
DESARGUES, PASCAL AND KIRKMAN 125

Desargues, Pascal and Kirkman

JOHN R. SILVESTER

1.  Introduction
In this article, we are going to give a geometrical construction of an

outer automorphism of . The terms will be explained below. Very little
group theory will be needed: just some elementary facts about permutation
groups, which can be found in [1, pp.31-40], for instance. It is a remarkable
fact, due to Hölder (see [2]), that among the symmetric groups
(permutations of  symbols) the only one to possess any outer
automorphisms is . See also [1, pp.132-133]. It is this fact that led J. A.
Todd to write his paper [3], whose title I would have loved to use for this
article, but Todd got there first.

S6

Sn
n

S6

Here is an outline of the construction. First, Desargues' Theorem is
about two triangles in perspective, from a point and from a line. See
Figure 1. The diagram consists of ten points and ten lines, with three points
on each line and three lines through each point. As an aside, we shall look at
the combinatorial symmetries of this configuration.

Next, Pascal's Theorem is about a hexagon inscribed in a conic, and the
existence of a certain line called the Pascal line of the hexagon. See
Figure 3. Now the same six points can be ordered in various ways to
produce sixty different hexagons, and hence sixty Pascal lines. These
intersect by threes in sixty Kirkman points, of which there are three on each
Pascal line. These sixty lines and points fall into six disjoint Desargues
configurations. A permutation of the six hexagon vertices induces a
permutation of the six Desargues configurations, and this gives rise to an
automorphism of the symmetric group .S6

A group automorphism  is called inner if it is given by
conjugation, that is, if there is an element  such that ,
for all . An automorphism which is not inner is called outer. Now
conjugation in a permutation group preserves cycle structure, so we
recognise an automorphism of a permutation group as being an outer
automorphism if it does not preserve cycle structure. In our final section we
shall show that the automorphism described above is in fact an outer
automorphism. There are constructions of outer automorphisms of
scattered around the literature, but they tend to be heavily algebraic, and a
purely geometrical construction like the one offered here is a comparatively
rare beast. See [4, 5, 6, 7].

ϕ : G → G
h ∈ G ϕ (g) = h−1gh

g ∈ G

S6

In addition to the Pascal lines and Kirkman points mentioned above,
Pascal's diagram also gives rise to Steiner points, Cayley lines, Salmon
points and Plücker lines, though these will not concern us here. The
complete set of points and lines is often called the Hexagrammum
Mysticum, and a thoroughly readable account of it, together with its history,
can be found in [8]. There is also a full account in [9, pp. 379-383], though
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126 THE MATHEMATICAL GAZETTE

the notation is cumbersome and there are no diagrams. Here we mostly
cover just the parts of the theory needed for the construction of the promised
automorphism, so there is nothing new in the next four sections, but the final
section may possibly be new.

2.  Desargues' Theorem
Two triangles  and  (see Figure 1) are said to be in

perspective from a point  if the lines joining corresponding vertices, ,
 and , are concurrent at , the vertex of perspective. The triangles are

said to be in perspective from a line � if the meets of corresponding sides,
,  and , lie on , the axis of

perspective. Desargues' Theorem says that two triangles are in perspective
from a point if, and only if, they are in perspective from a line. The theorem
is self-dual: specifically, the ‘if’ part is the dual of the ‘only if’ part. There
are numerous proofs of it in the literature, by various methods: by multiple
applications of Menelaus’ Theorem, by homogeneous coordinates, or by
three-dimensional methods, for example, and we shall not give a proof here.
See [10, p. 70], [11, p. 80] and [12, pp. 121-122] respectively.

