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We prove a full completeness theorem for MLL without the Mix rule. This is done by

interpreting a proof as a dinatural transformation in a ∗-autonomous category of reflexive

topological abelian groups first studied by Barr, denoted RTA. In Section 2, we prove the

unique interpretation theorem for a binary provable MLL-sequent. In Section 3, we prove a

completeness theorem for binary sequents in MLL without the Mix rule, where we interpret

formulas in the category RTA. The theorem is proved by investigating the concrete

structure of RTA, especially that arising from Pontrjagin’s work on duality.

1. Introduction

E. S. Bainbridge, P. J. Freyd, A. Scedrov and P. J. Scott (Bainbridge et al. 1990) first pro-

posed the idea that dinatural transformations could provide a semantics for proofs in

a logical system: given a category C in which there exist functors corresponding to the

logical connectives, one must interpret a formula by a multivariant functor, since an atom

can occur both positively and negatively in the syntax. In this setting, they discovered that

a dinatural transformation between multivariant functors provides an interpretation of a

proof. In spite of the peculiarity that dinatural transformations do not allow composition

in general, dinatural transformations provide a powerful semantics for proofs. J-Y. Girard,

A. Scedrov, and P. J. Scott (Girard et al. 1992) have shown that a dinatural interpretation

in the framework of cartesian closed categories is sound with respect to cut-free proofs

in Intuitionistic Logic. Developing the above results, R. F. Blute and P. J. Scott (Blute and

Scott 1996) have proved a full completeness theorem for MLL + Mix using a dinatu-

ral interpretation in the framework of a concrete ∗-autonomous category of reflexive

topological vector spaces. The notion of a full completeness theorem was introduced

by S. Abramsky and R. Jagadeesan (Abramsky and Jagadeesan 1994) in the framework

of categorical logic. Blute and Scott call their fully complete semantics Linear Läuchli

Semantics, since their methods are reminiscent of Läuchli’s semantics (Läuchli 1970) for

Intuitionistic Logic in the sense that the notion of ‘invariance’ plays an essential role in
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both semantics. Developing the methods of Blute and Scott, the author in Hamano (1998)

proved a full completeness theorem using only the condition of invariance while dropping

the requirement of dinaturality.

Recently, there have been several other full completeness results based on dinaturality.

Pratt (Pratt 1997) obtained a full completeness theorem using the Chu construction. Tan

(Tan 1997) obtained several such results using the method of double gluing, a generalization

of Loader’s linear logical predicates (Loader 1994). However, we would suggest that their

methods reveal properties intrinsic to the Chu construction and to the gluing construction,

respectively, rather than to dinaturality, given that these results rely on full completeness

in the category of sets or in a compact closed category. Hence, natural questions arise

as to whether dinaturality can provide a direct uniform method for obtaining the full

completeness theorems in mathematically concrete and natural categories such as those

in Barr (1976) and Barr (1977), which led Barr to establish the general theory of ∗-
autonomous categories in Barr (1979). Of course the methods should be simpler and more

abstract than those in Blute and Scott (1996), and the author’s methods in Hamano (1998).

In Section 2 of this paper we shall partly address this issue in the case of full completeness

for a provable sequent. This is the unique interpretation theorem. We prove, using only

category theoretic methods, that the dinatural interpretation of a proof for a binary

sequent is unique provided that the tensor unit for the given ∗-autonomous category C is

a generator (Theorem 2):

Unique interpretation theorem:

A binary sequent ` Γ is provable ⇒ DinatC( ` Γ) =< π∗ >,

where < π∗ > denotes the module spanned by the interpretation π∗ of the unique (modulo

permutations of inferences) cut-free proof π of M ` N.

Our method does not depend on any concrete property of a given category. Our

procedure for the proof follows the Hyland–Ong method (Hyland and Ong 1993), where

the full completeness theorem for MLL without the Mix rule was proved in terms of a

game semantics. First we shall prove the theorem for a semisimple binary sequent. Then,

in the presence of the canonical natural transformations, called weak distributivities, in a

∗-autonomous category, the theorem for a binary sequent will be derived. When a given

category is a Mix category (cf. Cockett and Seely (1997)), our proof can be considered as

an alternative proof of Blute and Scott’s unique interpretation theorem (cf. Lemma 10.2

of Blute and Scott (1996)).

Although the Mix rule is not contained in the original syntax rules for MLL, the

category RTVEC, which is the framework of the interpretation in Blute and Scott (1996)

and Hamano (1998), satisfies the Mix rule. This means that this category does not provide

a pure semantics for MLL-proofs although this category has very nice mathematical

properties. Hence there arises a natural question as to whether there exists a naturally

occurring ∗-autonomous category in which the dinatural interpretation provides the full

completeness theorem for MLL without the Mix-rule. In Section 3, we shall answer
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this question by showing that the completeness theorem holds for Barr’s ∗-autonomous

category RTA (Barr 1977) of reflexive topological abelian groups. Combining this

completeness theorem with the unique interpretation theorem in Section 2, we shall

obtain the full completeness theorem (without the Mix rule) via a dinatural interpretation

in RTA. In Section 3, we shall first of all observe that Barr’s ∗-autonomous category

RTA of reflexive topological abelian groups does not satisfy the Mix rule, hence RTA
could be a candidate for a complete model of linear logic without the Mix rule. M.

Barr (Barr 1976) formulates this category by investigating the Pontrjagin duality theorem,

which is one of the most well-known duality theorems:

For a locally compact abelian group G, let G⊥ denote the character group of G: that is,

G⊥ := Hom(G,T) with T := R/Z. Then the canonical map G→ G⊥⊥ is an isomorphism.

Although Barr constructs RTA analogously to RTVEC, there are differences between

the two. This is due to the fact that the objects of RTA have more complicated structure

than those of RTVEC, and this fact makes the construction of RTA more difficult.

And the most basic difference for our purpose, that is, as a model of linear logic, is the

following:

In RTA, the tensor unit Z (the additive group of integers), which is the interpretation

of the MLL-constant 1, and the dualizing object T (the torus group), which is the

interpretation of the MLL-constant ⊥, do not coincide.

Moreover, there exists no morphism except 0 from T to Z. Thus, in linear logic

terminology, ⊗ does not imply
..............................................

...........
...................................... , or equivalently RTA does not satisfy the Mix rule.

In contrast with the unique interpretation theorem of Section 2, which is derived by

only using a category theoretical argument, the classical completeness theorem requires

more mathematically concrete notions. This is because for the completeness theorem we

have to construct a concrete counter-model that does not validate the unprovable sequent.

This is also the case in Blute and Scott (1996). The crucial lemma for their result was that

V ⊗V⊥ has no fixed point, except 0, under arbitrary automorphisms of V (cf. Lemma 9.2

of Blute and Scott (1996)).

The fundamental structure used in Section 3 is the duality theorem between the category

CA of compact abelian groups and the category DA of discrete abelian groups: ( )⊥ de-

termines a contravariant functor between CA andDA that ( )⊥⊥ becomes naturally equiv-

alent to the identity functor on each of CA and DA. We also have that for
∏

I T ∈ CA
and

∑
I Z ∈ DA, which are dual to each other,

∏
I T ⊗ (

∏
I T)⊥ ∼= (

∑
I Z)⊥ ⊗∑I Z has

no fixed point except 0 under the permutations of the index set I , assuming I is infinite

(Proposition 5). By using this, we can prove the completeness theorem for a binary sequent

(Theorem 4) of the following form:

Completeness theorem:

A binary sequent ` Γ is not provable ⇒ DinatFRTA( ` Γ) = 0.
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See Definition 2 for the definition of DinatFRTA( ) with F denoting the subcategory

consisting of the countable, compact, connected and locally connected abelian groups and

of their character groups.

As was shown in Pontrjagin (1986), the Pontrjagin duality theorem onF is fundamental

to obtaining the theorem on the category of the locally compact abelian groups. Combining

the unique interpretation theorem of Section 2 and the completeness theorem of Section

3, we shall achieve the full completeness theorem for a sequent of MLL (without the Mix

rule).

2. Dinatural interpretation of provable sequents

In this section, we consider a dinatural interpretation for MLL-sequent in a ∗-autonomous

category C that satisfies the following (a), (b) and (c):

(a) The tensor unit I is a generator for C. (Equivalently, the dualizing object ⊥ is a

cogenerator.)

(b)C has a preadditive structure (that is, each hom-set C(A,B) has an abelian group

structure, which is denoted by f + g).

(c) The abelian group C(A,B) (of (b)) is an R-module over a principal ideal domain R,

and dimR(C(I, I)) = 1 holds.

In this framework, we shall prove (in Theorem 1) that for a binary semisimple sequent

` Γ (see Notation 5)

dimR(DinatC( ` Γ)) = 1.

We shall begin this section by reminding the reader of the definitions of generator and

cogenerator.

Definition 1 (Generator, cogenerator). An object G of C is called a generator if for

arbitrary parallel morphisms h1, h2 : A
→→ B, we have ∀f : G→ A h1 ◦ f = h2 ◦ f implies

h1 = h2.

