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A computational model of the pseudo-incompressible equations is used to probe
the range of validity of an extended Wentzel–Kramers–Brillouin theory (XWKB),
previously derived through a distinguished limit of a multiple-scale asymptotic analysis
of the Euler or pseudo-incompressible equations of motion, for gravity-wave packets
at large amplitudes. The governing parameter of this analysis had been the scale-
separation ratio ε between the gravity wave and both the large-scale potential-
temperature stratification and the large-scale wave-induced mean flow. A novel feature
of the theory had been the non-resonant forcing of higher harmonics of an initial
wave packet, predominantly by the large-scale gradients in the gravity-wave fluxes.
In the test cases considered a gravity-wave packet is propagating upwards in a
uniformly stratified atmosphere. Large-scale winds are induced by the wave packet,
and possibly exert a feedback on the latter. In the limit ε � 1 all predictions of
the theory can be validated. The larger ε is the more the transfer of wave energy
to the mean flow is underestimated by the theory. The numerical results quantify
this behaviour but also show that, qualitatively, XWKB remains valid even when the
gravity-wave wavelength approaches the spatial scale of the wave-packet amplitude.
This includes the prevalence of first and second harmonics and the smallness of
harmonics with wave number higher than two. Furthermore, XWKB predicts for the
vertical momentum balance an additional leading-order buoyancy term in Euler and
pseudo-incompressible theory, compared with the anelastic theory. Numerical tests
show that this term is relatively large with up to 30 % of the total balance. The
practical relevance of this deviation remains to be assessed in future work.

Key words: atmospheric flows, internal waves, stratified flows

1. Introduction
Gravity waves contribute significantly to the mesoscale dynamics of the atmosphere

(e.g. Fritts & Alexander 2003; Kim, Eckermann & Chun 2003; Alexander et al. 2010).
Being generated by various processes, mostly in the troposphere, they can propagate
over large distances until they break and by this or other nonlinear interactions

† Present address: Deutscher Wetterdienst, 63067 Offenbach, Germany. Email address for
correspondence: felix.rieper@dwd.de
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can have an influence on the momentum and energy budget of the large-scale flow.
Corresponding effects must be taken into account in both weather prediction and in
climate simulations. This gravity-wave influence must be parameterized because the
time and length scale of most parts of the gravity-wave spectrum are too small to
be resolved explicitly. Prominent examples of parameterization were proposed, for
example, by Lindzen (1981), Holton (1982), Medvedev & Klaassen (1995), Hines
(1997) and Alexander & Dunkerton (1999). Most of these approaches make use of the
results obtained from Wentzel–Kramers–Brillouin (WKB) theory (Bretherton 1966;
Grimshaw 1975a; Müller 1976) for gravity-wave packets (GWPs). This approach
assumes a small variation of the wave properties frequency, wave number and
amplitude over a wavelength and a period. It leads to a closed system of equations
describing the propagation of frequency and wave number along rays, the conservative
transport of wave action and the interaction with the large-scale flow.

An extension of the classical WKB theory for gravity waves was presented by
Achatz, Klein & Senf (2010) and Klein (2011), named extended WKB (XWKB).
It was derived through a distinguished limit within a multiscale asymptotic analysis
(e.g. Klein 2010) of the governing equations. The small-scale separation parameter
ε was assumed to characterize the scale ratio between the gravity wave and both
its large-scale envelope and the large-scale atmosphere entropy stratification. The
amplitude of the basic wave itself is assumed to be large, i.e. O(1) with regards
to the static-instability threshold, and higher harmonics, predominantly forced by large-
scale gradients in the gravity-wave fluxes, are found at O(ε) amplitude. The nonlinear
forcing of the second harmonic is predicted, while even higher harmonics are found
to be negligible at the considered order in ε. As gravity-wave parameterizations often
push WKB theory to its limits by applying it to cases where the scale separation
is not so significant any more, the question arises how well WKB theory, and its
nonlinear extension, perform as the scale-separation parameter approaches values of
order O(1). Moreover, the WKB theory derivable as a distinguished limit of the
governing equations differs as either the pseudo-incompressible theory (Durran 1989)
is taken as the starting point, on the one hand, or the anelastic equations (Lipps &
Hemler 1982), on the other hand. The former lead to the same XWKB theory as the
complete compressible Euler equations while the latter yield different predictions of
the second harmonic and also miss a, so far not quantified, wave-related correction of
vertical-momentum balance. Since the pseudo-incompressible system has a divergence
constraint that is much harder to solve it was worth questioning why we do not go
on working with the classical, much simpler anelastic system as long as there is often
no noticeable difference in the solution (e.g. Klein 2009; Smolarkiewicz & Szmelter
2011). In the work reported here we have set out to examine the following two main
questions. (i) How well does the XWKB theory perform in comparison with the more
general numerical solutions of the pseudo-incompressible equations? (ii) How much
does this performance depend on the scale-separation parameter being small and on
the conditions for a distinguished limit being met? Beyond this we also want to give a
first assessment of how large the deviations of the pseudo-incompressible WKB theory
can be from its anelastic counterpart.

This paper is organized as follows. In § 2 we present the governing equations of
XWKB (Achatz et al. 2010). For the convenience of potential users they are here
given in dimensional form for the first time. Their implementation with a ray tracer
model is explained in § 3. The validation of the WKB theory is then split into two
parts: in § 4 we compare the full model with the ray tracer for a one-dimensional
GWP, i.e. with a Gaussian profile only depending on the vertical coordinate; in § 5
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we present the results for the more general case of a horizontally periodic chain of
two-dimensional GWP with a Gaussian profile depending on horizontal and vertical
coordinate. We finish the paper with a discussion of the results in § 6.

2. Governing WKB equations
In this section we summarize the governing equations of XWKB in dimensional

form. For more details on the multiscale asymptotic analysis of the two-dimensional
Euler equations without rotation we refer the reader to Achatz et al. (2010) who use as
a starting point either the Euler equations

Du

Dt
+ cpθ

∂π

∂x
= 0 (2.1)

Dw

Dt
+ cpθ

∂π

∂z
=−g (2.2)

Dθ
Dt
= 0 (2.3)

Dπ
Dt
+ R

cv
π∇ ·v= 0 (2.4)

or the pseudo-incompressible equations

Du

Dt
+ cpθ

∂π

∂x
= 0 (2.5)

Dw

Dt
+ cpθ

∂π

∂z
=−g (2.6)

Dθ
Dt
= 0 (2.7)

∇ · (ρθv)= 0. (2.8)

With the wind vector v = (u,w) and its horizontal and vertical components u and w,
respectively. The material derivative is

D
Dt
= ∂

∂t
+ u

∂

∂x
+ w

∂

∂z
. (2.9)

The specific heat coefficients at constant pressure and volume are cp and cv,
respectively, and R = cp − cv is the gas constant. The Exner pressure is given
by π = (p/p0)

R/cp for some reference value p0. The potential temperature satisfies
θ = T/π, where T is the temperature. Here ρ and θ denote density and potential
temperature of a hydrostatic reference atmosphere.

2.1. The XWKB ansatz
For spatial extent and temporal change of the wave packet we introduce the
compressed spatial coordinates ζ and χ along with the slow time coordinate τ

ζ = εz (2.10)
χ = εx (2.11)
τ = εt (2.12)
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with the small parameter ε = L/Hθ = 1/(KHθ) relating the wavelength L, or rather
the inverse of the wave number K, to the isothermal potential-temperature height
Hθ . Here x and z are coordinates scaled with L = 1/K and, therefore, ζ and χ are
scaled with the isothermal potential temperature scale height. Note that the present
theory assumes isotropic spatial scaling so that it focuses on non-hydrostatic rather
than hydrostatic waves. For the general results of the multiscale asymptotic ansatz
introduced to the Euler equations, the pseudo-incompressible equations (Durran 1989)
and the anelastic equations (Lipps & Hemler 1982) we refer to Achatz et al. (2010).
Here we solely focus on the XWKB ansatz considering the large-amplitude regime.
Using the polarization relations for linear gravity waves it can be shown that the
ratio between the potential-temperature fluctuations in a wave, with an amplitude just
marginally below the static instability limit, and the large-scale background-atmosphere
potential temperature is O(ε), while the corresponding ratio for the Exner pressure is
O(ε2). Thus, for the non-dimensional fields, denoted by ˆ( ), the ansatz

û= ũ(0) (2.13)

ŵ= w̃(0) (2.14)

θ̂ = θ̂ (0) + εθ̃ (1) (2.15)

π̂= π̂(0) + ε2π̃(2) (2.16)

is used, where θ̂ (0) and π̂(0) are potential temperature and Exner pressure of the
large-scale hydrostatic background atmosphere, and all dynamic fields, composed of
the wave and all fields influenced by it, either large-scale flow or higher harmonics,
are denoted by ˜( ). They are decomposed as

