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In a canonical monetary policy model in which the central bank learns about underlying
fundamentals by estimating the parameters of a Phillips curve, we show that the bank’s
loss function is asymmetric such that parameter overestimates may be more or less costly
than underestimates, creating a precautionary motive in estimation. This motive suggests
the use of a more efficient variance-adjusted least-squares estimator for learning about
fundamentals. Informed by this “precautionary learning” the central bank sets low
inflation targets, and the economy can settle near a Ramsey equilibrium.
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1. INTRODUCTION

In conventional macroeconomic policy models, policymakers minimize a sym-
metric loss function over relevant macroeconomic variables using a model to
describe the constraints imposed by the economic environment. In practice, a
policymaker often determines optimal policy while simultaneously learning the
parameters of her model through an adaptive process. We show that if the poli-
cymaker uses the same loss function to evaluate policy results and econometric
efficiency, a loss function that is symmetric with respect to macroeconomic
observables need not be symmetric with respect to parameter estimates since
the policymaker’s reaction function is nonlinear in the unknown parameter. This
asymmetry induces a precautionary motive that favors a variance-adjusted learn-
ing algorithm, use of which we show has important implications for policy
dynamics. We therefore argue that one way to model “precaution in policymak-
ing” is via the assumption of a variance-adjusted learning algorithm in frequentist
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environments. We are thus able to mimic the intuition of Brainard’s (1967)
Conservatism Principle.

We adopt the canonical monetary policy context of Kydland and Prescott
(1977) and Barro and Gordon (1983) (hereafter, KPBG), in which the central
bank minimizes a loss function over inflation and unemployment subject to a
Phillips curve.1 The KPBG model under complete information about the laws of
motion of the economy can deliver both a time-inconsistent low inflation Ramsey
equilibrium or a time-consistent high inflation Nash equilibrium. Sargent (1999)
and Cho et al. (2002) study the impact on targeted inflation when ordinary least-
squares regressions are used to learn the parameters of a misspecified Phillips
curve. Under such adaptive learning the long-run outcome depends on how the
policymaker treats new data.2 For a decreasing-gain learning algorithm in which
each new datum is given less weight than past data were at previous iterations,
inflation will converge to its Nash equilibrium value. However, for a constant-
gain learning equilibrium in which each new datum is weighted the same with
each iteration, Cho et al. (2002) find that, under recursive ordinary least-squares
(ROLS) learning, inflation will fluctuate near its Nash equilibrium value, but
occasionally escape to the Ramsey outcome.

We first show that after expressing inflation and unemployment in terms of
the Phillips curve parameters, the loss function is not symmetric since the pol-
icymaker’s reaction function is nonlinear in the parameter being estimated.3 As
Leland (1968) and Sandmo (1970) established in the context of precautionary
saving, an asymmetric loss function will cause optimal decisions to shift under
uncertainty. If there is a single stochastic variable in the model, the direction of
this shift depends on the sign of the third derivative of the loss function, and
the size of the shift is proportional to the variance of the stochastic variable. In
our setting, this translates to employing an estimator with a bias proportional to
the variance of the unbiased least-squares estimator [Varian (1975) and Zellner
(1986)]. We explore the inflation dynamics that result if the central bank employs
such “precautionary learning,” using a variance-adjusted least-squares (VALS)
estimator for the Phillips curve parameters. The VALS estimator augments the
ROLS estimator by a term proportional to the variance of the ROLS estimator for
each of the two parameters (slope and intercept) of the Phillips curve.4

We term the two constants of proportionality the precautionary parameters,
whose value is zero under the conventional constant-gain ROLS estimator, so the
VALS estimator nests the ROLS case. The precautionary parameters measure the
strength of the variance correction for the slope and intercept estimators. We will
primarily be concerned with the precautionary parameter for the slope since the
slope has a bigger impact on the resulting dynamics, but the following discussion
would also pertain to the precautionary parameter for the intercept.

The precautionary parameter for the slope can have either sign depending on
whether the policymaker is more concerned about overestimating or underesti-
mating the slope because her loss function is higher in that direction. A positive
precautionary parameter means the policymaker is adjusting her estimator upward
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to avoid getting an estimate that is too low, which would be more costly than a
high estimate. Conversely, a negative precautionary parameter would be used if
she is afraid the least-squares estimate would be too high. Note that the precau-
tionary parameters are parameters of the policymaker’s chosen estimator and not
parameters of the model. Thus they are choice variables, present in any model of
an econometrician, though ordinarily they are, implicitly, set to zero.

We find that the results and intuition underlying escape dynamics are shaped
as follows. Under ROLS learning, escapes occur because a sequence of unusual
shocks can lead the policymaker to lower her estimate of the Phillips curve slope.
This reduces the apparent trade-off between unemployment and inflation, so the
policymaker lowers her inflation target, which produces data confirming that the
trade-off has indeed diminished and is even smaller than originally thought. The
policymaker further reduces the inflation target and the process continues until
inflation is driven to zero and the economy replicates the Ramsey outcome. Once
the targeted level of inflation is at zero, the negative correlation between inflation
and unemployment becomes apparent again. The central bank then ratchets up
inflation, and the economy heads back toward the high-inflation Nash outcome.

Given the analytically intractable nature of the model, we simulate the economy
and first plot the expected loss as a function of the precautionary parameters. We
find that the loss function is not minimized when the precautionary parameters are
set to zero. In fact, the ROLS value is near a ridge line of the loss function rather
than being close to a minimum. We find that a downward bias of slope estimates
increases the frequency of escapes but also increases the long-run level of infla-
tion. The latter effect dominates, increasing the central bank’s loss function value.
However, we also find that the loss function exhibits a nonmonotonic depen-
dence on the precautionary parameters: for a sufficiently large downward bias, the
escape frequency is so high that the economy hardly returns to its high long-run
level, and average inflation is very low.5 In contrast, an upward bias of slope esti-
mates reduces long-run inflation since the central bank believes a small increase
in inflation will produce a big decrease in unemployment. It also reduces the fre-
quency of escapes since zero slope estimates are more infrequent. With a large
enough bias in either direction, the policymaker achieves average outcomes close
to the Ramsey outcome. This can occur with a smaller slope bias if, in addition,
the intercept estimate is biased down as well, leading the policymaker to lower her
inflation target.6 As such our result complements that of Brainard (1967) and sug-
gests that the Conservatism Principle may be at work in frequentist environments
in which a policymaker adaptively learns about structural parameters.

