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An analysis of the statistics of the nonlinear terms in resolvent analysis is performed
in this work for turbulent Couette flow at Reynolds number 400. Data from a direct
numerical simulation of a minimal flow unit is used to compute the covariance matrix of
the velocity. From the same data, we computed the nonlinear terms of the Navier—Stokes
equations (treated as forcing), which allowed us to compute the covariance matrix of the
forcing. The quantitative relation between the two covariances via the resolvent operator
is confirmed here for the first time, accounting for relevant signal processing issues related
to the windowing procedure for frequency-domain quantities. Such exact correspondence
allowed the eduction of the most relevant force components for the dominant structures
in this flow, which participate in the self-sustaining cycle of turbulence: (i) streamwise
vortices and streaks, and (ii) spanwise-coherent fluctuations of spanwise velocity. The
results show a dominance by a subset of the nonlinear terms for the prediction of the
full statistics of streamwise vortices and streaks; a single term is seen to be dominant
for spanwise motions. A relevant feature observed in these cases is that the forcing
covariance is dominated by its first eigenfunction, showing that nonlinear terms also have
a coherent structure at low frequencies in this flow. Different forcing components are
also coherent between them, which leads to constructive and destructive interferences that
greatly modify the flow response. These are key features of forcing ‘colour’ for the present
flow.
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1. Introduction

Coherent structures have been studied in turbulent flows for some time now. Findings
in that area led to a change in view: instead of considering turbulence as completely
stochastic, this is now seen as having a clear coherent motion among the apparent unsteady,
chaotic field. In turbulent jets, for instance, structures governed by the Kelvin—Helmholtz
instability were found to be important not only for transition (Michalke 1964), but also
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for the sound radiation at shallow angles (Cavalieri et al. 2012). In wall-bounded flows,
streamwise elongated, spanwise organised structures (called streaks), found firstly by Kline
et al. (1967), are also ubiquitous in shear flows. These structures are found for all kinds
of turbulent shear flows, including channels (Gustavsson 1991), pipes (Hellstrom, Sinha &
Smits 2011) and even round jets (Nogueira et al. 2019).

The mechanism behind streak formation was firstly studied by Ellingsen & Palm
(1975), later complemented by Landahl (1980). In their study they concluded that the
presence of shear in the mean flow and a non-zero wall-normal velocity induce momentum
transfer between different layers of the fluid. If streamwise vortices are present, for
instance, these generate streaks via a non-modal, linear mechanism such that, when fluid
is lifted from high- to low-speed regions of the flow, a high-speed streak is formed
(the opposite happening for a low-speed streak). This is called the lift-up effect and,
considering that streaks are present in several shear flows, this effect should be an
important part of the turbulent dynamics. This is explored, for example, by Hamilton, Kim
& Waleffe (1995) and Waleffe (1997) where a self-sustaining process for wall-bounded
turbulence was proposed. This can be summarised as follows: (i) streamwise vortices
in the turbulent medium generate streamwise streaks via the lift-up effect; (ii) streaks
grow until the instability is triggered, leading to their breakdown; (iii) the resulting flow
interacts nonlinearly in order to regenerate the streamwise vortices, thus restarting the
process. The first step is well understood, and was considered by the work of Ellingsen
& Palm (1975). The other stages have also received a good deal of attention: the
streak breakdown was studied by Schoppa & Hussain (1999) using numerical simulation
and linear stability theory, revealing that the breakdown of a low-speed streak directly
generates new streamwise vortices in the end of the process. This was further explored
numerically (Jiménez & Pinelli 1999; Andersson et al. 2001), experimentally (Asai,
Minagawa & Nishioka 2002) and even theoretically (Kawahara er al. 2003), using a
simplified vortex sheet model. As synthesised by Brandt (2007), this process can occur
via either a varicose or a sinuous mode, the latter being the dominant mechanism; in both
cases, the final structures resulting from the instability of a low-speed streak are elongated
in the streamwise direction (quasi-streamwise vortices).

The cited works focused on the steps leading to the breakdown of streaks, looking
at the self-sustaining cycle in the time domain (in order to evaluate the sequence of
events); in most cases results confirm qualitatively trends observed in turbulent flows,
but quantitative comparisons are difficult due to the simplifications introduced in the
modelling process. Alternative approaches for studying these phenomena are based on the
analysis of the linearised Navier—Stokes operator, considering the mean field as the base
flow. In this framework, linear methods such as resolvent analysis (Jovanovic & Bamieh
2005; McKeon & Sharma 2010) and linear transient growth (Butler & Farrell 1992;
Schmid & Henningson 2001) are useful to obtain optimal responses from the harmonically
forced linearised Navier—Stokes system (resolvent) or the flow structure resulting from a
non-modal growth of initial disturbances (linear transient growth). Both analyses, albeit
linear, reproduce some experimental trends in both wall-bounded flows (del Alamo &
Jiménez 2006; Cossu, Pujals & Depardon 2009; Pujals et al. 2009; Sharma & McKeon
2013; Abreu et al. 2019; Morra et al. 2019) and free-shear flows (Schmidt et al. 2018;
Lesshafft et al. 2019). Nevertheless, there are intrinsic limitations to these approaches.
An exact match of resolvent predictions and data from experiments is only expected if
forcing were spatially white noise (Towne, Schmidt & Colonius 2018a). It is nonetheless
clear that nonlinearities in the Navier—Stokes system have ‘colour’ (Zare, Jovanovi¢ &
Georgiou 2017). We may consider, for instance, that nonlinear terms are zero on a wall, and
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should be negligible in regions of uniform flow. Moreover, nonlinear terms are expected
to have a specific structure, as they result from the turbulent flow field which itself has a
level of organisation.

Hence, attempts have been made to identify the colour of such ‘forcing’ terms using
some flow statistics. Zare et al. (2017), for instance, proposed a formulation to estimate the
nonlinear forcing statistics from a turbulent flow field based on the knowledge of a limited
number of velocity correlations. Similar work was performed by Towne, Lozano-Durin
& Yang (2020), who proposed a method for estimating the systems response statistics via
an indirect estimation of the system force statistic, although a comparison between the
estimated and real forces is not presented. The method was applied to different problems,
such as Ginzburg—Landau and linearised Navier—Stokes, showing that it can outperform
several approaches in flow cases that are not dominated by the first resolvent mode. It is
worth noting that the cited works focused on estimating the forcing from a limited number
of sensors, in an optimisation framework aimed at matching statistics from such sensors,
instead of evaluating the characteristics of such forcing. Also, there is thus no a priori
guarantee that the identified forcing is that actually present in turbulence dynamics. In
his thesis, Towne (2016) also analysed the structure of the equivalent nonlinear forcing
of a turbulent jet using data from a large-eddy simulation (LES). The preliminary results
of forcing, as computed in the cited work, can be considered as a first approximation of
the nonlinear terms of the Navier—Stokes equations; still, it also accounts for the subgrid
model in the simulation. The same holds for the analysis of Towne, Bres & Lele (2017),
who also studied forcing statistics using LES data, in order to provide models for resolvent
analysis of high- and low-Reynolds-number jets. These earlier efforts did not account
for windowing issues later studied by Martini et al. (2019), and, hence, the presented
results may suffer from signal processing issues. Another way to consider the structure of
nonlinear terms is by introducing an eddy viscosity model on the linearised Navier—Stokes

operators (del Alamo & Jiménez 2006; Pujals ef al. 2009; Illingworth, Monty & Marusic
2018; Morra et al. 2019), which models at least part of the nonlinear effects as turbulent
diffusion on the flow structures. However, such a model should not be required when full
force knowledge is available and the proper signal treatment is performed.

