price moves and N1− the number of downward price
moves. Assuming that all jumps are of the same size, the microscopic price of the asset is
the difference between the number of upward and the number of downward jumps (where the
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initial price is set to zero for simplicity) and therefore can be written

Pt = N1+
t − N1−

t .

Our assumption is that N is a Hawkes process with intensity λ= (λ1+, λ1−) such that

λ1+
t =μ1+

t +
∫ t

0
φ1+,1+(t − s)dN1+

s +
∫ t

0
φ1+,1−(t − s)dN1−

s ,

λ1−
t =μ1−

t +
∫ t

0
φ1−,1+(t − s)dN1+

s +
∫ t

0
φ1−,1−(t − s)dN1−

s ,

where μ= (μ1+, μ1−) : R+ →R2+ is called the baseline and φ : R+ →M2(R+) is called the
kernel. Here we write vectors and matrices in bold, and Mn,m(X) (resp. Mn(X)) denotes the
set of X-valued n × m (resp. n × n) matrices. We can easily interpret the different terms above
from a financial perspective:

(i) On the one hand, μ1+ (resp. μ1−) is an exogenous source of upward (resp. downward)
price moves.

(ii) On the other hand, φ is an endogenous source of price moves. For example, φ1+,1−
increases the intensity of upward price jumps after a downward price jump, creating a
mean-reversion effect (while φ1+,1+ creates a trending effect).

To further encode the long-memory property of the order flow, [8] and [20] consider heavy-
tailed kernels where, writing ρ(M) for the spectral radius of a matrix M, for some c> 0 and
α ∈ (1/2, 1) we have

ρ
( ∫ ∞

t
φ(s)ds

)
∼

t→∞ ct−α .

Such a model satisfies the stability property of Hawkes processes (see for example [20]) as
long as ρ(‖φ‖1)< 1 (where we write ‖·‖1 for the L1 norm). In fact, calibration of Hawkes
processes on financial data suggests that this stability condition is almost violated. To account
for this effect, the authors of [8] and [20] model the market up to time T with a Hawkes process
NT of baseline μT and kernel φT . The microscopic price until time T is then

PT,1
t = NT,1+

t − NT,1−
t .

In order to obtain macroscopic dynamics, the time horizon must be large; thus the sequence Tn

tends to infinity (from now on, we write T for Tn). As T tends to infinity, φT almost saturates
the stability condition:

ρ
(∥∥φT

∥∥
1

)
→

T→∞ 1.

A macroscopic limit then requires scaling the processes appropriately to obtain a nontrivial
limit. Details on the proper rescaling of the processes are given in Section 1.4.

1.3. Multivariate setting

Having described the asymptotic setting in the mono-asset case, we now model m dif-
ferent assets. The associated counting process is now a 2m-dimensional process NT =
(NT,1+,NT,1−,NT,2+, . . . ,NT,m−), and its intensity satisfies

λT
t =μT

t +
∫ t

0
φT (t − s)dNT

s .
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The counting process N includes the upward and downward price jumps of m different assets,
and the microscopic price of Asset i, where 1 ≤ i ≤ m, is simply

PT,i
t = NT,i+

t − NT,i−
t .

This allows us to capture correlations between assets, since, focusing for example on Asset 1,
we have

λ
T,1+
t =μ

T,1+
t +

∫ t

0
φT

1+,1+(t − s)dNT,1+
s +

∫ t

0
φT

1+,1−(t − s)dNT,1−
s

+
∫ t

0
φT

1+,2+(t − s)dNT,2+
s +

∫ t

0
φT

1+,2−(t − s)dNT,2−
s + · · · .

Therefore φT
1+,2+ increases the intensity of upward jumps on Asset 1 after an upward jump of

Asset 2, while φT
1+,2+ increases the intensity of upward jumps on Asset 1 after a downward

jump of Asset 2, etc.
We now need to adapt the nearly-unstable setting to the multidimensional case. Thus we

have to find how to saturate the stability condition and to translate the long-memory property
of the order flow. In [8], φT (t) is taken diagonalizable (in a basis independent of T and t) with
a maximum eigenvalue ξT (t) such that ∥∥ξT

∥∥
1 →

T→∞ 1.

However, this structure leads to the same volatility for all assets and thus cannot be a satisfying
solution for realistic market dynamics. We take here a sequence of trigonalizable (in a basis O
independent of T and t) kernels φT (t) with nc > 0 eigenvalues almost saturating the stability
condition. Thus the Hawkes kernel is taken to be of the form

φT (t) = O

(
AT (t) 0

BT (t) CT (t)

)
O−1

(using block matrix notation that will be in force throughout the paper), where AT : R+ →
Mnc (R), BT : R+ →M2m−nc,nc(R) and CT : R+ →M2m−nc(R). Note that we will see that in
the limit, macroscopic volatilities and prices are independent of the chosen basis. We assume
that the stability condition is saturated at the speed T−α , where α ∈ (1/2, 1) is again related to
the tail of the matrix kernel (see below). The saturation condition translates to

Tα
(

I −
∫ ∞

0
AT (s)ds

)
→

T→∞K,

where K is an invertible matrix.
We now need to encode the long-memory property of the order flow. We can expect orders

to be sent jointly on different assets (this can be due, for example, to portfolio rebalancing, risk
management, or optimal trading) and split under different time scales depending on idiosyn-
cratic components (such as daily traded volume or volatility). Empirically, the approximation
that, despite idiosyncrasies, a common time scale for order splitting exists is partially justi-
fied: for example [4] shows that market impact, which is directly related to the order flow, is
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well-approximated by a single time scale for many stocks. Finally, this property is encoded by
imposing a heavy-tail condition for A := lim

T→∞AT with the previous exponent α:

αxα
∫ ∞

x
A(s)ds →

x→∞ M,

with M an invertible matrix.

1.4. Main results and organization of the paper

In the framework described above, we show that the macroscopic limit of prices is a mul-
tivariate version of the rough Heston model introduced in [9, 10], where the volatility process
is a solution of a multivariate rough stochastic Volterra equation. Thus we derive a natural
multivariate setting for rough volatility using nearly-unstable Hawkes processes.

More precisely, we define the following rescaled processes (see [20] for details), for
t ∈ [0, 1]:

XT
t := 1

T2α
NT

tT , (1)

YT
t := 1

T2α

∫ tT

0
λsds, (2)

ZT
t := Tα

(
XT

t − YT
t

)= 1

Tα
MT

tT , (3)

PT
t = 1

T2α

(
NT,1+

tT − NT,1−
tT , · · · ,NT,m+

tT − NT,m−
tT

)
. (4)

We refer to PT as the (rescaled) microscopic price process. Under some additional techni-
cal and no-statistical-arbitrage assumptions, there exist an nc-dimensional process Ṽ, matrices
�1 ∈Mnc (R), �2 ∈Mn−nc(R), �0 ∈Mnc (R), �1 ∈Mnc(R), �2 ∈Mnc,n−nc (R), θ0 ∈Rnc ,
and a Brownian motion B such that the following hold:

(i) Any macroscopic limit point P of the sequence PT satisfies

Pt = (I +�)
Q
∫ t

0
diag

(√
Vs

)
dBs,

where Q := (e1 − e2 | · · · | e2m−1 − e2m), we write 
Q for the transpose of Q and
(ei)1≤i≤2m for the canonical basis of R2m, �= (�ij)1≤i,j≤m ∈Mm(R) is defined in
Section 3, and V is defined below.

(ii) We have �1Ṽ = (V1, · · · , Vnc ) and �2Ṽ = (Vnc+1, · · · , Vn).

(iii) Every component of Ṽ has pathwise Hölder regularity α − 1/2 − ε for any ε > 0.

(iv) For any t in [0,1], Ṽ satisfies

Ṽt =
∫ t

0
(t − s)α−1�1diag

(√
�1Ṽs

)
dWs +

∫ t

0
(t − s)α−1�2diag

(√
�2Ṽs

)
dZs

+
∫ t

0
(t − s)α−1(θ0 −�0Ṽs

)
ds,

where W := (B1, · · · , Bnc), Z := (Bnc+1, · · · , Bn) and we write
√

x for the component-
wise square root of vectors of nonnegative entries.
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Thus the volatility process V is driven by Ṽ, which represents volatility factors, of which there
are as many as there are critical directions.

We can use this result to provide microstructural foundations for some empirical proper-
ties of correlation matrices. Informally, considering that our assets have similar self-exciting
features in their microscopic dynamics, we show that any macroscopic limit point P of the
sequence PT satisfies

Pt =�

∫ t

0
diag

(√
Vs

)
dBs,

where W is a Brownian motion, V satisfies a stochastic Volterra equation, and � has one very
large eigenvalue, followed by smaller eigenvalues that we can interpret as due to the presence
of sectors, and a bulk of eigenvalues much smaller than the others. This is typical of actual
stock correlation matrices (see for example [23] for an empirical study).

The paper is organized as follows. Section 2 rigorously introduces the technical framework
sketched in the introduction. In Section 3 we present and discuss the main results, which are
then applied in examples developed in Section 4. Proofs can be found in Section 5, while some
technical results, including proofs of the various applications, are available in an appendix.

2. Assumptions

Before presenting the main results, we make precise the framework sketched out in the
introduction. Examples of Hawkes processes satisfying our assumptions are given in Section 4.

Consider a sequence of measurable functions φT : R+ →M2m(R+) and μT : R+ →R2m+ ,
where the pair (μT , φT ) will be used to model the market dynamics until time T via a Hawkes
process NT of baseline μT and kernel φT . Each kernel φT is stable (ρ

(∥∥φT
∥∥

1

)
< 1).

Assumption 1. There exists an invertible matrix O such that each φT can be written as

φT = O

(
AT 0

BT CT

)
O−1,

where AT : R+ →Mnc (R), BT : R+ →M2m−nc,nc (R), CT : R+ →M2m−nc (R). Further-
more, the sequence φT converges to φ : R+ →M2m(R+) as T tends to infinity, and, writing
A, B, C for the limits of AT , BT , CT as T tends to infinity, we have ρ(

∫∞
0 C(s)ds)< 1.

Additionally, there exist α ∈ (1/2, 1), invertible matrices K and M, and μ : [0, 1] →R+
such that, for all t ∈ [0, 1], we have

Tα
(

I −
∫ ∞

0
AT (s)ds

)
→

T→∞K, (5)

αxα
∫ ∞

x
A(s)ds →

x→∞M, (6)

T1−αμT
tT →

T→∞μt, (7)

where KM−1 has strictly positive eigenvalues.

Realistic market dynamics require enforcing no-statistical-arbitrage conditions on the ker-
nels, in the spirit of [20]. To determine which conditions need to be satisfied to prevent such
arbitrage, we write the intensity of the counting process λT using the compensator process
MT

t := NT
t − λT

t . Writing ∗k for the convolution product iterated k times (which is defined as

f∗k(t) =
∫ t

0
f (s)f∗(k−1)(t − s)ds
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for k ≥ 2, with f∗1 = f ), we have ψT =∑
k≥1 (φT )∗k (see for example Proposition 2.1 in [20]).