Dually, an object G of C is called a cogenerator if for arbitrary parallel morphisms

h1, h2 : A
→→ B, we have ∀f : B → G f ◦ h1 = f ◦ h2 implies h1 = h2.

The following are examples of ∗-autonomous categories that satisfy the Condition (a)

above (see Barr (1976), Blute and Scott (1996) and Hamano (1998) for the definitions of

RTVEC and RTMOD(G)).

Example 1.

— The (discrete) field k, which is the tensor unit for RTVEC, becomes a generator for

RTVEC.

— The trivial action (1, k), which is the tensor unit for RTMOD(G), becomes a generator

for RTMOD(G).

— The additive group Z of integers, which is the tensor unit for RTA, becomes a

generator for RTA (see Section 3 of this paper for the definition of RTA).
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Proposition 1. If a ∗-autonomous category satisfies Condition (b) above and the following

(c′), then it satisfies (c).

(c′) The compositions of morphisms satisfy the distributive law: that is, (g1 + g2) ◦ f =

g1 ◦ f + g2 ◦ f and g ◦ (f1 + f2) = g ◦ f1 + g ◦ f2) and the endomorphism ring C(I, I)

of the tensor unit I becomes a principal ideal domain.

(The endomorphism ring of an object A is a ring C(A,A) with its addition and its

multiplication defined by (b) and by the composition, respectively.)

Proof. The endomorphism ring C(I, I) of I has a natural action on C(I, A−◦B) defined

by

C(I, I)×C(I, A−◦ B) - C(I, A−◦ B) [ (h, f) 7→ f ◦ h].
By virtue of the following natural isomorphism, the above defines a C(I, I)-action on

C(A,B):

C(I, A−◦ B) ∼= C(A,B) (1)

Then, automatically, dimR(C(I, I)) = 1 with R := C(I, I), since dimR(R) = 1 for an

arbitrary ring R.

Since the above Conditions (b) and the distributive law of (c′) are part of the definition

of an additive category, the following corollary holds.

Corollary 1. If a ∗-autonomous category is an additive category such that the endomor-

phism ring C(I, I) is a principal ideal domain, then it satisfies the above (b) and (c). In

particular, the categories RTVEC, RTMOD(G) (and RTA in the next section) satisfy

the above Conditions (b) and (c).

In the following, we shall remind the reader of the definition of dinatural interpretations

of proofs of MLL in the framework of a ∗-autonomous category, which is due to Girard

et al. (1992), Blute (1993), and Blute and Scott (1996). In the following, unless otherwise

mentioned, C is an arbitrary ∗-autonomous category (which does not necessarily satisfy

the above Conditions (a), (b) and (c)). D denotes an arbitrary fixed subcategory (not

necessarily ∗-autonomous) containing I and ⊥ of C.

We begin with the definition of dinatural transformations between multivariant functors

whose variables range only over a subcategory D of a ∗-autonomous category C.

Definition 2 (Di(agonalizable)natural transformation). We assume that C denotes a ∗-
autonomous category and D denotes a subcategory containing the tensor unit I and the

dualizing object ⊥. For multivariant functors E(~X; ~Y ), F(~X; ~Y ) : (Dop)n ×Dn → C,

θ ∈ DinatDC (E(~X; ~Y ), F(~X; ~Y ))

is a family of morphisms θ := {θ~A : E(~A;~A) → F(~A;~A) | ~A ∈ Dn} such that for all
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~f : ~A→ ~B in Dn the following hexagonal diagram commutes:

E(~A;~A)
θ~A - F(~A;~A)

�
�
�
�
�

E(~f;~A)
� @

@
@
@
@

F(~A;~f)

R
E(~B;~A) F(~A;~B)

@
@
@
@
@

E(~B;~f)
R �

�
�
�
�

F(~f;~B)

�

E(~B;~B)
θ~B - F(~B;~B)

If θ ∈ DinatDC (E, F), then a family θD of morphisms, which is defined by θD := {θ~D :

E(~D,~D) → F(~D,~D) | ~D ∈ Dn}, becomes an element of DinatDC (E, F), that is, {θDC | θ ∈
DinatC(E, F))} ⊂ DinatDC (E, F).

Throughout this paper, we write DinatC for DinatDC where D is an arbitrary subcategory

containing I and ⊥.

In the following we define an interpretation of the MLL-syntax. We will also define a

formula E(~p) by the diagonalization E∗(~X; ~X) of a multivariant functor

E∗(~X; ~Y ) : (Dop)n ×Dn → C
and define a proof of E(~p) ` F(~p) by the dinatural transformation in

DinatDC (E∗(~X; ~Y ), F∗(~X; ~Y )).

Definition 3 (Syntax interpretation (Girard et al. 1992; Blute 1993; Blute and Scott

1996)).

A formula as a multivariant functor: An MLL-formula E(p1, . . . , pn) built up from atoms

p1, . . . , pn and the constants 1 and ⊥ is interpreted by the diagonalization E∗(~X; ~X) of the

multivariant (contravariant and covariant) functor

E∗(~X; ~Y ) : (Dop)n ×Dn → C,
with ~X := X1, . . . , Xn and ~Y := Y1, . . . , Yn, which is defined inductively as follows:

— If E(~p) := 1, then E∗ = I (a constant functor).

— If E(~p) := ⊥, then E∗ = ⊥ (a constant functor).

— If E(p1, . . . , pn) := pi with 1 6 i 6 n, then E∗(~X; ~Y ) := Yi.

— If E(~p) := E1(~p)⊗ E2(~p), then E∗(~X; ~Y ) := E∗1 (~X; ~Y )⊗ E∗2 (~X; ~Y ).

— If E(~p) := E1(~p)−◦ E2(~p), then E∗(~X; ~Y ) := E∗1 (~Y ; ~X)−◦ E∗2 (~X; ~Y ).

— If E(~p) := E1(~p)⊥, then E∗(~X; ~Y ) := E∗1 (~Y ; ~X)⊥.

A cut-free proof as a dinatural transformation: A proof π of a sequent Γ(~p) ` ∆(~p) is

interpreted by the dinatural transformation

|π| ∈ DinatDC ((⊗Γ)∗(~X; ~Y ), (
..............................................

...........
...................................... ∆)∗(~X; ~Y ))
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as follows:

— If π consists of only an initial sequent p ` p, ` 1, or ⊥ `, then |π| is {idA : A→ A |
A ∈ D}, {idI : I → I}, or {id⊥ : ⊥ → ⊥}, respectively.

— If π is derived from π1 (and π2) by an inference rule with |πi| = {θi~A : (Dop)n ×Dn →
C | ~A ∈ Dn}, then for each ~A, we have θi~A yields the morphism, say θ~A : (⊗Γ)∗(~A;~A)→
(

..............................................
...........
...................................... ∆)∗(~A;~A) by means of the instantiation of ~A to the corresponding functor of the

inference rule. We define |π| by the family {θ~A | ~A ∈ Dn}. Analogously to Section 4 of

Girard et al. (1992), it can be verified that |π| becomes a dinatural transformation.

The set DinatDC ((⊗Γ)∗(~X; ~Y ), (
..............................................

...........
...................................... ∆)∗(~X; ~Y )) is denoted by DinatDC (Γ ` ∆) and is called

the interpretation of a sequent Γ ` ∆.

Let E(p0,~p) denote an MLL-formula built from atoms p0 and ~p. For an object d of D,

E(d, ~X; d, ~X) is defined by

(Dop)n ×Dn d - (Dop)n+1 ×Dn+1

..............
E(d, ~X; d, ~X)

R 	�
�
�
�
�

E(X0, ~X;X0, ~X)

C
where d assigns each object (~A,~B) to the object (d, ~A, d, ~B) and assigns each morphism

(~f,~g) to the morphism (idd,~f, idd,~g). Note that if d is the tensor unit I or the dualizing

object ⊥, then E(d, ~X; d, ~X) becomes a functor-interpretation of the formula E(1,~p) or

E(⊥,~p), respectively.

Let E(p0,~p) and F(p0,~p) be MLL-formulas and θX0 ,~X
∈ DinatDC (E(p0,~p) ` F(p0,~p)). We

define the family of morphisms θd,~X := {θd,~A : E∗(d, ~A; d, ~A) → F∗(d, ~A; d, ~A)}. Then it is

easily checked that

θd,~X ∈ DinatDC (E∗(d, ~X; d, ~Y ), F∗(d, ~X; d, ~Y )).

Hence, if d is the tensor unit I or the dualizing object ⊥, then θd,~X belongs to

DinatDC (E(1,~p) ` F(1,~p))

or

DinatDC (E(⊥,~p) ` F(⊥,~p)),
respectively.

Before the following soundness theorem, we note that if C satisfies Condition (b),

then every DinatDC (E(~X; ~Y ), F(~X; ~Y )) has an abelian group structure; that is, for dinatural

transformations θ and σ, a dinatural transformation θ+σ is defined by (θ+σ)~A := θ~A+σ~A.

Proposition 2 (Soundness (cf. Girard et al. (1992), Blute (1993) and Blute and Scott (1996)).