To help understand how the variance adjustment alters the learning dynamics,
we also compute the unconditional distribution of the Phillips curve coefficients
and targeted inflation. When the precautionary parameters are set to zero, these
distributions are fat-tailed. Escape dynamics are represented by the high prob-
ability of loitering for a time in the lower tail of the distribution for targeted
inflation. However, if we explore the rest of the parameter space for the precau-
tionary parameter, we find the distributions are often mesokurtic yet bimodal.
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With a variance-adjusted estimator, escape dynamics arise instead because the
distribution has positive mass at a target inflation rate of zero.

The paper is structured as follows. In Section 2, we review Cho et al. (2002),
show that the loss function is asymmetric when expressed as a function of the
estimated Phillips curve parameters, and discuss the VALS estimator. In Section 3,
we show how the expected loss function varies with the precautionary parameters
and explain how unemployment and inflation are impacted by such precautionary
learning. We conclude in Section 4.

2. RELATED LITERATURE

As Brainard (1967) highlighted, policymakers face a continual tension between
the need to have some confidence in their model in order to make decisions and
the reality that, even if they have the correct model, the parameters may change
over time. In the environment of Sargent (1999) and Cho et al. (2002), this ten-
sion is captured by having the policymaker employ a certainty equivalence rule
that ignores any possible parameter uncertainty (either due to nonstationarity or
noisy data), reflecting her confidence that the model is right, while also using a
constant-gain estimator to update the parameters of the model, which would only
be efficient if there is a suspicion that the model is nonstationary, so recent data are
more informative than ancient data. This tension has been examined previously
and in this section we review that literature and discuss our contribution.

Sims (1988) was among the first to point out this tension, arguing that a cen-
tral bank ought to see that the data generated by a policy of trying to exploit a
Phillips curve with a negative slope will result in a Phillips curve with a verti-
cal slope. Sargent and Williams (2005) sought to reconcile Sims’ simulation of a
stable Ramsey equilibrium with their previous results in Cho et al. (2002). They
concluded that a difference in priors about the model parameters could account
for these differing model predictions.

Since frequentist regressions remain the primary workhorse of econometri-
cians, including at central banks, our approach is to see what would happen if
the policymaker acknowledges the uncertainty in her parameter estimates and
corrects for them in her regression. Tetlow and von zur Muehlen (2004) also
study the effects of parameter uncertainty on policy while hewing more closely to
Brainard’s (1967) framing of the problem. They compare the outcomes of using
rules derived from three other methodologies for handling parameter uncertainty:
a Bayesian rule, a Knightian uncertainty rule, and a Hansen–Sargent robust con-
trol policy. Our VALS estimator is most similar to their Bayesian rule, which also
uses covariances to modify inflation targets. Where we differ is that the VALS
estimator has a free parameter, the precautionary parameter. When chosen to min-
imize the econometric loss function, the VALS estimator also reduces average
inflation bias, like their Bayesian rule, while staying within the framework of
frequentist regressions.
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The previous papers and our own all assume that the policymaker considers
only one model. Cho and Kasa (2015) consider what happens if the policy-
maker considers several models simultaneously, including a model with a vertical
Phillips curve and no trade-off between inflation and unemployment. Here the
policymaker continually runs specification tests to determine if she has been using
the best model. In this environment, escapes cause the policymaker to reject every
model except the model with the vertical Phillips curve, after which she never
switches back to another model. Thus in the long run inflation should converge
to the Ramsey rate. Cho and Kasa’s specification testing strategy is similar to
the recursive approach we propose for modifying the precautionary parameter. In
the long run in our environment, the optimal precautionary parameter will tend
to explode (either positively or negatively), which an introspective policymaker
would likely take as evidence that the model is wrong.

Importantly, our analysis is related to that of McGough (2006), who includes
real oil prices in the model of Sargent (1999). Such supply shocks are investi-
gated for their ability to trigger escape-like events. McGough (2006) finds, among
other relevant results, that favorable shocks to unemployment decrease the time
an economy takes to escape to Nash inflation. Escapes happen much sooner in the
presence of such supply shocks.

3. THE MODEL

A central bank chooses its target inflation rate (xt) to minimize a quadratic loss
function defined over realized inflation (πt) and unemployment (ut):

L = E[π2
t + αu2

t ], (1)

where α > 0 is the weight placed on unemployment. The relationship between ut

and πt is governed by a Phillips curve [i.e., the actual law of motion (ALM)] for
the economy:

ut = u∗
NR − ω∗(πt − x̂t) + σ1W1t, u∗

NR > 0, ω∗ > 0, σ1 > 0, (2)

in which πt is determined by

πt = xt + σ2W2t, σ2 > 0. (3)

The mutually independent shocks (W1t, W2t)′ are i.i.d. and normally distributed
with zero means and unit variances. In the Phillips curve (2), x̂t is the private sec-
tor’s expectation of inflation at t and the parameters u∗

NR and ω∗ are, respectively,
the actual natural rate of unemployment and (inverse) slope. Since the public’s
expectations are rational, x̂t will ultimately be set equal to xt in equilibrium. The
outcomes that arise when the central bank knows the parameters u∗

NR and ω∗ are
well known: if xt is fixed after the public forms x̂t, the high-inflation Nash equi-
librium outcome is a targeted inflation rate of x∗

t = αω∗u∗
NR; if xt is fixed before

the public forms x̂t, the low-inflation Ramsey equilibrium outcome would have

https://doi.org/10.1017/S1365100518000731 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100518000731


PRECAUTIONARY LEARNING AND INFLATIONARY BIASES 1129

the central bank set x∗
t = 0. Since the Nash outcome is time-consistent, the cen-

tral bank suffers from an inflationary bias absent a technology that allows it to
credibly commit to the Ramsey rule.

Under adaptive learning, the central bank believes instead in a misspecified
version of the Phillips curve:

ut = uNR,t − ωtπt + ηt, (4)

where ηt is a mean-zero noise variable with variance σ 2
3 , uncorrelated with the

other time-t-dated variables. The intercept and slope terms in this perceived law
of motion (PLM) are indexed by t since every period the central bank re-estimates
the Phillips curve.

