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Abstract The algebraic EHP sequences, algebraic analogues of the EHP sequences in homotopy theory,
are important tools in algebraic topology. This note will outline two new proofs of the existence of the
algebraic EHP sequences. The first proof is derived from the minimal injective resolution of the reduced
singular cohomology of spheres, and the second one follows Bousfield’s idea using the loop functor of
unstable modules.
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1. Introduction

The James model, ΩΣX, of the (based) loop space of the suspension of a connected
space X allows us to define the Hilton–Hopf invariants, ΩΣX → ΩΣX∧n, which induce
the famous theorem of Milnor and Hilton:

ΣΩΣX �
∨
n≥1

ΣX∧n.

When X is the sphere Sn, the second Hilton–Hopf invariant induces a fibration sequence
after localization at the prime 2 [5]:

Sn → ΩΣSn → ΩΣ(Sn ∧ Sn). (1.1)

At an odd prime p, matters depend on the parity of n. For the even case, we have

ΩS2m � S2m−1 × ΩS4m−1,

so the case of an even-dimensional sphere is reduced to the case of odd spheres. Now, for
the odd case, localized at p, there is a fibre sequence [14]:

X → ΩS2m+1 → ΩS2pm+1, (1.2)
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where

X = S2m ∪
( p−1⋃

i=2

e2im

)

is the (2pm − 1)-skeleton of ΩS2m+1. Localized at p, there is also a fibration [14]:

S2m−1 → ΩX → ΩS2pm−1. (1.3)

The long exact sequences of homotopy groups associated with the fibration sequences
(1.1), (1.2) and (1.3) are known as the EHP sequences and provide an inductive method
for computing πn+k (Sn), beginning with our knowledge of π∗(S1). The homotopy groups
of spheres can also be computed via another algebraic invariant (which is simpler and
well understood): the reduced singular cohomology. These computations are carried out
with the help of the unstable Adams spectral sequence (UnASS), introduced by Massey
and Peterson in [8], generalized by Bousfield and Curtis in [2], and generalized further
by Bousfield and Kan in [3]. Denoting by Σn

Fp the reduced cohomology H̃∗ (Sn; Fp), the
UnASS is formulated as follows:

Es,t
2 (Sn) = Exts

U (Σn
Fp,Σt

Fp) =⇒ πt−s(Sn)∧p .

Here, U is the category of unstable modules over the Steenrod algebra Ap. In [2,4], it is
shown that the E2 page of the UnASS for Sn is isomorphic to the homology of a certain
differential bigraded module Λ(n), which is a submodule of the Lambda algebra Λ. At
the prime 2, for each non-negative integer n, there is a short exact sequence

0 → Λ(n) → Λ(n + 1) → Λ(2n + 1) → 0

whose associated long exact sequence is

· · · H−→ Es−2,t
2 (S2n+1) P−→ Es,t

2 (Sn) E−→ Es,t+1
2 (Sn+1) H−→ Es−1,t

2 (S2n+1) P−→ · · · . (1.4)

At odd primes, there are also long exact sequences:

· · · H−→ Es−2,t
2 (S2pn+1) P−→ Es,t

2 (S2n) E−→ Es,t+1
2 (S2n+1) H−→ Es−1,t

2 (S2pn+1) P−→ · · · ,
(1.5)

· · · H−→ Es−2,t
2 (S2pn−1) P−→ Es,t

2 (S2n−1) E−→ Es,t+1
2 (S2n) H−→ Es−1,t

2 (S2pn−1) P−→ · · · .
(1.6)

The sequences (1.4), (1.5) and (1.6) are called the algebraic EHP sequences.
In [9], the author gave an algorithm, called the BG algorithm, to compute the minimal

injective resolution of Σt
Fp, in the category U , based on the Mahowald short exact

sequences. In this paper, we will give a slightly different presentation of this algorithm
to construct injective resolutions of ΣN , where N is an unstable module, and use this to
construct the algebraic EHP sequences.