For any t ∈ [0, T], we have

λT
t =μT

t +
∫ t

0
ψT (t − s)μT

s ds +
∫ t

0
ψT (t − s)dMT

s . (8)

Thus, the expected intensities of upward and downward price jumps of Asset i are

E
[
λ

T,i+
t

]=μ
T,i+
t +

∑
1≤j≤2m

∫ t

0
ψT

i+, j−(t − s)μT, j−
s ds +

∑
1≤j≤2m

∫ t

0
ψT

i+, j+(t − s)μT, j+
s ds,

E
[
λ

T,i−
t

]=μ
T,i−
t +

∑
1≤j≤2m

∫ t

0
ψT

i−, j−(t − s)μT, j−
s ds +

∑
1≤j≤2m

∫ t

0
ψT

i−, j+(t − s)μT, j+
s ds.

The above leads us to the following assumption.

Assumption 2. For any 1 ≤ i, j ≤ m, the following hold:

(i) No pair-trading arbitrage: ψT
i+,j+ +ψT

i+,j− =ψT
i−,j+ +ψT

i−,j−.

(ii) Suitable asymptotic behaviour of the intensities:

lim
T→∞

(∫ ∞

0
ψT

i+,j+ −
∫ ∞

0
ψT

i+,j−
)
<∞.

Under the above conditions, if μT,i+ =μT,i− for all 1 ≤ i ≤ m, then E[λT,i+
t ] =E[λT,i−

t ]
and there are on average as many upward as downward jumps, which we interpret as a no-
statistical-arbitrage property.

Define, for any 1 ≤ i, j ≤ m,

δT
ji := ψT

j+,i+ −ψT
j−,i+, (9)

�ji := lim
T→∞

∥∥∥ψT
j+,i+

∥∥∥
1
−
∥∥∥ψT

j−,i+
∥∥∥

1
. (10)

We can make the following remark.

Remark 1. For any 1 ≤ k ≤ m, define ek+ := e2k−1, ek− := e2k, and vk := ek+ − ek−. Using
Part (i) of Assumption 2 and recalling that ψT : t →ψT (t) ∈M2m(R), we have



ψTvk = 


ψT (ek+ − ek−)

=
m∑

i=1

(
ψT

k+,i+ −ψT
k−,i+

)
ei+ + (

ψT
k+,i− −ψT

k−,i−
)
ei−

=
m∑

i=1

(
ψT

k+,i+ −ψT
k−,i+

)
ei+ − (

ψT
k+,i+ −ψT

k−,i+
)
ei−

=
m∑

i=1

(
ψT

k+,i+ −ψT
k−,i+

)
vi =

m∑
i=1

δT
kivi.

A sufficient condition for the no-pair-trading-arbitrage condition in Part (i) of Assumption 2 to
hold is that, for all 1 ≤ i ≤ m,



φTvi =

∑
1≤j≤m

(

φTvi · vj

)
vj,
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since then we have, for any 1 ≤ k ≤ m,∑
1≤l≤m

(
ψT

k+,l+ −ψT
k−,l+

)
el+ − (

ψT
k+,l+ −ψT

k−,l+
)
el− =

∑
1≤l≤m

(
ψT

k+,l+ −ψT
k−,l+

)
el+

− (ψT
k+,l− −ψT

k−,l−)el−.

In our applications in Section 4 we will use this condition, as it is easier to check assumptions
on φ than on ψ .

3. Main results

We are now in the position to rigorously state the main results of this paper. We use the
processes XT , YT , and ZT defined in the introduction (see Equations (1), (2) (3)) and write

O−1 =
(

O(−1)
11 O(−1)

12

O(−1)
21 O(−1)

22

)
,O =

(
O11 O12

O21 O22

)
.

We set

�1 :=
(

O11 + O12

(
I −

∫ ∞

0
C(s)ds

)−1∫ ∞

0
B(s)ds

)
K−1,

�2 :=
(

O21 + O22

(
I −

∫ ∞

0
C(s)ds

)−1∫ ∞

0
B(s)ds

)
K−1,

θ0 :=
(

O(−1)
11 0

0 O(−1)
12

)
μ,

� := α

�(1 − α)
KM−1.

We have the following theorem.

Theorem 1. The sequence (XT , YT , ZT ) is C-tight (see for example [19]) for the Skorokhod
topology. Furthermore, for every limit point (X, Y, Z) of the sequence, there exist a positive
process V and a 2m-dimensional Brownian motion B such that the following hold:

(i) We have Xt = ∫ t
0 Vsds, Zt = ∫ t

0 diag
(√

Vs

)
dBs.

(ii) There exists Ṽ, a process of Hölder regularity α− 1/2 − ε for any ε > 0, such that

�1Ṽ = (V1, · · · , Vnc), �2Ṽ = (Vnc+1, · · · , V2m), and Ṽ is solution of the following
stochastic Volterra equation:

∀t ∈ [0, 1], Ṽt = 1

�(α)
�

∫ t

0
(t − s)α−1(θ0 − Ṽs)ds

+ 1

�(α)
�

∫ t

0
(t − s)α−1O(−1)

11 diag

(√
�1Ṽs

)
dW1

s

+ 1

�(α)
�

∫ t

0
(t − s)α−1O(−1)

12 diag

(√
�2Ṽs

)
dW2

s ,

(11)

where W1 := (B1, · · · , Bnc), W2 := (Bnc+1, · · · , B2m),�1,�2, O(−1)
11 , O(−1)

12 , θ0 do not
depend on the chosen basis.
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Finally, any limit point P of the rescaled price processes PT satisfies

Pt = (I +�)
Q
( ∫ t

0
diag

(√
Vs

)
dBs +

∫ t

0
μsds

)
,

where � is defined in Equation (10).

Theorem 1 links multivariate nearly-unstable Hawkes processes and multivariate rough
volatility. We note the following:

(i) The resulting stochastic Volterra equation has nontrivial solutions, as the examples in
Section 4 will show.

(ii) From a financial perspective, Theorem 1 shows that the limiting volatility process for
a given asset is a sum of several volatility factors. The matrix � mixes them and is
therefore responsible for correlations between asset prices. Remarks and comments on
I +� are developed in Section 4.

(iii) The theorem implies that adding/removing an asset to/from a market has an impact on
the individual volatility of other assets. We can estimate the magnitude of such volatility
modifications by calibrating Hawkes processes on price changes.

(iv) Since there is a one-to-one correspondence between the Hurst exponent H and the long-
memory parameter of the order flow α, our model yields the same roughness for all
assets. Extensions to allow for different exponents to coexist, for example by introducing
an asset-dependent scaling through D = (α1, · · · , αm) and studying T−DλT

tT , are more
intricate. In particular, one needs to use a special function extending the Mittag-Leffler
matrix function so that its Laplace transform is of the form (I +�tD)−1.

4. Applications

In this section, we give two examples of processes obtained through Theorem 3 under
different assumptions on the microscopic parameters. In the first example we study the influ-
ence of microscopic parameters on the limiting price and volatility processes when modelling
two assets. In the second example, we model many different assets to reproduce realistic
high-dimensional correlation matrices.

4.1. Influence of microscopic properties on the price dynamics of two correlated assets

Our first model to understand the price formation process focuses on two assets. Let
μ1, μ2 > 0, α ∈ (1/2, 1), γ1, γ2 ∈ [0, 1], and Hc

21,Ha
21,Hc

12,Ha
12 ∈ [0, 1] such that the fol-

lowing hold (here
√· denotes the principal square root, so that if x< 0, then

√
x =

i
√−x):

0 ≤ (
Hc

12 + Ha
12

)(
Hc

21 + Ha
21

)
< 1,

0 ≤ | 1 − (γ1 + γ2) −
√

(Hc
12 − Ha

12)(Hc
21 − Ha

21) + (γ1 − γ2)2 |< 1,

0 ≤ | 1 − (γ1 + γ2) +
√

(Hc
12 − Ha

12)(Hc
21 − Ha

21) + (γ1 − γ2)2 |< 1.

In the above, the superscript c (resp. a) stands for continuation (resp. alternation) to describe
that after a price move in a given direction, Hc (resp. Ha) encodes the tendency to trigger other
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price moves in the same (resp. the opposite) direction. We now have to choose a kernel which
satisfies the various assumptions of Section 2 to model the interactions between our two assets.
Theorem 1 states that the only relevant parameters for the macroscopic price are K and M. For
simplicity we choose the kernel so that M = αI. This leads us to define, for t ≥ 0,

φT
1 (t) = (1 − γ1)α(1 − T−α)1t≥1t−(α+1), φ

T,c
21 (t) = αT−αHc

211t≥1t−(α+1),

φT
2 (t) = γ1α(1 − T−α)1t≥1t−(α+1), φ

T,a
21 (t) = αT−αHa

211t≥1t−(α+1),

φ̃T
1 (t) = (1 − γ2)α(1 − T−α)1t≥1t−(α+1), φ

T,c
12 (t) = αT−αHc

121t≥1t−(α+1),

φ̃T
2 (t) = γ2α(1 − T−α)1t≥1t−(α+1), φ

T,a
12 (t) = αT−αHa

121t≥1t−(α+1).

For a realistic model, we require the exogenous sources of upward and downward price moves
to be equal: μ1+ =μ1− and μ2+ =μ2−. Thus, the sequences of baselines and kernels are
chosen as

μT = Tα−1

⎛⎜⎜⎜⎜⎝
μ1

μ1

μ2

μ2

⎞⎟⎟⎟⎟⎠ , φT =

⎛⎜⎜⎜⎜⎜⎜⎝
φT

1 φT
2 φ

T,c
12 φ

T,a
12

φT
2 φT

1 φ
T,a
12 φ

T,c
12

φ
T,c
21 φ

T,a
21 φ̃T

1 φ̃T
2

φ
T,a
21 φ

T,c
21 φ̃T

2 φ̃T
1

⎞⎟⎟⎟⎟⎟⎟⎠ .

We set

χ :=
√

2

4γ1γ2 − (
Hc

12 − Ha
12

)(
Hc

21 − Ha
21

) ( 2γ2 Hc
21 − Ha

21

Hc
12 − Ha

12 2γ1

)
,

� := 1

1 − (
Hc

12 + Ha
12

)(
Hc

21 + Ha
21

) ( 1 Hc
21 + Ha

21

Hc
12 + Ha

12 1

)
.

Applying Theorem 1 yields the following result.

Corollary 1. Consider any limit point P of PT . Under the above assumptions, it satisfies

Pt = χ

∫ t

0

(√
V1

s dW1
s√

V2
s dW2

s

)
, (12)

with (
V1

t

V2
t

)
= α

�(α)�(1 − α)

∫ t

0
(t − s)α−1

((
μ1

μ2

)
−�

(
V1

s

V2
s

))
ds

+ √
2

α

�(α)�(1 − α)

∫ t

0
(t − s)α−1

⎛⎝√V1
s dZ1

s√
V2

s dZ2
s

⎞⎠ , (13)

where W and Z are bi-dimensional independent Brownian motions.