Given (3) and (4), the loss function is

L(xt|uNR,t, ωt) = x2
t + α(uNR,t − ωtxt)

2 + ασ 2
3 + (1 + αω2

t )σ 2
3 (5)

when expressed as a function of the central bank’s policy variable (the inflation
target xt). Given current estimates ûNR,t and ω̂t, the central bank chooses xt to
minimize L(xt |̂uNR,t, ω̂t), which gives the optimal target inflation rate:

x(ω̂t, ûNR,t) = αω̂t ûNR,t

1 + αω̂2
t

. (6)

Note that (6) is nonlinear in ω̂t. It is this nonlinearity that drives our results,
described in the sections below.

3.1. Precaution in Statistical Decision Making

Following Berger (1985), suppose that a hypothetical statistical decision maker
(SDM) is estimating a parameter θ ∈ R so as to minimize the function f (θ , θ̂ ),
where θ̂ is his estimate of θ . A rational SDM operating in a frequentist paradigm
will specify an estimator θ̂( y), a function of the data y, with the objective of
minimizing

E
[

f (θ , θ̂ ( y))
]
, (7)

where the expectation is taken over y. To ensure that finding the truth is optimal,
we assume that f is positive definite so f (θ , θ̂) ≥ 0 for all (θ , θ̂ ) and f (θ , θ̂ ) = 0
if and only if θ = θ̂ . Further assuming f is C4, the positive-definiteness condition
implies

∂f (̂θ , θ )

∂ θ̂
|̂θ=θ = 0 (8)

and

∂2f

∂ θ̂
2 (θ , θ ) ≥ 0 (9)

for all θ .
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Given θ , a Taylor expansion of f (θ , θ̂) for θ̂ near θ is

f (θ , θ̂) = f (θ , θ ) + 1

2

∂2f

∂ θ̂
2 (θ , θ )(̂θ − θ )2 + 1

6

∂3f

∂ θ̂
3 (θ , θ )(̂θ − θ )3 + O

(
(̂θ − θ )4

)
.

(10)
Thus the SDM wishes to choose a function θ̂ ( y) that minimizes

E

[
1

2

∂2f

∂ θ̂
2 (θ , θ )(̂θ( y) − θ )2 + 1

6

∂3f

∂ θ̂
3 (θ , θ )(θ̂( y) − θ )3

]
,

where again the expectation is with respect to y. The resulting first-order condi-
tion is

∂2f

∂ θ̂
2 (θ , θ )

(
E

[
θ̂ ( y)

] − θ
) + 1

2

∂3f

∂ θ̂
3 (θ , θ )E

[
(̂θ ( y) − θ )2

] = 0. (11)

If the third derivative of f at θ̂ = θ vanishes, (11) reduces to the condition that
the SDM should choose a consistent estimator such that E

[
θ̂ ( y)

] = θ . In the
more general case where the third derivative does not vanish, however, an optimal
estimator will satisfy

E
[
θ̂( y)

] = θ−1

2

∂3f /∂ θ̂
3
(θ , θ )

∂2f /∂ θ̂
2
(θ , θ )

E
[
(θ̂( y) − θ )2

] ≈ θ−1

2

∂3f /∂ θ̂
3
(θ , θ )

∂2f /∂ θ̂
2
(θ , θ )

V
[
θ̂ ( y)

]
,

(12)
since, if (12) holds, E

[
θ̂ ( y)

] ≈ θ for i = 1, . . . , m. If ∂3f /∂ θ̂
3
(θ , θ ) > 0, the

loss function is higher if θ̂( y) = θ + ε than if θ̂ ( y) = θ − ε, where ε > 0.
Consequently, it is optimal for the SDM to bias down his estimate, erring on
the side of caution, since it is less costly to underestimate θ than it is to over-
estimate θ . The more imprecise his estimate θ̂ ( y) is, the larger the bias should
be. Conversely, if ∂3f /∂ θ̂

3
(θ , θ ) < 0, he should bias his estimates in the opposite

direction.
Suppose that θ̂

u
( y) is an unbiased estimator with variance σ 2( y). Then (12)

suggests the SDM replace the unbiased estimator with a variance-adjusted
estimator

θ̂
v

i ( y) = θ̂
u
i ( y) + 1

2
aσ 2( y). (13)

The parameter a in (13) is what we call the precautionary parameter. Optimally,
given (12), the SDM should choose

a = −∂3f /∂ θ̂
3
(θ , θ )

∂2f /∂ θ̂
2
(θ , θ )

. (14)

For example, for Varian’s (1975) LINEX loss function

f (θ , θ̂ ) = exp
(−a(̂θ − θ )

) + a(̂θ − θ ) − 1, (15)

the right hand side of (14) is constant and equal to the parameter a.
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3.2. Asymmetry in the KPBG Loss Function

What are the properties of the central bank’s econometric loss function, assuming
it seeks to minimize its loss function (1) when estimating the parameters of the
Phillips curve? Since the choice of what policy to set at time t given the latest
estimates is not a dynamic problem, we suppress time indices in this section. Let
us begin by considering what happens if the policymaker is correct in her beliefs
about the economy, so the Phillips curve (4) is the law of motion for the economy
instead of (2). In the absence of any misspecifications, the econometric loss func-
tion is obtained simply by substituting the optimal inflation target (6), given the
current parameter estimates (ω̂, ûNR), into the perceived policy loss function (5),
which depends on the true, albeit unknown parameters (ω, uNR):

L̂(ω̂, ûNR, ω, uNR) = L (x(ω̂, ûNR)|ω, uNR)

= (
1 + αω2

) (
αω̂ ûNR

1 + αω̂2

)2

− 2uNRω
α2 ω̂ ûNR

1 + αω̂2

+ α(u2
NR + σ 2

1 ) + (1 + αω2)σ 2
2 . (16)

The first partial derivatives of (16) with respect to the estimates are

∂L̂

∂ω̂
= 2(1 + αω2)

α2 ω̂ û2
NR

(1 + αω̂2)2
− 4(1 + αω2)

α3 ω̂3 û2
NR

(1 + αω̂2)3

− 2uNRω
α2 ûNR

1 + αω̂2
+ 4uNRω

α3 ω̂2 ûNR

(1 + αω̂2)2
,

∂L̂

∂ ûNR
= 2

1 + αω2

(1 + αω̂2)2
α2 ω̂2 ûNR − 2uNR

α2 ω̂ω

1 + αω̂2
. (17)

If ω̂ = ω and ûNR = uNR,

∂L̂

∂ω̂
(ω, uNR) = 2

α2ωu2
NR

1 + αω2
− 2

α2ωu2
NR

1 + αω2
− 4α3ω3u2

NR

(1 + αω)2
+ 4α3ω3u2

NR

(1 + αω2)2
= 0,

∂L̂

∂ ûNR
(ω, uNR) = 2α2ω2uNR

1 + αω2
− 2uNR

α2ω2

1 + αω2
= 0.