If ` Γ is provable in MLL, then for an arbitrary ∗-autonomous category C satisfying

Condition (b),

DinatC( ` Γ) 6= 0.
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Proof. Since ` Γ is provable, there exists a cut free proof π of Γ. It is easily proved

that |π| 6= 0 by induction on the length of π.

Notation 1. A tensor context ` Γ( ) is a context such that the hole appears exactly once,

and all connectives that bind the hole are tensor connectives. For example, ` ( ), p⊗q and

` p⊗ ( )⊗ q are tensor contexts, but ` p⊗ ( )⊥ ⊗ q is not a tensor context. In particular,

in the tensor context ` Γ( ), the hole occurs positively.

The following proposition is the crucial proposition in this section.

Proposition 3. Let Γ( ) denote a tensor context and p denote an atom that does not occur

in the context. For C satisfying Conditions (a) and (b),

∀ θX0 ,~X
∈ DinatC( ` Γ(pζ1 ), pζ2 ) [ θζ1 ,~X

= 0 ⇒ θX0 ,~X
= 0 ],

where {ζ1, ζ2} = {I,⊥} with pI := p. Note that in the above, X0 denotes the corresponding

variable to the atom p.

For the proof of Proposition 3, we require the following lemma. We begin by reminding

the reader of the name n(f) of a morphism f, which is defined using the following canonical

morphism:

C(A,B)
∼→ C(I, A−◦ B) [ f 7→ n(f) ] (2)

Then it is easily checked that the following diagram commutes for every f : A → B and

every g : B → C:

B −◦ C �n(g)
I

n(f)- A−◦ B
@
@
@
@
@

f −◦ C
R 	�

�
�
�
�

A−◦ g
A−◦ C

n(g ◦ f)

?

That is, n(g ◦ f) = (A−◦ g) ◦ n(f) = (f −◦ C) ◦ n(g). (3)

The canonical isomorphism (2) with the help of (3) makes the diagram

I
f−→ A

k1−→−→
k2

B

correspond to the diagram

I

n(k1)−→−→
n(k2)

(A−◦ B)
f−◦B−→ (I −◦ B).

Thus we have obtained the following lemma.

Lemma 1. Let C denote a ∗-autonomous category satisfying Condition (a). Then, given

any parallel morphisms h1, h2 : I
→→ (A−◦ B), the following holds:

∀f : I → A [ (f −◦ B) ◦ h1 = (f −◦ B) ◦ h2 ] ⇒ h1 = h2.
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Dually, the following holds:

∀f : B → ⊥ [ (A−◦ f) ◦ h1 = (A−◦ f) ◦ h2 ] ⇒ h1 = h2.

Now we can prove Proposition 3 using the above lemma.

Proof of Proposition 3. First we remind the reader of the definition of a dinatural

transformation θ : I
··→ E(~X; ~X): θ as a family of morphisms {θ~A : I → E(~A;~A) | ~A ∈ Cn}

such that the following diagram commutes for all ~A, ~B and for all ~f : ~A→ ~B:

E(~A;~A)

�
�
�
�
�

θ~A
� @

@
@
@
@

E(~A;~f)

R
I E(~A;~B)

@
@
@
@
@

θ~B
R �

�
�
�
�

E(~f;~B)

�

E(~B;~B)

Diagram 1

Since the hole in Γ( ) occurs positively and p does not occur in Γ( ), a multivariant

functor interpretation of Γ(pζ1 ) is written in the form:{
F(~X;X0, ~X) if ζ1 = I

F(X0, ~X; ~X) if ζ1 = ⊥,
where X0 is the variable corresponding to the atom p. Note that the notation F(~X;X0, ~X)

and F(X0, ~X; ~X) is used to stress that X0 does not occur contravariantly and covariantly,

respectively. Let E(X0, ~X;X0, ~X) denote a multivariant functor interpreting Γ(Pζ1 )
..............................................

...........
...................................... P ζ2 .

Case ζ1 = I

E(X0, ~X;X0, ~X) := X0 −◦ F(~X;X0, ~X).

Diagram 1 with A0 := I , ~A := ~B and~f := ~B implies that the following diagram commutes

for all f0 : I → B0:

I −◦ F(~B; I, ~B)

�
�
�
�
�

θI,~B
� @

@
@
@
@

I −◦ F(~B; f0, ~B)

R
I I −◦ F(~B;B0, ~B)

@
@
@
@
@

θB0 ,~B R �
�
�
�
�

f0 −◦ F(~B;B0, ~B)

�

B0 −◦ F(~B;B0, ~B)
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θI,~B = 0 implies that the upper leg of the diagram is 0. By the commutativity of the

diagram, the lower leg is 0. That is,

∀f0 : I → B0 [ (f0 −◦ F(~B;B0, ~B)) ◦ θB0 ,~B
= 0 ].

From Lemma 1

θB0 ,~B
= 0.

Case ζ1 = ⊥
E(X0, ~X;X0, ~X) := F(X0, ~X; ~X)⊥ −◦X0.

In this case the proof is exactly the dual to that of the previous case: Diagram 1 with

B0 := ⊥, ~B := ~A and ~f := ~A implies that the following diagram commutes for all

f0 : A0 → ⊥:

F(A0, ~A;~A)⊥ −◦ A0

�
�
�
�
�

θA0 ,~A

� @
@
@
@
@

F(A0, ~A;~A)⊥ −◦ f0

R
I F(A0, ~A;~A)⊥ −◦ ⊥
@
@
@
@
@

θ⊥,~A
R �

�
�
�
�

F(f0, ~A;~A)⊥ −◦ ⊥
�

F(⊥, ~A;~A)⊥ −◦ ⊥
θ⊥,~A = 0 implies that the lower leg of the diagram is 0. By the commutativity of the

diagram, the upper leg is 0. That is,

∀f0 : A0 → ⊥ [ (F(A0, ~A;~A)⊥ −◦ f0) ◦ θA0 ,~A
= 0 ].

From Lemma 1

θA0 ,~A
= 0.

Notation 2. For a tensor context ` Γ( ), the sequent ` Γ(∗) is defined as follows: if ` Γ( )

is of the form ` ∆1, ( ),∆2, then ` Γ(∗) is defined to be ` ∆1, 1,∆2; otherwise ` Γ(∗)
denotes the sequent resulting from ` Γ( ) by deleting the hole together with the innermost

tensor that binds the hole. For example, if ` Γ( ) is ` ( ), p⊗ q, then ` Γ(∗) is ` 1, p⊗ q,

and if ` Γ( ) is ` p⊗ ( )⊗ q, then ` Γ(∗) is ` p⊗ q.

If each hom-set of C has a module structure in addition to an abelian group structure

(that is, C satisfies Condition (c)), the following holds as a corollary of Proposition 3.

Corollary 2. For a tensor MLL-context Γ( ) and an atom p that does not occur in the

context and for C satisfying (a), (b) and (c),

dim(DinatC( ` Γ(∗))) > dim(DinatC( ` Γ(pζ1 ), pζ2 )), (4)

where {ζ1, ζ2} = {I,⊥} with pI := p.
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Proof. It suffices to prove the following: for a linearly independent {θ i

X0 ,~X
}ni=1 in

Dinat( ` Γ(pζ1 ), pζ2 ), the family {θ i

ζ1 ,~X
}ni=1 becomes linearly independent in Dinat( ` Γ(∗)).

The assertion is verified as follows:

0 =
∑n

i=1 m
iθζ1 ,~X

:= (
∑n

i=1 m
iθ)ζ1 ,~X

P rop 3⇒ 0 = (
∑n

i=1 m
iθ)X0 ,~X

:=
∑n

i=1 m
iθX0 ,~X

⇒ ∀i(mi = 0)

Corollary 2 is the crucial proposition leading to the unique interpretation theorem for

a semisimple binary sequent (Theorem 1) stating that the interpretation of a provable

sequent coincides with the module spanned by the interpretation of the unique (modulo

permutations of inferences) cut free proof of the sequent. To obtain the theorem, we

introduce the syntactic notation � and restate Corollary 2 in terms of the notation.

Notation 3 (The relation ≡ between sequents). The relation ` A1, . . . , An≡` B1, . . . , Bn for

two sequents is defined if Ai ∼∗ Bσ(i) (i = 1, . . . , n) for some permutation σ on {1, . . . , n},
where ∼∗ denotes the reflexive, symmetric, and transitive closure of the relation ∼ between

formulas such that A ∼ 1⊗ A and A ∼ A⊗ 1.

It is obvious that if ` Γ ≡` ∆, then DinatC( ` Γ) ∼= DinatC( ` ∆).

Notation 4 (the reduction relation � between sequents).

The reduction ` Γ� ` Γ′ is defined if there exists a tensor context Γ̃( ) such that the

following hold:

(i) ` Γ′ =` Γ̃(∗),
(ii) ` Γ ≡` Γ̃(pζ1 ), pζ2 for some atom p with {ζ1, ζ2} = {I,⊥} and pI := p.