ABC A′B′C
O AA′

BB′ CC′ O

P = BC · B′C′ Q = CA · C′A′ R = AB · A′B′ �

O

A
B

C

A′

B′

C′

P Q

R

FIGURE 1

Desargues' Theorem is a theorem of projective geometry, and if one
wants to use it in a Euclidean context, one needs to take care about the
possibility of lines being parallel, with their meets at infinity. So, for
example, if  and  are such that ,  and

, then they are in perspective from the line at infinity, so must be in
perspective from a point. Conversely, if they are in perspective from a point,
and , and , then also . Such triangles are called
homothetic, and the vertex of perspective is their homothetic centre.


ABC 
A′B′C′ BC || B′C′ CA || C′A′
AB || A′B′

BC || B′C′ CA || C′A′ AB || A′B′

We now look at the symmetries of the Desargues configuration. These
symmetries are not isometries, but rather permutations of the ten vertices
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that preserve the configuration. So any one of the ten vertices can be taken
as the vertex , and this determines three lines through , and two triangles
each with one vertex on each of these three lines. Choose one of these two
triangles, and then attach the labels , ,  to its vertices in one of the

 possible ways. This now determines the labelling of the rest of the
figure. So altogether we can arrange the labels in
ways, and one immediately suspects that the group  of symmetries might
be isomorphic to . To see that this is indeed the case, we look for five
objects within the Desargues configuration that are permuted by the
symmetries.

O O

A B C
3! = 6

10 × 2 × 6 = 120 = 5!
G

S5

In Figure 2, the ten vertices have been relabelled , , …, . Looking
at the vertices , we see that each is joined to the other three
by a line of the configuration, so that they form a complete quadrangle, .
There are four other complete quadrangles within the figure, namely

, ,  and
. See Figure 2 again, where the  are shown bold.

So we obtain a homomorphism , elements of the first group
being thought of as permutations of the subscripts  of the ten points , and
the second as permutations of the subscripts  of the five quadrangles . It
is clear that the permutation (14)(25)(36) of -subscripts belongs to ,
swapping  with , and mapping each of ,  and  to itself, that is,

. In like manner, ,
, and . But the 2-cycles

(12), (13), (14), (15) generate , so that  is surjective. Since , it
is also injective, and thus we have an isomorphism, .

X0 X1 X9

{X0, X1, X2, X3}
Q1

Q2 = {X0, X4, X5, X6} Q3 = {X1, X4, X7, X9} Q4 = {X2, X5, X7, X8}
Q5 = {X3, X6, X8, X9} Qi

ϕ : G → S5
i Xi

j Qj
X G

Q1 Q2 Q3 Q4 Q5
ϕ ((14) (25) (36)) = (12) ϕ ((04) (27) (39)) = (13)
ϕ ((05) (17) (38)) = (14) ϕ ((06) (19) (28)) = (15)

S5 ϕ |G| = |S5|
G ≅ S5

Q3

X6

X9

X8

X5

X4

X0

X3
X1

X7

X2
Q2

Q5

Q1

Q4

FIGURE 2

There are many obvious ways in which we could identify  with a
subgroup of , as the set of permutations fixing any chosen five of the ten
symbols and permuting the other five. Our subgroup  is not at all like this,
however: it is a transitive subgroup of , that is, for any  and  there is a

S5
S10

G
S10 i j
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permutation in  sending  to . The search for transitive subgroups of
symmetric groups is ongoing; see, for example, [13, p. 268].

G i j

3.  Pascal's Theorem
Pascal's Theorem is about a hexagon  inscribed in a conic (see

Figure 3) and says that, if ,  and
(the meets of opposite sides of the hexagon), then , ,  are collinear. The
line  is the Pascal line of . As with Desargues, there are
numerous proofs in the literature, by various methods: by multiple
applications of Menelaus' Theorem, by projective methods, or by three-
dimensional methods, for example. See [10, pp. 74-75], [11, p. 143], and
[14, pp. 380-383] respectively. There is a proof by Jan van Yzeren [15]
which is both elementary and elegant, and which appeared as recently as
1993. It deserves to be better known, so is worth outlining here.