ũ(0)

w̃(0)

θ̃ (1)

π̃(2)

=


Û(0)
0

Ŵ (0)
0

Θ̂
(1)
0

Π̂
(2)
0

 (τ, χ, ζ )+ Re




Û(0)
1

Ŵ (0)
1

Θ̂
(1)
1

Π̂
(2)
1

 (τ, χ, ζ ) exp
(

i
φ(τ, χ, ζ )

ε

)

+ ε




Û(1)
0

Ŵ (1)
0

Θ̂
(2)
0

Π̂
(3)
0

 (τ, χ, ζ )+ Re
∞∑
α=1


Û(1)
α

Ŵ (1)
α

Θ̂ (2)
α

Π̂ (3)
α

 (τ, χ, ζ ) exp
(

iα
φ(τ, χ, ζ )

ε

)
+ o(ε). (2.17)

The notation has been chosen so that the upper index always indicates the effective
order in ε, while the lower index denotes the order in the wave-phase factor. Thus, the
first part on the right-hand side (RHS) is the leading-order large-scale flow, possibly
influenced by the waves (see below), the second the small-scale gravity-wave field
with large-scale amplitude and with velocity amplitudes comparable with the strength
of the leading-order large-scale wind, the third a next-order modification of the large-
scale flow and the last both a next-order modification of the gravity-wave field and
higher harmonics induced by the latter. As these turn out to be forced predominantly
by large-scale gradients in the gravity-wave fluxes they are O(ε). A restriction of the
theory is that it does not take nonlinear wave–wave interactions (e.g. McComas &
Bretherton 1977; Caillol & Zeitlin 2000; Lvov, Polzin & Yokoyama 2012) into account
which have been shown by Dunkerton (1987) to be relevant as soon as a gravity wave
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propagates into a region where other gravity waves are present. In that regard it can
be considered weakly nonlinear, but all other aspects are treated in a large-amplitude
framework. Spatial and temporal changes of the rapidly varying phase φ/ε give rise to
the definition of local frequency and wave vector

ω := − ∂
∂t

(
φ

ε

)
=−∂φ

∂τ
(2.18)

k := ∂

∂x

(
φ

ε

)
= ∂φ
∂χ

(2.19)

m := ∂

∂z

(
φ

ε

)
= ∂φ
∂ζ
. (2.20)

It is assumed that at each location there is only one local wave number and frequency.
This condition is violated as soon as gravity-wave rays cross, e.g. by wave refraction
(Dunkerton 1984). Corresponding extensions of the theory, although important, are
left to future work. Inserting the ansatz just described into either the Euler equations
or the pseudo-incompressible equations returns the classical linear results at leading
order, along with new results for mean flow and higher harmonics at first and higher
orders. In the following we present the results of the XWKB approach in dimensional
form so that an implementation in a code using SI units is straightforward. Recall
that dimensional quantities are designated without a hat ˆ( ), apart from the intrinsic
frequency given by ω̂ = ω − kU(0)

0 − mW (0)
0 . Note that different results are obtained

when the anelastic equations are taken as the starting point (Achatz et al. 2010; Klein
2011).

2.2. Leading-order results
An important leading-order result from the Exner-pressure equation is that the gravity-
wave velocity field is orthogonal to the local wave number, i.e. kU(0)

1 + mW (0)
1 = 0,

as in linear Boussinesq theory. This has the consequence, for arbitrary large-scale
stratification and large-scale winds, that also the leading-order results from the
remaining equations reproduce the classic linear theory. We obtain

−iω̂ 0 0 ik
0 −iω̂ −N im
0 N −iω̂ 0
ik im 0 0


︸ ︷︷ ︸

M(ω̂,k,m)


U(0)

1

W (0)
1

g

N

Θ
(1)
1

θ (0)

θ (0)cpΠ
(2)
1

= 0 (2.21)

where N =√(g/θ (0))(dθ (0)/dz) is the Brunt–Väisälä frequency corresponding to the
stratification of the reference atmosphere. Equation (2.21) has non-trivial solutions if
det(M) = 0 so that the intrinsic frequency ω̂ and wave vector k = (k,m) satisfy the
gravity-wave dispersion relation

ω̂2(k,m)= N2 k2

k2 + m2
(2.22)

known from Boussinesq theory. As a length scale separation has been assumed
between the gravity wave and reference atmosphere, anelastic or pseudo-
incompressible deviations in the dispersion relation from the Boussinesq result turn out
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to be of higher order in the asymptotics. Note that the impact of the mean horizontal
wind, be it modified or induced by the GWP, on the gravity-wave phase is included,
as the very definition of frequency and wave number implies the Hamilton–Jacobi
equation

∂φ

∂τ
+ U(0)

0

∂φ

∂χ
+ ω̂

(
∂φ

∂χ
,
∂φ

∂ζ

)
= 0 (2.23)

where ω̂(k,m) = ±N
√

k2/(k2 + m2). Wave properties are transported along rays
defined by the ray equations(

∂

∂t
+ cg ·∇(x,z)

)
k = 0 (2.24a)(

∂

∂t
+ cg ·∇(x,z)

)
m=−k

∂U(0)
0

∂z
(2.24b)(

∂

∂t
+ cg ·∇(x,z)

)
ω = k

∂U(0)
0

∂t
(2.24c)

where the group velocity is given by

cg =
(

U(0)
0 +

∂ω̂

∂k
,
∂ω̂

∂m

)
. (2.25)

This motivates the calculation of these wave properties using a Lagrangian approach.
The wave action A = E′/ω̂, with E′ being wave energy (see below), satisfies a

conservation law

∂A

∂t
+∇(x,z) · (cgA)= 0 (2.26)

which motivates the calculation of the energy transport using finite-volume methods.
Wave 1 amplitudes (i.e. a wave with α = 1) can then be derived from the energy
relation

E′ = 1
2
ρ(0)

(
B(1)1

N

)2

with the buoyancy amplitude B(1)1 = g
Θ
(1)
1

θ (0)
(2.27)

along with the polarization relations originating from the solution to (2.21)

(U(0)
1 ,W (0)

1 , cpθ
(0)Π

(2)
1 ,Θ

(1)
1 )=

(
−i

m

k

ω̂

N2
, i
ω̂

N2
,−i

m

k2

ω̂2

N2
,
θ (0)

g

)
B(1)1 . (2.28)

The spatially varying reference density ρ(0) = ρ enters in the energy so that wave-
action conservation implies the correct, non-Boussinesq, gravity-wave amplitude
growth during an upward propagation of a wave packet. A central advantage of WKB
theory is that it need no longer resolve separate wave crests and troughs, but only the
large-scale dependence of gravity-wave amplitude, wave number and frequency. This
potentially leads to a much more efficient description of the gravity-wave impact on
the large-scale flow.
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2.3. First-order effects
2.3.1. Second harmonics (α = 2)

As the most important result of the nonlinear extensions, once wave 1 is known, the
equations for wave 2 (i.e. α = 2) with system matrix M2 :=M(2ω̂, 2k, 2m)

M(2ω̂, 2k, 2m)


U(1)

2

W (1)
2

g

N

Θ
(2)
2

θ (0)

cpθ
(0)Π

(3)
2

=

−D1U(0)

1 −
1
2

ikΘ (1)
1 cpΠ

(2)
1

−D1W (0)
1 −

1
2

imΘ (1)
1 cpΠ

(2)
1

− g

Nθ (0)
D1Θ

(1)
1

0

 (2.29)

can be solved, where

D1 = 1
2

(
U(0)

1

∂

∂x
+W (0)

1

∂

∂z
+ ikU(1)

1 + imW (1)
1

)
(2.30)

and the next-order wave divergence is given by

ikU(1)
1 + imW (1)

1 =−
∂U(0)

1

∂x
− ∂W (0)

1

∂z
− 1− κ

κ

W (0)
1

π(0)
∂π(0)

∂z
. (2.31)

This system of linear equations is invertible since M2 is non-singular if (2.22) is
satisfied. These equations, obtainable both from the Euler equations and from the
pseudo-incompressible equations, differ from their anelastic analogue (Klein 2011).

2.3.2. Higher harmonics (α > 2)
In the multiscale asymptotic analysis, all harmonics with wave number higher than

two vanish up to and including first order in ε.