For example, Γ� Γ̃(∗) holds in the following (i) and (ii):

(i) (ii)

Γ := p⊥1 , p0, p1 ⊗ p⊥0 ⊗ p2, p
⊥
2 Γ := p0, p

⊥
0

Γ̃( ) := p⊥1 , p1 ⊗ ( )⊗ p2, p
⊥
2 Γ̃( ) := ( )

Γ̃(∗) := p⊥1 , p1 ⊗ p2, p⊥2 Γ̃(∗) := 1

Now that we have introduced the reduction relation, Corollary 2 can be restated as

follows.

Corollary 2′. (Reduction Lemma) If ` Γ is a binary sequent and ` Γ� ` ∆, then for C
satisfying (a), (b) and (c), we have

dim(DinatC( ` Γ)) 6 dim(DinatC( ` ∆)).
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By means of the reduction relation �, every provable semisimple sequent is reduced to

a sequent of an elementary form (Syntactic Lemma 1 below). We shall begin by reminding

the reader of some terminology.

Notation 5 (Semisimple sequent (Hyland and Ong 1993) and simple sequent (Abramsky

and Jagadeesan 1994)). A sequent of the form ` A1, . . . , An is called semisimple if each Ai
is built up from the constants and literals by using tensor connectives only. A semisimple

sequent is called simple if each Ai is either a literal or the tensor product of two literals.

Syntactic Lemma 1. Every MLL-provable semisimple sequent ` Γ is reducible by means

of � to a semisimple provable sequent of the form ` 1⊗ · · · ⊗ 1,⊥, . . . ,⊥.

Proof. We use induction on the number of linear negations in Γ.

Base case: Every MLL-provable sequent where no linear negations occur is of the form

` 1⊗ · · · ⊗ 1,⊥, . . . ,⊥.

Induction case: In this case, there exists a sequent ` Γ1 ≡` Γ and a literal pζ1 that

is bounded by no logical connectives in ` Γ1. Then ` Γ ≡` Γ̃(pζ2 ), pζ1 holds. Hence

` Γ � ` Γ̃(∗).
Now, by virtue of Syntactic Lemma 1 and Corollary 2′, we reach the unique interpre-

tation theorem for binary semisimple sequent as follows.

Theorem 1 (Unique interpretation theorem for binary semisimple sequent). For a binary

semisimple sequent ` Γ that is provable in MLL and C satisfying Conditions (a), (b)

and (c),

dimC(I,I)(DinatC( ` Γ)) = 1.

Proof. By virtue of Syntactic Lemma 1 and Corollary 2′, it suffices to prove the

theorem when ` Γ is of the form ` 1 ⊗ · · · ⊗ 1,⊥, . . . ,⊥. This is obvious from

Dinat( ` 1⊗ · · · ⊗ 1,⊥, . . . ,⊥) = C(I, I) and from (c).

From Theorem 1, we obtain the uniqueness of the interpretation of an arbitrary binary

provable sequent. Our approach from Theorem 1 to Theorem 2 follows that taken by

Hyland and Ong (Hyland and Ong 1993): they reduce a provable binary sequent to

provable semisimple sequents by using a lemma, which is explained in our framework

below. Key tools for the reduction to semisimple sequents in our framework are the

following canonical natural transformations of a ∗-autonomous category C between

functors C3 → C, called ‘weak distributivities’ (cf. Cockett and Seely (1997)):

X ⊗ (Y
..............................................

...........
...................................... Z)→(X ⊗ Y )

..............................................
...........
...................................... Z and X ⊗ (Y

..............................................
...........
...................................... Z)→(X ⊗ Z)

..............................................
...........
...................................... Y .

Now the following lemma of our framework corresponds to the Hyland–Ong lemma (cf.

Proposition 4.5 of Hyland and Ong (1993)).

Lemma 2. For an arbitrary binary provable sequent ` Γ, there exist binary semisimple

provable sequents ` Γ1, . . . ,` Γn such that every dinatural transformation in Dinat( ` Γ)

comes from a dinatural transformation in Dinat( ` Γi) for some i by left composing
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weak distributivities. Note that dinaturality is preserved under compositions with natural

transformations.

By virtue of Theorem 1 with the help of Lemma 2, the following theorem can be

derived, provided that:

(d) The weak distributivities of C are monic.

Theorem 2 (Unique interpretation theorem for a binary sequent).

For a binary sequent ` Γ that is provable in MLL and C satisfying (a), (b), (c) and (d)

dimC(I,I)(DinatC( ` Γ)) = 1.

Proof. From Lemma 2, dim(DinatC(Γ)) 6 dim(DinatC(Γi)) holds for all i. Hence the

assertion holds from Proposition 2 and Theorem 1.

As a corollary of Theorem 2, we obtain the unique interpretation theorem of a binary

provable sequent in MLL+Mix. Since the Mix rule corresponds to the following canonical

natural transformation, called the ‘Mix transformation’

X ⊗ Y → X
..............................................

...........
...................................... Y .

The following Lemma 3 corresponds to the Abramsky–Jagadeesan lemma (Proposition

9 of Abramsky and Jagadeesan (1994)):

Lemma 3. For an arbitrary binary MLL+Mix provable sequent ` Γ, there exist binary

MLL+Mix provable sequents ` Γ1, . . . ,` Γn such that every dinatural transformation in

DinatC( ` Γ) comes from a dinatural transformation in DinatC( ` Γi) for some i by left

composing weak distributivities and Mix transformations.

With the help of the above lemma, the corresponding theorem to Theorem 1 in

MLL+Mix is obtained as a corollary provided that:

(e) The Mix morphisms of C are monic.

Corollary 3 (Unique interpretation theorem, binary case). For a binary sequent ` Γ that

is provable in MLL+Mix and C satisfying (a), (b), (c), (d) and (e),

dimC(I,I)(DinatC( ` Γ)) = 1.

Proof. From Lemma 3, we have dim(DinatC(Γ)) 6 dim(DinatC(Γi)) holds for all i. Hence

the assertion holds from Proposition 2 and Theorem 1.

Note that the category RTVEC of reflexive topological vector spaces satisfies the

conditions of Corollary 3: our proof in this section when applied toRTVEC is considered

as an alternative proof of the unique interpretation theorem of Blute and Scott (cf. Lemma

10.2 of Blute and Scott (1996)).

3. Pontrjagin duality and completeness for MLL (without Mix)

In this section, we shall prove a completeness theorem for MLL without Mix via the

dinatural interpretation in Barr’s ∗-autonomous category RTA of reflexive topological
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abelian groups (Barr 1977). Combined with the results of Section 2, we shall obtain the

full completeness theorem for MLL in the category RTA.

Barr (Barr 1977) formulated RTA, which is a subcategory of the category TG
of topological abelian groups and continuous homomorphisms, based on the famous

Pontrjagin Duality theorem for locally compact abelian groups. LetLCA denote the full

subcategory of locally compact abelian groups. The torus group T := R/Z (with R and

Z denoting the additive groups of reals and integers, respectively) is an object of LCA,

indeed T is isomorphic to the compact circle group consisting of complex numbers of

absolute value 1. For G ∈ LCA, G⊥ denotes the character group of G; that is, G⊥ :=

LCA(G,T). Then G⊥ becomes an object of LCA, taken with point-wise multiplication

and the compact open topology. The Pontrjagin duality theorem states that the canonical

map G → G⊥⊥ becomes an isomorphism of LCA. (See Dikranjan et al. (1989) for the

precise properties of the structure of locally compact abelian groups.) But the category

LCA of locally compact abelian groups has some problematic properties, for example,

for locally compact groups G and H , neither LCA(G,H) nor its tensor product G⊗H is

necessarily locally compact. Inspired by work of Kaplan (Kaplan 1948; Kaplan 1950), Barr

(Barr 1977) constructed a ∗-autonomous categoryRTA, which is still self dual in the sense

of the Pontrjagin duality theorem and which is, furthermore, complete and cocomplete.

We begin this Section with Barr’s definition of the category RTA. For more details,

see Barr (1996). Recently Barr (Barr 1999) presented an elegant Chu construction that

works uniformly to obtain almost all the ∗-autonomous categories (including RTA) of

his monograph Barr (1979).

Definition 4. If L ∈ LCA, let L∗ denote its character group with the compact open

topology. Let SPLC denote the full subcategory of topological abelian groups that are

subgroups of products of locally compact abelian groups. Now, if A ∈ SPLC, then let

A∗ denote its character group. We endow A∗ with the weak topology with respect to

those homomorphisms f∗:A∗ → L∗ where f : L → A is a continuous homomorphism

and L ∈ LCA. For A,B ∈ SPLC, we use A −• B to denote the group of continuous

homomorphisms from A to B topologized as a subspace of B|A| × A∗|B∗|. It follows that

(A −• T) ∼= A∗. Then RTA denotes the full subcategory of reflexive groups of SPLC,

(that is, A∗∗ → A becomes an isomorphism). Then RTA becomes a ∗-autonomous

category with A−◦B defined by (A−•B)∗∗, A⊗B defined by (A−◦B⊥)⊥, where ( )⊥ := ( )−◦T.

The ring Z of integers becomes the unit for the tensor product, and the torus group T

becomes the dualizing object.