ABCDEF
L = AB · DE M = BC · EF N = CD · FA

L M N
LMN ABCDEF

L
MN

A
C

E

D
F

B

FIGURE 3

First project the conic into a circle, and then put in a second circle,
through ,  and . See Figure 4. Let the lines ,  meeet this second
circle again in  and , respectively, and join  and . An easy angle-
chase, indicated by the marked angles in Figure 4, shows that  and

 are homothetic. Since  and  meet at , this is their homothetic
centre, and hence  passes through  also, as required.  This proof is
diagram-dependent, and the reader is invited to draw one or two cases where

 lie on the circle in a different order, and adapt the argument
appropriately. It is also instructive to look at the case where  is at infinity,
that is, when ; here you need to show that . (If two of , ,

 are at infinity, so is the third; this says that if two pairs of opposite sides
of  are parallel, so is the third, and the proof of this is easy.)

A D L AF CD
P Q PQ AD


PQL

FCM PF QC N

LM N

A, … , F
N

AF || CD LM || CD L M
N

ABCDEF
The dual of Pascal's Theorem is Brianchon's Theorem. This says that if

six lines , , , , ,  touch a conic, and if lines , ,  are the joins of
to ,  to ,  to , respectively, then , ,  are concurrent.
Said more concisely, if the hexagon  circumscribes a conic, then
the diagonals , ,  are concurrent. The point of concurrency is the
Brianchon point of the hexagon.

a b c d e f � m n a · b
d · e b · c e · f c · d f  · a � m n

ABCDEF
AD BE CF
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Q

L

C

E

B

A

N

D P

M

F
FIGURE 4

The converse of Pascal's theorem is also true, and one can use this (most
easily with a dynamic geometry package) to draw a conic through five given
points. This is an exercise for the reader. Likewise, the converse of
Brianchon's theorem allows one to construct the envelope of a conic
touching five given lines. To construct this as a locus instead, first apply
Brianchon's theorem to the degenerate hexagon consisting of the six lines ,
, , , , , which will determine where the conic meets the line . Do

likewise for the other four lines, and then put in the conic through the five
points of contact.

a
a b c d e a

4.  The sixty Pascal lines and Kirkman points
Given six points , , , , ,  on a conic, they can be ordered in

 ways to form a hexagon; but the labels of each hexagon can be
read off starting at any one of its six points, and going around in either
direction, which is  ways. So the number of different hexagons
is , and hence the six points give rise to 60 Pascal lines.
Alternatively, the six points can be joined pairwise to form  lines,
and these lines meet pairwise (other than at the six points) in

 points. Each of the 45 points lies on four Pascal lines:
for example,  lies on the Pascal lines of , ,

 and . Also, each Pascal line contains three of the 45
points, and so the number of Pascal lines is , as before.

A B C D E F
6! = 720

6 × 2 = 12
720 ÷ 12 = 60

6C2 = 15

6C2 × 4C2 × 1
2 = 45
AB · DE ABCDEF ABCEDF

BACDEF BACEDF
45 × 4

3 = 60
We shall now prove Kirkman's theorem, that the Pascal lines meet by

threes in 60 Kirkman points, of which there are three on each Pascal line.
First, we need a notation for Pascal lines, and we shall simply write
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130 THE MATHEMATICAL GAZETTE

 for the Pascal line of the hexagon . This has the merit
of being compact, but the disadvantage that there are 12 ways to write the
same Pascal line: for example, 

[ABCDEF] ABCDEF

[ABCDEF] = [BCDEFA] = [FEDCBA] .
Let , , , , ,  lie on a conic. With , , as in

Figure 5, we have , , and
.  Since  and  are inscribed in a conic,

their sides touch a second conic. (This is [11, p. 146, Theorem 20],
essentially Poncelet's Porism.) The hexagon  is
circumscribed to this second conic, and its Brianchon point , the
intersection of its diagonals ,  and , is the required Kirkman
point, the intersection of the three Pascal lines ,  and

.