None of the cited works dealt with the exact covariance, within numerical accuracy, of
nonlinear terms, as each included some degree of approximation whose effect is difficult
to evaluate a priori. In order to avoid the simplifications above, one may consider the
exact covariance of the nonlinear terms in the analysis. By taking the exact covariance
of the nonlinear terms into account (or the cross-spectral density (CSD) if the analysis is
carried out in the frequency domain), the exact response of the system can be obtained.
To the best of the authors’ knowledge, this has not been attempted for turbulent flows,
but only for model problems such as the forced Ginzburg-Landau equation (Towne
et al. 2018a; Cavalieri, Jordan & Lesshafft 2019). A notable exception is the work of
Chevalier et al. (2006), where time covariances of the nonlinear terms are obtained from
a simulation of turbulent channel flow, and subsequently used, assuming white noise in
time, to design estimators of flow fluctuations using Kalman filters. However, the use of the
exact covariance of the nonlinear forcing term can be prohibitive for complex flow cases.
Therefore, an approximation or modelling of the forcing term is usually needed to reduce
the number of variables to be computed/modelled, and may also lead to insight on the
relevant physics, as the dominant mechanisms of excitation of flow structures may be thus
isolated. An analysis of forcing covariances should reveal the degree of organisation of
the excitation, showing how significant are the departures from the simplified white-noise
assumption.
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This work focuses on the analysis of the nonlinear forcing term in the resolvent analysis
of a turbulent Couette flow, here studied in the minimal computational box of Hamilton
et al. (1995), which allows a full determination of the CSDs of forcing and response
without any simplifying assumption. Differently from other previous approaches (Zare
et al. 2017; Towne et al. 2020), instead of estimating the forcing from a subset of data
in order to estimate other flow statistics, we explicitly compute the nonlinear term of the
Navier—Stokes equations, performing the whole analysis using the actual statistics of these
terms. Reduction of the complexity of forcing statistics can be performed subsequently
in modelling steps, whose accuracy may be evaluated by computing flow responses to
simplified forcings using the resolvent operator. The paper is divided as follows. In § 2 the
relevant parameters of the simulation are defined, followed by the methods showing how
the covariance of the velocity fluctuations is obtained from the covariance of the nonlinear
terms of the Navier—Stokes equations. The reconstruction of the velocity statistics from the
forcing covariance is evaluated in § 3, where the role of the windowing correction term is
highlighted. After that, in §4 we focus on obtaining the relevant parts of the nonlinear
terms (those that will generate the bulk of the covariance of the response) for two different
cases (streaks, and streamwise oscillations of spanwise velocity). The paper closes in § 5
with a connection between this analysis and the self-sustaining cycle characteristic of
turbulent Couette flow.

2. Numerical approach

The case chosen for the study is the Couette flow in the minimal flow unit. Such a flow
case retains salient features of turbulent flows, like the dominance of streaks by the lift-up
effect and the self-sustaining process defined by Hamilton et al. (1995) and Waleffe (1997),
and minimises computational power requirements.

2.1. The minimal flow unit

The flow case chosen is that explored by Hamilton et al. (1995). It is defined by the
smallest box and the smallest Reynolds number in which turbulence can be sustained
without any external forcing. For Couette flow, the minimal box has dimensions
(Ly, Ly, L) = (1.757h, 2h, 1.27th), denoting lengths in the streamwise, wall-normal and
spanwise directions, respectively; /i is the channel half-height. Plane Couette flow is
realisable in experiments (Tillmark & Alfredsson 1992; Bech et al. 1995; Bottin & Chaté
1998). Numerical simulations with sufficiently large domains lead to statistics matching
experiments (Komminaho, Lundbladh & Johansson 1996). Minimal domains such as
the present one have qualitative agreement with experimental results (see, for instance,
Jiménez & Moin (1991) for an early example with channel flow), but greatly simplify
the analysis; because of this, such small domains are often used in dynamical-system
descriptions of turbulent flows (Kawahara & Kida 2001; Waleffe 2003; Gibson, Halcrow
& Cvitanovi¢ 2009). The discretisation was chosen as (n,, n,, n;) = (32, 65, 32) before
dealiasing in the wall-parallel directions, which gives a slightly higher resolution than that
used in Hamilton et al. (1995). We consider Couette flow with walls moving at velocity
+U,; the Reynolds number for this case is Re = 400, based on wall velocity U, and
half-height /4. For this flow, this leads to a friction Reynolds number Re, &~ 34, based on
the friction velocity. From now on, all quantities are non-dimensional values based on
outer units, with 4 and U,, as reference length and velocity. The simulation is performed
in SIMSON, a pseudo-spectral solver for incompressible flows (Chevalier, Lundbladh
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FIGURE 1. Mean velocity for Couette flow and snapshot of the velocity field in the (y, z) plane
(colours: streamwise velocity; arrows: spanwise and wall-normal velocities). (@) Mean flow and
(b) snapshot of velocity field.

& Henningson 2007), with discretisation in Fourier modes in streamwise and spanwise
directions, and in Chebyshev polynomials in the wall-normal direction.

The simulation is initialised with white noise in space for Re = 625, which becomes
turbulent after a few timesteps; the Reynolds number is, then, slowly decreased until
the desired value of 400. After reaching the desired value of Re and discarding initial
transients, flow fields are stored every At = 0.5 in the interval 10000 < ¢ < 25 000.
During this period, several streak regeneration cycles are observed, and the flow is
expected to be statistically stationary. The mean turbulent velocity profile is shown
in figure 1(a), which has the usual ‘S’ profile typical of turbulent Couette flow. The
mean profile and fluctuation levels match previous results for the same computational
domain and Reynolds number (Gibson, Halcrow & Cvitanovi¢ 2008). A snapshot of the
streamwise velocity fluctuations for a (y, z) plane is shown in figure 1(b). As expected,
streaks arise clearly in the velocity field, since these structures are the most relevant in the
turbulent dynamics of this sheared flow; they are flanked by streamwise vortices with
the expected lift-up behaviour: positions with downward/upward motion display lifted
high/low momentum, leading to a high/low-speed streak.