2.3.3. Mean flow
Finally the mean flow terms satisfy

Θ
(1)
0 = 0 (2.32)

W (0)
0 = 0 (2.33)

∂U(0)
0

∂x
= 0 (2.34)

∂U(0)
0

∂t
+ θ (0)cp

∂Π
(2)
0

∂x

=− 1
2ρ(0)

{
∂

∂x

[
ρ(0)|U(0)

1 |
2
]
+ ∂

∂z

[
ρ(0)Re

(
U(0)

1 W (0)
1
∗)]}

(2.35)

θ (0)cp
∂Π

(2)
0

∂z
− g

Θ
(2)
0

θ (0)
+ g
|Θ (1)

1 |
2

2θ (0)2

=− 1
2ρ(0)

{
∂

∂x

[
ρ(0)Re

(
U(0)

1 W (0)
1
∗)]+ ∂

∂z

[
ρ(0)|W (0)

1 |
2
]}
. (2.36)

From these equations U(0)
0 ,Π

(2)
0 and Θ

(2)
0 can be derived as will be shown in the

following section. Most of this is well-known (Bretherton 1966; Grimshaw 1975a;
Müller 1976), but note that in the last equation (actually the vertical-momentum
equation), the last term on the left-hand side is a wave-related modification of the
momentum balance which appears both in a WKB theory as derivable from the
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Euler equations and in its pseudo-incompressible counterpart, but not however in the
anelastic WKB.

For later reference we also note that the equations reproduce in the horizontally
homogeneous case the wave-induced mean flow (Grimshaw 1975b) which plays an
important role in the modulational instability of GWPs with infinite horizontal extent
(Sutherland 2006; Dosser & Sutherland 2011). From the polarization relations (2.28),
the dispersion relation (2.22) and the group-velocity definition one readily finds that
the vertical momentum flux can be rewritten

ρ(0)

2
Re
(

U(0)
1 W (0)

1
∗)= cgzkA (2.37)

with cgz the vertical group-velocity component. In the horizontally homogeneous
case, frequency, wave number and all amplitudes are independent of x. Under these
conditions the prognostic equation (2.24) for horizontal wave number and the wave-
action equation (2.26) lead to a conservation equation

∂

∂t
(kA)+ ∂

∂z
(cgzkA)= 0 (2.38)

for horizontal pseudo-momentum kA, while the horizontal momentum equation (2.35)
becomes, with (2.37),

∂

∂t

(
ρ(0)U(0)

0

)
+ ∂

∂z
(cgzkA)= 0. (2.39)

From this follows

ρ(0)U(0)
0 (z, t)= (kA) (z, t)+ ρ(0)U(0)

0 (z, 0)− (kA) (z, 0). (2.40)

Thus, in regions with zero initial pseudo-momentum, deviations of the mean horizontal
flow from its initial value are given by the pseudo-momentum transported there by
the gravity waves. Again using the polarization relations (2.28), the latter can also be
expressed via vorticity ζ = imU(0)

1 − ikW (0)
1 and vertical displacement ξ = iW (0)

1 /ω̂ as

kA=− 1
2 Re (ζ ξ ∗) . (2.41)

Obviously the frequency ω = ω̂ + kU(0)
0 is Doppler-shifted by the mean flow, be it

present initially or induced by the waves.

3. Implementation
From a fluid-dynamical view point we have adopted an Euler–Lagrangian mixed

transport method for the solution to (2.24) and (2.26). The wave action A is
treated as a conservative variable in a finite-volume method using second-order
monotone upstream-centred schemes for conservation laws (MUSCL) with a modern
total variation diminishing (TVD) limiter (Toro 1999; Kemm 2010). The rays are
transported in a Lagrangian manner. Once the wave action is known in a finite-volume
cell, the wave 1 amplitude can be calculated using (2.27) and (2.28). We use a
third-order Runge–Kutta scheme (e.g. Durran 1999) for the time stepping in both the
integration of the ray equations and in that for the wave action. The wave 2 amplitudes
follow from inverting (2.29) and the mean flow can be deduced from (2.32) to (2.36).
Boundary conditions are always periodic in the horizontal.
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FIGURE 1. Finite-volume cell (solid line) for the conserved wave action A along with rays
(crosses) carrying wave properties k,m, ω̂. All wave amplitudes are collocated with the wave
action.

3.1. Transport of rays and wave action
In figure 1 a finite-volume cell (solid line) along with rays (crosses) is depicted. Note
that the mean flow U (0)

0 is stored at the cell interfaces (C-grid). All wave amplitudes
are cell centred: collocated with the wave action. In each Runge–Kutta stage the
following procedure is carried out.

3.1.1. Flux calculation
Using the rays located in the dotted cell around edge (i + 1/2), see figure 1, an

average group velocity at the midpoint of this edge c̄gx,i+1/2 can be calculated. This
velocity determines the upwind direction for the MUSCL upwind scheme:

fi+1/2 =
{

c̄gx,i+1/2A−i+1/2 for c̄gx,i+1/2 > 0
c̄gx,i+1/2A+i+1/2 for c̄gx,i+1/2 < 0.

(3.1)

The wave action Ai+1/2,k at the cell interface xi+1/2,k is a second-order reconstructed
value using a variant of the monotonized central-difference (MC) limiter described by
Kemm (2010). Once all fluxes are calculated the wave action in each finite-volume cell
can be updated:

d
dt

Ai =− fi+1/2,k − fi−1/2,k

1x
. (3.2)

The flux difference in the vertical direction has to be calculated and included
analogously.

3.1.2. Ray transport
The rays are initially uniformly distributed over the mesh with wave numbers given

by the test cases as described below. The number of rays per cell can be set via a
parameter. Each ray carries the following information: Cartesian ray position x= (x, z),
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wave vector k = (k,m), intrinsic group velocity cg = (cgx, cgz), intrinsic frequency ω̂,
the position within the finite-volume grid i = (i, k) as well as the position within a
single finite-volume cell: upper/lower half and left/right half. In its present form the
theory assumes that at each location there is just one local wave number and frequency.
Dispersion, arising from initial configurations with different wave numbers, and thus
group velocities, at the same location, are neglected.

For the ray transport we evolve in time

dx

dt
= cgx =±Nm

k3
T

m+ U(0)
0 (3.3)

dz

dt
= cgz =±Nm

k3
T

(−k) (3.4)

where we use the branch with cgx > 0 and cgz > 0. In all test cases considered here
the reference atmosphere is assumed to be isothermal at temperature T00, so that the
squared Brunt–Väisälä frequency is

N2 = κg2

RT00
(3.5)

with κ = (γ − 1)/γ and γ = cp/cv = 1.4 being the adiabatic index for ideal gases and
k2

T = k2 + m2 denotes the total wave number. The mean flow u(0) = (U(0)
0 , 0) is defined

at the cell edges (C-grid) and has to be interpolated to the rays appropriately.
After the ray displacement, their new position within the mesh, i.e. their

corresponding cell indices, can be determined along with the change of the vertical
wave number according to (2.24b). Rays leaving the domain are re-inserted at the
opposite side of the mesh (periodic domain for rays) albeit with a re-initialization of
the wave vector.

3.2. Amplitude of first harmonic

Once the wave action is known in a finite-volume cell, the buoyancy amplitude B(1)1
can be calculated using the relation

A= E′

¯̂ω =
1
¯̂ω
ρ(0)

2N2
|B(1)1 |

2
(3.6)

where ¯̂ω is the intrinsic frequency averaged over rays belonging to a finite-volume
cell. All other wave 1 amplitudes U(0)

1 ,W (0)
1 ,Π

(2)
1 follow from the polarization

relations (2.28) and are cell-centred, i.e. collocated with the wave action.

3.3. Amplitude of second harmonic

With the known amplitudes U(0)
1 ,W (0)

1 ,B(1)1 ,Π
(2)
1 of the first harmonic, we can

calculate the amplitudes of the second harmonic U(1)
2 ,W (1)

2 ,B(2)2 ,Π
(3)
2 using the matrix

equation (2.29). The system matrix M2 =M(2ω̂, 2k, 2m) can be inverted algebraically
yielding

M−1
2 = D


2im̄2 ¯̂ω −2ik̄m̄ ¯̂ω k̄m̄N − 1

2 ik̄(4 ¯̂ω2 − N2)

−2ik̄m̄ ¯̂ω 2ik̄2ω̄ −k̄2N −2i ¯̂ω2
m̄

−k̄m̄N k̄2N 2i ¯̂ω(m̄2 + k̄2) − ¯̂ωm̄N

− 1
2 ik̄(4 ¯̂ω2 − N2) −2i ¯̂ω2

m̄ ¯̂ωm̄N − 1
2 i ¯̂ω(4 ¯̂ω2 − N2)

 (3.7)
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with

D= 1

4 ¯̂ω2
(m̄2 + k̄2)− k̄2N2

. (3.8)

The equation can then be solved efficiently with a simple matrix multiplication. Since
all wave amplitudes are cell centred, all rays within a cell have to be found and their
wave properties have to be cell-averaged giving mean wave numbers (k̄, m̄) and mean
intrinsic frequency ¯̂ω.