This model helps us understand how microscopic parameters drive the price formation process
to generate a macroscopic price and volatility.
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We begin our remarks with some definitions. We define momentum as the trend (i.e., the
imbalance between the number of upward and downward jumps) created by jumps of one asset
on itself. For example, momentum is strong when the next price jump after an upward price
jump on an asset is more likely to be upward than downward. The opposite effect is referred to
as mean-reversion. For example, the parameter γ1 controls the intensity of self-induced bid–
ask bounce on Asset 1: γ1 close to zero corresponds to a strong momentum while γ1 close to
one corresponds to a strong mean-reversion.

We define cross-asset momentum as the trend created by jumps of one asset on another. For
example, cross-asset momentum from Asset 2 to Asset 1 (resp. Asset 1 to Asset 2) appears via
Hc

21 − Ha
21 (resp. Hc

12 − Ha
12): when both Hc

21 − Ha
21 and Hc

12 − Ha
12 are nil, the prices of Asset

1 and Asset 2 are uncorrelated.
We now turn to comments on the volatility process. Because of its role in the single-asset

case, we refer to V as the fundamental variance: for example, V1 is the fundamental variance of
Asset 1. The equation satisfied by V depends only on the sum of the feedback effects between
the two assets through Hc

12 + Ha
12: from a volatility viewpoint, upward and downward jumps

have the same impact. Furthermore, we can compute the expected fundamental variance using
Mittag-Leffler functions (see Section 5).

Mean-reversion drives down volatility while cross-asset momentum increases it. Indeed,
computing E[(P1

t )2], for example, we get

E

[(
P1

t

)2
]
= 2

4γ 2
2

∫ t
0 E

[
V1

s

]
ds + (

Hc
12 − Ha

12

)(
Hc

21 − Ha
21

) ∫ t
0 E

[
V2

s

]
ds[

4γ1γ2 − (
Hc

12 − Ha
12

)(
Hc

21 − Ha
21

)]2
.

In particular, increasing γ1 does not change V but reduces E[(P1
t )2]. This example may be

particularly relevant to understanding the contribution of Asset 2 to the volatility of Asset
1 through calibration to market data, since if Asset 2 were removed from the market, we
would have

E

[(
P1

t

)2
]
= 1

2γ1
.

Focusing now on the price formation process, we see that it results from a combination of
momentum, mean-reversion, and cross-asset momentum. We illustrate this in two extreme
cases: when there is no cross-asset momentum and when cross-asset momentum is strong.

(i) When there is no cross-asset momentum (i.e. Hc
12 = Ha

12 and Hc
21 = Ha

21), at the micro-
scopic scale, a price move on Asset 2 has the same impact on the intensity of upward
and downward price moves of Asset 1. Thus the difference between the expected num-
ber of upward and downward jumps does not change after a price move on Asset 2: the
expected microscopic price of Asset 1 is unaffected, and price moves of Asset 2 gen-
erate no trend on Asset 1. This results in macroscopic prices being uncorrelated (see
Equation (12)).

(ii) On the other hand, when cross-asset momentum is strong (i.e. (Hc
12 − Ha

12)(Hc
21 −

Ha
21) ≈ 4γ1γ2, for example if Hc

12 − Ha
12 = 2γ1

√
1 − ε and Hc

12 − Ha
12 = 2γ2

√
1 − ε for

some small ε > 0), at the microscopic scale, a price move on Asset 2 significantly
increases the probability of a future price move on Asset 1 in the same direction (and
vice versa). In this context we have

�+ I = 1

2γ1γ2ε

(
γ2 γ2

√
1 − ε

γ1
√

1 − ε γ1

)
.
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Using Equation (12) we can check that

E
[
P1

t P2
t

]√
E

[(
P1

t
)2
]
E

[(
P2

t
)2
] →
ε→0

1,

and prices evolve in unison.

This example underlines that in our approach (thanks to our no-arbitrage constraint) micro-
scopic features transfer to macroscopic properties in an intuitive way.

4.2. Reproducing realistic correlation matrices of a large number of assets using
microscopic properties

It is well known that the correlation matrix of stocks has few large eigenvalues outside of
a ‘bulk’ of eigenvalues attributable to noise (see for example [23]). The largest eigenvalue
is referred to as the market mode (because the associated eigenvector places a roughly equal
weight on each asset) and is much larger than other eigenvalues. Other significant eigenvalues
can be related to the presence of sectors: groups of companies with similar characteristics.

How can we provide microstructural foundations for this stylized fact? The large eigen-
value associated to the market mode implies that, in a first approximation, stock prices move
together: a price increase on one asset is likely followed by a price increase on all other assets.
Translating this into our framework, an upward (resp. downward) jump on an asset increases
the probability of an upward (resp. downward) jump on all other assets. We further expect that
an upward price move on an asset increases this probability much more on an asset from the
same sector than on an unrelated one.

The above remarks lead us to consider a model with the following properties:

(i) All stocks share some fundamental high-frequency properties because they have similar
self-excitement parameters in the kernel.

(ii) Stocks have a stronger influence on price changes of stocks within the same sector.

(iii) Within the same sector, all stocks have the same microscopic parameters.

The technical details of our setting are presented in Appendix A.4; here we provide only the
elements essential to understanding the framework. Let μ1, . . . , μm > 0 be the baselines of
each asset, where we assume μi+ =μi− for all 1 ≤ i ≤ m. Using the same notation as before,
take γ ∈ [0, 1], α ∈ (1/2, 1) and Hc,Ha > 0. We consider R> 0 different sectors, Sector r
having mr stocks. For a pair of stocks which we dub 1 and 2 in analogy to the previous example,
we have the following:

(i) The self-excitement parameters are equal: γ1 = γ2 = γ , where γ is the same for all
stocks.

(ii) If Stock 1 and Stock 2 do not belong to the same sector, then Hc
21 = Hc

12 = Hc and Ha
21 =

Ha
12 = Ha, where Hc,Ha are the same for all stocks.

(iii) If Stock 1 and Stock 2 belong to the same sector r, Hc
21 = Hc

12 = Hc + Hc
r , Ha

21 = Ha
12 =

Ha + Ha
r where Hc

r ,Ha
r are the same for all stocks belonging to Sector r.

The asymptotic framework is built as in the previous example, with the details given in the
proof of Corollary 2 in Appendix A.4. We write ir := m0 + m1 + · · · + mr−1 for 1 ≤ r ≤ R
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(with the convention m0 = 1), so that stocks from Sector r are indexed from ir to ir+1 − 1, and
define the following vectors:

w := 1√
m

(e1 + · · · + em),

wr := 1√
mr

∑
ir≤i<ir+1

ei,

θ :=
∑

1≤i≤m

μiei.

We consider an asymptotic framework where the number of assets will eventually grow to
infinity. As will become clear in the proof, the only nontrivial regime appears when

Hc,Ha,Hc
r ,Ha

r =
m→∞ O(m−1).

Thus we assume that mHc,mHa,mHc
r ,mHa

r converge to H̄c, H̄a, H̄c
r , H̄a

r as m tends to infinity.
We also assume that the proportion of stocks in a given sector relative to the total number of
stocks does not vanish: for each 1 ≤ r ≤ R,

mr

m
→

m→∞ ηr > 0.

We define the following constants, which will appear in the price and volatility processes:
λ+ := H̄c + H̄a, λ+

r := H̄c
r + H̄c

r , λ− := H̄c − H̄a, λ−
r := H̄c

r − H̄a
r . Applying Theorem 1

yields the following result.

Corollary 2. Consider any limit point P of PT . Under the above assumptions, it satisfies

Pt = √
2�ε

∫ t

0
diag

(√
Vs
)
dBs,

where B is a Brownian motion;

�ε :=
(

2γ I − λ−v
v −
∑

1≤r≤R

ηrλ
−
r vr


vr + ε

)−1

with ε a deterministic m × m matrix such that

ρ(ε) =
m→∞ o

(
m−1);

and V satisfies the stochastic Volterra equation

Vt = α

�(α)�(1 − α)

∫ t

0
(t − s)α−1(θ −VεVs)ds +

√
2α

�(α)�(1 − α)

∫ t

0
(t − s)α−1diag

(√
Vs

)
dZs,

with Z a Brownian motion independent from W, and

Vε :=
⎛⎝I − λ+v
v −

∑
1≤r≤R

ηrλ
+
r vr


vr + ε

⎞⎠−1
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where ε is a deterministic m × m matrix such that

ρ(ε) =
m→∞ o(m−1).

Under the previous corollary, using ∝ to denote equality up to a multiplicative constant, the
expected fundamental variance can be written as follows using the cumulative Mittag-Leffler
function (see Definition 4 in Appendix A.2):

E[Vt] ∝ Fα,Vε (t)θ .

Since
ρ(ε) =

m→∞ o(m−1),

we neglect it in further comments and use the approximation Vε ≈V0. Writing ξ for the largest
eigenvalue of V0 and z for the associated eigenvector, and neglecting other eigenvalues (which
is reasonable if λ+ +∑

1≤r≤R ηrλ
+
r ≈ 1), from the definition of the Mittag-Leffler function we

have
E[Vt] ∝ Fα,ξ (t)

(
θz
)
z.

Making the further approximation that ηrλ
+
r is independent of r, we have z ∝ (1, · · · , 1) and

E
[
Pt


Pt
]∝�εdiag(E[Vt])


�ε
∝�εdiag(z)
�ε
∝�ε
�ε ∝�ε2.

Therefore the eigenvectors of E[Pt

Pt] are those of �ε. Now, as

ρ(ε) =
m→∞ o(m−1),

we neglect it in further comments and use the approximation �ε ≈�0. When λ− +∑
1≤r≤R ηrλ

−
r ≈ 2γ , �0 has one large eigenvalue followed by R − 1 smaller eigenvalues and

much smaller eigenvalues. This is consistent with stylized facts about high-dimensional stock
correlation matrices; we have thus built a microscopic model to explain the macroscopic
structure of correlation matrices.

The conditions λ− +∑
1≤r≤R ηrλ

−
r ≈ 1 and λ+ +∑

1≤r≤R ηrλ
+
r ≈ 1 correspond to the

parameters being close to the point where all directions are critical: when λ− +∑
1≤r≤R ηrλ

−
r ≈ 2γ or λ− +∑

1≤r≤R ηrλ
−
r ≈ 1, the spectral radius of

∫∞
0 C is equal to one

and we cannot split the kernel into a critical and a non-critical component.
It would be interesting to study other implications of this model. In particular, we believe

that encoding a negative price/volatility correlation into the microscopic parameters could
explain the so-called index leverage effect (see [25] for a definition and empirical analysis
of this stylized fact).