Bousfield’s method gives an abstract construction of the algebraic EHP sequences.
Bousfield observes that the key to the existence of these sequences lies in the simple
form of the reduced singular cohomology of spheres: they are the suspension of unstable
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modules (an unstable module is a suspension if it is of the form ΣM := ΣFp ⊗ M for
some unstable module M). The suspension functor Σ : U → U is exact and admits a
left adjoint, denoted by Ω (also known as the loop functor of unstable modules). Therefore,
Ω is right exact and preserves projective unstable modules. In [13], the functor Ω, its k-
fold iterate Ωk and their left-derived functors are studied. In particular, the left-derived
functors of Ωk, denoted by Ωk

∗, are zero in homological degrees greater than k. Moreover,
if M is an unstable module, then ΩM and Ω1M fit in an exact sequence:

0 → ΣΩ1M → ΦM
λM−−→ M

σM−−→ ΣΩM → 0.

Here, Φ is an avatar for the Frobenius twist of the category U and σM is the unit of the
adjunction (Ω � Σ). (See § 2 for the construction of this sequence.) This property serves
as the main ingredient in Bousfield’s proof of the existence of the general algebraic EHP
sequences.

Theorem 3.1. For all unstable modules M and N , there exists a long exact sequence

· · · �� Exts−2
U (Ω1M,N) �� Exts

U (ΩM,N) �� Exts
U (M,ΣN) �� Exts−1

U (Ω1M,N) �� · · ·

of Ext-groups.

1.1. Organization of the paper

We begin with some basic definitions and notation. In § 2, we recall the Steenrod algebra
Ap and unstable Ap-modules. We also recall the loop functor of unstable modules and
study its left-derived functors.

Bousfield’s construction is described in § 3, and we study a special case where the
algebraic EHP sequence splits into short exact sequences.

We recall the BG algorithm in § 4 and use this to show the existence of the algebraic
EHP sequence in § 5.

2. Unstable modules and the loop functor

Following Adem [1], the Steenrod algebra Ap at the prime p is generated by the stable
cohomology operations P i of degree 2i(p − 1), i ≥ 0, and the Bockstein β of degree 1,
subject to the Adem relations. At the prime 2, the generators of the Steenrod algebra A2

are the Steenrod squares Sqi of degree i ≥ 0.

Definition 2.1 (unstable modules). An unstable module M is an N-graded Fp-
vector space over the Steenrod algebra satisfying the instability condition:

• for p = 2: ∀x ∈ Mn, Sqix = 0 if i > n;

• for p > 2: ∀x ∈ Mn, βeP ix = 0 if e + 2i > n, where e ∈ {0, 1}.

Let U denote the category of unstable modules. Denote by Σn
Fp the reduced singular

cohomology of the sphere Sn, we write ΣnM for the tensor product Σn
Fp ⊗ M . Then the
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correspondence M �→ ΣM , for all M ∈ U , defines an endofunctor of U , denoted by Σ
and called the suspension functor.

Proposition 2.2 (see [10]). The functor Σ is exact and admits a left adjoint, denoted
by Ω, as well as a right adjoint, denoted by Σ̃.

The category U is an abelian category with enough injectives and projectives. For a
non-negative integer n, the injective envelope J(n) of Σn

Fp, called the nth Brown–Gitler
module, satisfies natural isomorphisms

HomU (M,J(n)) ∼= HomFp
(Mn, Fp).

Therefore, the Brown–Gitler modules form a system of injective co-generators for U .
We now define a system of projective generators of U . Instead of taking the injective

envelope of Σn
Fp, we consider its projective cover F (n). These F (n) satisfy natural

isomorphisms
HomU (F (n),M) ∼= Mn.

Hence, the F (n) form a system of projective generators for U .
In what follows, we study the morphism σ(F (n)) : F (n) → ΣΩF (n), where σ : Id →

ΣΩ is the unit of the adjunction (Ω � Σ). For this purpose, we recall the functor Φ. Let
M be an unstable module and x ∈ Mn, we define:

Sq0x = Sqnx and P0x =
{

P kx if n = 2k,
βP kx if n = 2k + 1.