3.4. Mean flow
The RHS of the mean flow equations (2.36) and (2.35) is fully determined by the
wave 1 amplitudes. For determining the mean flow the following procedure is helpful.
Note that apart from U(0)

0 the other mean flow quantities, Π (2)
0 and Θ

(2)
0 , are not

fully determined by the equation set: their x-mean values remain unknown and can be
obtained by analysing higher-order terms of the WKB equations. Therefore, we restrict
the analysis here to the x-derivatives ∂Π (2)

0 /∂x and ∂Θ (2)
0 /∂x.

3.4.1. Mean velocity
Taking the x-mean of (2.35) allows to calculate ∂U(0)

0 /∂t from the vertical gradient
of the vertical gravity-wave momentum flux and, consequently, the change of the mean
velocity U(0)

0 . The x-mean of the pressure term on the left-hand side disappears due to
periodic boundary conditions (BCs) in the horizontal.

3.4.2. Exner pressure
Subtracting ∂U(0)

0 /∂t from (2.35) gives an equation for

θ (0)cp
∂Π

(2)
0

∂x
= RHS(2.35)− ∂U(0)

0

∂t
. (3.9)

3.4.3. Mean buoyancy
Calculating the difference

∂

∂z

(
(2.35)
θ (0)

)
− ∂

∂x

(
(2.36)
θ (0)

)
(3.10)

we obtain the following equation for ∂Θ (2)
0 /∂x

∂

∂z

(
1
θ (0)

∂U(0)
0

∂t

)
+ ∂

∂x

(
g
Θ
(2)
0

θ (0)
2

)
− ∂

∂x

(
g
|Θ (1)

1 |
2

2θ (0)3

)

= ∂

∂z

(
RHS(2.35)

θ (0)

)
− ∂

∂x

(
RHS(2.36)

θ (0)

)
. (3.11)

4. Validation part I: one-dimensional GWP
In the following section we compare the propagation of a GWP once calculated

with a full model of the pseudo-incompressible equations and once with the ray
tracer integrating the WKB equations as described in § 3. For the full model we
use a three-dimensional finite-volume model of the pseudo-incompressible equations
(pincFloit) described by Rieper, Hickel & Achatz (2013). For the spatial discretization
we use a second-order MUSCL scheme with the MC limiter. The third-order low-
storage Runge–Kutta scheme by Williamson (see Durran 1999) is used for advancing
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the equations in time. At first we analyse a one-dimensional GWP with a Gaussian
profile only along the vertical axis since the Fourier analysis along the x-axis is
then straightforward and the insight we get can later be used for the more complex
two-dimensional case presented in § 5.

4.1. Description of the reference test case
First we present numerical results for a reference test case; later we show the influence
of some parameters on the validity of the WKB theory. In the isothermal reference
state with T00 = 300 K a wave packet is initialized with the buoyancy amplitude

b̂(z)= a
N2

m
exp

[
−(z− zCenter)

2

2σ 2

]
(4.1)

with the amplitude a = 0.1, which corresponds to 10 % of the threshold of static
instability, the isothermal Brunt–Väisälä frequency for T00 = 300 K of N = 0.018 s−1,
the half-width σ = 5 km and the centre of the wave packet at zCenter = 30 km. Note
that in this configuration the distinguished limit of multiple-scale asymptotics is
already undergoing a critical test since the isothermal potential-temperature scale
height g/N2 is considerably larger than the wave-packet half-width σ . Using the
polarization relations we set the following initial fields

ut=0 = m

k

ω̂

N2
b̂ cos

(
kx+ mz− π

2

)
(4.2)

wt=0 = ω̂

N2
b̂ cos

(
kx+ mz+ π

2

)
(4.3)

bt=0 = b̂ cos(kx+ mz) (4.4)

πt=0 = m

k2

ω̂2

N2

1
cpθ (0)(z)

b̂ cos
(

kx+ mz− π
2

)
. (4.5)

For the wavelengths we set λx = λz = 1 km. The domain of the full model has the
size (lx, lz)= (1 km, 60 km) at a resolution of nx × nz = 64× 3840 while the ray tracer
runs at a resolution of nx × nz = 1 × 1000 (which is far more than actually needed
but keeping us on the safe side). The buoyancy field is transformed into a density
perturbation.

In the remainder of this section we will only discuss the gravity wave and its higher
harmonics. The mean flow behaves very much as in the two-dimensional case where it
will be given due attention.

4.2. Validation of the reference test case
4.2.1. Harmonics 1, 2 and higher

In figure 2 Hovmöller diagrams, i.e. z–t contour plots, of the buoyancy for the first
harmonic B(1)1 (a,b), the second harmonic B(2)2 (c,d) and the third harmonic B(2)3 (e,f )
calculated with the full model (a,c,e) and the WKB model (b,d,e) is shown. There is
a perfect agreement for wave 1. Wave 2 is by a factor of 103 smaller than wave 1
which is of about of the same order as the scale-separation ratio ε = (λz/2π)/(g/N2).
The agreement between full and WKB model is still very good but we can make out
a weak ‘pumping’ of the amplitude obtained with the full model. The third harmonic
(lower row) should be absent according to the WKB theory or, to be more precise,
should be of a smaller order in ε. This means that if we took smaller terms into
account we might be able to show that B(3)3 6= 0. And, indeed, the full model shows a
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FIGURE 2. For the one-dimensional case in the standard setting (see the main text) and
a = 0.1: Hovmöller diagrams of buoyancy for the first harmonic B(1)1 (a,b), the second
harmonic B(2)2 (c,d) and the third harmonic B(2)3 (e,f ) calculated with the full model (a,c,e)
and the WKB model (b,d,f ). The isolines in the top range from 5.7 × 10−4 to 5.7 × 10−3 in
steps of 5.7× 10−4, in the middle from 5.7× 10−7 to 5.7× 10−6 in steps of 5.7× 10−7 and in
the bottom from 1.0 × 10−8 to 1.0 × 10−7 in steps of 1.0 × 10−8. Units are m s−2. The small
parameters defined in the main text are (ε, ε1, ε2)= (5.2× 10−3, 5.2× 10−4, 3.2× 10−2).

very weak amplitude, which is again by a factor of 102 smaller than wave 2 and which
also shows this pumping behaviour. This effect becomes more evident in figure 3,
where the line pair in the middle annotated with λ = 1000 m represents the reference
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FIGURE 3. As figure 2, but now the influence of wavelength on amplitude maxima along
z plotted against time for waves 2 and 3: — , wave 2 with WKB; – –, wave 2 with the
full model; – ·–, wave 3 with the full model. Shown are the test cases with λ = 800 m and
(ε, ε2)= (4.1×10−3, 2.5×10−2) (bottom), λ= 1000 m and (ε, ε2)= (5.2×10−3, 3.2×10−2)
(middle), and λ= 1200 m and (ε, ε2)= (6.2× 10−3, 3.8× 10−2) (top). In all cases ε1 = 0.1ε.

test case. In the figure the amplitude maxima taken along the z-axis, i.e. the peak of
the Gaussian, are plotted against time. Note that all higher wave numbers (not shown)
are also present in the full model solution and have the same order of magnitude as
wave 3. The pumping frequency and amplitude is not predicted by the WKB theory
and will be analysed in the following parameter study.

4.3. Parameter study
The theory to be validated here has been obtained as a distinguished limit within
multiple-scale asymptotics. The governing small parameter is the scale-separation ratio

ε = L

Hθ

= N2

2πg
λz (4.6)

between the inverse wave number of the gravity wave and potential-temperature
scale height. Based on linear theory, it is assumed to be of the same order as the
ratio between the leading-order amplitude of the gravity-wave potential-temperature
fluctuations and the reference-state potential temperature,

ε1 = Θ
(1)
1

θ (0)
= B(1)1

g
. (4.7)

Up to the Gaussian envelope the gravity-wave buoyancy amplitude is b̂ = aN2/m,
leading to

ε1 = a
N2

2πg
λz. (4.8)

The assumptions of the distinguished limit are met as long as a= O(1). The limit case
a= 1, however, immediately leads to a turbulent wave breakdown so that we can only
assume a is somewhat less than 1. But, strictly speaking, a being asymptotically small
would be a situation that requires testing. Finally, it was also assumed that gravity-
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wave amplitudes have the same spatial scale as the reference-atmosphere potential
temperature so that the scale-separation ratio

ε2 = λz

2πσ
(4.9)

should be O(ε). As mentioned above, the test case discussed so far does not strictly
meet this condition, yet the theory works well for it. A parameter study within which
the three ε are varied relative to each other thus seems to be in place. The analysis
below, accompanied by an investigation of the influence of the numerics, addresses
this, along with two other questions: first, what influences the amplitude of wave 3
and higher, which should vanish in the present WKB theory up to first order in ε

and, second, what influences the ‘pumping’ of the wave 2 amplitude? For testing the
validity of the WKB theory we varied the wavelength and the amplitude of the initial
wave packet. In the following we present the major results. In all of the cases that are
presented, wave 1 agrees perfectly between the full and WKB models, thus we do not
always show it.