Since the loss function is quadratic in ûNR,

∂2 L̂

∂ û2
NR

(ω, uNR) = 2α2ω2

1 + αω2
≥ 0,

and all higher-order derivatives with respect to ûNR vanish, it is optimal that the
central bank should learn the truth about uNR, and a consistent estimator of uNR is
optimal. Thus in the following we can set ûNR = uNR. This simplifies the partial
derivative with respect to ω̂, (17), which is then exactly proportional to α2u2

NR:
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1

α2u2
NR

∂L̂

∂ω̂
= 2(1 + αω2)

ω̂

(1 + αω̂2)2
− 4(1 + αω2)

αω̂3

(1 + αω̂2)3

− 2ω

1 + αω̂2
+ 4αωω̂2

(1 + αω̂2)2
.

The second derivative of the loss function is then given by

1

α2u2
NR

∂2 L̂

∂ω̂2
(ω) = 2 + 4αω2 + 2α2ω4 − 8αω2

(1 + αω2)3

= 2 − 4αω2 + 2α2ω4

(1 + αω2)3
= 2(1 − αω2)2

(1 + αω2)3
≥ 0,

which is strictly positive as long as ω �= α−1/2. The third derivative is

1

α2u2
NR

∂3 L̂

∂ω̂3
(ω) = − 12αω

(1 + αω2)4
(3 − αω2)(1 − αω2), (18)

which only vanishes for the knife-edge cases where αω2 = 1 or αω2 = 3. This
means there generally will be an asymmetry in the econometric loss function for
the Phillips curve slope, and optimal estimation will require a biased estimator
for ω. The sign of the asymmetry is ambiguous and depends on the true Phillips
curve slope. Because of this potential for asymmetry, the optimal precautionary
parameter a, given by (14) in the previous section, is

a∗ = −
∂3 L̂
∂ω̂3

∂2 L̂
∂ω̂ 2

= −
− 12αω

(1+αω2)4 (3 − αω2)(1 − αω2)

2(1−αω2)2

(1+αω2)3

= 6αω(3 − αω2)

1 − α2ω2
. (19)

Thus, the policymaker should only believe that least-squares learning is effi-
cient for the special case where αω2 = 3. Note also that the optimal bias could
potentially be unbounded if α2ω2 approaches 1.

3.3. The VALS Estimator

Under the constant-gain ROLS learning algorithm, at each period t the estimates
ξt = ( ûNRt , ω̂t)′ are updated using the least-squares formula:

ξt = (Z′
tZt)

−1Z′
tUt, (20)

where Ut = (u0, . . . , ut−1)′ and Zt = [1′ (π0, . . . , πt−1)′]. Let Rt = gZ′
tZt be the

matrix of second moments where g is the gain. Defining zt = (1, πt)′, the estimates
and Rt evolve according to

ξt = ξt−1 + gR−1
t zt−1(ut−1 − z′

t−1ξt−1), (21)

Rt = Rt−1 + g
(
zt−1z′

t−1 − Rt−1
)

, (22)

in which, unbeknownst to the central bank, the ut−1 in the evolution of ξt above
is determined by the ALM. The gain (g) can be interpreted as the inverse of the
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learning horizon T .7 A constant-gain learning algorithm is appropriate if the pol-
icymaker is concerned about structural change to the Phillips curve and believes
data from say, 100 years ago, is not informative about what is happening today.

The constant-gain ROLS estimator departs from a decreasing gain algorithm
in that escape dynamics can arise more frequently, as discussed in Section 1.
That is, if by chance the Phillips curve in the last T periods appears flat, the
inflation rate can temporarily drop to the low value of the Ramsey equilibrium.
It is this constant-gain ROLS learning case that we modify here. The first step in
our analysis is the assumption of “precaution” in the interpretation of data and so
the use of a constant-gain VALS estimator of (uNRt , ωt)′. This estimator, denoted
by ξ a

t , is defined by

ξ a
t = ξt + 1

2
�̂ta, (23)

where �̂t is a constant-gain estimator of the variance–covariance matrix for the
least-squares estimator ξt. The vector a = (auNR , aω)′ collects the precautionary
parameters that determine whether the estimator biases up or down the two
Phillips curve parameters uNR and ω. If either auNR or aω is negative (positive),
then the bias for that variable is against overestimation (underestimation).

The variance-covariance matrix is defined by

�t = t−1R−1
t σ 2

t , (24)

where

σ 2
t = 1

t − 1

t−1∑
i=0

(ui − z′
iξt)

2 (25)

is the most recent estimate of the variance of ηt, the noise in the PLM. Expanding
the square in (25), we get

σ 2
t = 1

t − 1

t−1∑
i=0

[
(ui − z′

iξt−1)2 + 2(ui − ξ ′
t−1zi)z

′
i(ξt−1 − ξt)

+ (ξt−1 − ξt)
′ziz

′
i(ξt−1 − ξt)

]
. (26)

We have already introduced Rt, which is a constant-gain estimator of 1
t

∑t−1
i=0 ziz′

i.
Similarly, we now introduce St as a constant-gain estimator of

1

t

t−1∑
i=0

uiz
′
i.

We define St by the difference equation:

St = St−1 + g(ut−1x′
t−1 − St−1). (27)
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Then a constant-gain estimator of σ 2
t can be defined by the difference equation:

σ̂ 2
t = σ̂ 2

t−1 + g

1 − g

[
(ut−1 − z′

t−1ξt−1)2
(
1 + gz′

t−1R−1
t zt+1

)
+ 2

(
ξ ′

t−1Rt − St
)

R−1
t zt−1(ut−1 − z′

t−1ξt−1)
]
, (28)

and

�̂t = gR−1
t σ̂ 2

t . (29)

4. SIMULATION RESULTS

4.1. Loss Function Surfaces

Given an environment in which agents adaptively learn, the usual procedure is
to stochastically approximate the system of equations that characterize model
dynamics, including the Ricatti equations associated with ROLS regressions.
Such an approximation for “mean dynamics” delivers a system of differential
equations that can be examined for stability of model equilibria. Cho et al. (2002)
defined escape dynamics as well for the case of ROLS learning under constant
gain. Since this analytical procedure is not easily generalized to account for the
dynamics of the variance, we instead opt to provide evidence via simulation on
whether Ramsey or Nash inflation is obtained under precautionary learning. The
simulation results prompt the intuition described above: precautionary learning,
instantiated by the use of a VALS estimator on the part of a central bank, can lead
to a higher frequency of escape and a lowering of the long-run average rate of
inflation.