5. Proof of Theorem 1

We split the proof into four steps. Our approach is inspired by [8, 20, 21]. First, we show that
the sequence

(
XT , YT , ZT) is C-tight. Second, we use tightness and representation theorems

to find equations satisfied by any limit point (X, Y, Z) of
(
XT , YT , ZT). Third, properties of
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the Mittag-Leffler function enable us to prove Equation (11). Fourth and finally, we derive the
equation satisfied by any limit point P of PT .

Preliminary lemmas
We start with lemmas that will be useful in the proofs. Lemma A.1 from [8] yields

1

Tα
λT

tT = μT
tT

Tα
+ 1

Tα

∫ tT

0
ψT (tT − s)μT

s ds + 1

Tα

∫ tT

0
ψT (tT − s)dMT

s . (14)

Thus to investigate the limit of
1

Tα
λT·T

we need to study
1

Tα
ψT (T · ),

which we will do through its Laplace transform. Given an L1(R+) function f , we write its
Laplace transform as f̂ (t) := ∫∞

0 f (x)e−txdx for t ≥ 0 (and similarly for matrix-valued functions

F = (Fij) where each Fij ∈ L1(R+)). Note that f̂ ∗k = f̂ k. The following lemma holds.

Lemma 1. Set, for any t> 0,

χ(s) :=
(

I −
∫ ∞

0
C(s)ds

)−1∫ ∞

0
B(s)ds.

We have the following convergence for any t> 0:

T−αψ̂T (T · )(t) →
T→∞ O

⎛⎜⎜⎜⎜⎝
[
�(1 − α)

α
tαM + K

]−1

0

χ (s)

[
�(1 − α)

α
tαM + K

]−1

0

⎞⎟⎟⎟⎟⎠O−1, (15)

where K and M are defined in Equations (5) and (6).

Proof. Define ϕT := O−1φ̂
T

O. Then

ψ̂
T

(t) =
∑
k≥1

φ̂
T,∗k = O

(
I − ϕ̂

T)−1
ϕ̂

TO−1.

We can use the shape of ϕT and matrix block inversion to rewrite this expression. Doing so,
we find

ψ̂
T

(t) = O

⎛⎜⎜⎝
(

I − Â
T

(t)
)−1

Â
T

(t) 0(
I − Ĉ

T
(t)
)−1

B̂
T

(t)
(

I − Â
T

(t)
)−1

Â
T

(t) −
(

I − Ĉ
T

(t)
)−1

B̂
T

(t)
(

I − Ĉ
T

(t)
)−1

Ĉ
T

(t)

⎞⎟⎟⎠O−1.

To derive the limiting process, we use Equations (5) and (6). Using integration by parts and a
Tauberian theorem as in [8, 21], we have∫ ∞

0
AT (s)ds − Â

T
(t/T) =

T→∞
�(1 − α)

α
tαMT−α + o(T−α)

I −
∫ ∞

0
AT (s)ds =

T→∞ KT−α + o(T−α).
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Therefore

T
(

I − Â
T

(t/T)
)

= T

(∫ ∞

0
AT (s)ds − Â

T
(t/T)

)
+ T

(
I −

∫ ∞

0
AT (s)ds

)

=
T→∞

[
�(1 − α)

α
tαM + K

]
T1−α + o(T1−α).

Consequently

Tα−1T
(

I − Â
T

(t/T)
)

=
T→∞

�(1 − α)

α
tαM + K + o(1).

By Assumption 1 M is invertible and KM−1 has strictly positive eigenvalues. Thus Mt + K =
(KM−1 + tI)M is invertible for any t ≥ 0. The Laplace transform of T−αψT (T · ) being

T1−αψ̂T
(·/T), we have proved that for any t ≥ 0,

T−αψ̂T (T · )(t) →
T→∞ O

⎛⎜⎜⎜⎜⎝
[
�(1 − α)

α
tαM + K

]−1

0

(
I − ∫∞

0 C(s)ds
)−1∫∞

0 B(s)ds

[
�(1 − α)

α
tαM + K

]−1

0

⎞⎟⎟⎟⎟⎠O−1.

�

We show in the technical appendix that the inverse Laplace transform of �(tαI +�)−1,
where� ∈Mn(R) has positive eigenvalues, is a simple extension of the Mittag-Leffler density
function to matrices (see Definition 4 in the appendix), denoted by fα,�. Thus we define, for
any t ∈ [0, 1],

f (t) := O

⎛⎜⎜⎜⎜⎝
K−1f

α,
α

�(1 − α)
KM−1

0

(
I − ∫∞

0 C(s)ds
)−1∫∞

0 B(s)dsK−1f
α,

α

�(1 − α)
KM−1

0

⎞⎟⎟⎟⎟⎠O−1. (16)

The following lemma shows the weak convergence of ψT to f .

Lemma 2. For any bounded measurable function g and 1 ≤ i, j ≤ n∫
[0,1]

g(x)T−αψT
ij (Tx)dx →

T→∞

∫
[0,1]

g(x)fij(x)dx.

Proof. First note that when
∥∥fij

∥∥
1 = 0 (which implies fij = 0), using Equation (15) with t = 0

we have ∥∥∥T1−αψT
ij

∥∥∥
1

→
T→∞

∥∥fij
∥∥

1 = 0,

which implies, since 1 − α ≥ 0, that ∥∥∥ψT
ij

∥∥∥
1

→
T→∞ 0.
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Therefore, as ψT
ij ≥ 0, for any bounded measurable function g we have

∣∣∣ ∫
[0,1]

g(x)T−αψT
ij (Tx)dx

∣∣∣≤ c
∫

[0,1]
T−αψT

ij (Tx)dx ≤ c
∥∥∥T1−αψT

ij

∥∥∥
1
,

and the result holds. Assume now that
∥∥fij

∥∥
1 > 0. It will be convenient for us to proceed with

random variables, so define

ρT
ij := T−αψT

ij (T · )∥∥∥T1−αψT
ij

∥∥∥
1

.

We can view ρT
ij as the density of a random variable taking values in [0, 1], say S. Lemma 5

gives the convergence of the characteristic functions of S to

ρ̂ij := f̂ij∥∥fij
∥∥

1

.

Since ρij is continuous (as ψT
ij is continuous), Lévy’s continuity theorem guarantees that ρT

ij
converges weakly to ρij. Therefore, for any bounded measurable function g,∫

[0,1]
g(x)ρT

ij (x)dx →
T→∞

∫
[0,1]

g(x)ρij(x)dx,

∫
[0,1]

g(x)
T−αψT

ij (Tx)∥∥∥T1−αψT
ij

∥∥∥
1

dx →
T→∞

∫
[0,1]

g(x)
fij(x)∥∥fij
∥∥

1

dx.

Equation (15) implies ∥∥∥T1−αψT
ij

∥∥∥
1

→
T→∞

∥∥fij
∥∥

1,

so that together with the above we have∫
[0,1]

g(x)T−αψT
ij (Tx)dx →

T→∞

∫
[0,1]

g(x)fij(x)dx. �

We introduce the cumulative functions

FT (t) =
∫ t

0
T−αψT (Ts)ds,

F(t) =
∫ t

0
f (s)ds.

We have just shown in particular that FT converges pointwise to F and therefore, by Dini’s
theorem, converges uniformly to F.
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5.1. Step 1: C-tightness of
(
XT , YT , ZT)

Recall the definition of the rescaled processes

XT
t := 1

T2α
NT

tT ,

YT
t := 1

T2α

∫ tT

0
λsds,

ZT
t := Tα

(
XT

t − YT
t

)= 1

Tα
MT

tT .

As in [8] and [21] we show that the limiting processes of XT and YT are the same and that
the limiting process of ZT is the quadratic variation of the limiting process of XT . We have the
following proposition.

Proposition 1.
(
C-tightness of

(
XT , YT , ZT))

The sequence
(
XT , YT , ZT) is C-tight, and if (X, Z) is a limit point of

(
XT , ZT), then Z

is a continuous martingale with [Z, Z] = diag(X). Furthermore, we have the convergence in
probability

sup
t∈[0,1]

∥∥YT
t − XT

t

∥∥
2

P→
T→∞ 0.

Proof. The proof is essentially the same as in [8], adapted to our structure of Hawkes
processes. Given t ∈ [0, T], we have

λT
t =μT

t +
∫ t

0
ψT (t − s)μT

s ds +
∫ t

0
ψT (t − s)dMT

s ,

and therefore

E[NT
t ] =E

[ ∫ T

0
λT

s ds
]

=
∫ T

0
μT

t dt +
∫ T

0

∫ t

0
ψT (t − s)μT

s dsdt ≤ cT2α‖μ‖∞,

where we have used the convergence of T1−αμT
T· (see Equation (7)) together with the weak

convergence of T−αψT (T · ) (see Lemma 2). It follows then that

E
[
XT

1

]=E
[
YT

1

]≤ c,

and since the processes are increasing, XT and YT are tight. As the maximum jump size of XT

and YT tends to 0, we have the C-tightness of (XT , YT ). Since NT is the quadratic variation of
MT , (MT,i)2 − NT,i is an L2 martingale starting at 0, and Doob’s inequality yields∑

1≤i≤n

E

[
sup

t∈[0,1]

(
XT,i

t − YT,i
t
)2
]

≤ 4
∑

1≤i≤n

E

[(
XT,i

1 − YT,i
1

)2
]

≤ 4T−4α
∑

1≤i≤n

E

[(
MT,i

T

)2
]

≤ 4T−4α
∑

1≤i≤n

E

[
NT,i

T

]
≤ cT−2α .

https://doi.org/10.1017/apr.2020.60 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.60


Microscopic price dynamics to multidimensional rough volatility 443

Using the same approach as in [8] we conclude that Z is a continuous martingale and [Z, Z] is
the limit of [ZT , ZT ]. �

5.2. Step 2: Rewriting of limit points of (XT, YT, ZT)

By Proposition 1, for any limit point (X, Y) of (XT , YT ), we have X = Y almost surely. We
use YT to derive an equation for X. As

YT = 1

T2α

∫ tT

0
λT

s ds,

we first study λT
sT . Using Equation (14), for any t ∈ [0, T] we have

∫ t

0
λT

s ds =
∫ t

0
μT

s ds +
∫ t

0

∫ u

0
ψT (s − u)μT

u duds +
∫ t

0
ψT (t − s)MT

s ds

=
∫ t

0
μT

s ds +
∫ t

0
ψT (t − s)

∫ s

0
μT

u duds +
∫ t

0
ψT (t − s)MT

s ds.

Thus, for any t ∈ [0, 1], a change of variables leads to

∫ tT

0
λT

s ds =
∫ tT

0
μT

s ds +
∫ tT

0
ψT (tT − s)

∫ s

0
μT

u duds +
∫ tT

0
ψT (tT − s)MT

s ds

=
∫ tT

0
μT

s ds + T
∫ t

0
ψT (tT − sT)

∫ sT

0
μT

u duds + T
∫ t

0
ψT (tT − sT)MT

sTds

= T
∫ t

0
μT

sTds + T
∫ t

0
ψT (T(t − s))

∫ sT

0
μT

u duds + T
∫ t

0
ψT (T(t − s))MT

sTds.