4.3.1. Influence of numerics
It is quite interesting to see how the full-model numerics influences the deviation

from the WKB predictions. Here we simply state the results, which are discussed
in Rieper et al. (2013) with a focus on the numerics used in the pseudo-
incompressible, finite-volume model pincFloit. A major aspect is the spatial resolution,
given by the number of cells per wave 1 wavelength nλ. We found that with nλ = 16
the amplitudes of waves 3 and 5 are of the same order of magnitude as wave 2. With
nλ = 32, waves 3 and 5 are distinctly smaller than wave 2 but only for nλ > 64 do the
higher harmonics practically vanish as predicted by WKB theory. Note that the choice
of the spatial discretization (flux function and limiter) also influences the deviations,
especially in the higher harmonics.

4.3.2. Influence of wavelength
For an analysis of the impact of the scale-separation parameter as such, we have

varied the wavelength and kept all other parameters constant, thus also keeping the
ratios above constant. We varied the wavelength λx = λz = λ around the reference test
case

λ= 800 m/1000 m/1200 m (4.10)

while keeping a constant size of the wave packet. The resolution was kept at
nx×nz = 64×3840 and only the horizontal domain size was adapted to the wavelength,
i.e. lx = 800 m/1000 m/1200 m. In figure 3 the amplitude maxima along the z-axis are
plotted against time for all three wavelengths. Shown are wave 2 for the WKB model
(solid lines) and the full model (dashed lines) along with the wave 3 amplitude of
the full model (dash-dotted lines). For all parameters the WKB theory predicts the
correct mean of wave 2. The wave 2 amplitude mean gets somewhat below the WKB
wave 2 mean after some time. This can be attributed to the numerical damping of
the full model taking into account that 60 min physical time need some 3600 time
steps of calculation in the full model. The pumping of the wave 2 amplitude increases
with larger λ, i.e. with larger ε. For all parameters the wave 3 amplitude is of
comparable size. Thus, we can say as ε→ 0 the pumping disappears and the WKB
theory predictions are very well matched. For larger ε only the mean amplitude is still
correctly predicted and the pumping is beyond the WKB theory.
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FIGURE 4. As figure 2, but now the influence of wavelength on amplitude maxima along z
plotted against time for wave 1: —, wave 1 with WKB; – –, wave 1 with full model. Shown
are the test cases with λ= 1000 m and (ε, ε2)= (5.2×10−3, 3.2×10−2) (bottom), λ= 2000 m
and (ε, ε2)= (1.0×10−2, 6.4×10−2) (middle) and λ= 4000 m and (ε, ε2)= (2.0×10−2, 0.13)
(top). In all cases ε1 = 0.1ε.

At even larger wavelength, increasing up to λ = 4000 m, at least the wave 1
amplitude is well-matched, as can be seen in figure 4. Owing to the definition of
buoyancy amplitude via the normalized amplitude

b̂= a
N2

m
(4.11)

the signal amplitude varies with changing λz. The larger the wavelengths, however,
the more the full-model amplitude falls behind the WKB predicted amplitude. Part
of this could be due to wave dispersion, the more relevant the closer gravity-wave
wavelength and the spatial scale of the envelope become, but they are not included
in the present XWKB. A similar result was obtained for waves 2 and 3 as depicted
in figure 5. Wave 2 shows two kinds of deviations from the WKB predictions: an
increasing oscillatory behaviour and, as for wave 1, a fall back of mean-amplitude
behind the WKB predicted amplitude. Note, however, that even under these conditions
XWKB still performs quite well, even quantitatively.

4.3.3. Influence of amplitude
As the non-dimensional wave amplitude a is increased, two counteracting effects

compete with each other. On the one hand, the ratios ε1 and ε are approaching
each other and, as long as we remain below the threshold for turbulent breaking,
the assumptions of the distinguished limit are met better. On the other hand, as a is
increased, nonlinear gravity-wave instabilities gain in relevance (e.g. Lombard & Riley
1996; Achatz 2005), which are not described by the present theory. We first note that
below the threshold for breaking, the wave 1 amplitude is always in good agreement
with the theory (not shown). Wave 2, however, deteriorates in quality as a is increased.
If the amplitude a is varied from a = 0.1 via a = 0.25 to a = 0.5 while keeping all
other quantities as in the reference case, we obtain the result shown in figure 6 with
the same line coding as in the λ study. The (initial) wave 2 amplitude increases by a
factor of roughly 5. For smaller amplitudes a, i.e. smaller ε1, the pumping decreases
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FIGURE 5. As figure 4, but now for waves 2 and 3.

and the WKB predictions are better met as we would expect for ε1 → 0. It thus
appears that the discrepancy between ε and ε1 matters less than a being large. Note,
however, that part of the relative decay in wave 2 amplitude at large a is due to
numerical damping which increases in the presence of steeper gradients. Note also that
the breaking of the wave sets in at t ≈ 40 min for initial a = 0.75, to be expected
already below an instantaneous a = 1 (Fritts et al. 2006; Achatz 2007), leading to an
exponential amplitude growth for all wave numbers represented on the grid as can
be seen in figure 7. Still, however, up to the point of breaking the predictions from
XWKB are quite reliable.
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FIGURE 6. As figure 2, but now the influence of normalized initial amplitude a on the
amplitude maxima along z plotted against time for wave 2: —, wave 2 with WKB; – –, wave
2 with the full model. Shown are the test cases with a = 0.1 and ε1 = 2.6 × 10−3 (bottom),
a = 0.25 and ε1 = 1.3 × 10−3 (middle) and a = 0.5 and ε1 = 5.2 × 10−4 (top). In all cases
(ε, ε2)= (5.2× 10−3, 3.2× 10−2).
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FIGURE 7. As figure 2, but now the long time behaviour of the buoyancy amplitude b plotted
against time for waves 2–5 with an initial amplitude a = 0.75. The various small parameters
are (ε, ε1, ε2)= (5.2× 10−3, 3.9× 10−3, 3.2× 10−2).

4.4. Wave–mean-flow interaction in long integrations
One might apprehend that in the analyses above XWKB is not really tested up to
its limits since in the short integrations considered, nonlinear interactions between the
GWP and mean flow do not have enough time to develop. We therefore consider
here two additional cases where this interaction can become more pronounced. In the
first case we launch the wave packet at a low initial amplitude a = 0.1 and let it
propagate upwards until nonlinear dissipation sets in. In the second case a hydrostatic
wave packet is launched below a horizontal wind jet which is able to modify the
wave-packet properties. Throughout these two test cases we use a cosine bell-shaped
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FIGURE 8. For the one-dimensional-case of a non-hydrostatic GWP with initial amplitude
a = 0.1 launched in the pseudo-incompressible equation code at altitude z = 10 km:
Hovmöller diagrams of buoyancy for the first harmonic B(1)1 (a) and the second harmonic
B(2)2 (b). Units are m s−2. The small parameters defined in the main text are (ε, ε1, ε2)= (5.2×
10−3, 5.2× 10−4, 3.2× 10−2). Horizontal and initial vertical wavelength are λx = λz = 1 km.

amplitude

b̂(z)= 1
2

aN2

m

[
1+ cos

(
π(z− zCenter)

σ

)]
(4.12)

for |z− zCenter|< σ and b̂(z)= 0 elsewhere with a half-width of σ = 10 km.

4.4.1. Uniform background
Figure 8 shows the time development, from the pseudo-incompressible equation

code, of the first and second harmonic of the GWP launched with initial amplitude
a = 0.1 at altitude z = 10 km. Horizontal and vertical wavelength are λx = λz = 1 km.
After 400 min strongly nonlinear behaviour sets in. The amplitude with respect to
static instability immediately before this collapse is below a = 0.4. Direct static
instability can thus be excluded as a destabilizing mechanism. As is shown below, the
local vertical wavelength grows in the vertical propagation, in response to gradients in
the wave-induced mean flow. It thus becomes larger than the horizontal wavelength. It
is known that under such conditions modulational instability (Sutherland 2006; Dosser
& Sutherland 2011) can lead to enhanced local gravity-wave amplitude growth. We
speculate that this leads indirectly to local amplitudes large enough for static instability.
Indeed, right after the onset of wave dissipation total potential temperature develops
negative vertical gradients in many places (not shown).