Note that, in the above definition, if A,B ∈ LCA, then A −◦ B = A −• B from the

Pontrjagin duality theorem. And for A,B ∈ SPLC, there is a natural surjective map

|A| ⊗ |B| -- |(A−• B∗)∗| [a⊗ b 7→ (f 7→ b(f(a)))]. (5)

Barr’s construction is analogous to his construction in Barr (1976) of the ∗-autonomous

category RTVEC. But there is a crucial difference between the two categories when

considered as models of linear logic. In RTA, the tensor unit Z and the dualizing object

T for RTA do not coincide. Since T and Z are the interpretations of the MLL-constants

⊥ and 1, respectively, one can see that the Mix rule is not satisfied in RTA (Corollary 4).
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Lemma 4 (cf. Lemma 6.1 of Cockett and Seely (1997)). The following is equivalent in

MLL:

1 ⊥ ` 1

2 A⊗ B ` A ..............................................
...........
...................................... B

3
` Γ ` ∆
` Γ,∆

MixRule

Proof. (1)⇒ (2)

A ` A
A ` A,⊥

⊥ ` 1
B ` B

1, B ` B
⊥, B ` B

A,B ` A,B
A⊗ B ` A,B
A⊗ B ` A ..............................................

...........
...................................... B

(2)⇒ (1)

⊥ ` ⊥ ` 1
⊥ ` ⊥⊗ 1 ⊥⊗ 1 ` ⊥ ..............................................

...........
...................................... 1

⊥ ` ⊥ ..............................................
...........
...................................... 1

⊥ ` 1 ` 1
⊥ ..............................................

...........
...................................... 1 ` 1

⊥ ` 1

(2)⇔ (3) This is obvious.

We remind the reader of some basic terminology in group theory, which will be used

in this paper frequently: a group G is called divisible if {xn | x ∈ G} = G holds for every

n = 1, 2, . . ..

Proposition 4. TG(T,Z) = 0.

Proof. T is divisible, while no subgroup except 0 of Z is divisible.

Since T and Z are the interpretations of MLL-constants ⊥ and 1, respectively, the

following is a corollary of Lemma 4.

Corollary 4. The Mix rule is not satisfied in the ∗-autonomous category RTA.

For a family {Ai}i∈I of abelian groups, the direct sum
∑

i∈I Ai denotes the subgroup

of the direct product
∏

i∈I Ai consisting of all (ai) such that ai = 0 for all but a finite

number of indices i ∈ I . It is well known that the following canonical morphisms become

isomorphisms of TG for an arbitrary object B ∈ TG, provided that the direct products

are equipped with their product topologies, and the direct sums are equipped with their

sum topologies:

TG
(
B,
∏
i∈I
Ai

)
∼−→ ∏

i∈I
TG(B,Ai). (6)

TG
(∑

i∈I
Ai, B

)
∼−→ ∏

i∈I
TG(Ai, B). (7)
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Especially (7) with B := T is (∑
i∈I

Ai

)⊥ ∼−→∏
i∈I
A⊥i .

The following is a key property for our completeness theorem.

Fact 1 (cf. Proposition 3.1.2 of Dikranjan et al. (1989)). For a family {Ai}i∈I of topological

abelian groups, if Πi∈IAi is compact or I is countable, then the following canonical

morphisms are isomorphisms (sums and products are given their usual topologies):∑
i∈I
TG(Ai,T)

∼−→ TG
(∏

i∈I
Ai,T

)
(8)

That is, ∑
i∈I

A⊥i
∼−→
(∏

i∈I
Ai

)⊥
.

Suppose that {Ai}i∈I is a family of abelian groups such that each Ai is topologically

isomorphic to a fixed A. Then, given a permutation σ : I → I on the index set, there is

an induced isomorphism both on
∏

i∈I Ai and on
∑

i∈I Ai. For
∏

i∈I Ai, the set of points

fixed by all such isomorphisms is of the form (ai)i∈I where ai = a for all i. But
∑

i∈I Ai
has no fixed points except 0, provided that the index set I is infinite. More generally, if

each Ai depends on the index set I , say AIi , a permutation σ determines the composition

of homomorphisms AIi → AIσ(i) → A
σ(I)
σ(i) , where the first homomorphism is for changing

a component, and the second one is the endomorphism induced by σ on AIσ(i). Thus a

permutation induces the endomorphisms both on
∏

i∈I AIi and on
∑

i∈I AIi . Again,
∑

i∈I AIi
has no fixed points except 0 under all permutations, provided that the index set I is infinite.

The following proposition is crucial for our proof of the completeness theorem for

MLL (cf. Proposition 6 and Theorem 3 below).

Proposition 5. Let {Ai}i∈I be a family of topological abelian groups such that I is infinite

and each Ai is isomorphic to a fixed A. If A is compact or I is countable, then both(∏
i∈I
Ai

)
⊗
(∏

j∈I
Aj

)⊥
and

(∑
i∈I

Ai

)
⊗
(∑

j∈I
Aj

)⊥
have no fixed points, except 0, under the isomorphisms induced by the permutations of

indices I .

Proof. ∏
i∈I Ai ⊗ (

∏
j∈I Aj)⊥ := (

∏
i∈I Ai −◦

∏
j∈I Aj)⊥

∼= {∏j∈I (
∏

i∈I Ai −◦ Aj)}⊥ from (6)

∼= ∑
j∈I (
∏

i∈I Ai −◦ Aj)⊥ from (8).
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∑
i∈I Ai ⊗ (

∑
j∈I Aj)⊥ := (

∑
i∈I Ai −◦

∑
j∈I Aj)⊥

∼= {∏i∈I (Ai −◦
∑

j∈I Aj)}⊥ from (7)

∼= ∑
i∈I (Ai −◦

∑
j∈I Aj)⊥ from (8).

The above indicates that both groups are topologically isomorphic to direct sums of fixed

groups, hence neither group has any points, except 0, fixed under all permutations of

indices I (cf. the paragraph after the above Fact 1).

Note that with the help of (7) and (8),(∑
i∈I

Ai

)⊥
⊗∑

j∈J
A⊥⊥j ∼=

(∏
i∈I
A⊥i
)
⊗
(∏

j∈J
A⊥j
)⊥

holds. In particular, taking into account that T−◦ T ∼= Z and Z−◦ T ∼= T, the following

holds:

(
∑

i∈I Zi)
⊥ ⊗ (

∑
j∈I Zj) ∼= (

∏
i∈I Ti)⊗ (

∏
j∈I Tj)

⊥
∼= ∑

j∈I (
∏

i∈I Ti −◦ Tj)
⊥ from Proposition 5

∼= ∑
j∈I (
∑

i∈I (Ti −◦ Tj))
⊥ from (8)

∼= ∑
j∈I (
∑

i∈I Zi,j)
⊥

∼= ∑
j∈I
∏

i∈I Z⊥i,j from (7)

∼= ∑
j∈I
∏

i∈I Ti,j (9)

Our aim in this section is to obtain a classical completeness theorem using a dinatural

interpretation in the ∗-autonomous category RTA. To obtain the theorem, we shall

investigate a specific subcategory D of RTA in the framework DinatDRTA (cf. Definition

2 of Section 2), which we will show is sufficient for the completeness theorem. Remember

that DinatDRTA is described as follows: we restrict the interpretation of formulas in such a

way that the variables of multivariant functors (whose diagonalizations are interpretations

of formulas) range over a fixed subcategory D of RTA. Note that D is not necessarily

∗-autonomous. Then the resulting interpretations of the cut-free MLL-proofs of Γ belong

to DinatDRTA( ` Γ).

Our techniques are based on the following well-known facts due to Pontrjagin (Pontr-

jagin 1986):

(i) There is Pontrjagin correspondence between the closed subgroups of a locally compact

abelian group and those of its character group.

(ii) There is a duality between compact abelian groups and discrete abelian groups.

The first was established by Pontrjagin (Pontrjagin 1986) through his proof of the duality

theorem. The second was the most fundamental but important restriction of his duality
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theorem of the locally compact abelian groups. (i) and (ii) are stated more precisely as

follows (Fact 2 and Fact 3).

Fact 2 (Pontrjagin correspondence). For a subgroup H of a locally compact abelian group

G ∈ LCA, we define AG(H) := {χ ∈ G⊥ | χ(h) = 1 ∀h ∈ H}, which is a subgroup of

G⊥, called the annihilator of H in G. The annihilator gives a one-to-one correspondence

between the closed subgroups of G and those of G⊥, as the following hold for any closed

subgroup H:

1 H = AG⊥(AG(H)),

2 (G/H)⊥ ∼= AG(H),

3 G⊥/AG(H) ∼= H⊥.

Let CA denote the subcategory of compact groups of LCA. Then the Pontrjagin

duality theorem restricted to the category CA gives a duality between CA and the

category DA of the discrete abelian groups. Obviously, we can treat objects of DA
algebraically, as there is no topology to consider. We remind the reader of several key

algebraic properties of abelian groups. The reader may refer to Fuchs (1970) for the

general theory of abelian groups: an abelian group is said to be free if it is a direct sum

of a finite or infinite number of infinite cyclic groups. For example,
∑

I Z is free for an

arbitrary index I , but
∏

I Z is not free for an infinite index I . Interestingly, it is known

that any countable subgroup of
∏

I Z is free. For a ring Z of integers, an abelian group

G has a natural Z-module structure defined by n · g := sgn(n)(

|n|−times︷ ︸︸ ︷
g + · · ·+ g) for n ∈ Z and

g ∈ G, where sgn(n) denotes the sign of an integer n. A subset of an abelian group is

said to be linearly independent if for every finite subset it is linearly independent over Z.