The key to this intuition is the nature of the loss function (L) surface as we vary
the precautionary parameter values, discussed below. We note that we are plotting
the loss function as a function of the precautionary parameters that inflation and
unemployment implicitly depend upon; the expected loss function is computed as
the average loss over a simulation of 10, 000 periods.

We generate each of these figures (and all reported simulations below) hav-
ing fixed α at 1, ω at 2, and uNR at 5, so that the Nash level of inflation from
x∗

t = αω∗u∗
NR is 10 while the Ramsey equilibrium inflation rate is zero. The

decreasing gain learning algorithm will converge to the Nash equilibrium out-
come in which the Phillips curve is perceived to have the actual slope of 2 and
an intercept of 25, which adds to uNR the effect of the public’s expectations about
inflation. The standard deviations of the shocks, σ1 and σ2, are set to 1.5. We
start each simulation looking at data generated by a predecessor policymaker who
targeted the inflation rate at its Nash value.

In our baseline calibration, we set the horizon for the constant-gain algorithm
to T = 20 periods, implying a gain of g = 1

T = 0.05. The loss surface is shown in
Figure 1. We also use this calibration for the time series plots of targeted inflation
that we report below.
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FIGURE 1. Loss function [L(xt), 0.05 gain].

A high gain translates into a shorter time span of data employed in learning the
Phillips curve parameters. Thus the probability of observing a history in which the
Phillips curve is flat is high, raising the probability of escape. Given our interest
in examining dynamics with constant-gain VALS versus ROLS learning, a high
gain of 0.05 is a natural choice.

In Figure 1, we see that least-squares learning is close to a ridge line of the
loss function.8 Allowing for a bias in the estimation of either of the two Phillips
curve parameters [i.e., nonzero values for (auNR , aω)′] suggests that better policy
may result from overestimating the slope and underestimating the intercept rel-
ative to least squares. However, the improvement that comes from moving away
from least squares in this direction is a purely local phenomenon. Whereas slight
underestimates of the slope lead to a worsening of policy, large underestimates
improve policy, and likewise for overestimates of the intercept. The policymaker
will be nearly indifferent between receiving very high or very low estimates of
the parameters as long as she does not receive estimates in the vicinity of least
squares.

4.2. Time Series Simulations

Why do biased estimates of the Phillips curve parameters improve policy? Do
they cause the policymaker to target rates of inflation lower than those consistent
with a Nash outcome? We investigate these questions by looking at the time series
generated by our model as we vary the values for the precautionary parameters,
holding the shock processes and the value of the gain constant. For our baseline
parameters, the period loss function for the Ramsey equilibrium is 38. In contrast,
the loss function for the Nash equilibrium is the much higher value of 138. First,
we consider what happens for the familiar case of constant-gain ROLS learning, in
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FIGURE 2. Time paths under constant-gain ROLS learning.

which (aω, auNR ) = (0, 0). The time series for targeted inflation and the estimated
Phillips curve parameters are shown in Figure 2.9

Consistent with Cho et al. (2002), the inflation target, shown in the top panel,
remains around the Nash equilibrium value of 10 but there are “escapes” where
the target falls close to the Ramsey level of zero. The plots of ωt and uNRt in the
second and third panels reflect the intuition of escape, as follows. The average
estimates of ω and uNR are 1.9520 and 23.8183, respectively, both close to the
values that would be obtained by regressing ut on πt according to (4) in the Nash
equilibrium.10 However, a string of data occurs in which the correlation of ut and
πt falls, resulting in smaller estimates of both ω and uNR. The policymaker thinks
there is a smaller trade-off between unemployment and inflation, so according to
the targeted rate under the PLM

xPLM
t = αωtuNR,t

1 + αω2
t

, (30)

she reduces the inflation target. As a consequence of the lower target, the slope
and intercept estimates remain depressed, so it takes time for the system to return
to Nash equilibrium values. The period loss function falls during the escape, but
most of the time it is around the Nash equilibrium value of 138.

We note that in Figures 2 and 3, while we observe sharp and deep drops indica-
tive of escapes, the analysis of Kolyuzhnov et al. (2014) may apply. That is,
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usually the gain has to be very small for standard large deviation approximations
to accurately characterize escapes.11 The gain we employ is larger and consistent
with Cho et al. (2002) but the difference in parameter values reinforces the issues
raised in Kolyuzhnov et al. (2014), namely that the gap between Nash and Ramsey
inflation is widened. However, since Evans and Honkapohja (2001, p. 354) we
know that the mean dynamics of such systems point to Ramsey for only small
perturbations around Nash. In our analysis what is important is the drop in tar-
geted inflation in our VALS learning, a feature we focus on in our simulation
results.

Next we consider what happens as we vary the precautionary parameters on
a grid away from (0, 0). We use the same sequence of shocks as those that
generated the time series reported in Figure 2. Under rational expectations the
ALM (2) eliminates any dependence of unemployment on the central bank’s pol-
icy decisions, so the unemployment series is purely a function of the shocks.
Consequently, all of the following plots have the same unemployment series as
in Figure 2. Only the series for the target inflation rate and the realized inflation
rate will depend on the central bank’s policy decisions, which themselves depend
on the precautionary parameters. Since the realized inflation rate differs from the
target inflation only by the addition of noise, we only plot targeted inflation.12

Intuitively, one might expect the policymaker to achieve better results if the
slope is underestimated since that will increase the probability of finding there is
no trade-off between unemployment and inflation, producing a Ramsey outcome.
The time series for targeted inflation that result from setting aω < 0 are shown
in Figure 3.13 However, whether policy will improve if aω is increased above or
below zero depends on the parameters of the model. Differentiating (30) by ω, we
find

∂xPLM
t

∂ωt
= αuNR,t(1 − αω2

t )

(1 + αω2
t )2

, (31)

which is of ambiguous sign. For our values, αω2 = 4 > 1, where ω is the actual
slope of the Phillips curve. Thus a small decrease in the slope estimate will
actually increase the target inflation rate.