Therefore

T2αYT
t = T

∫ t

0
μT

sTds + T
∫ t

0
ψT (T(t − s))

∫ sT

0
μT

u duds + T
∫ t

0
ψT (T(t − s))MT

sTds (17)

=: T2α
(

YT,1
t + YT,2

t + YT,3
t

)
, (18)

with obvious notation. Thus, to obtain our limit we use the convergence properties of FT which
we derived earlier. We have the following proposition.

Proposition 2. Let (X, Z) be a limit point of (XT , ZT). Then, for any t ∈ [0, 1], we have

Xt =
∫ t

0
F(t − s)μsds +

∫ t

0
F(t − s)dZs.

Proof. Let (X, Y, Z) be a limit point of (XT , YT , ZT ). First, since

T1−αμT
tT →

T→∞μt
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(see Equation (7)), YT,1
t converges to 0 as T tends to infinity. Moving on to YT,2, by integration

by parts, for any t ∈ [0, 1] we obtain

YT,2
t =

∫ t

0
T1−αψT (T(t − s))T−α

∫ sT

0
μT

u duds

=
[

FT (t − s)T−α
∫ sT

0
μT

u du

]t

0
+
∫ t

0
FT (t − s)T1−αμT

sTds

=
∫ t

0
FT (t − s)T1−αμT

sTds.

Using Equation (7) again, together with the uniform convergence of FT (see Lemma 2), we
have the convergence

YT,2
t →

T→∞

∫ t

0
F(t − s)μsds.

Finally, YT,3
t can be written as

YT,3
t = T1−2α

∫ t

0
ψT (T(t − s))MT

sTds =
∫ t

0
FT (t − s)dZT

s

=
∫ t

0
F(t − s)dZs +

∫ t

0
F(t − s)(dZT

s − dZs) +
∫ t

0
(FT (t − s) − F(t − s))dZT

s .

The Skorokhod representation theorem applied to (ZT , Z) yields the existence of copies in law

(Z̃
T
, Z̃), with Z̃

T
converging almost surely to Z̃. We proceed with (Z̃

T
, Z̃) and keep the previous

notation. The stochastic Fubini theorem [27] gives, almost surely,∫ t

0
F(t − s)(dZT

s − dZs) =
∫ t

0
f (s)(ZT

t−s − Zt−s)ds.

From the dominated convergence theorem we obtain the almost sure convergence∫ t

0
f (s)(ZT

t−s − Zt−s)ds →
T→∞ 0.

Furthermore, since [ZT , ZT ] = diag(XT ) we have

∑
1≤i≤n

E

[(∫ t

0
(FT (t − s) − F(t − s))dZT

s

)2

i

]
≤

∑
1≤i,j≤n

∫ t

0

(
FT

ij (t − s)

− Fij(t − s)
)2

T1−αE
[
λ

T,j
sT

]
ds.

Using Equation (14) together with Lemma 1, we can bound E[λT,j
sT ] independently of T , and

∑
1≤i≤n

E

[(∫ t

0
(FT (t − s) − F(t − s))dZT

s

)2

i

]
≤ c

∑
1≤i,j≤n

∫ t

0

(
FT

ij (t − s) − Fij(t − s)
)2

ds.
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The right-hand side converges to 0 by the dominated convergence theorem together with the
uniform convergence of FT to F (see Lemma 2). From Proposition 1 we know that Y = X
almost surely. Putting everything together, almost surely,

Xt =
∫ t

0
F(t − s)μsds +

∫ t

0
F(t − s)dZs.

This is valid for any limit point (X, Z) of (XT , ZT ), which concludes the proof. �
The previous proposition gives suitable martingale properties of limit points of ZT to apply

the martingale representation theorem, which is the topic of the following proposition.

Proposition 3. Let (X, Z) be a limit point of (XT , ZT ). There exists, up to an extension of the
original probability space, an n-dimensional Brownian motion B and a nonnegative process V
such that, for any t ∈ [0, 1], one has

Xt =
∫ t

0
Vsds,

Zt =
∫ t

0
diag

(√
Vs

)
dBs,

Vt =
∫ t

0
f (t − s)μsds +

∫ t

0
f (t − s)diag

(√
Vs

)
dBs.

Proof. This proof relies on the martingale representation theorem applied to Z. Consider
a limit point (X, Z) of (XT , ZT ). Following the proof of Theorem 3.2 in [21] and using
Proposition 2, X can be written as the integral of a process V, i.e.

Xt =
∫ t

0
Vsds,

with V satisfying the equation

Vt =
∫ t

0
f (t − s)μsds +

∫ t

0
f (t − s)dZs.

Therefore, as [Z, Z]t = diag(Xt) = diag(
∫ t

0 Vsds) and Z is a continuous martingale, by the mar-
tingale representation theorem (see for example Theorem 3.9 from [26]), there exists (up to an
enlargement of the probability space) a multivariate Brownian motion B and a predictable
square-integrable process H such that

Zt =
∫ t

0
HsdBs.

Furthermore, note that V is a nonnegative process (as X is a nondecreasing process), and we
have

Zt =
∫ t

0
diag

(√
Vs
)
diag

(√
Vs
)−1HsdBs.

A simple computation shows that, since [Z, Z]t = ∫ t
0 Hs


Hsds = Xt = ∫ t
0 Vsds, the process

B̃t := ∫ t
0 diag

(√
Vs

)−1
HsdBs is a Brownian motion. Finally,

Vt =
∫ t

0
f (t − s)μsds +

∫ t

0
f (t − s)diag

(√
Vs
)
dB̃s. �
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A straightforward application of Lemma 4.4 and Lemma 4.5 in [21] yields the following
lemma.

Lemma 3. Consider a (weak) nonnegative solution V of the stochastic Volterra equation

Vt =
∫ t

0
f (t − s)μsds +

∫ t

0
f (t − s)diag

(√
Vs
)
dBs,

where B is a Brownian motion. Then every component of V has pathwise Hölder regularity
α − 1/2 − ε for any ε > 0.

5.3. Step 3: Proof of Equation (11)

Properties of the Mittag-Leffler function (as in [8]) enable us to rewrite the previous
stochastic differential equation using power-law kernels, which is the subject of the next
proposition. Let

�1:=
(

O11 + O12

(
I −

∫ ∞

0
C(s)ds

)−1∫ ∞

0
B(s)ds

)
K−1,

�2:=
(

O21 + O22

(
I −

∫ ∞

0
C(s)ds

)−1∫ ∞

0
B(s)ds

)
K−1,

�:= α

�(1 − α)
KM−1.

Proposition 4. Given an m-dimensional Brownian motion B, a nonnegative process V is a
solution of the stochastic differential equation

Vt =
∫ t

0
f (t − s)μsds +

∫ t

0
f (t − s)diag

(√
Vs
)
dBs

if and only if there exists a process Ṽ of Hölder regularity α − 1/2 − ε for any ε > 0 such
that �1Ṽt = (V1, · · · , Vnc ) and �2Ṽt = (Vnc+1, · · · , V2m) are nonnegative processes and Ṽ
is solution of the following stochastic Volterra equation:

Ṽt = 1

�(α)
�

∫ t

0
(t − s)α−1

(
O(−1)

11 μ1
s + O(−1)

12 μ2
s − Ṽs

)
ds

+ 1

�(α)
�

∫ t

0
(t − s)α−1O(−1)

11 diag
(√
�1Ṽs

)
dW1

s

+ 1

�(α)
�

∫ t

0
(t − s)α−1O(−1)

12 diag
(√
�2Ṽs

)
dW2

s ,

where W1 := (B1, · · · , Bnc ) and W2 := (Bnc+1, · · · , B2m).

Proof. We begin by showing the first implication. Starting from Proposition 3 we have

Vt =
∫ t

0
f (t − s)μsds +

∫ t

0
f (t − s)diag

(√
Vs

)
dBs.

Developing from the definition of f in Equation (16), for any t ∈ [0, 1], f can be written

f (t) =
⎛⎝(O11 + O12

(
I − ∫∞

0 C(s)ds
)−1∫∞

0 B(s)ds
)
K−1fα,�(t) 0(

O21 + O22(I − ∫∞
0 C(s)ds)−1

∫∞
0 B(s)ds

)
K−1fα,�(t) 0

⎞⎠⎛⎝O(−1)
11 O(−1)

12

O(−1)
21 O(−1)

22

⎞⎠ .
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Defining V1 := (V1, · · · , Vnc ) and V2 := (Vnc+1, · · · , V2m), we have

V1
t =�1

∫ t

0
fα,�(t − s)O(−1)

11 μ1
s ds +�1

∫ t

0
fα,�(t − s)O(−1)

12 μ2
s ds

+�1
∫ t

0
fα,�(t − s)O(−1)

11 diag
(√

V1
s

)
dW1

s +�1
∫ t

0
fα,�(t − s)O(−1)

12 diag
(√

V2
s

)
dW2

s .

If�1 were nonsingular, we could express V1 with power-law kernels using the same approach
as in [8]. In general we define

Ṽt :=
∫ t

0
fα,�(t − s)(O(−1)

11 μ1
s + O(−1)

12 μ2
s)ds

+
∫ t

0
fα,�(t − s)O(−1)

11 diag
(√

V1
s

)
dW1

s +
∫ t

0
fα,�(t − s)O(−1)

12 diag
(√

V2
s

)
dW2

s .

From the same arguments as in Lemma 3, Hölder regularity of V carries over to Ṽ, and
the components of Ṽ are of Hölder regularity α − 1/2 − ε for any ε > 0; hence Lemma 3
shows K := I1−αṼ is well-defined, where I1−α is the fractional integration operator of order
1 − α (see Definition 1 in Appendix A.2). Note that for any t in [0, 1], using Lemma 4 of
Appendix A.2, we have

Kt =
∫ t

0
�(I − Fα,�(t − s))(O(−1)

11 μ1
s + O(−1)

12 μ2
s)ds

+
∫ t

0
�(I − Fα,�(t − s))O(−1)

11 diag
(√

V1
s

)
dW1

s

+
∫ t

0
�(I − Fα,�(t − s))O(−1)

12 diag
(√

V2
s

)
dW2

s

=�
∫ t

0
(O(−1)

11 μ1
s + O(−1)

12 μ2
s)ds +

∫ t

0
�O11diag

(√
V1

s

)
dW1

s

+
∫ t

0
�O(−1)

12 diag
(√

V2
s

)
dW2

s

−�

∫ t

0

[
Fα,�(t − s)O(−1)

11 μ1
s +

∫ s

0
fα,�(s − u)O(−1)

11 diag
(√

V1
u

)
dW1

u

]
ds

−�

∫ t

0

[
Fα,�(t − s)O(−1)

12 μ2
s +

∫ s

0
fα,�(s − u)O(−1)

12 diag
(√

V2
u

)
dW2

u

]
ds.