A B C D E F Li, Mi, Ni i = 1,  2,  3
[ACEBFD] = L1M1N1 [CEADBF] = L2M2N2

[EACFDB] = L3M3N3 
ACE 
BDF

L1M2L3M1L2M3
X

L1M1 L2M2 L3M3
[ACEBFD] [CEADBF]

[EACFDB]

N3

N2 X

M1

M2

L3

L1

C

A

B

D

F

E

M3

L2
N1

FIGURE 5

The three hexagons ,  and  are shown
separately in Figure 6. Notice that each of them is made up entirely from
diagonals, not sides, of the hexagon . Following [8], we say that
two hexagons on the same six vertices are disjoint if they do not have a side
in common, that is, if one is made up entirely of diagonals of the other, in
either order. It is a simple matter, which we leave the reader to verify, that

,  and  are the only hexagons on , , , , ,
which are disjoint from , and in consequence of this it makes sense
to use the notation  for the Kirkman point which is their

ACEBFD CEADBF EACFDB

ABCDEF

ACEBFD CEADBF EACFDB A B C D E F
ABCDEF

〈ABCDEF〉
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intersection. Just as with Pascal lines, there are 12 ways of writing the same
Kirkman point: for example, .〈ABCDEF〉 = 〈BCDEFA〉 = 〈FEDCBA〉

EACFDBCEADBFACEBFD

F

D

B

E

A
C

F

D

B

E

A
CC

A

E

B

D

F

FIGURE 6

So, there are 60 Kirkman points, one corresponding to each hexagon on
, , , , , . Further, a particular Kirkman point lies on a particular

Pascal line if, and only if, their corresponding hexagons are disjoint. And,
just as there are three Pascal lines, ,  and ,
through the Kirkman point , so there are three Kirkman points,

,  and , on the Pascal line .

A B C D E F

[ACEBFD] [CEADBF] [EACFDB]
〈ABCDEF〉

〈ACEBFD〉 〈CEADBF〉 〈EACFDB〉 [ABCDEF]

5.  The six Desargues configurations
We shall now show that the 60 Pascal lines and 60 Kirkman points fall

into six disjoint sets, each one a Desargues configuration of 10 lines and 10
points. To make comparisons easier, we shall write each hexagon in the
first, lexicographically, of its 12 possible representations. So we start at
and then move around the hexagon in the direction of whichever of its
immediate neighbours comes earlier in the alphabet.

A

So if we start with the Kirkman point , this lies on the three
Pascal lines ,  and . On the first of these lie

 and , on the second lie  and ,
and on the third lie  and , and so on. The relationships
are shown schematically in Figure 7, where we have relabelled the hexagons

, etc, as in the Key, and verification of the remaining details
is left to the reader. We clearly have a Desargues configuration here; note in
particular that if we choose a Kirkman point, say  as
vertex of perspective, then the axis of perspective is the Pascal line
corresponding to the same hexagon, in this case .

〈ABCDEF〉
[ACEBFD] [ADBFCE] [ACFDBE]

〈ABDCFE〉 〈AEDBCF〉 〈ABEFDC〉 〈ACBEDF〉
〈ABFECD〉 〈ADECBF〉

a = ABCDEF

〈a〉 = 〈ABCDEF〉

[a] = [ABCDEF]
Since, in Figure 7, we have used up all the Pascal lines through each of

the Kirkman points in the diagram, and all of the Kirkman points on each of
the Pascal lines in the diagram, then if we start again with a Kirkman point
not in Figure 7, we shall obtain a second Desargues configuration disjoint
from the first. And so on, until we have used up all 60 points and lines, and
thus we obtain our six disjoint Desargues configurations, as promised.
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[ ]f [ ]h

[ ]i
[ ]j[ ]g

[ ]e

[ ]d

[ ]c

[ ]a

[ ]b

< >h

< >j

< >i

< >e

< >g< >f

< >c

< >d

< >a

< >b

a = ABCDEF
b = ABDCFE g = ACFDBE
c = ABEFDC h = ADBFCE
d = ABFECD i = ADECBF
e = ACBEDF j = AEDBCF

f = ACEBFD
Key

FIGURE 7

There are 10 hexagons corresponding to the Desargues configuration in
Figure 7, each occurring once as a point and once as a line. They are, in
lexicographic order,

(1)
ABCDEF, ABDCFE, ABEFDC, ABFECD, ACBEDF,
ACEBFD, ACFDBE, ADBFCE, ADECBF, AEDBCF.