Consistent with our expectation, escapes occur more frequently as aω drops
below zero in Figure 3. However, because the inflation rate is higher when the
economy is not escaping, the loss function increases as we decrease aω for small
|aω|. When aω = −10, the economy escapes away from the Nash outcome about
half the time. The period loss function can fall almost to zero during these many
escapes, but these gains are dominated by the higher values of the period loss
function that arise during normal periods when inflation is targeted around 15
instead of 10. Overall, the loss with aω = −10 averages to 152, which is higher
than the loss of 138 if the economy stays at the Nash equilibrium. On the other
hand, when αω = −20, escapes become so frequent that the economy never has
a chance to converge to a steady state. These frequent escapes yield a loss of 80
that is much less than the loss under the Nash equilibrium. In pushing aω so low,
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TABLE 1. Simulation statistics (aω � 0, auNR = 0)

xt ωt uNR,t Loss

aω Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

0 9.5941 0.8625 1.9520 0.2210 23.8183 3.0786 131.5671 28.5367
−10 9.7048 4.4372 1.2522 0.4992 21.6188 9.2691 152.7371 78.5269
−20 5.0913 4.4372 0.5841 0.4145 12.3178 6.3095 80.6732 56.1517

−100 −1.1090 0.4326 −1.0949 0.8120 2.9258 0.4085 40.1454 41.3213
10 7.0840 0.4692 2.2232 0.1949 18.9694 1.7265 89.1978 26.5272
20 5.4414 0.5109 2.4699 0.2395 15.6257 1.4618 68.6634 28.3052

100 1.8490 0.3866 4.5875 0.8745 8.6088 0.7137 42.3360 34.4630

Note: The table documents the mean and standard deviation of each of the series (xt , ωt , uNR,t , and the Loss) as aω is
varied between 0 and 100, while keeping auNR fixed at 0.
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FIGURE 3. Targeted inflation (aω < 0, auNR = 0).

we have passed over the ridge line of the loss surface in Figure 1. Decreasing aω

even further can push the loss down almost to its Ramsey equilibrium value.14 In
the bottom panel of Figure 3, we see that for aω = −100, target inflation is quite
steady at a value slightly less than 0. Summary statistics for target inflation, actual
inflation, unemployment, and the period loss function are summarized in Table 1.
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FIGURE 4. Targeted inflation (aω > 0, auNR = 0).

In contrast, when the policymaker overestimates the Phillips curve slope as in
Figure 4, she thinks the trade-off between unemployment and inflation is so large
that she does not need much inflation to achieve the desired low unemployment.
Escapes never happen in these simulations because she never convinces herself
that the trade-off has gone away. Instead, target inflation remains fairly constant
at a value that decreases with aω. Consequently the loss also decreases with aω for
aω ≥ 0 (over the interval aω ∈ [−100, 100] that we investigated). When aω = 20,
target inflation averages to 5.4, and the period loss function averages to 68. As aω

increases all the way to 100 the average target inflation falls to 1.85, and the period
loss function averages to 42, which is nearly the value of the Ramsey equilibrium.
Indeed, the economy behaves quite similarly for both aω = ±100.

A precautionary bias can also be applied to estimation of the intercept of the
PLM, that is, the natural rate of unemployment. What happens then? What of
VALS learning on the intercept of the PLM? Overestimation of the intercept leads
indirectly to lower values of the slope estimate. As a consequence, the probability
of escape increases. However, if we differentiate (30) by uNR, we find

∂xPLM
t

∂uNR,t
= αωt

1 + αω2
t

> 0, (32)

so overestimation of the intercept also produces higher values for target
inflation.15 The benefit of more frequent escapes will be overwhelmed by the cost
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TABLE 2. Simulation statistics (aω = 0, auNR � 0)

xt ωt uNR,t Loss

auNR Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

0 9.5941 0.8625 1.9520 0.2210 23.8183 3.0786 131.5671 28.5367
−1 7.0459 0.6250 1.9422 0.2182 17.4322 2.1946 88.8257 27.0004

−10 3.1579 0.6051 1.8618 0.2371 7.6556 1.6542 49.1406 31.9521
1 11.0747 6.9616 1.1186 0.4878 24.0052 13.5953 209.9474 175.6188

10 9.8065 8.1298 0.3390 0.1963 32.9897 26.9330 200.9538 217.6791

min L −0.7486 0.5693 −0.6599 0.6202 2.6151 0.6063 39.3381 40.3295

Notes: The table documents the mean and standard deviation of each of the series (xt , ωt , uNR,t , and the Loss) as
auNR is varied between 0 and 100, while keeping aω fixed at 0. The last row of the table provides these statistics for
(aUNR , aω) = (−10, −76).

of higher inflation during normal times for small aUNR , and the period loss func-
tion averages to 210 for aUNR = 1. In contrast, Figure 4(b) in the Supplementary
Material shows that escapes are eliminated when we underestimate the intercept,
but target inflation averages to a lower value of 7.04 when aUNR = −1. In that
case, the period loss function averages to 88. Thus variation around auNR = 0 sug-
gests underestimation of the intercept. This pattern persists if we increase |aUNR |
even further as documented in Table 2.

Finally, Figure 5 shows the time series with the parameters (aUNR, aω) =
(−10, −76) that produce the minimum loss function value of 39.3381 for the
region of the parameter space over which we conducted the simulations. The last
row of Table 2 provides the associated statistics for the variables of interest in this
case. For this last specification of aUNR and aω, which produces the minimum loss,
we are across the ridge line from ROLS learning, and the targeted rate of inflation
averages to −0.7486 (a slight deflation). This suggests that a monetary policy-
maker who learns about the Phillips curve using a constant-gain VALS estimator
can attain a Ramsey-like equilibrium, in contrast to what happens if she restricts
herself to an ROLS estimator as in Cho et al. (2002) in which the precautionary
parameters are implicitly set to zero.

4.3. Escape Probabilities

The analysis above provides simulation results of the model dynamics as the
value of precautionary parameters are altered while holding other parameters
fixed. However, some additional considerations relate to escape probabilities in
the model.16 We calculated numerically the stationary distributions of estimators,
and the target inflation, in order to understand escape probabilities under con-
stant gains. To begin this discussion, Figure 6 shows the distribution of the target
inflation under ROLS learning with no precaution. The distribution is centered at
the Nash value of targeted inflation. Escapes occur because the lower tail of the
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FIGURE 6. Stationary distribution of targeted inflation, no precaution.
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FIGURE 7. Stationary distribution of targeted inflation as slope precaution varied I.