The last two terms can be rewritten using the definition of Ṽ, so that

Kt =�

∫ t

0

(
O(−1)

11 μ1
s + O(−1)

12 μ2
s − Ṽs

)
ds +�

∫ t

0
O(−1)

11 diag
(√
�1Ṽs

)
dW1

s

+�

∫ t

0
O(−1)

12 diag
(√
�2Ṽs

)
dW2

s .
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Thanks to the Hölder regularity of Ṽ, we can now apply the fractional differentiation operator
of order 1 − α (see Definition 1 in Appendix A.2) together with the stochastic Fubini theorem
to deduce that

Ṽt = 1

�(α)
�

∫ t

0
(t − s)α−1

(
O(−1)

11 μ1
s + O(−1)

12 μ2
s − Ṽs

)
ds

+ 1

�(α)
�

∫ t

0
(t − s)α−1O(−1)

11 diag
(√
�1Ṽs

)
dW1

s

+ 1

�(α)
�

∫ t

0
(t − s)α−1O(−1)

12 diag
(√
�2Ṽs

)
dW2

s .

This concludes the proof of the first implication. We now show the second implication. Suppose
there exists Ṽ of Hölder regularity α− 1/2 − ε for any ε > 0 such that �1Ṽ and �2Ṽ are
positive, solving the following stochastic Volterra equation:

Ṽt = 1

�(α)
�

∫ t

0
(t − s)α−1

(
O(−1)

11 μ1
s + O(−1)

12 μ2
s − Ṽs

)
ds

+ 1

�(α)
�

∫ t

0
(t − s)α−1O(−1)

11 diag
(√
�1Ṽs

)
dW1

s

+ 1

�(α)
�

∫ t

0
(t − s)α−1O(−1)

12 diag
(√
�2Ṽs

)
dW2

s .

For this proof, let us write

θ := �O(−1)
11 μ1 +�O(−1)

12 μ2, �1 := �O(−1)
11 , �2 := �O(−1)

12 ,

so that, for any t in [0,1],

Ṽt = 1

�(α)

∫ t

0
(t − s)α−1(θ s −�Ṽs

)
ds

+ 1

�(α)

∫ t

0
(t − s)α−1�1diag

(√
�1Ṽs

)
dW1

s

+ 1

�(α)

∫ t

0
(t − s)α−1�2diag

(√
�2Ṽs

)
dW2

s .

Notice that the above can be written

Ṽt = Iα(θ −�Ṽ)t + Iα
B1

(
�1diag

(√
�1Ṽ

))
t
+ Iα

B2 (�2diag
(√
�2Ṽ

))
t
,

where IαB is the fractional integration operator with respect to B (see Definition 2 in
Appendix A.2). Iterating the application of Iα we find that, for any N ≥ 1, Ṽ satisfies

Ṽ =
∑

1≤k≤N

�k−1(−1)k−1I(k−1)α
[
Iαθ + Iα

B1

(
�1diag

(√
�1Ṽ

))
+ Iα

B2

(
�2diag

(√
�2Ṽ)

)]
+�N(−1)NI(N+1)αṼ.
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Now, note that θ , diag(
√
�1Ṽ), diag(

√
�2Ṽ), and Ṽ are square-integrable processes, and

Lemma 8 in Appendix A.2 shows that the sum converges almost surely to the series, while
�N(−1)NI(N+1)αṼ converges almost surely to zero, as N tends to infinity. Thus we have

Ṽ =
∑
k≥0

�k(−1)kIkα
[
Iαθ + Iα

B1

(
�1diag

(√
�1Ṽ

))
+ Iα

B2

(
�2diag

(√
�2Ṽ

))]
=
∑
k≥0

�k(−1)kIkαIαθ +
∑
k≥0

�k(−1)kIkαIα
B1

(
�1diag

(√
�1Ṽ

))
+ Iα

B2

(
�2diag

(√
�2Ṽ

))]
=�−1

∑
k≥0

�k+1(−1)kI(k+1)αθ +
∑
k≥0

�k(−1)kIkαIα
B1

(
�1diag

(√
�1Ṽ

))
+ Iα

B2

(
�2diag

(√
�2Ṽ

))]
.

Lemmas 5 and 7 in Appendix A.2 enable us to rewrite the above using the matrix Mittag-Leffler
function. This yields, for any t in [0,1] and almost surely,

Ṽt =�−1
∫ t

0
fα,�(t − s)θsds +�−1

∫ t

0
fα,�(t − s)�1diag

(√
�1Ṽs

)
dW1

s

+�−1
∫ t

0
fα,�(t − s)�2diag

(√
�2Ṽs

)
dW2

s .

Replacing θ,�1,�2 by their expressions, almost surely and for any t in [0,1], we have

Ṽt =
∫ t

0
fα,�(t − s)(O(−1)

11 μ1
s +�O(−1)

12 μ2
s)ds

+
∫ t

0
fα,�(t − s)O(−1)

11 diag
(√
�1Ṽs

)
dW1

s

+
∫ t

0
fα,�(t − s)O(−1)

12 diag
(√
�2Ṽs

)
dW2

s .

This concludes the second implication and the proof. �

5.4. Step 4: Equation satisfied by the limiting price process

The previous results on the convergence of the intensity process enable us to now turn to the
question of the limiting price dynamics. Recall that the sequence of rescaled price processes
PT is defined as

PT := 
QXT ,

where Q = (
e1 − e2 |· · ·| e2m−1 − e2m

)
. We have the following result.

Proposition 5. Let (X, Z) be a limit point of (XT , ZT ) and P = 
QX. Then

Pt = (I +�)
Q
(

Zt +
∫ t

0
μsds

)
,

where �=
(∫∞

0 δT
ij

)
1≤i,j≤m

.
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Proof. Let (X, Z) be a limit point of (XT , ZT ). For any 1 ≤ i ≤ m we can compute the
difference between upward and downard jumps on Asset i as

vi · NT
t = vi · MT

t + vi ·
∫ t

0
λT

s ds,

with the following expression for the integrated intensity:∫ tT

0
λT

s ds = T
∫ t

0
μT

sTds + T
∫ t

0

∫ T(t−s)

0
ψT (u)duμT

sTds +
∥∥∥ψT

∥∥∥
1
MT

tT

−
∫ tT

0

∫ ∞

tT−s
ψT (u)dudMT

s .

Thus the microscopic price for Asset i satisfies

T−αvi · NT
tT = T1−α

∫ t

0
vi ·μT

sTds + T1−α
∥∥ψT
∥∥

1vi ·
∫ t

0
μT

sTds + vi · ZT
t + 
∥∥∥ψT

∥∥∥
1
vi · ZT

t

− T−α
∫ t

0

∫ ∞

T(t−s)



ψT (u)vi ·μT

sTduds − T−α
∫ tT

0

∫ ∞

tT−s
ψT (u)dudMT

s

=
∑

1≤k≤m

(
1ik +

∫ ∞

0
δT

ik

)
vk · ZT

t +
∑

1≤k≤m

(
1ik +

∫ ∞

0
δT

ik

)
T1−α

∫ t

0
vk ·μT

sTds

−
∫ t

0

∫ ∞

tT−s



ψT (u)vidu · dZT

s − T−α
∫ t

0

∫ ∞

T(t−s)



ψT (u)vi ·μT

sTduds.

It is straightforward to show that the last two terms converge to zero, and thus any limit point
P of PT = 
QXT is such that

Pt = (I +�)
Q
(

Zt +
∫ t

0
μsds

)
. �

Replacing Z by the expression obtained in Proposition 3 concludes the proof of Theorem 1,
since

Pt = (I +�)
Q
( ∫ t

0
diag

(√
Vs

)
dBs +

∫ t

0
μsds

)
.

Appendix A. Technical appendix

A.1 Independence of Equation (11) from chosen basis

We consider two representations which satisfy Assumption 1. Let P, P̃ be invertible
matrices, 0 ≤ nc, nc′ ≤ n, and let

AT ∈F(Mnc(R)), CT ∈F(Mn−nc(R)), BT ∈F(Mn−nc,nc (R)),

Ã
T ∈F(Mnc′ (R)), C̃

T ∈F(Mn−nc′ (R)), B̃
T ∈F(Mn−nc′ ,nc′ (R))
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be such that

φT = P

(
AT 0

BT CT

)
P−1 = P̃

⎛⎝Ã
T

0

B̃
T

C̃
T

⎞⎠ P̃
−1

.

We write A for the limit of AT (and similarly for BT ,CT , etc.). First, notice that we must have
nc = nc′ . Indeed, since ρ(

∫∞
0 C)< 1 and ρ(

∫∞
0 C̃)< 1, 1 is neither an eigenvalue of

∫∞
0 C nor

of
∫∞

0 C̃. Yet, since A = I and Ã = I, 1 is an eigenvalue of φ with multiplicity nc and nc′ .
Therefore nc = nc′ .

Writing L = P−1P̃, we have (
A 0

B C

)
= L

(
Ã 0

B̃ C̃

)
L−1.

Since A = Ã = I because of Equation (5), writing the blockwise matrix product and using the
assumption that I − C is invertible, we get

L12 = 0,

(I − C)L21 = BL11 − L22B̃,

CL22 = L22C̃.

Since LL−1 = I, L11 = I, L22 = I, and L21 = −L(−1)
21 , we deduce that

L11 = I, L22 = I, L12 = 0, (I − C)L21 = B − B̃, C = C̃.

As L = P−1P̃, we have

P−1 =
(

I 0

(I − C)−1(B − B̃) I

)
P̃

−1

=
⎛⎝ P̃

(−1)
11 P̃

(−1)
12

(I − C)−1(B − B̃)P̃
(−1)
11 + P̃

(−1)
21 (I − C)−1(B − B̃)P̃

(−1)
12 + P̃

(−1)
22

⎞⎠ .

Computing the matrix product P̃ = PL blockwise and using the above, we find

P̃
(−1)
11 = P(−1)

11 , P̃
(−1)
12 = P(−1)

12 , P̃12 = P12, P̃22 = P22,

P̃11 = P11 + P12(I − C)−1(B − B̃),

P̃21 = P21 + P22(I − C)−1(B − B̃).

Thus

P̃
(−1)
11 = P(−1)

11 , P̃
(−1)
12 = P(−1)

12 ,

P̃11 + P̃12(I − C)−1B̃ = P11 + P12(I − C)−1B,

P̃21 + P̃22(I − C)−1B̃ = P21 + P22(I − C)−1B.

Therefore, regardless of the chosen basis, Equation (11) is the same, which concludes the
proof.
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A.2 Fractional operators

This section is a brief reminder about fractional operators, which are used in the proofs. We
also introduce the matrix-extended Mittag-Leffler function.

Definition 1. (Fractional differentiation and integration operators.) For α ∈ (0, 1), the frac-
tional differentiation operator, denoted by Dα is defined as

Dαf (t) := 1

�(1 − α)

d

dt

∫ t

0
(t − s)−αf (s)ds,

where f is a measurable, Hölder continuous function of order strictly greater than α. The
fractional integration operator, denoted by Iα , is defined as

Iαf (t) := 1

�(α)

∫ t

0
(t − s)α−1f (s)ds,

where f is a measurable function.