Using the results from the direct numerical simulation (DNS), the velocity fluctuations
around the mean-flow profile (treated as response of the input—output version of the
Navier—Stokes system) were computed; these, in turn, were used to compute the nonlinear
terms of the Navier—Stokes equations, which will be treated as a forcing term in the
Navier—Stokes equations expanded around the mean flow. These are computed directly
as a function of time in the physical domain. After that, the resulting forcing was
Fourier transformed in space, leading to forcings as a function of streamwise and
spanwise wavenumbers, but still in the time domain. Using the forcing and velocity in the
time-wavenumber domain, we computed the CSDs of the response (S) and of the forcing
(P). This is further detailed in the next section.

2.2. Recovering response statistics from the forcing CSD

Since Couette flow is homogeneous in x and z directions, the first step for the analysis
of this flow is to perform a spatial Fourier transform of both response and forcing,
so the analysis can be performed separately for each wavenumber. Modes are defined
by the integers (n,, ng), with @ = 2nn, /L, and B = 2nng/L, being the wavenumbers,
following the same notation of Hamilton er al. (1995). The wall-normal integrated
kinetic energy of the first two modes, some of the most relevant ones in the analysis of
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FIGURE 2. Power spectral density of the wall-normal integrated kinetic energy for the
different modes studied herein.

Hamilton ef al. (1995), is shown in figure 2, showing the fluctuations peak at vanishing
frequency w — 0 for mode (0, 1), and a plateau is observed at low frequencies for mode
(1, 0). Since we consider a Couette flow with walls moving at opposite velocities, +U,,,
this very low-frequency behaviour reflects that the two modes peak at approximately zero
phase speed, without preferred motion following some streamwise or spanwise direction,
as can be induced from the results of Hamilton ez al. (1995). The time power spectral
density (PSD) for each mode was estimated using the Welch method, with the signal
divided in segments of ng = 1024 with 75 % overlap, which led to 114 blocks for the
analysis. A Hanning window was used to reduce spectral leakage, allowing accurate
relation between forcing and response of the system.

We will study the two most energetic modes at low frequencies, as showed in Hamilton
et al. (1995): mode (0, 1), which is related to the appearance of streaks; and mode
(1, 0), which emerge once the amplitude of mode (0, 1) decreases, characterising streak
breakdown (Hamilton et al. 1995). Applying the Reynolds decomposition, we will
consider an expansion around the mean flow, averaged over streamwise and spanwise
directions and in time, so that each component of the velocity can be written as the sum
of mean and fluctuation fields (U; + u;), with U; denoting the mean velocity profile and
the tilde indicating fluctuations in time domain. Thus, we can write the incompressible
Navier—Stokes equations for the fluctuations as

ou; ow; . aU; op n 1 3% L7 @1
o i T =~ 1+ is .
at  Tox; 7 ox dx;  Re dx;0x;
and the continuity equation
du;
iy, 2.2)
Bx,-

where Einstein summation is implied, #; are the three velocity components, p is the
pressure and the forcing term f; is considered to gather the nonlinear terms of the
Navier—Stokes equations,

fi = —i;dit;/dx; + ;9i;/dx;, (2.3)
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where u;0u;/0x; is the mean Reynolds stress, which is only be present in the
zero-frequency/zero-wavenumber equation (i.e. the mean-flow equation, which is the
Reynolds averaged Navier—Stokes equation). Taking the Fourier transform in x, z and ¢,
and considering that the mean flow has only the streamwise component U(y), leads to

i ) oU i 1 ) , 02
—iou+icUu+v— =—iap+ — [ —a" = B+ — | u+ 1, (2.4a)
dy Re dy?
a 1 0?
—iwv +ialUv = _£+E<_a2_'32+8_y2>v+f)” (2.4b)
. . . 1 ) , 02
—low +iaUw =—-ifp+ — | —a" =B+ — |w+ L[, (2.4¢)
Re dy?
. v .
lou + 3 + 1w =0, (2.4d)
y

where o is the frequency, (u, v, w, p) are the Fourier transformed perturbation quantities

and (fy,f,,f.) the Fourier transforms of f.. From the equations above, we can write the
incompressible Navier—Stokes equations for the perturbations in the wavenumber and
frequency domain in an input—output form as

—iwHq = Aq+f, (2.5)

where g = [u v w p]" is the output and f = [f, f, f. O]" is the forcing term (input). The
matrix A4 is the linear operator defined by Navier—Stokes and continuity equations (which
is a function of the streamwise and spanwise wavenumbers « and ) and the matrix H
is defined to zero the time derivative of the pressure. This can be rewritten in the usual
resolvent form:

(—iwH — A)q =f, (2.6)
= Lqg =, 2.7
=q=L"'f =Rf. (2.8)

With the equations written in this shape, optimal forcings and responses (in the linear
framework, based on linearisation of the Navier—Stokes equations around the mean flow)
can be obtained for a turbulent flow by performing a singular value decomposition of
the resolvent operator, which leads to orthogonal bases for responses ¢; and forcings f;,
related by gains s;. The singular value decomposition considers the weighting matrix
corresponding to Clenshaw—Curtis quadrature associated to the Chebyshev weights in the
present grid (Trefethen 2000).

Optimal response and the respective gain from resolvent analysis are directly
comparable to the most energetic structures in the flow if the forcing is considered to be
statistically white in space (Towne et al. 2018a). In order to consider the actual statistics of
the flow in this framework, we define the covariance matrices of the response S = £ (gq')
and of the forcing P = £(ff"), and € representing the expected value of a signal, which is
computed by averaging realisations in the Welch method (taking the block average of gq”
as a function of frequency). Following Towne et al. (2018a) and Cavalieri et al. (2019),
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these quantities are related via

qq" = Rff"R",
E(qq™) = RE(fF™RY, (2.9)
S = RPR".

If it is assumed that the covariance of the forcing is uncorrelated in space then P =1

and the covariance of the response is given by S = RR". Therefore, if the statistics of
the forcing follows this hypothesis, the spectral proper orthogonal decomposition (SPOD)
modes, defined by the eigenfunctions of

1
f SOL Y, Dsrop (s ) Y = 0@srop (3, @) 2.10)
-1

are identical to response modes (left singular vectors of R). For more details on this
derivation, the reader should refer to Towne et al. (2018a) and Cavalieri et al. (2019). As
in the computation of resolvent modes, SPOD modes are computed numerically with the
inclusion of integration weights (Schmidt et al. 2018), such that flow structures resulting
from both analyses can be directly compared with each other.

However, non-white forcing covariance (which must be the case in turbulent flows)
must be included in the formulation in order to correctly educe the response statistics.
The inclusion of P can be done in several ways. One of them is to directly compute the
nonlinear terms of the Navier—Stokes equations from simulation data. Other approaches
include modelling the forcing starting from specific assumptions on the flow case (Moarref
et al. 2013), its identification from limited flow information (Zare et al. 2017; Towne, Yang
& Lozano-Durian 2018b), and modelling by means of an eddy viscosity included in the
linear operator (Tammisola & Juniper 2016; Morra et al. 2019).