Every abelian group has a maximal independent subset and it turns out that any two

such subsets have the same cardinality, which we call the rank of G. An abelian group

is said to be finitely generated if it is spanned by a finite subset (not necessarily linearly

independent) over Z. An elementary but important result is the structure theorem for

finitely generated abelian groups: that is, every finitely generated abelian group is a direct

sum of a finite number of cyclic groups; that is, has a finite basis over Z (cf. Theorem 15.5

of Fuchs (1970)). An abelian group G is called torsion free if n ·g 6= e for all g 6= e in G and

for all n 6= 0 ∈ Z. An important notion, property L (cf. (A) page 260 of Pontrjagin (1986)),

is defined as follows: a group H ∈ DA is said to have property L if every finite subset of

H is contained in a finitely generated subgroup S such that G/S is torsion free.

The Pontrjagin duality theorem between compact abelian groups and discrete abelian

groups can now be described as follows: ( )⊥ is a contravariant functor between CA and

DA such that ( )⊥⊥ is naturally equivalent to the identity functor on each of CA and

DA. The following fact is a well-known consequence of the theorem.

Fact 3 (Pontrjagin duality between CA and DA). Let {ζ1, ζ2} = {1,⊥} with G1 := G.

1 Every C ∈ CA is topologically isomorphic to a closed subgroup of a product
∏

i∈I Ti
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with Ti
∼= T for all i ∈ I: that is, there exists a monomorphism of CA

C ⊂ -
∏
i∈I

Ti.

Dually, taking into account that (
∏

I T)⊥ ∼= ∑
I T⊥ ∼= ∑

I Z and by the Pontrjagin

correspondence (3), every D ∈ DA is isomorphic to a homomorphic image of
∑

i∈I Zi

with Zi
∼= Z for all i ∈ I: that is, there exists an epimorphism of DA∑

i∈I
Zi

-- D.

2 The following are equivalent (cf. Corollary 3.3.8 of Dikranjan et al. (1989)):

— Gζ1 ∈ CA is connected.

— Gζ2 ∈ DA is torsion free.

3 The following are equivalent (cf. Theorem 48 of Pontrjagin (1986)):

— Gζ1 ∈ CA is locally connected.

— Gζ2 ∈ DA has property L (cf. the paragraph below Fact 2).

4 As a special case of the above (3) where Gζ2 is torsion free with finite rank, the following

is equivalent (cf. (B) of page 260 of Pontrjagin (1986)):

— Gζ1 ∈ CA is locally connected.

— Gζ2 ∈ DA is finitely generated.

CACLC denotes the full subcategory of connected, locally connected groups of CA.

CACLCω denotes the subcategory of countable objects of CACLC. Then our complete-

ness theorem will be obtained with respect to a dinatural interpretation DinatFRTA where

F denotes the subcategory of LCA consisting of the objects both from CACLCω and

from (CACLCω)⊥, where (CACLCω)⊥ denotes the category consisting of the character

groups of the objects of CACLCω . See the figure below, where the above subcategories

of LCA are illustrated:
RTA

Locally Compact;

LCACompact;

CA

Compact

+ Connected

Compact

+ Locally Connected

Compact

+ Connected

+Locally Connected;

CACLC
CACLCω

���

�
�

Q
Q

PP ��

XXX

�
�

Q
Q

PP ��

Discrete;

DA

Discrete

+ Torsion free

Discrete

+ Property L

Discrete

+ Torsion free

+ Property L;

(CACLC)⊥

(CACLCω)⊥
F

We prove the following lemma on an object A of F. Proposition 5 together with the

lemma becomes crucial in proving the completeness theorem.
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Lemma 5. Let A ∈ CACLCω , and assume that we have a monomorphism i : A ↪→∏
ω T.

Then every morphism f : A→ B ofLCA can be extended to a morphism f̂ :
∏

ω T→ B

of LCA in such a way that the following diagram commutes:∏
ω

T
..............

∃ f̂
R

A

i

∪

6

∀ f - B

Dually (by virtue of Fact 3 (1)), if A ∈ (CACLCω)⊥ and we have an epimorphism

j :
∑

ω Z →→ A. Then every morphism f : B → A of LCA can be coextended to

f̃ : B →∑
ω Z in such a way that the following diagram commutes:∑

ω

Z

I
..............

∃ f̃

A

j

??
� ∀ f B

Proof. We prove the latter assertion. It suffices to prove that ker(j) is a direct summand

of
∑

ω Z (note that the proof is purely algebraic since A and
∑

ω Z are discrete). If we

prove this, then
∑

ω Z ∼= ker(j)⊕A holds since j(
∑

ω Z) = A, and we may define f̃ by the

composition of f and the canonical inclusion of A into the summand of
∑

ω Z. It is well

known that if B is a subgroup of A such that A/B is free, then B is a direct summand of

A (cf. Theorem 14.4 of Fuchs (1970)), thus it is sufficient to prove in the following that

(
∑

ω Z)/ker(j) is free.

By the structure theorem for finitely generated abelian groups (cf. the paragraph after

Fact 2), every finitely generated torsion free abelian group is free. In the case of countable

abelian groups, the following criterion due to Pontrjagin is well known.

Fact 4 (Pontrjagin’s criterion (cf. Theorem 19.1 of Fuchs (1970))). A countable torsion

free group is free if and only if every subgroup of finite rank is free.

We must first show the following lemma.

Lemma 6. Let D be a discrete abelian group that is torsion free. If D has property L (cf.

the paragraph below Fact 2), then every subgroup of D with finite rank is free.

Proof. From Fact 3 (2) the compact group D⊥ becomes locally connected. Let H be

such a subgroup of D that has a finite rank. Then H⊥ is locally connected, since H⊥ is a

quotient group of locally connected D⊥ by Pontrjagin correspondence (3). By Fact 3 (4),

H is finitely generated. This, together with the fact that H is torsion free, implies that H

is free by the structure theorem on finitely generated abelian groups.

We will now use the above Lemma 6 and Fact 4 to prove that (
∑

ω Z)/ker(j) is free: since
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A is connected and locally connected, A is discrete torsion free and has the property L.

By Lemma 6 every subgroup of A with a finite rank is free. This implies by Fact 4 that

A is free. Hence (
∑

ω Z)/ker(j) is free because (
∑

ω Z)/ker(j) ∼= j(
∑

ω Z) = A.

The following is a corollary of Lemma 5.

Corollary 5. For arbitrary C ∈ CACLCω and D ∈ (CACLCω)⊥,

TG(C,D) = 0.

Proof. From Fact 3 (1) and the duality between CA and DA, fix a monomorphism

i : C ↪→∏
ω T and an epimorphism j :

∑
ω Z→→ D. Lemma 5 implies that for an arbitrary

f : C → D there exists f̃ : C →∑
ω Z such that f = j ◦ f̃. Again Lemma 5 tells us that

for the f̃ there exists
̂̃
f :
∏

ω T→∑
ω Z such that f̃ =

̂̃
f ◦ i. Hence f = j ◦ ̂̃f ◦ i – see the

diagram below: ∏
ω

T .............

̂̃
f
-
∑
ω

Z

..
..

..
..

..
..

..

f̃
�

C

i

∪

6

f
- D

j

??

Now
̂̃
f ∈ TG(

∏
ω T,

∑
ω Z) = 0 because

∏
ω T is divisible, while 0 is the only divisible

subgroup of
∑

ω Z. This yields f = 0.

Before going to the main result, we first remind the reader of Plotkin’s observation,

first mentioned in Blute and Scott (1999), which we shall use later.

Lemma 7 (Plotkin’s observation (cf. Proposition 2.5 of Blute and Scott (1999))). For an

arbitrary isomorphism f : ~A→ ~B ∈ Dn, if

θ ∈ DinatDC (E(~X; ~Y ), F(~X; ~Y )),

the following diagram commutes:

E(~A;~A)
θ~A- F(~A;~A)

E(~B;~B)

E((~f)−1;~f)

?
θ~B- F(~B;~B)

F((~f)−1;~f)

?

For the remainder of this section, all sequents considered are binary and semisimple (cf.

Notation 5 in Section 2). We shall remind the reader of the proof structure representation

of a binary sequent: A binary MLL-sequent ` Γ corresponds to a unique proof structure

without cut links. Moreover, if a sequent is semisimple then the Danos–Regnier condition

is simplified, since there exists only one switching in the proof structure. Hence, in the

following we often identify a binary semisimple sequent with its uniquely corresponding
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proof structure, which we call the associated proof structure, and we often say that a

sequent is connected (respectively, has a cycle) when the corresponding proof structure is

connected (respectively, has a cycle) with respect to its uniquely determined switching.