Notice that, in the above set of 10 hexagons, the vertex  has as its
neighbours  and  only in the first hexagon. Now, from the list of ten
hexagons, one can choose a hexagon and then a vertex of that hexagon (with
its neighbours) in  ways. On the other hand, given the six
vertices, one can choose one of them and then two others to be its
neighbours, in  ways. We leave the reader to check that each
of these 60 ways, just like  with neighbours  and , occurs precisely once
in the list (1) of ten hexagons. As a consequence, the six Pascal lines

B
A C

10 × 6 = 60

6 × 5C2 = 60
B A C

[ABCDEF] , [ABCDFE] , [ABCEDF] ,
[ABCEFD] , [ABCFDE] , [ABCFED]  

(and the six corresponding Kirkman points) will all occur in different
Desargues configurations, and so one in each, since the number of these
configurations is also six. We can use hexagons to label the different

Desargues configurations, and we shall write , for example, to
denote the configuration depicted in Figure 7, or, more specifically, to
denote the set of ten hexagons listed in (1), above. However, because there
are 10 Pascal lines in each Deasargues configuration, and 12 ways of writing

ABCDEF

<
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each hexagon, there are now 120 notations for the each Desargues
configuration. It will help to have an abbreviation, and so we shall write

, and so on; specifically1
∧

= ABCDEF

<

(2)
1
∧

= ABCDEF,

<

2
∧

= ABCDFE,

<
3
∧

= ABCEDF,
<

4
∧

= ABCEFD,

<

5
∧

= ABCFDE,

<
6
∧

= ABCFED.
<

6.  An outer automorphism of S6

Let  be the group of permutations of , and let  be
the group of permutations of . Obviously  and  are
isomorphic, by identifying  with  in some order; this gives
one of  different isomorphisms. Note that under any of these
isomorphisms, any permutation in  and its image in  have the same cycle
structure. We are about to use the foregoing geometry to construct an
isomorphism  which does not preserve cycle structure, so is
not one of the above 720 isomorphisms.

G {A, B, C, D, E, F} H
{1

∧
, 2

∧
, 3

∧
, 4

∧
, 5

∧
, 6

∧} G H
A, B, … 1

∧
, 2

∧
, …

6! = 720
G H

ϕ : G → H

Write the action of  on , for example, as . Then
induces a permutation of our sixty hexagons by acting on all six vertices, by

, for example. (We write
 in place of  to avoid confusion with the 6-cycle
.) If ,  are hexagons on  then we write

and  for the action on the corresponding Pascal lines and
Kirkman points. It is clear that two hexagons are disjoint if, and only if, their
images under this action are disjoint, and hence  lies on  if, and only
if,  lies on . Consequently, if  and , for some , , then
we can write , and we have a well-defined permutation .
Define  by .

σ ∈ G A A → Aσ σ

ABCDEF → |ABCDEF|σ = AσBσCσDσEσFσ

|ABCDEF| (ABCDEF)
(ABCDEF) P K A, … , F [P] → [P]σ

〈K〉 → 〈K〉σ

〈K〉 [P]
〈K〉σ [P]σ P ∈ i

∧
P σ ∈ j

∧
i
∧

j
∧

i
∧σ̄ = j

∧
σ̄ ∈ H

ϕ : G → H ϕ : σ → σ̄
It is obvious that  is a homomorphism, and we shall show shortly that

it is an isomorphism. But first consider the 2-cycle . We have
, so that, looking at (2), we obtain , and

likewise  and . Since , we have ,
so that  does not preserve cycle-structure.