The present work focuses on exploring different forcing covariances and their effect on
the covariance of the response. The first approach is to simply consider the forcing to be
uncorrelated in space; for this case, previous analyses for wall-bounded flows has shown
that even though reasonable agreement may be obtained for near-wall fluctuations (Abreu
et al. 2019), a mismatch is observed for large-scale structures (Morra et al. 2019). One can
also compute the nonlinear terms directly from a numerical simulation and then determine
accurately P. If the simulation is converged and the signal processing is done properly,
the result of (2.9) using the actual forcing covariance P (in the sense that this quantity
is directly obtained from the simulation) should be equal to the response covariance .S
computed from the same simulation.

3. Reconstruction of response statistics from the full forcing CSDs

3.1. Connection between forcing and response statistics: role of the correction due to
windowing

Although (2.9) is exact, if P and .S are estimated from a finite set of data, large errors
arise in the velocity statistics recovery process using the resolvent operator, leading
to non-negligible values for S — RPR”. From the analysis of Martini et al. (2019)
(summarised in appendix A for the present case), application of windowing in the data
(which is necessary for applying Welch’s method) generates extra force-like terms that
must be accounted to have the correct input—output relation, so that (2.9) holds for the
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FIGURE 3. Effect of the correction term in the recovery of S and on the forcing covariance P.
Spectra normalised by Aw. (a) Response CSDs error norm and () influence on P.

estimated covariances. The impact of these extra terms can be measured as

Error = M, 3.1
1IN

where S, is the covariance of the response recovered from the statistics of the forcing
using (2.9), applied for both uncorrected and corrected forcing terms; the norm was
chosen as the standard 2-norm for matrices. Similarly, the effect of the correction on the
covariance of the forcing can be evaluated by the metric

_ |Ppns+e — Ppusl|

) (3.2)

[P sl

where Ppys denotes the covariance of the forcing obtained from the simulation without
correction, and Ppyg,. denotes the corrected covariance. With these metrics, we can
evaluate how this correction term affects the process of recovering S from P. The
comparison of the errors with and without this correction term is shown in figure 3(a)
for the two Fourier modes studied in this work.

From figure 3(a), we can see that the correction affects a wide range of frequencies,
with a slightly lower effect in higher frequencies. Following Martini et al. (2019), we
can divide the aliasing error into two components: the first is due to spectral content at
frequencies higher than the Nyquist frequency, and the other is due to the window spectral
leakage, which generates extra content above the Nyquist frequency. Only the latter can
be reduced with a proper choice of windowing function. The aliasing behaviour of the
error explain the larger errors obtained at higher frequencies in figure 3(a), and indicates
that the first type of aliasing is dominant in that region. As this work will focus on the
study of low-frequency structures, no further effort is made in order to reduce the error in
higher frequencies; moreover, since the normalised errors are below 10~* in all cases, an
optimisation of the window was deemed unnecessary for our purposes.

A similar trend is found for the influence of the correction on the covariance of the
forcing, shown in figure 3(b). The correction strongly affects the lower frequency region,
but most of this covariance is still dominated by the nonlinear terms of the Navier—Stokes
equations. As € is only a fraction of the overall forcing, it is thus meaningful to study the
forcing covariance P in an attempt to simplify it, keeping in mind that once predictions of
the response S are needed one needs to account for the correction term.
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The correction greatly improves the recovery process for all modes, leading to a
reduction of the error of about five orders of magnitude for the two considered modes,
which is possibly related to the low-order dynamics of the flow for this combination of
wavenumbers, a feature that will be further explored in §§4.1 and 4.2. The effect of the
correction on the shapes of each case will be studied in the next section.

The role of the forcing terms is studied throughout this work. All the comparisons
between forces and responses will implicitly consider the correction term, unless otherwise
stated. In all other contexts ‘external force’ will refer only to the term f, without
considering the correction term.

3.2. Comparison with statistics from white-noise forcing and no correction

Here, we analyse the effect of the different choices of forcing CSDs P on the velocity
statistics. As stated previously, we focus on very low frequencies in order to evaluate the
effect of the statistics of the nonlinear terms on the most energetic streaks, and on the
equivalent structures for other combinations of wavenumbers. For that reason, we choose
w = 0.0123 for the analysis of modes (0, 1) and (1, 0); this is the first non-zero frequency
from the Welch method for the present case (this frequency can be seen as the limit
w — 0 in this analysis). This frequency was chosen so as to analyse the behaviour of the
very large, almost time-invariant structures observed in the minimal flow unit. Analogous
structures have been identified by a number of authors (Komminaho et al. 1996; Tsukahara,
Kawamura & Shingai 2006; Pirozzoli, Bernardini & Orlandi 2011, 2014; Lee & Moser
2018) for turbulent Couette flow at higher Reynolds numbers. For the present low Reynolds
number, these large structures have the same characteristic length of the near-wall streaks;
since they have the same overall behaviour, it becomes harder to separate these in such a
small box. The analysis of Rawat et al. (2015) indicates nonetheless that the minimal flow
unit streaks become very large-scale structures in turbulent Couette flow if continuation
methods are applied. Therefore, the analysis of mode (n,, ng) = (0, 1) should be seen as
a study of the overall dynamics of the largest streaks in Couette flow.

Figure 4 shows the comparison between the absolute value of the main diagonal of
S, which corresponds to the PSD of the three velocity components. We consider the
response CSD of case (14, ng) = (0, 1) using the statistics of the forcing obtained from the
simulation without any correction (Ppys), that considering the correction term (Ppys,.)
and that using the white noise P = y1 (with constant y chosen so as to match the
maximum PSD for this frequency). It can be seen that the shape of the main component
(streamwise velocity u) can be fairly well reproduced by simply using P = yI. Streaks
are represented, with peak amplitudes distant of about 0.4 from the wall; this may be
related to the higher shear near the walls, as shown in figure 1, leading to a stronger lift-up
mechanism in that region. Considering white-noise forcing, we can see some discrepancies
in the amplitudes and in some details of the shapes of the streamwise vortices (v and w
components). Despite acknowledging the origin of the forcing terms as arising from triadic
interactions, resolvent analysis as formulated by McKeon & Sharma (2010) assumes
white-noise forcing statistics, predicting thus streamwise vortices and streaks that are in
reasonable agreement with the DNS, although with a mismatch in the relative amplitudes
of u, v and w components; similar results were obtained for turbulent pipe flow by Abreu
et al. (2019). This will be explored in more detail in §4.1. For an accurate quantitative
comparison, the statistics of the nonlinear terms should be used; by doing that without
the correction, the overall relative levels are closer to that from the simulation, but the
amplitudes are still off, especially at the peak of each component (which explains the
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FIGURE 4. Response S from simulation and from the recovery process using different P (white
noise, uncorrected and corrected) for case (nq, ng) = (0, 1). Prediction using white-noise P was
scaled to match the maximum of S by the factor y = 1.029 x 10~%. (a) Streamwise component,
(b) wall-normal component and (c¢) spanwise component.

errors seen in figure 3). When the correction is taken into account, the exact shapes are
recovered for all components, without any rescaling.