FIGURE 8. Stationary distribution of targeted inflation as slope precaution varied II.

distribution is thick. There is a nonnegligible probability that target inflation will
be much lower than the Nash value, in the vicinity of the Ramsey equilibrium that
targets zero inflation.

Figures 7–11 demonstrate what happens to the distribution of target inflation
as we vary the precautionary parameters. Our first set of plots describe the distri-
bution of targeted inflation as aω is varied in the negative direction while keeping
the precautionary parameter associated with the intercept in the PLM at zero. We
have seen before that as −aω increases in the negative direction, the probability of
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FIGURE 9. Stationary distribution of targeted inflation as intercept precaution varied.

FIGURE 10. Stationary distribution of targeted inflation, nonzero slope precaution, inter-
cept precaution varied I.

escape increases. Naively, one might expect this would show up in the distribution
of targeted inflation as a thicker tail, but that is not what happens. Instead the
stationary distribution of targeted inflation comes to center at values lower than
Ramsey inflation, and a secondary mass develops near zero. As we increase |aω|
to 100, the secondary mass eventually predominates. The second plot, Figure 8,
shows what happens as aω decreases above zero. In this direction, the distribution
becomes centered at lower values of targeted inflation while the lower tail gets
thinner.
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FIGURE 11. Stationary distribution of targeted inflation, nonzero slope precaution, inter-
cept precaution varied II.

Next, we vary only the precautionary parameter associated with the intercept
and plot the resulting distributions of targeted inflation in Figure 8. We find that
deviation from the least-squares value of 0 does generate movement away from
Nash inflation.

Finally, we set the precaution parameter on the slope of the Philips curve to
nonzero values and vary the same for the intercept. In Figure 9, we set aω to 10,
vary aUNR , and plot the resulting distributions of targeted inflation. In Figure 10,
we set aω to −10, vary aUNR , and plot the resulting distributions of targeted infla-
tion. In the former case, we find some mass on Ramsey inflation and in the latter
case we find movement of the distribution away from Nash inflation.

4.4. On the Value of the Precautionary Parameters

What should the values of the precautionary parameters take in reality? This topic
is similar to one which attempts to discover what the value of a constant gain
should be in adaptive learning frameworks that analyze, for instance, asset pric-
ing dynamics using S&P 500 price and dividend data.17 While this is an empirical
issue beyond the scope of this paper, we note that prior to even implementing
empirics, whether and how a particular learning algorithm is to be motivated in
self-referential macroeconomic systems is of first-order importance [see Evans
et al. (2010) who suggest that many algorithms are possible]. We motivated the
use of a VALS algorithm given the potential asymmetry in an objective function
of the policymaker in the otherwise standard endogenous tracking framework of
Cho et al. (2002). That is, the asymmetry suggests that higher-order derivatives
matter, prompting the use of a VALS algorithm. We presented simulation evidence
above that suggests that the use of such an algorithm can reduce long-run inflation
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and that a policymaker’s precaution in learning about fundamentals could lead to
higher welfare. These results were generated by varying the values of the precau-
tionary parameters over a range. However, another investigation is possible by
varying the values of the precautionary parameters over time.

We now let the vector a be a function of time (vs. a constant in the previous
sub-sections). The technical aspects of the evolution of the vector at are specified
in the algorithm provided in the Supplementary Material and we describe it as fol-
lows. Recall the optimal a given by (19) and realize that the policymaker believes
that she has a correctly specified model, but she also knows from Section 3.2 that
the cost of overestimating the slope is different from the cost of underestimating
the slope. Policy should dictate that she should include a precautionary bias when
estimating the slope, but there is uncertainty about the optimal bias. Inserting the
value of the slope ω, which is 2 in the baseline calibration, into (19) suggests that
if our model is properly specified, the bias should be about 0.8.18 We conduct
the following “experiment.” Employ a bias of −0.8 for 10 years, and then try a
bias of 0.8 for another 10 years, and compare the resulting loss to what obtains
with no bias and ordinary least-squares learning. If there is statistically signifi-
cant evidence that the loss is lower with no bias, stay with ordinary least-squares
learning indefinitely. If these first experiments are inconclusive, repeat the trial. If,
however, there is statistically significant evidence that the loss is lower with a bias,
then further such experiments are needed to determine the nonzero bias to employ.

Figure 12 plots the loss and the precautionary parameter on the slope as they
evolve over time in the algorithm outlined above with an experimental period of
T = 120 months and φ∗ = 1.64 (with φ∗ being the relevant critical value). The
plots include the error bands and clearly indicate a movement away from a least-
squares value for aω. This exercise demonstrates that it is entirely possible that the
policymaker will find it useful to employ a VALS estimator since the evolution
of at is away from the ordinary least-squares value of zero (with attendant lower
loss). After 10,000 periods, the policymaker would revert to ROLS in only 16%
of simulations.

We therefore have provided two sets of results. The first based on varying the
values of the precautionary parameters in the calibration. The second by letting
the parameters be a function of time and setting out an algorithm for their evo-
lution based on tests that a hypothetical policymaker could conduct. Both sets
of results point out that the consequences of precautionary learning are to lower
losses and average values of inflation. The latter exercise can be construed to
be a stretch on the information that a policymaker may choose to employ or not
and does raise a number of questions. However, our motivation in conducting both
exercises is to highlight another contribution: our “precautionary” learning results
mimic those of Brainard (1967)’s Conservatism Principle in which a policymaker
acting in a Bayesian fashion would treat parameter estimates as imprecisely esti-
mated. However, the key difference in our analysis is that the adaptive learning
environment is frequentist in nature, that it delivers results similar to those of
Brainard (1967) is something we view as our contribution: even in frequentist
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FIGURE 12. Time varying precautionary parameter for slope.

environments a policymaker may internalize parameter uncertainty via use of a
variance adjusted learning algorithm and thereby act in a manner to that predicted
by Brainard (1967). Both sets of our simulations support this view.

5. CONCLUSION

In replacing expectations with regressions in canonical monetary policy models,
escape from a high inflation steady state is possible if a constant-gain recursive
least-squares estimator is employed by a monetary authority. In this paper we note
that given the reaction function of a policymaker the loss function is asymmetric,
so overestimates and underestimates are not equally costly. We then explore the
escape dynamics that result if the policymaker uses a VALS that biases her esti-
mates in the more advantageous direction. Our results point toward situations in
which such “precaution” on the part of the policymaker could result in the low-
ering of the long-run rate of inflation in an economy characterized by the time
inconsistency of discretionary policy.