The XWKB code collapses when the nonlinear dissipation sets in. We assume
that this is related to the fact that at this point the central assumption of just one
wavelength at a given location is no longer fulfilled. Corresponding extensions will
have to be considered in the future. Up to the point of destabilization, however, the
XWKB predictions work quite well. To demonstrate this we compare the predictions
of the XWKB code with those from the pseudo-incompressible equation code for
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FIGURE 9. As figure 8, but now comparing, up to the onset of nonlinear dissipation, the
predictions from the pseudo-incompressible equation code (a,c,e) and the XWKB code
(b,d,f ). Shown are the mean horizontal wind U(0)

0 (a,b, units m s−1), the first harmonic of
buoyancy B(1)1 (c,d, units m s−2) and the second-harmonic buoyancy B(2)2 (e,f, units m s−2).

the mean horizontal wind and the first- and second-harmonic buoyancy amplitudes in
figure 9. The mean horizontal wind has also been compared to the prediction

U(0)
0 =−

1
2ρ(0)

Re (ζ ξ ∗) (4.13)
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FIGURE 10. For the same case as shown in figures 8 and 9 the local vertical wavelength, as
predicted by the pseudo-incompressible equation code and the XWKB code for t = 180 min
(a) and t = 360 min (b).

from (2.40) and (2.41). Above the region of the wave-packet initialization the
agreement is very good (not shown). Similarly good agreement is also visible in
figure 10 where the predictions for the local vertical wavelength are compared with
each other. Next to the good agreement also the growth of the wavelength in the upper
part of the GWP is of interest. As argued above, this might cause the final GWP
destabilization. Indeed at t = 360 min the instability criterion given by Sutherland
(2006), i.e. λx/λz 6 0.7 is already nearly fulfilled.

4.4.2. Wave-packet propagation through a horizontal-wind jet
In all cases considered above the initial mean horizontal wind was zero.

Wave–mean-flow interaction there implied first the generation of a wave-induced mean
flow which then can also influence the GWP. That latter process is facilitated from the
start in a case considered here, where a hydrostatic wave packet with horizontal and
initial vertical wavelengths (λx, λz) = (10, 1) km is initialized below a horizontal-wind
jet of the shape

U(0)
0 =


U0

2

{
1+ cos

[ π
1L

(z− z0)

]}
|z− z0|61L

0 otherwise.
(4.14)

The jet is located at z0 = 25 km and has a half-width 1L = 5 km. The initial GWP
is at altitude 10 km, with a half-width σ = 5 km. To avoid an initial wave–mean-flow
interaction the GWP amplitude has been given the same cosine profile as the jet,
with zero amplitude outside of |z− zCenter| 6 σ . The initial amplitude of the GWP is
a = 0.1. Its horizontal phase and group velocities are negative so that no critical layer
exists. According to WKB theory reflection of the GWP would be possible, however,
if the jet were strong enough so that the GWP vertical wavelength becomes infinite
in the course of the upward propagation through the jet (e.g. Sutherland 2010). In a
steady horizontal mean flow, assumed in this discussion for simplicity, frequency is
conserved along a ray, while its horizontal homogeneity implies conserved horizontal
wave number k. The vertical wave number must adjust, however, in the course of the
GWP propagation in order keep the frequency ω = U(0)

0 k − Nk/
√

1+ (m/k)2 constant.
This causes the vertical wavelength to grow. Reflection would be observed if m could
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pass through zero. This would happen if

U0 >
N

k

1− 1√
1+ m2

0

k2

 (4.15)

where m0 is the initial vertical wave number. For the GWP here this would imply
U0 > 25.8 m s−1. In this situation our XWKB code would have to break down since
it cannot handle a situation where at a single location reflected rays exist which have
a different vertical wave number sign than the approaching rays. We have therefore
chosen a weak-jet case with U0 = 5 m s−1. Jets with peak values 10 and 20 m s−1

have also been considered. There, however, the XWKB code was found to be unstable,
probably due to crossing rays in the nonlinear development which mean wind and
GWP take in the later phases of these cases. For the weak-jet case, however, XWKB
can give useful predictions. Figure 11 compares the prediction for the mean-horizontal-
wind deviation from the initial jet, the first-harmonic buoyancy amplitude and the
second-harmonic buoyancy amplitude, as obtained from the two codes. Figure 12
compares the predictions for the vertical wavelength. While some differences are
visible in the last phase of the simulations, at least qualitative agreement can be
diagnosed over the whole time span.

5. Validation part II: two-dimensional GWP
The two-dimensional case is more interesting because it is more general but also

more challenging, for two reasons: first, to obtain the same resolution of the wave as
in the one-dimensional case, i.e. nλ = 64 points per wave 1 length, we would need a
two-dimensional resolution of nx× nz > 25002, which makes runs on a single processor
very time-consuming; second, the signal has, both in x and z, a Gaussian profile and a
Fourier transform can no longer be used to separate the wave components in the wave
packet. The signals we are looking for, the wave 2 and wave 3 amplitude, are by a
factor of at least 1000 smaller than the wave 1 signal and any manipulation of the data
can affect this weak signal. After presenting the test case we show the wave 1, wave 2
and wave 3 amplitudes, as for the one-dimensional case, and then present the results
for the mean flow and the difference between pseudo-incompressible and anelastic
WKB theory.

5.1. Description of the test case
The two-dimensional wave packet is initialized with the buoyancy amplitude

b̂(x, z)= a
N2

m
exp

[
−(x− xCenter)

2 + (z− zCenter)
2

2σ 2

]
(5.1)

where we use the same quantities as for the one-dimensional test case with some
modifications: σ = σx = σz = 5 km, the domain was made smaller to decrease
computing times to (lx, lz) = (40 km, 40 km) at a full-model resolution of nx × nz =
1280×1280 and a ray-tracer resolution of nx×nz = 100×100. The full-model resolution
resolves the wave 1 with nλ = 32 points, i.e. a factor of 2 lower than in the one-
dimensional case. We reduced the physical time of the test run to tmax = 20 min in
order to avoid the wave packet interfering with the boundary, since the domain was
made more compact to save computing time.
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FIGURE 11. The one-dimensional case of a hydrostatic GWP with initial amplitude a = 0.1
launched at altitude z = 10 km below a horizontal wind jet at altitude 25 km: Hovmöller
diagrams of the predictions from the pseudo-incompressible equation code (a,c,e) and the
XWKB code (b,d,f ). Shown are the deviation of the mean horizontal wind U(0)

0 from the
jet (a,b, units m s−1), the first-harmonic buoyancy amplitude B(1)1 (c,d, units m s−2) and
the second-harmonic buoyancy amplitude B(2)2 (e,f, units m s−2). For better visibility the
logarithm of the second-harmonic buoyancy amplitude is shown. Horizontal and initial
vertical wavelengths are (λx, λz) = (10, 1) km. The small parameters defined in the main
text are (ε, ε1, ε2)= (5.2× 10−3, 5.2× 10−4, 3.2× 10−2).
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FIGURE 12. For the same case as shown in figure 11, the local vertical wavelength, as
predicted by the pseudo-incompressible equation code and the XWKB code t = 360 min (a)
and t = 540 min (b).

5.2. Harmonics 1, 2 and 3
In figure 13 the results of the two-dimensional test cases are shown in Hovmöller
diagrams of the buoyancy at the horizontal location of largest wave amplitude, with
full-model results on figure 13(a,c,e) and WKB-model results on figure 13(b,d,f ). The
data processing by which we have obtained the spatially dependent wave amplitudes
is discussed in the Appendix. In the upper row the amplitude of wave 1 is in very
good agreement. The full model produces an oscillating second harmonic (middle
row), while WKB predicts a continuously increasing amplitude. Nevertheless, the
amplitude-mean obtained with the full model agrees well with the amplitude predicted
by WKB as can be seen in figure 14. Wave 3 (bottom row of figure 13) and all higher
wave numbers (not shown) are slightly weaker than wave 2 and should be at the most
first order in ε according to WKB theory. Recall that in this test case the resolution is
only half as good as in the one-dimensional case and it is therefore sensible that the
WKB predictions are not as well met. In addition, it cannot be guaranteed that in the
extraction process of waves 2 and 3 the signal is not affected.