The same process was carried out for case (1,0), and the results can be seen in
figure 5. For this combination of wavenumbers, the flow is dominated by the spanwise
velocity component, and the energy of the other velocity components are several orders
of magnitude lower, as shown in figure 5. The dominance of w for the (1,0) mode
was also observed by Smith, Moehlis & Holmes (2005); analysis of spectral density of
turbulent channels also shows that structures with large spanwise extent are observed for
w (del Alamo & Jiménez 2003). By considering white-noise statistics of the forcing, this
dominance of spanwise velocity fluctuations could not be captured, and all components
predicted by RR” have the same overall levels, leading to large errors for the (i, v)
components. For the spanwise component, however, the position of the peak and the
shape of .S at the centre of the domain is roughly captured by the method, even though
larger errors are found for regions closer to the wall. These facts altogether point out to
an action of the nonlinear terms in forcing mainly in the spanwise direction, with a more
effective action closer to the wall (highlighted by the higher amplitude of the response
around y = 0.4, 1.6). By including the uncorrected statistics of the forcing, Ppys, the
problem of the relative amplitudes of the different components is solved; now the spanwise
component dominates the response, and its shape resembles that obtained directly from
the simulation, even though a slight mismatch is found in the centre of the channel.
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FIGURE 5. Response .S from simulation and from the recovery process using different P (white
noise, uncorrected and corrected) for case (ny, ng) = (1, 0). Prediction using white-noise P was

scaled to match the maximum of S by the factor y = 3.6295 x 1073 (a) Streamwise component,
(b) wall-normal component and (c) spanwise component.

This comparison is further improved by including the correction term in the statistics of
the forcing; by using it, a perfect match between .S computed from the simulation and the
one from the forcing statistics is obtained, and the normalised error for this case is lower
than 1073,

4. Analysis of the forcing CSD

The previous analysis detailed the full response statistics recovery process, aiming at
obtaining accurately the response statistics from the full statistics of the nonlinear terms
of the Navier—Stokes equations. However, the structure of the nonlinear terms can be
complex, and analysis of the full nonlinear term can hardly lead to clear physical insight
about the flow turbulent dynamics. For this reason, it would be interesting to simplify the
forcing, with an evaluation of which components are mostly responsible for the energy
of the response. This is performed in this section for wavenumbers (1, ng) = (0, 1) and
(1, 0). The present analysis can uncover some of the physical mechanisms behind the
action of the nonlinear terms of the Navier—Stokes equations in the linearised operators,
which can be useful in the design of turbulence models. Thus, in this section we analyse
the structure of the nonlinear terms from the DNS, evaluating their relevant characteristics
and performing simplifications whenever possible. The focus is on vanishing frequency,
w — 0, but other frequencies are considered in appendix B.
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We highlight that the calculated response .S always include the effect of forcing
correction, whereas the forcing statistics P and associated modes are shown without
correction. This provides a compatibility between forces and responses via the resolvent
operator. All simplifications of the nonlinear terms are performed prior to the addition of
the correction term. If responses are written as

q =R +1) 4.1

where fis the forcing computed from the nonlinear terms of the Navier—Stokes equations,
and f,. is the correction term, simplifications are sought exclusively for f, which gathers the
relevant terms in the turbulence dynamics.

4.1. Case (ny,np) = (0,1)

4.1.1. Contribution of each component of the nonlinear terms

In this section we analyse more closely the structure of the nonlinear terms for the
case (0, 1) for ® — 0 (w = 0.0123). Our objective here is to look closely at the forcing
statistics in order to isolate the important parts for this simple case. The number of
components of the nonlinear terms, as defined in (2.3), makes an ad hoc modelling
approach prohibitive; still, if only certain parts of the forcing are necessary to reproduce
the statistics of the response, modelling can be considered an option. Specifically for the
case (ngy,ng) = (0, 1), the momentum equations (2.40) and (2.4c) (v and w) decouple
from the streamwise velocity, and these equations become also independent of the mean
flow U. That allows us to rearrange the system in order to obtain separate equations for
streamwise vortices (concentrated in the v, w components) and streaks (concentrated in
the u component) as

) [ )

Lo By
afy
(ﬁ - —)f> ( L +ipf.
\—,_/

Zero response

= L Bov = By, f, 4.2)
1 ) 92 oUu U

i _ - =f—v—=Lyu=f —v—, 4.3
|: 1a)+Re( ayz)}u f vay: o =f, vay 4.3)

where the influence of the spanwise component of the forcing is already considered in
(4.2), by considering that only the solenoidal part of the forcing leads to a response in
velocity; inspection of the linear operators in the Orr—Sommerfeld-Squire formulation
(Jovanovic & Bamieh 2005) confirms that hypothesis, which was also verified by
Rosenberg & McKeon (2019) and Marsden & Chorin (1993). The spanwise component
w can be obtained from v using the continuity equation. The linear optimal response of
(4.2) for @ — 0 are streamwise vortices (as obtained from resolvent analysis), and these
structures are independent of the mean flow chosen for the analysis, since the operators
Ly and By, do not depend on U. The effect of U is seen directly in the equation of
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the streamwise velocity, via the v(dU/dy) term, which is related directly with the lift-up
effect: due to the presence of shear, these vortices will lead to the growth of streamwise
velocity, which will assume the shape of streaks. One should note that there are two forcing
terms on the right-hand side of (4.3), which force directly the streaks; we would like to
evaluate the influence of each one in the response. For that, we can rewrite the equation as
a function of the expected value of u as

H
Loy EuuL) =& |:<f — va—U) (fx — va—U) } , (4.4)
ay ay
s —r. |p +(8U>S <8U>H_g( p <8U)H_(8U>g( oy | g
xx — 4301 XX E yy 5 fxv) 5 5 vfx (UR)
4.5)

where Ry, is the resolvent operator associated with Lg,. The equation above shows that the
statistics of the streamwise velocity can be educed from the statistics of the wall-normal
velocity (which in turn can be obtained from the statistics of f,), from the statistics of the
streamwise component of the forcing f, and from the cross-term statistics. Using the values
obtained from the DNS, we can evaluate the influence of each term on the right-hand
side of (4.5): P,, is related to the statistics of the streamwise component of the forcing;
(0U/3y)S,,(dU/dy)" is related to statistics obtained using only the lift-up mechanism;
the other components are the covariances between streamwise forcing and wall-normal
velocity.