Specifically, given the analytically intractable nature of the model, we focus
on simulations that indicate that if there is overestimation of the slope relative to
least squares, we see an increased frequency of the escapes analyzed by Cho et al.
(2002). This is because estimates of the slope of the PLM (a misspecified Phillips
curve) fall often, along with wide variation in estimates of the intercept. This
leads to overshooting dynamics in the targeted rate of inflation. However, this
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behavior is not monotonic. For high degrees of slope underestimation, negative
slope estimates push down estimates of the natural rate to near zero leading to low
values of the targeted rate of inflation. These complex learning dynamics are rich
enough to warrant interpretation since they suggest a possible tension between the
pull of time consistency and the degree to which a policymaker is cautious about
interpreting information, reflected in the estimator employed. Our favored inter-
pretation is that the dynamics can reflect the Conservatism Principle of Brainard
(1967) and our contribution is in part to show exactly that in a frequentist versus
Bayesian environment.

We reemphasize that, while we are introducing these new precautionary
parameters, we are not modifying the economic model that delivers the time-
inconsistency tension, so this does not cut against Occam’s Razor. The more
complex dynamics we present are not obtained by expanding the economic frame-
work; we are focused on examining parameter values for the tools employed to
analyze the model, rather than parameters of the model itself. Indeed, the space
of possible time series estimators is always infinite dimensional, regardless of
whether a policymaker ties his hands by only considering recursive least squares.
With the VALS (or “precautionary”) learning we have described, the policymaker
is efficiently processing the data that come out of the model given that the usual
least-squares case is nested within the broader framework we consider. Doing
so suggests that accounting for the variance of estimates may well assist a pol-
icymaker to escape the tragically high inflation usually expected in economies
characterized by the time inconsistency of discretionary monetary policy. Indeed,
precaution in learning about economic fundamentals, motivated by the potentially
asymmetric nature of the policymaker’s objective function and instantiated via a
constant-gain VALS estimator, may cause a policymaker to target low inflation.

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit https://doi.org/
10.1017/S1365100518000731.

NOTES

1. While we focus on a monetary policy context, models of least-squares learning are useful in a
fiscal policy context as well. For example, Sargent and Wallace (1973), employing perfect foresight,
find that interest rates decrease initially and then return to the steady state in response to an announced,
credible, one-time increase in government spending given a balanced budget constraint. Evans et al.
(2009) instead assume that agents adaptively learn about the path of future interest rates and find
that announced future permanent increases in government spending can lead to low interest rates
before policy implementation and then higher than steady-state interest rates after implementation
before convergence to the steady state. Mitra et al. (2017) examine the size of government spending
multipliers under learning versus rational expectations. Evans and Honkapohja (2003) and Bullard
(2006) provide comprehensive surveys on other applications of the interaction between learning and
policy.

2. See Evans and Honkapohja (1999, 2001), who provide a seminal treatment of this alternative
to rational expectations.
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3. The central bank’s loss function can also be made explicitly asymmetric. Cukierman (2002)
argues that central banks target positive inflation because their loss function is asymmetric, putting
more weight on evading deflation than on evading inflation. For the dynamic consequences of an
explicitly asymmetric loss function in a monetary policy context, see Ruge-Murcia (2003).

4. Cone and Shea (2017) consider differential risk postures of firms versus households when firms
manage risk via the financial sector having employed learning and hedging. They find monetary policy
improves welfare when learning is taxed or hedging subsidized, and that if firms are risk averse over
nominal profits, then interest policies can stabilize prices thereby improving welfare.

5. We will refer to these temporary convergences to a low inflation rate as “escapes,”but the math-
ematics underlying them may be different from the canonical escapes of Cho et al. (2002). From
Kolyuzhnov et al. (2014), we know that the approximation used by Cho et al. (2002) to characterize
escape dynamics analytically breaks down at the large gains that we use for our numerical examples.

6. There is no principal-agent tension between the policy-setting division of the central bank and
the econometrics division since they are both minimizing the same loss function. Willful ignorance
is not entirely without theoretical precedence [see Carrillo and Mariotti (2000)]. Relatedly, within a
managerial compensation context, Sinclair-Desgagne and Spaeter (2011) show that optimal incentive
pay is concave in performance if a principal exhibits precaution over net final wealth. Here we explore
the role of precaution in learning that acts as a constraint on policy making.

7. If the learning algorithm was of the decreasing gain variety, the gain would decrease with t and
the economy would converge to the Nash equilibrium.

8. For robustness, we also plotted the loss surface (L) for a low value of the gain in Figure 1(b)
and at a higher value in Figure 1(c) (corresponding to 400 and 10, periods respectively), provided in
the Supplementary Material.

9. Those panels of Figure 4 for which the horizontal axis runs from 1 to 10, the plotted time series
are the actual values for the 10,000 long simulation. Those panels for which the horizontal axis runs
from 1 to 500, the plotted time series are 20-period averages. We plot 20-period average values for
realized inflation and unemployment in order to smooth out the noise from the two sets of shocks.

10. The misspecification of the model will not bias estimates of the slope but will produce consistent
estimates of uNR + θx∗ rather than uNR.

11. See also Slobodyan et al. (2016) who show in a Phelps model that while a self-confirming
equilibrium is stable, real-time learning diverges except for only very small gain values.

12. Since the contribution of unemployment to the loss is the same, the loss function associated
with a series will move with the variability of inflation around its target value of zero. Hence we plot
targeted inflation as we vary the value of the precautionary parameters over a grid.

13. Corresponding values of the slope and intercept (as in Figure 4) are available from the authors.
14. This will be the minimum average value of the loss function over long periods in a model where

the public has rational expectations.
15. In the Supplementary Material, Figure 3(b) plots results given overestimates of the intercept

with auNR > 0 and Figure 4(b) plots results given underestimates of the intercept with auNR < 0.
16. We thank a referee for comments leading us to the results reported in this section.
17. Carceles-Poveda and Giannitsarou (2008) and Benhabib and Dave (2014) serve as examples of

this literature.
18. The optimal bias was computed assuming the model was properly specified. We have no ana-

lytic expression for the optimal bias when the ALM differs from the PLM, which is what necessitates
this algorithm to learn the optimal bias.
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