5.3. Mean flow

To calculate the mean flow variables U(0)
0 , B(2)0 and Π (2)

0 for the WKB theory we follow
the steps given in § 3.4. For the full-model data we apply a filter along x and z with
the filter size corresponding to the wave 1 length

fi0

x =
i0+(nλ/2)−1∑
i=i0−(nλ/2)

fi (5.2)

fi0

x,z =
k0+(nλ/2/2)−1∑
k=k0−(nλ/2)

fk. (5.3)

This procedure was applied twice to get rid of all oscillations in the solution.
Figure 15 shows the mean horizontal velocity in the full model at a very early
(5 min) and a somewhat later (20 min) instance of the development. Note how quickly
the flow adjusts to the horizontally homogeneous state predicted by (2.34), following
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FIGURE 13. For the two-dimensional case in the standard setting (see the main text):
Hovmöller diagrams of buoyancy for the first harmonic B(1)1 (a,b), the second harmonic B(2)2

(c,d) and the third harmonic B(2)3 (e,f ) calculated with the full model (a,c,e) and the WKB
model (b,d,f ). The isolines in the (a,b) range from 5× 10−4 to 5× 10−3 in steps of 5× 10−4;
in (c,d) from 4.2 × 10−7 to 4.2 × 10−6 in steps of 4.2 × 10−7 and in (e,f ) diagram from
4.2× 10−8 to 4.2× 10−7 in steps of 4.2× 10−8. Units are m s−2. The various small parameters
are (ε, ε1, ε2)= (5.2× 10−3, 5.2× 10−4, 3.2× 10−2).

from the weakness of the vertical wind and the non-divergence constraint. In figure 16
the results obtained with the full model (a,c,e) are compared with the WKB theory
predictions (b,d,f ).
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FIGURE 14. For the two-dimensional case in the standard setting (see the main text):
amplitude maxima along z of buoyancy plotted against time for two waves: —, wave 2
with WKB; – –, wave 2 with the full model; – ·–, wave 3 with the full model. Units are m s−2.
The various small parameters are (ε, ε1, ε2)= (5.2× 10−3, 5.2× 10−4, 3.2× 10−2).
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FIGURE 15. For the two-dimensional case in the standard setting (see the main text): spatial
dependence of the mean horizontal velocity in the full model at t = 5 min and t = 20 min.
Units are m s−1. The various small parameters are (ε, ε1, ε2) = (5.2 × 10−3, 5.2 × 10−4,
3.2× 10−2).

The mean horizontal velocity U(0)
0 is shown in a Hovmöller diagram (figure 16a,b)

and is in very good agreement. For the mean buoyancy derivative ∂B(2)0 /∂x the contour
plot at t = 5 min is shown (figure 16c,d). The shape of the signal slightly differs but
magnitude and overall structure of the solution are also in good agreement. The same
holds for the mean Exner pressure derivative ∂Π (2)

0 /∂x shown in figure 16(e,f ).
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FIGURE 16. For the two-dimensional case in the standard setting (see the main text):
comparison of the mean flow calculated with the full model (a,c,e) and the ray tracer (b,d,f ).
Hovmöller diagram of the mean horizontal velocity U(0)

0 (a,b, in m s−1); contour plot of the
mean-flow buoyancy derivative ∂B(2)0 /∂x (c,d, in s−2) and contour plot of the mean Exner
pressure derivative ∂Π (2)

0 /∂x (e,f, in m−1) at t = 5 min. The various small parameters are
(ε, ε1, ε2)= (5.2× 10−3, 5.2× 10−4, 3.2× 10−2).

5.4. Pseudo-incompressible versus anelastic model

It is of interest to see the range of validity of sound-proof models, e.g. for the
pseudo-incompressible system introduced by Durran (1999) and the most popular
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FIGURE 17. For the two-dimensional case in the standard setting (see the main text): line
plot of various terms of the mean flow vertical momentum equation (5.4) at the horizontal
domain centre x = 0 after t = 20 min. The thick solid line represents a buoyancy term present
in the Euler and pseudo-incompressible equations, but which is absent in the anelastic theory.
Units are m s−2. The various small parameters are (ε, ε1, ε2) = (5.2 × 10−3, 5.2 × 10−4,
3.2× 10−2).

anelastic model by Lipps & Hemler (1982). In the derivation of the extended WKB
theory (Achatz et al. 2010) one difference became apparent in the mean vertical
momentum equation

θ (0)cp
∂Π

(2)
0

∂z
− B(2)0︸ ︷︷ ︸

term0

+ |B
(1)
1 |

2

2g︸ ︷︷ ︸
term1

=− 1
2ρ0

∂
[
ρ0R(u

(0)
1 w(0)

1
∗
)
]

∂x
+
∂
[
ρ0|w(0)

1 |
2
]

∂z

︸ ︷︷ ︸
term2

. (5.4)

The buoyancy term1 appears in the full Euler equations as well as in the pseudo-
incompressible equations but not in the anelastic model. We have investigated the
actual relative magnitude of this term in the context of our test cases. For the
present two-dimensional GWP test case after t = 20 min the answer can be found
in figure 17 where term0, term1 and term2 are plotted with different line styles.
Note that we calculated term0 as residue between term1 and term2 since the two
components of term0 cannot be determined individually as discussed in the previous
section on mean flow. The buoyancy term1 makes up ∼30 % of the left-hand side
of the momentum balance (5.4). Note that this result was obtained in similar quality
both with the full pseudo-incompressible model (not shown here) and with the WKB
model.

6. Summary and conclusions
The range of validity of XWKB proposed by Achatz et al. (2010) has been

examined. Central predictions of this large-amplitude theory are classic wave-action
conservation and variation of local frequency and wave number by the eikonal
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equations, but also the non-resonant forcing of higher harmonics of the basic gravity-
wave field, mostly by large-scale gradients of the gravity-wave fluxes. For the time
being, nonlinear wave–wave interactions (e.g. McComas & Bretherton 1977; Caillol
& Zeitlin 2000; Lvov et al. 2012) are neglected. Eventually this will have to be
amended, as Dunkerton (1987) has shown that such interactions can be important once
a gravity wave propagates into a non-quiescent region. The theory so far has been
obtained as a distinguished limit within multiple-scale asymptotics. The governing
small parameter is the scale-separation ratio between the inverse wave number of
the gravity wave and potential-temperature scale height. Based on linear theory it is
assumed to be of the same order as the ratio between the leading-order amplitude
of the gravity-wave potential-temperature fluctuations and the reference-state potential
temperature. The validity of using linear theory in this estimate is corroborated by the
fact that the leading-order equations in the present asymptotic regime are those also
obtained in a linearized Boussinesq model. The assumptions of the distinguished limit
are met as long as the non-dimensional wave amplitude a is close to the threshold
for static instability, a = O(1). The limit case a = 1, however, immediately leads to
a turbulent wave breakdown so that we can only assume that a is somewhat less
than 1. Finally, it was also assumed that gravity-wave amplitudes have the same
spatial scale as the reference-atmosphere potential temperature. In reality this equality
of scale- and amplitude-separation ratios is never met in purity so that a testing
of the theory against typical cases seemed necessary. For this purpose the evolution
of a GWP in a pseudo-incompressible model is compared with the predictions by
XWKB.

To implement the reduced model a mixed Euler–Lagrangian approach is chosen.
The wave action is treated as a conservative quantity on a finite-volume mesh using
numerical flux functions for its transport. The rays carrying the wave properties
frequency and wave number are dispersed over the finite-volume mesh and can
move freely according to the ray equations. Cell-to-ray interpolation and ray-to-cell
interpolation routines are applied to supply the Lagrangian and Euler method with the
needed information.

The first part of the validation considers a simple one-dimensional GWP, i.e. with
a Gaussian profile only in the vertical. This allows the straightforward application of
the discrete fast Fourier transform (FFT) for horizontal slices. We first investigated
the influence of the wavelength. Keeping the various ratios in constant relation, this
allows for an investigation of how small the asymptotic control parameter actually
needs to be in order to obtain useful results. For small wavelength λ 6 2 km,
with potential-temperature scale height ∼30 km, and the gravity-wave envelope scale
at 5 km, all predictions from asymptotic XWKB theory could be validated. The
predictions for the basic wave 1 match nearly perfectly, while wave 2 shows a strong
amplitude oscillation about the predicted behaviour. Finally, even when we increase
the wavelength to values as high as the half-width of the wave packet, at least the
wave 1 results were still very good. The qualitative behaviour predicted by XWKB
can still be observed with the full-model calculations, i.e. the propagation speed of
the wave packet, the mean amplitude of wave 2 and the absence of wave numbers
greater than 2. Quantitatively, the results deviate as the wave packet evolves in time:
for larger wavelengths the wave 1 energy is transferred to the kinetic energy of the
mean flow much stronger than predicted by XWKB. Furthermore, wave 2 oscillates in
the full model while XWKB predicts a smoothly developing value. Harmonics higher
than 2 are present in the full model, albeit with a very small amplitude indicating a
lower asymptotic order. Taking higher-order terms into account in the XWKB ansatz,
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this behaviour might also be predicted by the XWKB theory. Further modifications
might become necessary in the hydrostatic case λx � λx or in the modulationally
unstable case λx 6 0.7λz (Sutherland 2006). The results also depend on the amplitude
a normalized with regard to the static stability threshold. The regime considered by
Achatz et al. (2010) assumes a = O(1), so that the typical parameter setting implies
a disparity between the respective small parameters which the distinguished limit
assumes to be of equal order. We varied a from 0.1 up to 1.0. The amplitude of
wave 2 increases in proportion to the initial wave 1 amplitude and, in the same way, so
do the oscillations. The larger the wave amplitude, the more the full-model mean falls
behind the WKB amplitude prediction for increasing a. This, however, is a numerical
effect: increasing amplitudes lead to stronger pronounced peaks which are damped by
the upwind scheme. Finally the theory was also tested in longer integrations allowing
significant wave–mean-flow interactions to develop. Up to the point of nonlinear wave
dissipation XWKB was able to give at least qualitatively useful results. Beyond this
point the XWKB code turned out to develop numerical instabilities. We suspect that at
least one reason for this is the crossing of ray paths so that there is no unique phase
more at a given location.