It will be convenient for us to define fractional integration with respect to a Brownian
motion.

Definition 2. (Fractional integration operator with respect to a Brownian motion.) Given a
Brownian motion B and α ∈ (1/2, 1), the fractional integration operator with respect to B,
denoted by IαB , is defined as

IαBf (t) = 1

�(α)

∫ t

0
(t − s)1−αf (s)dBs,

for f a measurable, square-integrable stochastic process.

Remark 2. The fractional integration of a matrix-valued stochastic process f with respect to a
multivariate Brownian motion B is

IαBf (t) = 1

�(α)

∫ t

0
(t − s)1−αf (s)dBs.

We now extend the Mittag-Leffler function to matrices (for a theory of matrix-valued
functions, see for example [16]). We have the following definition.

Definition 3. (Matrix-extended Mittag-Leffler function.) Let α, β ∈C such that Re(α),
Re(β)> 0, and let � ∈Mn(R). Then the matrix Mittag-Leffler function is defined as

Eα,β (�) :=
∑
n≥0

�n

�(αn + β)
.

We also extend the Mittag-Leffler density function for matrices.

Definition 4. (Mittag-Leffler density for matrices.) Let α ∈C such that Re(α)> 0, � ∈
Mn(R). Then the matrix Mittag-Leffler density function fα,� is defined as

fα,�(t) := �tα−1Eα,α(−�tα).

We write Fα,� for the cumulative matrix Mittag-Leffler density function,

Fα,�(t) :=
∫ t

0
fα,�(s)ds.
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Using Definition 3, it is easy to prove the following lemma.

Lemma 4. Let α ∈C such that Re(α)> 0, and let � ∈Mn(R). Then

I1−αfα,� =�(I − Fα,�).

Furthermore, if α ∈ (1/2, 1), then

f̂α,�(z) =�(Izα +�)−1.

We need another important property relating Mittag-Leffler functions to fractional integra-
tion operators.

Lemma 5. Let α > 0 and � ∈Mm(R). Then

I1fα,� =
∑
n≥1

(−1)n−1�nInα(1).

Proof. Using Lemma 4 and repeated applications of Iα , for all N ≥ 1 we have

Ifα,� =
∑

1≤n≤N

(−1)n−1�nInα(1) + (−1)N−1�NINαIfα,�.

Therefore, if we show that
(−1)N−1�NINαIfα,� →

N→∞ 0,

the result will follow. To prove this we make use of the series expansion of INαfα,� to deduce
bounds which will converge to zero. Writing C for a constant independent of t and N which

may change from line to line, Nα = � 1

α
�, and ‖·‖op for the operator norm, we have

∥∥∥�Nfα,�(t)
∥∥∥

op
=
∥∥∥∥∥∥�N+1

∑
n≥0

(−1)n t(n+1)α−1

�((n + 1)α)

∥∥∥∥∥∥
op

≤
∥∥∥∥∥∥�N+1

∑
0≤n≤Nα

(−1)n t(n+1)α−1

�((n + 1)α)
+�N+1C

∥∥∥∥∥∥
op

.

Therefore, applying the fractional integration operator of order Nα, and writing gn:t →
t(n+1)α−1, we have

INα
∥∥∥�Nfα,�(t)

∥∥∥
op

≤
∥∥∥∥∥∥�N+1INα

( ∑
0≤n≤Nα

(−1)n gn

�((n + 1)α)

)
+�N+1INα(C)

∥∥∥∥∥∥
op

≤
∑

0≤n≤Nα

1

�((n + 1)α)

∥∥∥�N+1INα(gn)
∥∥∥

op
+
∥∥∥�N+1INα(C)

∥∥∥
op

.

An explicit computation of INα(gn) shows the convergence to zero of the right-hand side as N
tends to infinity, which concludes the proof. �
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Finally, we need to combine fractional integration Iα with IαB . We have the following lemma.

Lemma 6. Let m ≥ 1, B an m-dimensional Brownian motion, X an m × m matrix-valued
adapted square-integrable stochastic process, and α, β > 0. Then we have

IαIβB(X) = Iα+β
B (X).

Proof. The proof is a straightforward application of the definitions of the operators together
with the stochastic Fubini theorem. �

The next lemma is useful for transforming stochastic convolutions of stochastic processes
with the Mittag-Leffler density function into series of repeated applications of IαB.

Lemma 7. Let m ≥ 1, B an m-dimensional Brownian motion, X an m × m matrix-valued
adapted and square-integrable stochastic process, α > 0, and � ∈Mm(R). Then, for all t ≥ 0
and almost surely, ∫ t

0
fα,�(t − s)XsdBs =

∑
n≥1

(−1)n−1�nInα
B (X),

where the series converges almost surely.

Proof. Using Lemma 5, we can write the integral using a series of fractional integration
operators and apply the stochastic Fubini theorem (as X is square-integrable) to obtain∫ t

0
fα,�(t − s)XsdBs =

∫ t

0

∑
n≥1

(−1)n−1�nInα−1(1)t−sXsdBs

=
∑
n≥1

∫ t

0
(−1)n−1�nInα−1(1)t−sXsdBs

=
∑
n≥1

(−1)n−1�n
∫ t

0
Inα−1(1)t−sXsdBs

=
∑
n≥1

(−1)n−1

�(nα − 1)
�n

∫ t

0

∫ t−s

0
(t − s − τ )nα−2dτXsdBs.

After a change of variables and using the stochastic Fubini theorem (see for example [27]), we
deduce the simpler expression∫ t

0
fα,�(t − s)XsdBs =

∑
n≥1

(−1)n−1

�(nα− 1)
�n

∫ t

0
(t − τ )nα−2

∫ τ

0
XsdBsdτ .

Integrating by parts, we finally obtain the result:∫ t

0
fα,�(t − s)XsdBs =

∑
n≥1

(−1)n−1

�(nα − 1)(nα − 1)
�n

∫ t

0
(t − τ )nα−1XτdBτ ,

=
∑
n≥1

(−1)n−1

�(nα)
�n

∫ t

0
(t − τ )nα−1XτdBτ ,

=
∑
n≥1

(−1)n−1�nInα
B (X). �
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The last lemma gives convergence for terms of a series of repeated iterations of Iα .

Lemma 8. Let α > 0, � ∈Mm(R), B an m-dimensional Brownian motion, and X an
m-dimensional vector-valued square-integrable stochastic process. Then, almost surely and
for all t ∈ [0, 1],

(−1)N−1�NINα(X)t →
N→∞ 0,∑

n≥N

(−1)n−1�nInα
B (diag(X))t →

N→∞ 0.

Proof. Let N∗ >Nα :=
⌊

1

α

⌋
. Since X is square-integrable, we have

E

[∥∥∥∥∥ ∑
N>N∗

�NI(N+1)α
B (diag(X))t

∥∥∥∥∥
2]

≤
∑

N1,N2>N∗
E

[
(
�N1 I(N1+1)α

B (diag(X))t

)(
�N2 I(N2+1)α

B (diag(X))t

)]
.

Using the Cauchy–Schwartz inequality and writing ‖·‖op for the operator norm associated to
the Euclidean norm, we find

E

[∥∥∥∥∥ ∑
N>N∗

�NI(N+1)α
B (diag(X))t

∥∥∥∥∥
2]

≤
∑

N1,N2>N∗
‖�‖N1+N2

op

∑
1≤k,l≤m

E

[
I(N1+1)α
Bk

(
Xk)

tI
(N2+1)α
Bl

(
Xl)

t

]

≤
∑

N1,N2>N∗

‖�‖N1+N2
op

�((N1 + 1)α)�((N2 + 1)α)

∑
1≤i≤m

∫ t

0
(t − s)(N1+N2)α−2E

[(
Xi

s

)2
]
ds

≤c
∑

N1,N2>N∗

‖�‖N1+N2
op

�((N1 + 1)α)�((N2 + 1)α)

≤c

( ∑
N>N∗

‖�‖N
op

�((N + 1)α)

)2

.

Thus, by comparison of functions (for example by application of Stirling’s formula),
for all ε > 0,

∑
N>Nα

P

⎛⎝∥∥∥ ∑
N>N∗

�NI(N+1)α
B (diag(X))t

∥∥∥> ε
⎞⎠

≤ 1

ε2

∑
N∗≥Nα

E

[∥∥∥ ∑
N>N∗

�NI(N+1)α
B (diag(X))t

∥∥∥2
]
<∞.

The Borel–Cantelli lemma yields the almost sure convergence to zero of �NI(N+1)α
B (diag(X))

as N → ∞. The same approach yields the almost sure convergence to zero of
(−1)N−1�NINα(X) as N → ∞. �
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A.3 Proof of Corollary 1

We split the proof into two steps. First, we show that the structure of the kernel satisfies the
assumptions of Section 2. Then, we compute the equations satisfied by variance and prices.

Checking for the assumptions of Theorem 1. We write

O1 :=

⎛⎜⎜⎜⎝
1

1

0

0

⎞⎟⎟⎟⎠ , O2 :=

⎛⎜⎜⎜⎝
0

0

1

1

⎞⎟⎟⎟⎠ , O3 :=

⎛⎜⎜⎜⎝
1

−1

0

0

⎞⎟⎟⎟⎠ , O4 :=

⎛⎜⎜⎜⎝
0

0

1

−1

⎞⎟⎟⎟⎠.

Then, setting O := (
O1 | O2 | O3 | O4

)
, we have

φT = O

⎛⎜⎜⎜⎜⎜⎜⎝

φT
1 + φT

2 φ
T,c
12 + φ

T,a
12 0 0

φb
21 + φs

21 φ̃T
1 + φ̃T

2 0 0

0 0 φT
1 − φT

2 φ
T,c
12 − φ

T,a
12

0 0 φb
21 − φs

21 φ̃T
1 − φ̃T

2

⎞⎟⎟⎟⎟⎟⎟⎠O−1.

It is straightforward to check that the assumptions are satisfied if

0 ≤ (Hc
12 + Ha

12)(Hc
21 + Ha

21)< 1,

0 ≤ | 1 − (γ1 + γ2) −
√

(Hc
12 − Ha

12)(Hc
21 − Ha

21) + (γ1 − γ2)2 |< 1,

0 ≤ | 1 − (γ1 + γ2) +
√

(Hc
12 − Ha

12)(Hc
21 − Ha

21) + (γ1 − γ2)2 |< 1.

Under those conditions, K = I − H has positive eigenvalues, and therefore KM−1 = 1

α
K

has positive eigenvalues. Therefore all the assumptions of Theorem 1 are satisfied.