We write ΦM for the unstable module, concentrated in even degrees, such that

(ΦM)2n ∼= Mn, for p = 2, and (ΦM)2n ∼=
⎧⎨
⎩

M2k if n = pk,
M2k+1 if n = pk + 1,
0 otherwise,

for p > 2,

and the action of the Steenrod algebra is given by the following:

• for p = 2:

SqnΦx =
{

ΦSqkx if n = 2k,
0 otherwise;

• for p > 2:

βΦx = 0,

PnΦx =

⎧⎨
⎩

ΦP kx if n = pk,
ΦP kx if n = pk + 1 and |x| ≡ 1(2),
0 otherwise.

This defines an exact functor Φ : U → U . The correspondences Φx �→ P0x at odd primes
and Φx �→ Sq0x at the prime 2 yield a natural transformation λ from the functor Φ to
the identity functor. It follows from [10, Proposition 1.7.3] that there is an isomorphism
from ΦF (n) to the kernel of σ(F (n)).
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Proposition 2.3 (see [10]). For each positive integer n, the sequence

0 → ΦF (n)
λ(F (n))−−−−−→ F (n)

σ(F (n))−−−−−→ ΣΩF (n) → 0 (2.1)

is exact.

Throughout this note, we abbreviate λ(M) as λM and σ(M) as σM . On the one hand,
the functor Φ is exact, and, on the other hand, F (n), n ≥ 0, form a system of projective
generators of U ; thus, we can use the exact sequences (2.1) to describe the transformation
λ. It is well known that the left-derived functors of Ω, denoted by Ωs, s ≥ 0, are zero on
homological degrees greater than one.

Proposition 2.4 (see [10]). Let M be an unstable module. Then ΩsM are trivial
for all s > 1. Moreover, Ω1M and ΩM fit in the following exact sequence:

0 → ΣΩ1M → ΦM
λM−−→ M

σM−−→ ΣΩM → 0.

Corollary 2.5. Let M be an unstable module such that Ω1M is trivial. Then the
functor Ω sends a projective resolution of M to a projective resolution of ΩM .

Proof. This follows directly from Proposition 2.4. �

Remark 2.6. • For all unstable modules M , the morphism λΣM is trivial. Hence,

ΩΣM ∼= M and ΣΩ1ΣM ∼= ΦΣM, ∀M ∈ U .

• The loop of σM is the identity of ΩM . As the loop functor Ω is right exact, then
ΩλM is trivial.

Lemma 2.7. There are natural isomorphisms of unstable modules

ΦΣΩM ∼= ΣΩΦM,

ΦΣΩ1M ∼= ΣΩ1ΦM.

Proof. It follows from the definition of P0 and Sq0 that for all unstable modules M
and all x ∈ M , we have

Sq0Φx = ΦSq0x if p = 2,
P0Φx = ΦP0x if p > 2.

Hence, ΦλM = λΦM for all unstable modules M . Applying the exact functor Φ to the
sequence

0 → ΣΩ1M → ΦM
λM−−→ M

σM−−→ ΣΩM → 0,

we obtain the desired isomorphisms. �
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Lemma 2.8. Let M be an unstable module and let {Pk, ∂k}k≥0 be a projective reso-
lution of M . Denote by C the co-kernel Coker (Ω∂1 : ΩP2 → ΩP1). Then, {ΩPk, Ω∂k}k≥1

is a projective resolution of C. Moreover, C fits in the short exact sequence:

0 → Ω1M → C → ΩP1

Ker (Ω∂0)
→ 0.

Proof. It follows from Proposition 2.3 that {ΩPk, Ω∂k}k≥1 is a resolution of C. As Ω
is left adjoint to Σ, which is an exact functor, Ω sends a projective module to a projective
one. Therefore, {ΩPk, Ω∂k}k≥1 is a projective resolution of C. The other conclusion
follows from the fact that

C =
ΩP1

Im (Ω∂1)
and Ω1M =

Ker (Ω∂0)
Im (Ω∂1)

.
�

3. Projective resolutions and the algebraic EHP sequences

An interesting fact about the algebraic EHP sequence: it can be derived in a completely
abstract way. That is, it can be derived without the construction of special projective
or injective resolutions and without any computation whatsoever. Bousfield explained
to me how to do this, about 45 years ago. Here is the key idea. One has a ‘loop functor’
on the category of unstable Steenrod modules. It is left adjoint to the suspension. This
functor is right exact, and has non-trivial left-derived functors. The key is to notice
that these left-derived functors are zero, in homological degrees greater than one. The
existence of the long exact EHP sequence follows immediately.