The following is a basic syntactic lemma in this section for a semisimple sequent that

has a cycle. We shall recall for the reader Notation 4 in Section 2 for the definition of the

reduction relation �.

Syntactic Lemma 2. Every semisimple sequent ` Γ that has a cycle is reducible by means

of � to a simple sequent ` ∆ that has a cycle.

Proof. A border vertex in a proof structure is a vertex to which only one link is attached.

If the associated proof structure of ` Γ has a border vertex, then there exists an atom

p and a context Γ̃( ) such that ` Γ ≡` Γ̃(pζ2 ), pζ1 ; hence ` Γ� ` Γ̃(∗) and ` Γ̃(∗) is

semisimple and has a cycle. If the associated proof structure of ` Γ has no border vertices,

` Γ must be simple.

For example, the following is a reduction sequence Γ�Γ1�Γ2, starting from a semisimple

sequent Γ that has a cycle and terminating in a simple sequent Γ2 that still has a cycle:

Γ :=

α α⊥p2 p⊥2 p⊥1 p1

α⊗ p2
aaaaa

p⊥2 ⊗ p⊥1

β⊥ β

�
�
�

A
A
A

�
�
�

@@ �� @@ ��

α⊗ p2 ⊗ β⊥ β ⊗ α⊥

5

Γ :=

α α⊥p2 p⊥2

α⊗ p2
aaaaa

β⊥ β

�
�
�

A
A
A

�
�
�

@@ ��

α⊗ p2 ⊗ β⊥ β ⊗ α⊥

5

Γ2 :=

α α⊥β⊥ β

�
�
�

A
A
A

�
�
�

α⊗ β⊥ β ⊗ α⊥

PPPPPPP

Proposition 6. Let ` Γ be a a semisimple connected binary sequent that has a cycle,

DinatFRTA( ` Γ) = 0.
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Proof of Proposition 6. By virtue of Syntactic Lemma 2 and Corollary 2′, it suffices to

prove the lemma for a simple sequent that has a cycle: that is, we shall prove

DinatFRTA((p1 −◦ p2)⊗ · · · ⊗ (pn −◦ pn+1) ` p⊥1 ⊗ pn+1) = 0. (10)

We first need the following lemma.

Lemma 8 (cf. Lemma 9.3 of Blute and Scott (1996)). For an arbitrary θ from the

left-hand side of (10) and an arbitrary object X, if θXn+1 (idX, . . . , idX) = 0, then

∀f1 · · · fnθXn+1 (f1, . . . , fn) = 0 with fi (i = 1, . . . , n) an endomorphism of X.

Now take θ from the left-hand side of (10). We show that θ~A = 0 for an arbitrary
~A ∈ Fn+1. We consider three cases:

Case 1: ~A ∈ (CACLCω)n+1.

From Fact 3 (1), for each k there exists a monomorphism fk : Ak ↪→ ∏
i∈I Ti. Then

consider the hexagonal diagram with Bk := B :=
∏

I Ti and fk described in the above:

(A1 −◦ A2)⊗ · · · ⊗ (An −◦ An+1)
θ~A - A⊥1 ⊗ An+1

@
@
@
@
@

A⊥1 ⊗ fn+1

R
(B −◦ A2)⊗ · · · ⊗ (B −◦ An+1)

(f1 −◦ A2)⊗ · · · ⊗ (fn −◦ An+1)

6

A⊥1 ⊗ B

�
�
�
�
�

f⊥1 ⊗ B
�

(B −◦ B)⊗ · · · ⊗ (B −◦ B)

(B −◦ f2)⊗ · · · ⊗ (B −◦ fn+1)

? θBn+1 - B⊥ ⊗ B

By virtue of the natural surjective map of (5), we denote every element in X ⊗ Y by

x ⊗ y with x ∈ X and y ∈ Y , although it is not uniquely denoted in general. By Propo-

sition 5, B⊥ ⊗ B := (
∏

j∈I Tj)
⊥ ⊗ (

∏
i∈I Ti)

(9)∼= ∑
j∈I
∏

i∈I Tij has no fixed point except

0 under the permutations of I . This implies by Lemma 7 (Plotkin’s observation) that

θBn+1 (idB, . . . , idB) = 0. By Lemma 8, we obtain that θBn+1 = 0. Then the lower leg of

the diagram is 0. Now given an arbitrary hi ∈ Ai −◦ Ai+1, from Lemma 5 there ex-

ists an extension ĥi ∈ Bi −◦ Ai+1 of hi. Thus hi = (fi −◦ Ai+1) ◦ ĥi. This implies that

∀hi ∈ Ai −◦ Ai+1((A⊥1 ⊗ fn+1) ◦ θ~A(h1, . . . , hn)) = 0. Since fn+1 is monic, θ~A = 0.

Case 2: ~A ∈ ((CACLCω)⊥)n+1.

In this case, the proof is exactly the dual to that of Case 1. From Fact 3 (1), for each k

there exists an epimorphism fk :
∑

Z →→ Ak . Then consider the hexagonal diagram with
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Ak :=
∑

I Z := C , Bk := Ak and fk described in the above:

(C −◦ C)⊗ · · · ⊗ (C −◦ C)
θCn+1 - C⊥ ⊗ C

@
@
@
@
@

C⊥ ⊗ fn+1

R
(A1 −◦ C)⊗ · · · ⊗ (An −◦ C)

(f1 −◦ C)⊗ · · · ⊗ (fn −◦ C)

6

C⊥ ⊗ An+1

�
�
�
�
�

f⊥1 ⊗ An+1

�

(A1 −◦ A2)⊗ · · · ⊗ (An −◦ An+1)

(A1 −◦ f2)⊗ · · · ⊗ (An −◦ fn+1)

? θ~A - A⊥1 ⊗ An+1

First consider the uppermost morphism θCn+1 . Since C⊥ ⊗ C := (
∑

i∈I Zi)
⊥ ⊗∑j∈I Zj

(9)∼=∑
j∈I
∏

i∈I Tij has no fixed point except 0 under the permutations of I , exactly the same

proof as that of Case 1 yields θCn+1 = 0. Then the upper leg of the diagram is 0. Now

consider the lowest morphism θ~A. Given an arbitrary hi ∈ Ai −◦ Ai+1, from Lemma 5

there exists a coextension h̃i ∈ Ai −◦ C of hi. Thus hi = (Ai −◦ fi+1) ◦ h̃i. This implies

∀hi ∈ Ai −◦ Ai+1((f⊥1 ⊗ An+1) ◦ θ~A(h1, . . . , hn) = 0). Since f1 is epic, θ~A = 0.

Case 3: Remaining Case.

Since the sequent is MLL-equivalent to (p1 −◦ p2)⊗ · · · ⊗ (pn −◦ pn+1)⊗ (pn+1 −◦ p1) `,

there exists k+ 1 (mod n+ 1) such that Ak ∈ CACLCω and Ak+1 ∈ (CACLCω)⊥. Thus

Ak −◦ Ak+1 = 0 from Corollary 5. Hence θ~A = 0.

Using Proposition 6, we shall now prove the following completeness theorem for a

binary semisimple sequent.

Theorem 3 (Completeness theorem for a binary semisimple sequent). If a binary semisimple

sequent ` Γ is not provable in MLL, then

DinatFRTA( ` Γ) = 0.

Proof.

The case where ` Γ is connected: From Danos and Regnier’s condition, the corresponding

proof structure of ` Γ must have a cycle. Hence the assertion holds by Proposition 6.

The case where ` Γ is disconnected: In this case ` Γ is of the form ` Γ1, . . . ,Γn+1 with

Γi (i = 1, . . . , n + 1) being connected and n > 1. From the two Syntactic Lemmas (in

Section 2 and Section 3), each ` Γi is reduced to a connected ` ∆i that is either of the

form ` ⊗1 or an unprovable simple sequent, depending on whether ` Γi is provable or

not. Then ` Γ1, . . . ,Γn+1 is reduced to ` ∆1, . . . ,∆n+1. On the other hand, from Corollary

2′, dim(DinatFRTA( ` Γ1, . . . ,Γn+1 )) 6 dim(DinatFRTA( ` ∆1, . . . ,∆n+1 )). Hence it suffices

to prove the theorem for ` ∆1, . . . ,∆n+1. Without loss of generality we may assume, there

exists m with 0 6 m 6 n such that if 1 6 j 6 m, then ` ∆j is of the form ` ⊗1 and that if

m < j 6 n+ 1, then ` ∆j is an unprovable simple sequent.

https://doi.org/10.1017/S0960129599003072 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599003072


Pontrjagin duality and full completeness 255

If m > 2, by virtue of Proposition 4, the theorem for ` ∆1, . . . ,∆n+1 is proved by

observing: DinatRTA( ` ∆1, . . . ,∆n,∆n+1) := ⊗(∆⊥n+1) −◦ · · · −◦ ⊗(∆2
⊥) −◦ (

..............................................
...........
...................................... ∆1) =

⊗(∆⊥n+1)−◦ · · · −◦ I⊥ −◦ I ∼= ⊗(∆⊥n+1)−◦ · · · −◦ ⊥ −◦ I ∼= ⊗(∆⊥n+1)−◦ · · · −◦ 0 ∼= 0.