Figure 6(a—e) shows the reconstruction of S,, using each term of (4.5) (just the real
part is shown). As expected, the reconstruction using all terms reproduces the results
from the DNS; on the other hand, if we take only the term related to the lift-up
mechanism, the shapes of S, differ, especially considering the position of the peaks.
The same happens when we use only the term related to the statistics of the forcing in
the streamwise direction, or when we use only the cross-terms (which have a negative
contribution of the sum). Still, the sum of all these quantities generates a combination
of constructive—destructive influence on S,,, leading to the correct shape and amplitude,
when all terms are considered. This can be better understood by looking at PSD (which
is the main diagonal of S) using each term, compared with DNS results. This is shown
in figure 6(f), where we can see that, even though the amplitudes of each component
are high, the final result considering all terms is rather small, and the contribution of
the cross-term seems to be responsible for this overall reduction. The negative effect of
the cross-term thus represents a destructive interference between the lift-up mechanism
and the direct excitation of streaks by the streamwise forcing component. This effect
cannot be appropriately modelled when the forcing is considered as white noise, as
seen in § 3.2.

This analysis highlights that consideration of isolated mechanisms (such as lift-up only
or streamwise forcing only) may lead to quantitative errors in the prediction of flow
responses. Similar results were obtained by Freund (2003), Bodony & Lele (2008) and
Cabana, Fortuné & Jordan (2008) in studies of sound generation by a sheared flow, using
Lighthill’s acoustic analogy. The cited works showed that when source terms, analogous
to the forcing CSD P considered here, are decomposed into subterms, an analysis of
the isolated contribution of each one may be problematic, as destructive interference
between components may lead to a summed radiation which is lower than the individual
contributions. In the context of wall-bounded flows, Rosenberg & McKeon (2019) also
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FIGURE 6. Real part of the streamwise component of .S from simulation (@) and the prediction
using different forcing terms (b—e). Contribution of each term in the reconstruction (f).
(a) Simulation; (b) all components of Ppys; (c) lift-up component; (d) streamwise forcing
component; (e) cross-terms; and (f) sum of the contributions.

noticed a similar destructive interference phenomenon for the terms composing the (uv)
Reynolds stress for an exact coherent state in channel flow. The authors pointed out that
modes forced by different mechanisms may have a similar absolute value but opposite
phase, leading to a smaller amplitude for the quantity, similar to the behaviour observed
in figure 6( f). The present analysis shows that a similar effect occurs in the analysis of the
streamwise velocity covariance in turbulent Couette flow.

4.1.2. Contribution of each component of the nonlinear terms
From the preceding analysis we can understand that all components (lift-up related
and streamwise forcing) are important to obtain good predictions of S. Nevertheless,
some simplification can still be performed on the forcing terms by rewriting them as the
sum of the nonlinear terms of the Navier—Stokes equations. Overall, these terms can be

written as
_ 0l
—ily—,
ij

fi— wdi/dx; = f, — f = (4.6)
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where f; = i;i1;/ dx; are the mean Reynolds stresses. This relation can be written in vector
form as

di ou dit

. — 7. ax ay EH
F-r=i-fl=-a LN Y U S R =f +f +f (4D

dx ay 0z

f.—f. O I O

ax 3y oz

Individual terms are evaluated in physical space and transformed to frequency—
wavenumber space afterwards. In the following analysis, force correction terms are always
added after the simplifications, ensuring that the relation between forcing and response still
holds exactly, if all components of the forcing are included. Considering the correction in
the analysis will also isolate the effect of changing the characteristics of the nonlinear
terms on the response. Writing the forcing this way allows us to decompose P into nine
components, related to each of the three forcing terms in (4.7) and extract the relevant
parts of this term. Due to the low number of forcing components to evaluate, we chose
to remove some of them by trial and error, in order to evaluate the influence of those in
the statistics of the response. A first analysis shows that fu does not play a significant role
in this case, as predictions of the shapes of .S disregarding this term did not lead to any
considerable mismatch. The terms v(dv/dy) and v(dw/dy) are also less relevant for this
case. This reduces the forcing to

ou
ou 9z
- - 9y | an - -
.fred _ﬁed =V 0 W — | =Ju + S (48)
9z
0 ow
az

This is the maximum simplification that the covariance of the forcing can suffer in order
to recover the covariance of the response without introduction of significant error in its
shape. A final evaluation of the influence of the reduction is performed in § 4.1.3, showing
that the most energetic structures of the flow for these reduced covariances are virtually
unchanged.

The CSD S recovered using the total forcing, the reduced forcing and the white-noise
forcing can be seen in figure 7. From figure 7(a—c), it is clear that the reduction of
the forcing to the expression (4.8) leads to the correct amplitude distribution of the
streamwise velocity CSD, with better agreement than consideration of white-noise forcing;
in particular, the coherence between the two peaks in amplitude, which can be seen by the
nearly identical values for (y, y) and (y, —y), is recovered from P,,,. Still, by retaining
only the terms in (4.8), a mismatch starts to appear in the amplitudes of the reconstruction,
as shown in figure 7(d).

4.1.3. Low rank of forcing
We now consider the most energetic structures in the flow, extracted using SPOD

for this combination of frequency—wavenumber. In particular, we evaluate if forcings
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FIGURE 7. Streamwise component of .S from the reconstruction using the whole forcing (a), the
reduced-order forcing (b), statistical white forcing (c) and the absolute value of the diagonal of
each one compared with that from the simulation (d).

and responses have low rank, which may simplify the modelling. Figure 8(a) shows
the eigenvalues of the SPOD of the full covariance of the forcing, the reduced one
(both considering the correction in (A 5)), and the covariance of the response. Spectral
proper orthogonal decomposition here amounts simply to an eigendecomposition of the
mentioned CSDs, which are Hermitian by construction. In figure 8(a) we can see that there
is a clear separation between the first and the following modes for these matrices; therefore,
the first SPOD mode would be sufficient to represent the forcing and response. Also, the
energies of the covariance of the reduced forcing P, are close to those of the full P, which
highlights the similarities between the two matrices. The comparison between the leading
SPOD mode of the response (denoted as follows as SPOD-q) and the reconstruction using
q = Rfspop (Where fpop is the first SPOD mode of the corrected forcing, both full and
reduced) is shown in figure 8(b). These plots show clearly that the leading SPOD mode of
both P and P,.; lead to close agreement with the first SPOD mode of .S, which confirms
that the terms in (4.8) are, indeed, the dominant ones in this problem. Figure 8(b) also
shows that the first resolvent mode, computed under the hypothesis of white-noise forcing,
does not match the SPOD mode from the simulation, showing that the statistics of the
nonlinear terms are important to match exactly the shapes of the most energetic structures
of the flow (Zare et al. 2017; Towne et al. 2020). The main shapes are nonetheless retrieved
in the leading response mode of resolvent analysis, with v and w forming a streamwise
vortex, as seen, for instance, in the amplitude distribution of w, with two lobes in phase
opposition, and an amplified streak in u. There is a mismatch in the relative amplitudes
of the streamwise vortex and the streak, which is corrected when the forcing statistics are
considered.