In the two-dimensional case we verified the results obtained in the one-dimensional
test case for a reference test case setting. For this purpose we preprocessed the data in
several steps which, in the end, stripped the data from the Gaussian profile and made
it accessible to FFT. In addition we analysed the XWKB predictions for the mean-
flow buoyancy and Exner pressure and could find good agreement between full and
reduced model. Finally, we analysed the buoyancy term of the leading-order vertical
momentum equation which is only predicted for Euler and pseudo-incompressible
WKB and is absent in the WKB originating from the anelastic equations. It turned
out that for the reference test case this term made up some 30 % of the balance.
One should realize, however, that presently the importance of this deviation is not yet
clear. This will have to be pursued further once the more interesting case of a rotating
atmosphere is considered with mean-flow balance interacting with the gravity-wave
field (Grimshaw 1975a)

In conclusion, this work gives us confidence that XWKB theory can be used,
including its nonlinear extension, even if the assumptions of the distinguished limit
are not met in purity. Important limitations of the theory, however, leave considerable
work for the future. One of these is the neglect of resonant wave–wave interactions,
another the assumed spatial scale separation between gravity wave and mean flow.
This can become violated by the strong shears directly induced by the gravity wave
(Dunkerton 1981, 1982). Yet another limitation, as noted above, is the assumption that
at each location only one local wave number and frequency is to be found. Wave
refraction, for example, leads to an immediate violation of this situation (Dunkerton
1984), and it cannot be excluded that such an effect can be caused by the nonlinear
wave–mean-flow interaction itself which can be crucial for the stability of the GWP
(Sutherland 2006; Dosser & Sutherland 2011). Work on corresponding extensions
is underway and will be presented elsewhere. Moreover, we have highlighted the
differences between Euler and pseudo-incompressible WKB on the one hand and
anelastic WKB on the other. Again the pseudo-incompressible equations appear as
the most trustworthy alternative, as compared with anelastic theory. How far this
is of practical consequence, as recently questioned by (Smolarkiewicz & Szmelter
2011), remains to be seen. Even these authors, however, conclude that the pseudo-
incompressible equations are highly reliable, and as a minimum they remain a
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sound-proof cornerstone against which more simplified approaches can be safely
tested.
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Appendix
A.1. Preprocessing of the data

The preprocessing is depicted in figure 18(a–g). In the first step we pick for any z a
horizontal cut through the computational domain. The aim is to get rid of the Gaussian
amplitude so that a standard FFT routine can be applied to calculate the spectral
components of the GWP.

To this end we need the envelope of the wave packet. It can be found by identifying
the local maxima of the wave packet and their interpolation. It turns out that the
given maxima are not very precise since the data points are not dense enough, see
figure 18(b). To improve the position of the maxima and their amplitude we spline-
interpolate the original data. A close up of a local maximum can be seen for the
original data in figure 18(b) and for the interpolated data in figure 18(c).

The number of available maxima is doubled by taking the absolute value of the
signal as depicted in figure 18(d). The local maxima are computed in figure 18(e)
giving us a discrete set of points of the envelope. In figure 18(f ) we interpolate
the local maxima over the spatial coordinates of the original data set and obtain the
envelope. In figure 18(g) the wave packet signal is divided by the envelope amplitude
giving a constant-amplitude sinusoidal signal. A FFT window of size 2n is chosen in
figure 18(h), which finishes the preprocessing and the FFT routines can be applied.
The spectral amplitude obtained thus for the chosen z is finally multiplied again with
the envelope determined before so as to obtain an x-dependent amplitude. Redoing the
analysis for all z yields the desired spatially dependent amplitudes.

A.1.1. Test of preprocessing
The quality of the preprocessing and spectral analysis can be seen in figure 19. The

original two-dimensional GWP is initialized with a wave 1 of (normalized) amplitude
1.0, a wave 2 amplitude of 10−3 and a wave 3 amplitude of 10−4. The analysis of
the prepared GWP data with the preprocessing described above and the application
of FFT shows that the wave 1 amplitude is overestimated by 1–2 %. Note that wave
1 amplitude was set to zero in the figure to better see the amplitude of the other
wave numbers. Clearly the signal around wave number 1, k1, is smeared out and some
other spurious amplitudes at k1 ± k1/3 and k1 ± 2k1/3 appear. The capturing of wave
2 depends on the phase shift 1φ1→2 between waves 1 and 2. For a phase shift of
1φ1→2 = 0 or π the analysis captures only 45 % of the input signal, see figure 19(a).
For a phase shift of 1φ1→2 = ±π/2 (see figure 19b) the captured signal amplitude
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FIGURE 18. Preprocessing steps for analysing the Fourier modes in the two-dimensional
GWP: (a) extract slice; (b), (c) spline-interpolate data set; (d) absolute value of GWP; (e) find
local maxima; (f ) interpolate maxima on the original data set to obtain envelope; (g) scale
GWP with envelope; (h) choose FFT window.

is practically 100 % of the input data. The quality of the capturing of the wave 3
amplitude is practically not phase dependent and only varies 95 % and 100 %.
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FIGURE 19. Spectrum of the GWP test data with preset amplitudes of waves 1, 2 and
3 calculated with preprocessing and FFT. The quality of the computed wave 2 amplitude
depends on the phase shift between waves 1 and 2, 1φ1→2. Shown are the computed spectra
for 1φ1→2 = 0 (a) and 1φ1→2 =±π/2 (b). Note: that the amplitude of wave 1 was set to zero
to better see the amplitudes of waves 2 and 3.
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MÜLLER, P. 1976 On the diffusion of momentum and mass by internal gravity waves. J. Fluid Mech.
77, 789–823.

RIEPER, F., HICKEL, S. & ACHATZ, U. 2013 A conservative integration of the pseudo-
incompressible equations with implicit turbulence parameterization. Mon. Weath. Rev. 141,
861–886.

SMOLARKIEWICZ, P. K. & SZMELTER, J. 2011 A nonhydrostatic unstructured-mesh soundproof
model for simulation of internal gravity waves. Acta Geophys. 59 (6), 1109–1134.

SUTHERLAND, B. R. 2006 Weakly nonlinear internal gravity wavepackets. J. Fluid Mech. 569,
249–258.

SUTHERLAND, B. R. 2010 Internal Gravity Waves. Cambridge University Press.
TORO, E. F. 1999 Riemann Solvers and Numerical Methods for Fluid Dynamics, A Practical

Introduction, 2nd edn. Springer.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

30
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.307

	Range of validity of an extended WKB theory for atmospheric gravity waves: one-dimensional and two-dimensional case
	Introduction
	Governing WKB equations
	The XWKB ansatz
	Leading-order results
	First-order effects
	Second harmonics (α = 2)
	Higher harmonics (α >2)
	Mean flow


	Implementation
	Transport of rays and wave action
	Flux calculation
	Ray transport

	Amplitude of first harmonic
	Amplitude of second harmonic
	Mean flow
	Mean velocity
	Exner pressure
	Mean buoyancy


	Validation part I: one-dimensional GWP
	Description of the reference test case
	Validation of the reference test case
	Harmonics 1, 2 and higher

	Parameter study
	Influence of numerics
	Influence of wavelength
	Influence of amplitude

	Wave--mean-flow interaction in long integrations
	Uniform background
	Wave-packet propagation through a horizontal-wind jet


	Validation part II: two-dimensional GWP
	Description of the test case
	Harmonics 1, 2 and 3
	Mean flow
	Pseudo-incompressible versus anelastic model

	Summary and conclusions
	Acknowledgements
	Appendix 
	Preprocessing of the data
	Test of preprocessing


	References