We now assume m 6 1 in the following. Because ` ∆i with m < i 6 n + 1 is an

unprovable simple sequent, it suffices to prove the following assertion with k > 1:

DinatFRTA( ⊗ki=1 [(pi,1 −◦ pi,2)⊗ · · · ⊗ (pi,ni −◦ pi,ni+1)] `..............................................
...........
...................................... k
i=1 (p⊥i,1 ⊗ pi,ni+1), (⊗1)m) = 0.

In the above, (⊗1)m denotes ⊗1 if m = 1 and does not exist if m = 0. We prove in the

following that θ~A1···~Ak = 0 holds for an arbitrary dinatural transformation θ from the

left-hand side of the above equation. The proof is divided into the following three cases

according to objects ~A1. The proof of each case is just a straightforward generalization of

the corresponding case of the proof of Proposition 6:

Case 1: ~A1 ∈ (CACLCω)n1+1.

Let Ei(X1, . . . , Xni+1) := (X1−◦X2)⊗· · ·⊗ (Xni−◦Xni+1). Consider the following hexagonal

diagram with {
B1,j := B :=

∏
I1

T and f1,j : A1,j ↪→∏
I1

T if i = 1

Bi,j := Ai.j and fi,j := idAi,j if i 6= 1.

In the above the existence of the above f1,j is guaranteed by Fact 3 (1).

⊗ki=1E
∗
i (~Ai; ~Ai)

θ~A1···~Ak- ..............................................
...........
...................................... k
i=1 (A⊥i,1 ⊗ Ai,ni+1)

..............................................
...........
...................................... Zm

@
@
@
@
@

..............................................
...........
...................................... k
i=1 (A⊥i,1 ⊗ fi,ni+1)

..............................................
...........
...................................... Zm

R
⊗ki=1E

∗
i (~Bi; ~Ai)

⊗ki=1E
∗
i (~fi; ~Ai)

6

..............................................
...........
...................................... k
i=1 (A⊥i,1 ⊗ Bi,ni+1)

..............................................
...........
...................................... Zm

�
�
�
�
�

..............................................
...........
...................................... k
i=1 (f⊥i ⊗ Bi) ..............................................

...........
...................................... Zm

�

⊗ki=1E
∗
i (~Bi; ~Bi)

⊗ki=1E
∗
i (~Ai;~fi)

?
θ~B1···~Bk- ..............................................

...........
...................................... k
i=1 (B⊥i,1 ⊗ Bi,ni+1)

..............................................
...........
...................................... Zm

Note that Zm denotes Z if m = 1 and denotes ⊥ if m = 0.

First consider the lowest morphism θ~B1
~B2···~Bk := θ(B)n1+1 ~A2···~Ak . We remind the reader that

every action ρ both on X and on Y defines the conjugate action on X −• Y : that is,

fρ(x) := ρ(f(ρ−1(x))) for f ∈ X −• Y and for x ∈ X. Since C
..............................................

...........
...................................... D ∼= (D⊥ −• C)∗∗,

we have the following provided that actions considered are trivial on the interpretation

T of ⊥: if an arbitrary non-zero element of C has an action that does not fix the

element but fixes every element of D, then an arbitrary non-zero element of C
..............................................

...........
...................................... D

has an action that does not fix the element. Now, since the permutations of I1 fix

every element of (
..............................................

...........
...................................... k
i=2 (B⊥i,1 ⊗ Bi,ni+1))

..............................................
...........
...................................... Zm, Proposition 5 implies that the codomain

((
∏

I1
T)⊥ ⊗∏I1

T)
..............................................

...........
...................................... ((

..............................................
...........
...................................... k
i=2 (B⊥i,1 ⊗ Bi,ni+1))

..............................................
...........
...................................... Zm) of θ(B)n1+1 ~A2···~Ak has no fixed point

except 0 under the permutations of I1.

On the other hand, the element (id)n1+1 ⊗ ~h2 ⊗ · · · ⊗ ~hk in the domain of θ(B)n1+1 ~A2···~Ak is
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fixed under the permutations of I1. This implies by Lemma 7 (Plotkin’s observation) that

for all ~h2 · · · ~hk ,
θ(B)n1+1 ~A2···~Ak ((id)

n1+1, ~h2, . . . , ~hk) = 0.

On the other hand, we can show by the same proof of Lemma 8 that

θ(X)n1+1 ~A2···~Ak ((id)
n1+1, ~h2, . . . , ~hk) = 0⇒ ∀~h1 {θ(X)n1+1 ~A2···~Ak (

~h1, ~h2, . . . , ~hk) = 0}.
We have thus obtained that θ(B)n1+1 ~A2···~Ak = 0, and hence that the lower leg of the diagram

is 0.

Secondly, consider the uppermost morphism θ~A1···~Ak of the diagram and an arbi-

trary ~h1 ⊗ ~h2 ⊗ · · · ⊗ ~hk in its domain. By virtue of Lemma 5, there exist extensions

ĥ1,1, . . . , ĥ1,n1+1, say
~̂
h1, of ~h1 := h1,1, . . . , h1,n1+1 to B1,1 := · · · = B1,n1+1 :=

∏
ω T. Then

(⊗ki=1E
∗
i (~fi; ~Ai))(

~̂
h1⊗~h2⊗· · ·⊗~hk) = ~h1⊗~h2⊗· · ·⊗~hk . This yields θ~A1···~Ak◦(⊗ki=1E

∗
i (~fi; ~Ai)) = 0.

Since f1,n1+1 is monic, θ~A1···~Ak = 0.

Case 2: ~A1 ∈ ((CACLCω)⊥)n1+1.

In this case the proof is exactly the dual of that of Case 1. Consider the hexagonal

diagram of Case 1 with ~Ai and ~Bi exchanged and the following setting:{
B1,j := C :=

∑
I1

Z and f1,j :
∑

I1
Z→→ A1,j if i = 1

Bi,j := Ai.j and fi,j := idAi,j if i 6= 1.

Since ((
∑

I1
Z)⊥ ⊗∑I1

Z)
..............................................

...........
...................................... (

..............................................
...........
...................................... k
i=2 (B⊥i,1 ⊗ Bi,ni+1)

..............................................
...........
...................................... Zm) of θCn1+1 ~A2···~Ak has no fixed

point except 0 under the permutations of I1 and f1,n1+1 is epic, θ~A1···~Ak = 0 is obtained.

Case 3: Remaining Case.

The proof is the same as that of Case 3 of Proposition 6.

By virtue of Theorem 3 the following theorem can now be proved.

Theorem 4 (Completeness theorem for a binary sequent). If a binary sequent ` Γ is not

provable in MLL, then

DinatFRTA( ` Γ) = 0.

Proof. Take an arbitrary θ from the left-hand side of the above. By left composing

weak distributivities (cf. the paragraph below Theorem 1 of Section 2) to θ, we obtain

θ̃ ∈ DinatFRTA( ` Γ̃) such that ` Γ̃ is semisimple (and of course is not provable).

Theorem 3 implies that θ̃ = 0. Since the weak distributivities in RTA are monic, we

have θ = 0.

Now, combining the unique interpretation theorem (Theorem 2 of Section 2) and

the completeness theorem (Theorem 4 of Section 3), we immediately achieve our full

completeness theorem for MLL (without the Mix rule). Our semantic framework for an

interpretation of an arbitrary sequent is the Blute–Scott notion of associated binary space

(Blute and Scott 1996) defined as follows.

Definition 5 (ABS (cf. Blute and Scott (1996))). For a balanced sequent Γ ` ∆, there
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exists the finite list Γ1 ` ∆1, . . . ,Γn ` ∆n of binary sequents of which Γ ` ∆ is a substitution

instance. Then we define a new R-module ABS(Γ ` ∆) by

ABSDC (Γ ` ∆) :=

n∐
i=1

DinatDC (Γi ` ∆i).

Then the following is our full completeness theorem for MLL without the Mix rule.

Theorem 5 (Full completeness theorem for MLL). The R-module ABSFRTA( Γ ` ∆)

has a basis consisting of the interpretations of the cut free proofs of Γ ` ∆ in MLL.

Proof. If Γi ` ∆i is provable, then dimR(DinatRTA( Γi ` ∆i)) = 1 by Theorem 2. If

Γi ` ∆i is not provable, then dimR(DinatFRTA( Γi ` ∆i)) = 0 by Theorem 4.

4. Future work

Recently, Barr (Barr 1999) presented an elegant new Chu construction that works uni-

formly to obtain almost all the ∗-autonomous categories (including RTA) of his mono-

graph Barr (1979). To capture our results in terms of this new Chu construction may help

to improve our results, especially our restriction that the sequents considered are binary,

which is also the case for Blute and Scott (Blute and Scott 1996). Improvements of the

Blute–Scott results in RTVEC (as a model of MLL+Mix) were achieved by Tan (Tan

1997).

An extension of our method in this paper to non-commutative linear logic would be

interesting since the only known non-commutative full completeness is Blute and Scott’s

for Cyclic Linear Logic + Mix (Blute and Scott 1999), which is also analyzed in the

author’s Hamano (1998).
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