Limiting variance process. Since we can apply Theorem 1, we now compute the relevant
quantities. As the blockwise matrix B is equal to zero, writing H12 := Ha

12 + Hc
12 and H21 :=

Ha
21 + Hc

21, we have

O−1 = 1

2

⎛⎜⎜⎜⎜⎝
1 1 0 0

0 0 1 1

1 −1 0 0

0 0 1 −1

⎞⎟⎟⎟⎟⎠ , K−1 = 1

1 − H12H21

(
1 H12

H21 1

)
,

�1 = 1

1 − H12H21

(
1 H12

1 H12

)
, �2 = 1

1 − H12H21

(
H21 1

H21 1

)
.
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One can check that the equations satisfied by �1Ṽ and �2Ṽ are the following, where B is a
Brownian motion:

�1Ṽt = α

�(α)�(1 − α)

∫ t

0
(t − s)α−1

[(
μ1

μ1

)
−
(

Ṽ1
s

Ṽ1
s

)]
ds

+ α

�(α)�(1 − α)

∫ t

0
(t − s)α−1

√
Ṽ1

s + H12Ṽ2
s

(
dB1

s + dB2
s

dB1
s + dB2

s

)
,

�2Ṽt = α

�(α)�(1 − α)

∫ t

0
(t − s)α−1

[(
μ2

μ2

)
−
(

Ṽ2
s

Ṽ2
s

)]
ds

+ α

�(α)�(1 − α)

∫ t

0
(t − s)α−1

√
Ṽ2

s + H21Ṽ1
s

(
dB3

s + dB4
s

dB3
s + dB4

s

)
.

Note that the above implies that V1+ = V1− and V2+ = V2−. This property is due to the
symmetric structure of the baselines and kernels. Therefore, the joint dynamics can be fully
captured by considering the joint dynamics of (V1+, V2+). Thus, writing V1 := V1+ = V1−
and V2 := V2+ = V2−, we have

�(α)
�(1 − α)

α
V1

t =
∫ t

0
(t − s)α−1(μ1 − Ṽ1

s

)
ds +

∫ t

0

√
V1

t
(
dB1

s + dB2
s

)
,

�(α)
�(1 − α)

α
V2

t =
∫ t

0
(t − s)α−1(μ2 − Ṽ2

s

)
ds +

∫ t

0

√
V2

t
(
dB3

s + dB4
s

)
.

We can write the above without Ṽ as

�(α)
�(1 − α)

α

(
V1

t

V2
t

)
=
∫ t

0
(t − s)α−1

((
μ1

μ2

)
− K−1

(
V1

s

V2
s

))
ds

+
∫ t

0
(t − s)α−1

(√
V1

s

(
dB1

s + dB2
s

)√
V2

s

(
dB3

s + dB4
s

)
)

.

Limiting price process. Turning now to the price process, we compute � (see Equation (10))
using the definition. We have


‖ψ‖1O3 =
∑
k≥1


‖φ‖1
k
O3

= O
∑
k≥1

[(∫ ∞

0
C(s)ds

)k

11
e3 +

(∫ ∞

0
C(s)ds

)k

12
e4

]

=
∑
k≥1

[(∫ ∞

0
C(s)ds

)k

11
O3 +

(∫ ∞

0
C(s)ds

)k

12
O4

]

=
[

(I −
∫ ∞

0
C(s)ds)−1 − I

]
11

O3 +
[

(I −
∫ ∞

0
C(s)ds)−1 − I

]
12

O4,
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which, by definition of �, yields

�11 =
[(

I −
∫ ∞

0
C(s)ds

)−1

− I
]

11
= 2γ2

4γ1γ2 − (
Hc

12 − Ha
12

)(
Hc

21 − Ha
21

) − 1,

�12 =
[(

I −
∫ ∞

0
C(s)ds

)−1

− I
]

12
= Hc

21 − Ha
21

4γ1γ2 − (
Hc

12 − Ha
12

)(
Hc

21 − Ha
21

) .

Therefore,

�= 1

4γ1γ2 − (
Hc

12 − Ha
12

)(
Hc

21 − Ha
21

) ( 2γ2 Hc
21 − Ha

21

Hc
12 − Ha

12 2γ1

)
− I.

Finally, by application of Theorem 1, any limit point P of the sequence of microscopic price
processes satisfies the following equation:

Pt = 1

4γ1γ2 − (
Hc

12 − Ha
12

)(
Hc

21 − Ha
21

) ( 2γ2 Hc
21 − Ha

21

Hc
12 − Ha

12 2γ1

)

(
1 −1 0 0

0 0 1 −1

) ∫ t

0

⎛⎜⎜⎜⎜⎜⎜⎝

√
V1

s dB1
s√

V1
s dB2

s√
V2

s dB3
s√

V2
s dB4

s

⎞⎟⎟⎟⎟⎟⎟⎠

= 1

4γ1γ2 − (
Hc

12 − Ha
12

)(
Hc

21 − Ha
21

) ( 2γ2 Hc
21 − Ha

21

Hc
12 − Ha

12 2γ1

) ∫ t

0

(√
V1

s

(
dB1

s − dB2
s

)
√

V2
s

(
dB3

s − dB4
s

)
)

.

Introducing the independent bi-dimensional Brownian motions

Z := 1√
2

(
B1 + B2

B3 + B4

)
, W := 1√

2

(
B1 − B2

B3 − B4

)
,

this concludes the proof of Corollary 1.

A.4. Proof of Corollary 2
We define the interaction kernel between Asset i and Asset j. For 1 ≤ i, j ≤ m, define

φT
ij (t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(1 − T−α)1t≥1t−(α+1)

⎛⎝(1 − γ ) γ

γ (1 − γ )

⎞⎠ if i = j,

αT−α1t≥1t−(α+1)

⎛⎝Hc Ha

Ha Hc

⎞⎠ if Asset i and Asset j belong to the same sector,

αT−α1t≥1t−(α+1)

⎛⎝Hc + Hc
r Ha + Ha

r

Ha + Ha
r Hc + Hc

r

⎞⎠ otherwise.
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Finally, the complete Hawkes baseline and kernel structure is

μT = Tα−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ1

μ1

...

μm

μm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, φT =

⎛⎜⎜⎜⎜⎜⎜⎝
φ11

T φ12
T . . . φ1m

T

φ21
T φ22

T . . . φ2m
T

... . . .
. . .

...

φm1
T . . . . . . φmm

T

⎞⎟⎟⎟⎟⎟⎟⎠ .

As in the previous example, the proof is split into two steps. First, we show that the kernel sat-
isfies the assumptions required to apply Theorem 1. Then, we compute the equations satisfied
by the limiting variance and price processes.

Checking for the assumptions of Theorem 3. We can examine the structure of the kernel as in
the two-asset example. Define the following basis:

Oi :=
{

e2i + e2i+1if 1 ≤ i ≤ m,

e2i − e2i if m + 1 ≤ i ≤ 2m.

Using the notation of Section 2, straightforward computations allow us to write

φT = O

(
AT 0

BT CT

)
O−1 = O

(
AT 0

0 CT

)
O−1,

where we can compute AT and CT . Checking the assumptions is done as in the two-asset
case, though the conditions have changed here because of the new structure of the kernel. For
example, since

lim
T→∞

∫ ∞

0
φT (s)dsOm+i = (1 − 2γ )On+i + (Hc − Ha)

∑
1≤j �=i≤m

Om+j

+
∑

1≤j �=i≤m

∑
1≤r≤R

(
Hc

r − Ha
r

)
Om+j,

we have, writing J := e1

e1 + · · · + em


em and for any 1 ≤ r ≤ R, Jr := eir

eir + · · · +

eir+mr

eir+mr , ∫ ∞

0
C(s)ds = (1 − 2γ )I + (

Hc − Ha)J +
∑

1≤r≤R

(
Hc

r − Ha
r

)
Jr.

Therefore, as the eigenvalues of
∫∞

0 C(s)ds can be made explicit, if∣∣∣∣∣λ− +
∑

1≤r≤R

λ−
r

∣∣∣∣∣< 2γ,

then ρ(
∫∞

0 CT (s)ds)< 1 and ρ(
∫∞

0 C(s)ds)< 1. Similarly, we can easily check that a necessary
condition for ρ(

∫∞
0 AT )< 1 for T large enough is

| Hc + Ha +
∑

1≤r≤R

mr − 1

m − 1

(
Hc

r + Ha
r

) |< 1

m − 1
.
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Since we are interested in the limit where the number of assets grows to infinity, we also
impose ∣∣∣∣∣λ− +

∑
1≤r≤R

ηrλ
−
r

∣∣∣∣∣< 2γ,

∣∣∣∣∣λ+ +
∑

1≤r≤R

ηrλ
+
r

∣∣∣∣∣< 1.

Combined, we have verified all the assumptions on the structure of the kernel that are needed
to apply Theorem 1. We thus move to assumptions on K and �= KM−1. As in the two-
asset example, we have here M = αI. Since K = I − (Hc + Ha)J −∑

1≤r≤R (Hc
r + Ha

r )Jr, the
eigenvalues of K (and therefore those of �) are all strictly positive. Thus we have checked
all conditions necessary to apply Theorem 1. We can now state the equations satisfied by the
limiting variance and price processes.

Limiting variance process. As in the previous example, we have Vi+ = Vi−. Thus, we write
the underlying variance of asset i as Vi and, using a (slight) abuse of notation, define V :=
(V1, V2, · · · , Vm). Then V satisfies

Vt = α

�(α)�(1 − α)

∫ t

0
(t − s)α−1(θ − K−1Vs)ds

+ α
√

2

�(α)�(1 − α)

∫ t

0
(t − s)α−1diag

(√
Vs

)
dBs,

where B is a Brownian motion. We can rewrite K−1 as

K−1 =
(

I − (Hc + Ha)J −
∑

1≤r≤R

(Hc
r + Ha

r )Jr

)−1

=
(

I − (Hc + Ha)(m − 1)w
w −
∑

1≤r≤R

(Hc
r + Ha

r )(mr − 1)wr

wr − ε

)−1

,

with the small term ε given by

ε := (Hc + Ha)(J − (m − 1)w
w) +
∑

1≤r≤R

(
Hc

r + Ha
r

)(
Jr − (mr − 1)wr


wr

)
.

It is easy to check that

ρ(ε) =
m→∞ o

(
1

m

)
,

which concludes our study of the variance process. We now turn to the equation satisfied by
the limiting price process.

Limiting price process. Using the same approach as in the two-asset case, computing �

boils down to computing (I − ∫∞
0 C(s)ds)−1. Using the expression for

∫∞
0 C(s)ds derived

previously, we have

(I − C)−1 = 1

2γ

(
I − Hc − Ha

2γ
J −

∑
1≤r≤R

Hc
r − Ha

r

2γ
Jr

)−1

.
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Therefore, repeating the same approach we used for K−1 yields

(I − C)−1 =
(

2γ I − λ−w
w −
∑

1≤r≤R

ηrλ
−
r wr


wr − ε

)−1

,

with

ρ(ε) = o
( 1

m

)
.

Thus, we have the following expression for �:

�=
(

2γ I − λ−w
w −
∑

1≤r≤R

ηrλ
−
r wr


wr − ε

)−1

− I.

Plugging this into Theorem 1, we have the equation satisfied by any limit point P of the
sequence PT , which concludes the proof of Corollary 2.
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