William M. Singer (private communication, January 2016)

Theorem 3.1 (Bousfield’s construction of the algebraic EHP sequences). For
all unstable modules M and N , there exists a long exact sequence

· · · �� Exts−2
U (Ω1M,N) �� Exts

U (ΩM,N) �� Exts
U (M,ΣN) �� Exts−1

U (Ω1M,N) �� · · · ,

where the morphism

Exts
U (ΩM,N) → Exts

U (M,ΣN)

is the composition

Exts
U (ΩM,N) → Exts

U (ΣΩM,ΣN) → Exts
U (M,ΣN)

of the morphism induced by the unit M → ΣΩM of the adjunction (Ω � Σ) and the one
induced by the exact functor Σ.
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Proof. Let

{Pi, ∂i : Pi+1 → Pi, i ≥ 0},
abbreviated as P•, be a projective resolution of M . Since ΩP0 is projective, the long exact
sequence of Ext-groups associated with the short exact sequence

0 → ΩP1

Ker (Ω∂0)
→ ΩP0 → ΩM → 0

splits into an exact sequence

0 �� HomU (ΩM,N) �� HomU (ΩP0, N)
��

HomU

(
ΩP1

Ker (Ω∂0)
N

)
�� Ext1U (ΩM,N) �� 0

and isomorphisms

Exts
U

(
ΩP1

Ker (Ω∂0)
N

)
∼−→ Exts+1

U (ΩM,N),

for all s ≥ 1. Now, because {ΩPi, Ω∂i, i ≥ 1} is a projective resolution of C (see Lemma
2.8), for every s ≥ 1 we have:

Exts
U (C,N) ∼= Hs+1(HomU (ΩP•, N), (Ω∂•)∗)

∼= Exts+1
U (M,ΣN).

Therefore, the long exact sequence of Ext-groups associated with the short exact sequence

0 → Ω1M → C → ΩP1

Ker (Ω∂0)
→ 0

is the general algebraic long exact EHP sequence. Moreover, note that if Q• is a projective
resolution of (ΩP1)/(Ker (Ω∂0)) then the epimorphism C → (ΩP1)/(Ker (Ω∂0)) lifts to a
morphism of complexes ΩP•+1 → Q•. The commutativity of the diagram

HomU (Qk, N) ��

∼

��

HomU (ΩPk+1, N)

∼
��

HomU (ΣΩPk+1,ΣN)

∼
��

HomU (ΣQk,ΣN) �� HomU (Pk+1,ΣN)

shows that

Exts
U (ΩM,N) → Exts

U (M,ΣN)
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is the composition

Exts
U (ΩM,N) → Exts

U (ΣΩM,ΣN) → Exts
U (M,ΣN),

where the first arrow is induced by the exact functor Σ and the second one is induced by
the unit M → ΣΩM of the adjunction (Ω � Σ). �

Remark 3.2. In his original proof, Bousfield used the Grothendieck spectral sequence
associated with the composite functor HomU (Ω,−) to obtain the abstract construction
of the algebraic EHP sequence. As the left-derived functors of Ω are zero on homological
degrees greater than one, the spectral sequence collapses at E2, giving rise to the above
exact sequence.

Let M be Σn
Fp and let N be Σt

Fp. If n ≥ 1, then the morphism λM : ΦM → M is trivial.
Therefore,

ΩM ∼= Σn−1
Fp

and

• for p = 2:

Ω1M ∼= Σ2n−1
F2;

• for p > 2:

Ω1M ∼=
{

Σ2pk−1
Fp if n = 2k,

Σ2pk+1
Fp if n = 2k + 1.

A reformulation of Bousfield’s long exact sequence, in this case, yields the algebraic EHP
sequence for Sn.

Theorem 3.3. For every positive integer n, there exist long exact sequences:

• at the prime 2,

· · · H−→ Es−2,t
2 (S2n+1) P−→ Es,t

2 (Sn) E−→ Es,t+1
2 (Sn+1) H−→ Es−1,t

2 (S2n+1) P−→ · · · ;

• at odd primes,

· · · H−→ Es−2,t
2 (S2pn+1) P−→ Es,t

2 (S2n) E−→ Es,t+1
2 (S2n+1) H−→ Es−1,t

2 (S2pn+1) P−→ · · · ,

· · · H−→ Es−2,t
2 (S2pn−1) P−→ Es,t

2 (S2n−1) E−→ Es,t+1
2 (S2n) H−→ Es−1,t

2 (S2pn−1) P−→ · · · .