We can also evaluate the most energetic structure of the nonlinear terms; considering
that we are interested in their physical shapes, we calculated the SPOD of P without
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FIGURE 8. Spectral proper orthogonal decomposition eigenvalues for.S and the different P used
here (a) and the shapes of the leading SPOD mode of the response (SPOD-q) compared with the
reconstruction using the leading SPOD mode of the forcing and the first response mode from
resolvent (b).

the correction term. The first SPOD mode of the forcings for the considered frequency
is shown in figure 9. Even though the leading mode of the full forcing has an intricate
structure (especially due to the presence of an extra oscillation in the centre of the domain
in the wall-normal velocity), the first SPOD mode of the reduced forcing, from (4.8),
is clear, at least considering the spanwise and wall-normal components, with the shape
of a streamwise vortex (also shown in figure 9(b), where the mode was reconstructed
using the wavenumbers for this case). This connects directly with the conclusions drawn
previously: the streamwise vortices of the response are excited by streamwise solenoidal
forcing from the nonlinear terms; these vortices, in turn, feed the lift-up effect such that
streaks appear in the velocity field. Considering that we are dealing with the nonlinear
term of the Navier—Stokes equations, this result may be seen as surprising. The nonlinear
forcing term gathers the contribution of all triadic interactions that affect the considered
frequency and wavenumber, being fed by a myriad of combinations of frequencies and
wavenumbers. Still, the dominant part of these nonlinear combinations in the y and z
directions (related to the wdv/dz and wow/dz terms) will generate a streamwise vortex
in the forcing. However, the streamwise vortical forcing alone is not sufficient in order to
match the response; a distribution of streamwise forcing, related to vdu/dy and wdu/dz,
is essential to recover the correct response. Finally, the appearance of w in all forcing
directions (in (4.8)) also shows that the spanwise velocity fluctuations greatly affects the
forcing term for the mode (0, 1). Therefore, any combination of triadically interacting
Fourier modes dominated by w is likely to have a contribution to this forcing term and to
the dynamics of the (0, 1) wavenumber.

One can also think of the most energetic structure of the forcing in light of the lift-up
effect. Figure 10 shows the comparison between velocity components from the first SPOD
mode and the linear optimal response mode from resolvent analysis, now rescaled to
have matching wall-normal components. From this plot, it is clear that the shapes of the
vortices from resolvent analysis and SPOD are in close agreement. Still, by performing
such scaling, the streak associated to the resolvent response has a much larger amplitude
than that from SPOD. This can be connected to the phenomenon seen in figure 9(b):
considering that there are large portions of negative streamwise forcing at positions
where the vertical forcing would induce a positive streak via the lift-up effect, this
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FIGURE 9. Absolute value of the first SPOD mode of the full and reduced forcings (a) and
the shape of the reduced forcing in the physical space (b). Colours: streamwise forcing; arrows:
wall-normal and spanwise forcings.
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FIGURE 10. Sketch of the action of the nonlinear terms on the optimal response of mode (0, 1).
All quantities are defined as in figures 8(b) and 9(a), and the arrows point to the regions of the
flow where the destructive interference/cancellation effect is more pronounced. Log scale is used
to provide a better visualisation of the agreement between resolvent and SPOD vortices, and to
highlight the amplitude mismatch between the streaks.

component of the nonlinear terms acts as a destructive interference in its peak positions,
substantially decreasing the amplitude of the streaks, and slightly changing its overall
wall-normal shape. Therefore, the effect of the forcing in this case is mostly to cancel
the streak generated by the linear mechanism, decreasing the streak-to-vortex amplitude
ratio, thus leading to the structure found in the SPOD. This is shown schematically
in figure 10.

For the present wavenumbers, the analysis was carried out for v — 0. A detailed
analysis for all frequencies is outside the scope of this work, but a SPOD analysis
of forcing and response for other frequencies is considered in appendix B, where it
is shown that the low-rank behaviour of forcing and response is observed throughout
the low-frequency part of the spectrum. Thus, the importance of forcing colour is not
restricted to vanishing frequencies, and most scales in the flow have low-rank forcing
and response.
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4.2. Case (ny,ng) = (1,0)

4.2.1. Contribution of each component of the nonlinear terms

We now analyse the case (1, 0), also taken at the limit @ — 0 (w = 0.0123, as in the
previous section). Analysis of the energy related to each velocity component for this case
points to a dominance of w fluctuations for the present mode. Since the dynamics of w is
uncoupled from the rest (by inspection of (2.4c¢)), it is sufficient to analyse the nonlinear
terms related to f, to recover the correct statistics of the velocity, which will also be
dominated by the spanwise component, as observed in the DNS data.

The z component nonlinear terms can be written as

77 _ow 0w ow 4.9)
==l =V —Ww—, .
°o ax ay 0z

-~ Hf_/ ~

Ji 7 J

which is already simpler than the previous case, since the full forcing term only has the
contribution of only three terms. We can perform the same analysis as in the previous
case and try to remove some of the terms in order to check the impact of each one in
the statistics of the response. The reductions that led to similar shapes for the statistics of
the response are the combinations f, + f, (nearly perfect agreement) and £, (mismatch in
amplitude). The reconstructions of .S using each of these combination of terms is shown
in figure 11.

As expected, the reconstruction using all components of the forcing term recovers very
accurately S from the simulation, as well as by using just the terms £, and f,. A further
reduction (using just f,) also gives overall correct shapes, but an amplitude mismatch
appears for the computed S, as shown in figure 11(f). No other simplification led to
the accurate recovery of S. These plots also highlight the need of using the statistics of
the forcing for the prediction of the response for this mode: figure 11(e,f) shows that
consideration of white-noise statistics for the forcing leads to inaccurate shapes for the
statistics of the response, even though the peak is roughly captured.

4.2.2. Low rank of forcing and response

Taking SPOD modes of .S and of the corrected P (both full and reduced), we obtain
the gains shown in figure 12(a). It is clear that, for the present frequency, these matrices
are also low rank: the first SPOD mode is at least one order of magnitude higher than the
other ones, pointing out that using only the first SPOD mode is sufficient to represent the
forcing and the response. In appendix B we see that such rank-1 behaviour is observed for
all frequencies for the (1,0) wavenumbers.

For a reconstruction using the first SPOD mode of the forcings, we obtain modes very
close to the first SPOD mode of the response for all cases; even the more drastic reduction,
considering only f,, leads to a close agreement with the response statistics for most
positions, with a slight mismatch above the centreline. As expected, given the differences
between the prediction using the white-noise P and the covariance of the response from
the simulation, the first resolvent mode does not capture the correct shape of the most
energetic structure in the flow, especially close to the wall.