ϕ
σ = (EF)

|ABCDEF|σ = ABCDFE 1
∧ σ̄ = 2

∧

3
∧σ̄ = 5

∧
4
∧σ̄ = 6

∧
σ2 = 1 (EF)⎯⎯⎯ = (1∧2

∧) (3∧5
∧) (4∧6

∧)
ϕ

Below are two more examples, which will be useful in what follows.
But first, with one eye on (2), put , , ,

,  and , so that , for .
τ1 = 1 τ2 = (EF) τ3 = (DE)

τ4 = (DEF) τ5 = (DFE) τ6 = (DF) 1
∧τ¯ i = i

∧
1 ≤ i ≤ 6

1. Let . Now , and
. Then .

But, looking at (1), we see that , and we know that
, so we deduce that .

σ = (AB) (CD) (EF) ABCDEF ∈ 1
∧

|ABCDEF|σ = BADCFE = ABEFCD ABEFCD = |ABFECD|τ2

ABFECD ∈ 1
∧

1
∧τ¯ 2 = 2

∧
1
∧ σ̄ = 2

∧
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Again, , and . But,
from (1), , so .

ABCDFE ∈ 2
∧

|ABCDFE|σ = BADCEF = ABFECD
ABFECD ∈ 1

∧
2
∧ σ̄ = 1

∧

Continuing, we apply  to the other polygons listed in (2); we haveσ

|ABCEDF|σ = ABECFD = |ABDCFE|τ3

|ABCEFD|σ = ABCEFD

|ABCFDE|σ = ABFCED = |ABDCFE|τ5

|ABCFED|σ = ABCFED.

Since , it follows that the hexagons on the right are in
, , ,  respectively, so that  fixes , ,  and . We conclude that

.

ABDCFE ∈ 1
∧

3
∧

4
∧

5
∧

6
∧

σ̄ 3
∧

4
∧

5
∧

6
∧

σ̄ = (1∧2
∧)

2. Let . We haveσ = (AE) (CFD)
|ABCDEF|σ = ACFBED = |ACEBFD|τ2

|ABCDFE|σ = ADCFBE = |ADBFCE|τ3

|ABCEDF|σ = ACDEBF = |ACFDBE|τ4

|ABCEFD|σ = ADCEBF = |ADBFCE|τ5

|ABCFDE|σ = ACDFBE = |ACFDBE|τ6

|ABCFED|σ = ACEBFD = |ACEBFD|τ1 .

Since here the hexagons on which  acts are all in , it follows that,
in this case, .

τi 1
∧

σ̄ = (1∧2
∧
3
∧
4
∧
5
∧
6
∧)

We now identify  and  with the symmetric group  of all
permutations of , by putting , , etc, and

, , etc. This makes  into an endomorphism of  (a
homomorphism ), and, by the above calculations, 

G H S6
{1,  2,  3,  4,  5,  6} A = 1 B = 2

1
∧

= 1 2
∧

= 2 ϕ S6
S6 → S6

ϕ ((12) (34) (56)) = (12)  and  ϕ ((15) (364)) = (123456) .
But these two permutations generate , and it follows that  is surjective,
and hence is an automorphism; and, because it does not preserve cycle
structure, it is an outer automorphism of , as promised.

S6 ϕ

S6

As a parting shot, we note that the theory above gives another way of
identifying the symmetries of the Desargues configuration with . For these
symmetries can be identified with the subgroup of  which permutes the ten
hexagons listed in (1), that is, the hexagons belonging to , and this maps by

 to the stabiliser of  in , the permutations that fix . But this is the same

S5
G

1
∧

ϕ 1
∧

H 1
∧
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as the subgroup consisting of all permutations of , , , , , which is
obviously isomorphic to , done.

2
∧

3
∧

4
∧

5
∧

6
∧

S5
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