Here, Es,t
2 (Sn) := Exts

U (Σn
Fp,Σt

Fp).

3.1. Application

In this subsection, we use the loop functor Ω to study a special case of the algebraic
EHP sequences.
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If {Ci, ∂i : Ci+1 → Ci, i ≥ 0} is a complex, denote by C•[1] the complex:

C•[1]i =
{

Ci−1 if i ≥ 1,
0 if i = 0,

∂[1]i =
{

∂i−1 if i ≥ 1,
0 if i = 0.

Let M be an unstable module such that Ω1M is trivial. Fix {P•, ∂i : Pi+1 → Pi, i ≥ 0},
abbreviated as P•, a projective resolution of M , and fix {Q•, δi : Qi+1 → Qi, i ≥ 0},
abbreviated as Q•, a projective resolution of ΦM . The natural transformation λ : Φ → Id
gives rise to a morphism of complexes: λP• : ΦP• → P•. On the other hand, the identity
of ΦM yields a morphism of complexes: ω : Q• → ΦP•. Therefore, the composition map
ω ◦ λP• makes the following diagram commute:

Q•
ω◦λP•

��

��

P•

��

ΦM
λM

�� M

Now, we can consider ω ◦ λP• : Q• → P• as a double complex with two non-trivial columns
Q• and P•. Denote by T• the total complex of this double complex. As Q• is a resolution
of ΦM and P• is a resolution of M , the homology groups of T• are computed as follows:

Hi(T•) ∼=
⎧⎨
⎩

Coker (λM ) = ΣΩM if i = 0,
Ker (λM ) = ΣΩ1M if i = 1,
0 otherwise.

Recall that Ω1M is trivial by hypothesis, and T• is a projective resolution of ΣΩM . We
now compute ΩT•. It follows from Remark 2.6 that Ω (ω ◦ λP•) is trivial. We then have:

ΩT• ∼= ΩP•
⊕

ΩQ•[1].

We also deduce from Remark 2.6 that ΩP• is a projective resolution of ΩM , and that
ΩQ• is a projective resolution of ΩΦM .

Lemma 3.4. Let M be an unstable module such that Ω1M is trivial. For all unstable
modules N , we have an isomorphism of Ext-groups

Exts
U (ΣΩM,ΣN) ∼= Exts

U (ΩM,N)
⊕

Exts−1
U (ΩΦM,N),

for all s ≥ 0. (Here, by convention, the Ext-groups of degree −1 are trivial.)
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Proof. The Ext-groups Ext∗U (ΣΩM,ΣN) can be computed as follows.

Exts
U (ΣΩM,ΣN) ∼= Hs(HomU (T•,ΣN))

∼= Hs(HomU (ΩT•, N))

∼= Hs(HomU (ΩP•
⊕

ΩQ•[1], N))

∼= Exts
U (ΩM,N)

⊕
Exts−1

U (ΩΦM,N).

We can then conclude the lemma. �

Applying Lemma 3.4 to M = ΦnF (1), we have the following result.

Theorem 3.5 (James’s splitting). For all non-negative integers n and all unstable
modules N , there are isomorphisms of Fp-vector spaces:

Exts
U (Σ2pn

Fp,ΣN) ∼= Exts
U (Σ2pn−1

Fp, N)
⊕

Exts−1
U (Σ2pn+1−1

Fp, N).

Proof. Note that, after Lemma 2.7, we have natural isomorphisms

ΦΣΩM ∼= ΣΩΦM,

ΦΣΩ1M ∼= ΣΩ1ΦM.

Now, Propositions 2.3 and 2.4 show that Ω1F (1) = 0, whence Ω1ΦnF (1) = 0 for all
natural numbers n ≥ 1. Moreover, as ΩF (1) = F (0) = Fp, we have

ΩΦnF (1) ∼= Σ2pn−1−1
Fp.

Then, the conclusion follows from Lemma 3.4. �

4. Injective resolutions of the suspension of an unstable module

Constructing injective resolutions is a basic problem in homological algebra. This section
aims at the construction of injective resolutions of the suspension of an unstable module.

First, we recall how Brown–Gitler modules fit in the Mahowald short exact sequences.
This will be carried out with the help of Φ and Σ. In fact, following [10], these functors
admit a right adjoint. We denote the right adjoint of Φ by Φ̃ and that of Σ by Σ̃. The
morphisms M → Φ̃M , adjoint to λM , induce a natural transformation λ̃ : Id → Φ̃. The
natural transformations σ̃ : ΣΣ̃ → Id and λ̃ : Id → Φ̃ give rise to the following natural
exact sequence.

Theorem 4.1 (see [10]). There is a natural exact sequence of unstable modules

0 → ΣΣ̃M
σ̃M−−→ M

λ̃M−−→ Φ̃M → ΣR1Σ̃M → 0. (4.1)

Here, R1Σ̃M is the right-derived functor of Σ̃ in cohomological degree 1.
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Proof. The sequence (4.1) is obtained by applying the functor HomU (−,M) to the
sequence

0 → ΦF (n)
λF (n)−−−→ F (n)

σF (n)−−−→ ΣΩF (n) → 0

and identifying Ext1U (ΣΩF (n),M) with ΣR1Σ̃M . �

If M is an injective unstable module, then R1Σ̃M = 0 and the sequence (4.1) becomes
a short exact sequence.

Theorem 4.2. If I is an injective unstable module, then the following sequence is
exact

0 → ΣΣ̃I
σ̃I−→ I

λ̃I−→ Φ̃I → 0. (4.2)

Because Σ and Φ are exact, Σ̃ and Φ̃ preserve injective unstable modules. More precisely,

Σ̃J(n) ∼= J(n − 1), ∀n ≥ 1,

and the module Φ̃J(n) depends on p and on the parity of n:

• for p = 2:

Φ̃J(n) ∼= J
(n

2

)
:=

{
J(k) if n = 2k,
0 otherwise,

• for p > 2:

Φ̃J(n) ∼=
⎧⎨
⎩

J(2k) if n = 2pk,
J(2k + 1) if n = 2pk + 2,
0 otherwise.

We get the classical Mahowald short exact sequences.

Theorem 4.3 (see [7, 10]). For every non-negative integer n, there is a short exact
sequence of unstable modules

0 → ΣJ(n − 1) → J(n) → Φ̃J(n) → 0. (4.3)

Theorem 4.3 implies that the suspension of J(n − 1) is of injective dimension at most
1 and the Mahowald short exact sequence is in fact an injective resolution of ΣJ(n).
In fact, this property remains true for the suspension of all injective unstable mod-
ules. Indeed, note that if I is an injective unstable module, then so are Σ̃I, Φ̃I. It
follows from Theorem 4.2 that I → Φ̃I → 0 is an injective resolution of ΣΣ̃I. It turns
out that every injective unstable module is isomorphic to Σ̃I for some injective unstable
module I.

Theorem 4.4 (see [10]). Every injective unstable module is isomorphic to a direct
sum of unstable modules of the form J(n) ⊗ L, where n ≥ 0 is a natural number
and L is an indecomposable direct summand of H∗V for some elementary abelian
p-group V .

Corollary 4.5. Every injective unstable module is isomorphic to Σ̃I for some injective
unstable module I.
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Proof. As the functor Σ̃ commutes with direct sums, we can suppose that the injective
unstable module is of the form J(n) ⊗ L, where n ≥ 0 is a natural number and L is an
indecomposable direct summand of H∗V for some elementary abelian p-group V . Note
that

J(n) ⊗ L ∼= Σ̃J(n + 1) ⊗ L.

On the other hand, it follows from [10] that the morphism

Σ̃J(n + 1) ⊗ L → Σ̃(J(n + 1) ⊗ L),

adjoint to

Σ(Σ̃J(n + 1) ⊗ L) ∼= ΣΣ̃J(n + 1) ⊗ L
σ̃J(n+1)⊗id−−−−−−−→ J(n + 1) ⊗ L,

is an isomorphism. Therefore, we have

J(n) ⊗ L ∼= Σ̃(J(n + 1) ⊗ L),

whence the conclusion. �

We fix the following notation.

Definition 4.6. Let I be an injective unstable module. Denote by Ĩ an injective
unstable module such that I ∼= Σ̃Ĩ and by iI the composition

ΣI
∼−→ ΣΣ̃Ĩ

σ̃Ĩ−→ Ĩ .

Corollary 4.7. If I is an injective unstable module, then the sequence

Ĩ
λ̃Ĩ−→ Φ̃Ĩ → 0

is an injective resolution of ΣI.

Now, we come back to the construction of injective resolutions of the suspension of an
unstable module. Observe that if I• is an injective resolution of an unstable module N ,
then ΣI• is a resolution of ΣN . Although this resolution is no longer injective, we can
resolve each ΣIk by an injective resolution of length at most 1. The method we describe
below allows for combining these resolutions into one of ΣN .

Proposition 4.8 (see [9]). Let (I•, ∂•) be an injective resolution of an unstable
module N and let αk : Ĩk → Ĩk+1 be an extension of ∂k. Then, there exist morphisms

δk : Φ̃Ĩk → Ĩk+2
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such that the diagram

· · · �� Ĩn−1 ⊕ Ĩn
fn−1

��

hn−1

��

Ĩn ⊕ Ĩn+1
fn

��

hn

��

Ĩn+1 ⊕ Ĩn+2
fn+1

��

hn+1

��

· · ·

· · · �� Φ̃Ĩn−1 ⊕ Ĩn
gn−1

�� Φ̃Ĩn ⊕ Ĩn+1
gn

�� Φ̃Ĩn+1 ⊕ Ĩn+2
gn+1

�� · · ·

(4.4)

where

fn =
(

αn (−1)nid

(−1)nαn+1◦αn αn+1

)
, gn =

(
Φ̃αn (−1)nλ̃Ĩn+1

(−1)nδn αn+1

)
, hn =

(
λ̃Ĩn 0
0 id

)

is a double complex whose associated total complex is an injective resolution of ΣN .

Proof. As the kth column of Diagram (4.4) is an injective resolution of ΣIk, it suffices
to prove that Diagram (4.4) is a double complex. For this, we must construct δ• such
that

fn+1 ◦ fn = 0, gn+1 ◦ gn = 0, gn ◦ hn = hn+1 ◦ fn.

That is, we need to verify the following identities

αn+1 ◦ αn = δn ◦ λ̃Ĩn ,

αn+1 ◦ δn−1 = δn ◦ Φ̃αn−1,

λ̃Ĩn+1 ◦ δn−1 = Φ̃αn ◦ Φ̃αn−1,

Φ̃αn ◦ λ̃Ĩn = λ̃Ĩn+1 ◦ αn.

First, as Ĩn is an injective unstable module for all n ≥ 0, the existence of an extension
αn of ∂n is clear. Since λ̃ is a natural transformation from the identity functor to Φ̃, we
have the following commutative diagram:

ΣIn ��

Σ∂n

��

Ĩn
λ̃Ĩn

��

αn

��

Φ̃Ĩn

Φ̃αn

��

ΣIn+1 �� Ĩn+1

λ̃Ĩn+1

�� Φ̃Ĩn

It is evident that we get the identity

Φ̃αn ◦ λ̃Ĩn = λ̃Ĩn+1 ◦ αn.

The construction of δ• goes as follows. Denote by ik the inclusion ΣIk → Ĩk. Because of
the identity

αk+1 ◦ αk ◦ ik = ik+2 ◦ ∂k+1 ◦ ∂k,
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the composition αk+1 ◦ αk ◦ ik is trivial. It follows that there exists δk : Φ̃Ĩk → Ĩk+2 such
that

αk+1 ◦ αk = δk ◦ λ̃Ĩk .

Therefore, for all natural numbers n ≥ 1, we have

λ̃Ĩn+1 ◦ δn ◦ λ̃Ĩn−1 = λ̃Ĩn+1 ◦ αn ◦ αn−1

= Φ̃αn ◦ Φ̃αn−1 ◦ λ̃Ĩn−1 .

As λ̃Ĩn−1 is surjective, we obtain the identity

λ̃Ĩn+1 ◦ δn−1 = Φ̃αn ◦ Φ̃αn−1.

Similarly, since

αn+1 ◦ δn−1 ◦ λ̃Ĩn−1 = δn ◦ Φ̃αn−1 ◦ λ̃Ĩn−1 ,

we get the identity

αn+1 ◦ δn−1 = δn ◦ Φ̃αn−1.

The conclusion follows. �

Remark 4.9. The resolution constructed in Theorem 4.8 is bigger than that given
by the pseudo-hyperresolution [9]. However, the advantage of this construction is that it
allows us to apply the spectral sequence of double complexes to compute Ext-groups, as
we will see in the next section.

5. Injective resolutions and the algebraic EHP sequences

In this section, we use the results on injective resolutions of the suspension of an unstable
module to construct the algebraic EHP sequences.

Theorem 5.1. For all unstable modules M and N , there exists a long exact sequence

· · · �� Exts−2
U (Ω1M,N) �� Exts

U (ΩM,N) �� Exts
U (M,ΣN) �� Exts−1

U (Ω1M,N) �� · · · ,

where the morphism

Exts
U (ΩM,N) → Exts

U (M,ΣN)

is the composition

Exts
U (ΩM,N) → Exts

U (ΣΩM,ΣN) → Exts
U (M,ΣN)

of the morphism induced by the unit M → ΣΩM of the adjunction (Ω � Σ) and the one
induced by the exact functor Σ.

Proof. Let (I•, ∂•) be an injective resolution of N and let αk : Ĩk → Ĩk+1 be an
extension of ∂k. We are now in a position to apply Proposition 4.8. Take Diagram (4.4)
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as the double complex whose associated total complex is an injective resolution of ΣN .
Applying the functor HomU (M,−) to Diagram (4.4) yields a double complex:

· · · �� HomU (M, Ĩn−1 ⊕ Ĩn)
fn−1
∗

��

hn−1
∗

��

HomU (M, Ĩn ⊕ Ĩn+1)
fn

��

hn
∗

��

· · ·

· · · �� HomU (M, Φ̃Ĩn−1 ⊕ Ĩn)
gn−1
∗

�� HomU (M, Φ̃Ĩn ⊕ Ĩn+1)
gn
∗

�� · · ·

(5.1)

The cohomology of the total complex of the double complex (5.1) is Ext∗U (M,ΣN). Note
that the cohomology of the complex

HomU (M, Ĩn ⊕ Ĩn+1)
hn
∗−−→ HomU (M, Φ̃Ĩn ⊕ Ĩn+1) → 0

is isomorphic to the cohomology of the complex

HomU (M, Ĩn)
λ∗

M−−→ HomU (ΦM, Ĩn) → 0,

and therefore it is isomorphic to 0 in cohomological degrees greater than 2 and isomorphic
to HomU (ΩM, Σ̃Ĩn) and HomU (Ω1M, Σ̃Ĩn) in cohomological degrees 0 and 1, respec-
tively. Recall that Σ̃in : In → Σ̃Ĩn is an isomorphism, where in is the inclusion ΣIn → Ĩn.
Therefore, we can identify

(
Σ̃Ĩ•, Σ̃α•) with (I•, ∂•). Now, filter Tot(C) by row degrees.

Then the associated spectral sequence of the double complex (5.1) collapses at E2, giving
rise to the following long exact sequence

· · · �� Exts−2
U (Ω1M,N) �� Exts

U (ΩM,N) �� Exts
U (M,ΣN) �� Exts−1

U (Ω1M,N) �� · · · ,

where the morphism
Exts

U (ΩM,N) → Exts
U (M,ΣN)

is the corner homomorphism of the spectral sequence and, hence, is the composition

Exts
U (ΩM,N) → Exts

U (ΣΩM,ΣN) → Exts
U (M,ΣN),

where the first arrow is induced by the exact functor Σ and the second one is induced by
the unit M → ΣΩM of the adjunction (Ω � Σ). �

Taking M = Σn
Z/p and N = Σt

Z/p, we recover Theorem 3.3.
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