Finally, we can also look at the shapes of the leading SPOD mode of the uncorrected
forcing for this case. Figure 13 shows that the reduction of the forcing to 7, only does
not lead to any substantial changes in the optimal forcing from SPOD; the f, component
adjusts the shape of forcing structure in some specific regions, without a major role in
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FIGURE 11. Streamwise component of S from the velocity field (@), from the reconstruction
using the whole forcing (b), the reduced-order forcing with f,, + f, (c), the reduced-order forcing

with fu (d), statistical white forcing (e) and the absolute value of the diagonal of each one
compared with that from the simulation (f).

the bulk shape. In figure 13(b) we can see the reduced forcing in the physical space.
The peaks, for this case, are concentrated in regions close to the wall, which explains
why the difference between resolvent and SPOD modes is more evident in these regions;
since f; is higher in that region, the first SPOD mode also has higher amplitudes closer
to the wall.
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FIGURE 12. Energies from SPOD for S and the different P used here (a) and the shapes of the
SPOD mode of the response compared with the reconstruction using the first SPOD mode of the
forcing (b).
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FIGURE 13. Absolute value of the first SPOD mode of the full and reduced forcings (a) and
the shape of the reduced forcing £, in the physical space (b). Colours: spanwise forcing.

From these results we can see that the case (1, 0) is mostly dependent on the term

f.. Since the forcing is mainly dependent on #dw/dx, as shown in figure 13(a), it is
expected that the triadic interactions composed by terms with wavenumbers pairs with
high streamwise velocity amplitudes will affect the nonlinear term more substantially. This
is confirmed in the next section.

5. Relation with the self-sustaining process

This work was based on the minimal flow unit for Couette flow, the minimal
computational box in which turbulence can be sustained. This case was developed by
Hamilton et al. (1995), who also proposed a self-sustaining process for the turbulence in
this simple shear flow. Considering that the structures present in this flow are ubiquitous
to all shear flows, the proposed mechanism has also been extended to several other cases
(see, for example, Jiménez & Pinelli (1999) and Schoppa & Hussain (2002)). This can be
summarised as: (i) streaks are produced as a result of the lift-up effect (Ellingsen & Palm
1975); (ii) the growth of the streaks leads to an instability in the flow, which triggers the
breakdown of these structures; (iii) streamwise vortices are regenerated via a nonlinear
mechanism, thus leading to a regeneration of the streaks. With this process in mind, we
can explore the possible reasons why only some of the terms from the nonlinear forcing
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are relevant for capturing the overall low-frequency dynamics of this flow, as shown in
§ 4. First, it should be expected that velocity fluctuations v would play a role in this case,
considering that the lift-up effect is the dominant phenomenon in this sheared flow. It
is thus relevant to examine in detail how vertical velocity fluctuations v, associated to
streamwise vortices in the (0,1) wavenumber, are forced by nonlinear terms. Two possible
candidates for a consistent triadic interaction would be wavenumbers (+1, 0) and (F1, 1).
As shown by Hamilton et al. (1995), mode (1,0) is one of the most energetic ones in
this flow, and the triadic interaction between this spanwise velocity-dominated mode, and
mode (1,1) (which shows no dominant velocity component) would be expected to be one
of the main mechanisms of energy transfer to mode (0,1) — thus, w*"2 97" /37 should
be a dominant part of the forcing associated to 9>V, since this is the relevant forcing
component in the y direction, as examined in §4.1. In their reduced-order models for
sinusoidal shear flow, Waleffe (1997) and Moehlis, Faisst & Eckhardt (2004) also identify
that one of the forcing terms regenerating rolls is due to the nonlinear interaction between
(£1, 0) spanwise oscillations and (F1, 1) modes.

The above arguments suggests how an interaction between (£1, 0) and (F1, 1) modes
would force the (0,1) mode. A similar argument can be formulated to explore how triadic
interactions give rise to the term #dw/dx in mode (1,0), shown to be dominant in § 4.2:
since the streamwise velocity component of mode (0, £=1) has a high amplitude, the triadic
interaction between u from this mode and dw/dz from mode (1, 1) should affect the
temporal evolution of mode (1,0).

Figure 14 shows some of the relevant quantities for two cycles of the present simulation.
The process of generation and breakdown of streaks can be tracked by looking at the
streamwise component of the velocity for mode (0,1) in figure 14(a). Streak breakdown
(intermittent decay of the amplitude of #>") is closely associated to an increase of the
amplitudes of v. Considering that the evolution of the streamwise velocity does not affect
the evolution of the wall-normal component except via nonlinear terms (as shown in (4.2)),
this growth in v should be related to the equivalent nonlinear forcing in the y direction.
Figure 14(a) shows that the most relevant component of this forcing, (wdv/9z) "V (as
shown in § 4.1), follows the evolution of the wall-normal velocity, with matching regions
of growth/decay. Since this nonlinear forcing can be explicitly written as the sum of the
triadic interaction between modes with summed wavenumbers resulting in mode (0,1),
it is expected that the interaction between energetic modes should contribute greatly
to this term. In fact, the nonlinear term computed from the interaction between modes
(£1,0) and (F1, 1) (also shown in figure 14a) seems to follow the same growth/decay
trend with a similar absolute value for high-amplitude periods, pointing to a connection
between the evolution of the spanwise velocity of mode (1,0) and the regeneration of
vortices. Considering other triads in the analysis of a single forcing term (wdv/dz) may be
misleading, since these interactions can only converge to the forcing at a given direction if
all three terms are considered (as in (4.9)); there is no guarantee that interactions involving
only the spanwise and wall-normal velocities will lead to (wdv/dz)*V; still, it is expected
that adding more triads to the forcing term will lead to curves with amplitudes closer to
the full forcing field from the simulation. This is exemplified in figure 14(a), where the
term wdv/dz was computed considering all triads involving modes (£1, 0)/(F1, 1) and
(£1, —1)/(F1, 2). It is shown that the addition of this new interaction leads to forcing
amplitudes closer to that computed directly from the simulation, with regions of amplitude
growth and decay already captured by the interaction between (£1, 0) and (F1, 1).

Similarly, the energy of mode (1, 0) is basically due to w. It is shown in figure 14(b),
where the dominant part of the forcing term for mode (1,0) and the dominant triadic
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FIGURE 14. Integrated energy as a function of time of streamwise velocity of modes (0,1) and
(0,1), and relevant nonlinear term for each combination of wavenumbers, as discussed in the
text. Triadic interactions between the most energetic modes leading to the nonlinear terms for
each case are also shown. Interaction between modes (1,0) and (1,1) considers the contribution
of wavenumber combinations (—1,0)/(1,1) and (1,0)/(—1,1), and equivalently for modes (0,1) and
(1,1). Sum of all triads involving modes (%1, 0)/(F1, 1) and (£1, —1)/(F1, 2) for the term
(wdD/92)®D is shown in (a). Temporal correlation coefficients between relevant components
of forcing and response for each combination of wavenumbers are shown in (c¢). (@) Mode (0,1),
(b) mode (1,0) and (c) correlation coefficient between velocity and forcing.

interaction between modes (0, £1) and (1, F1) are also depicted. It is clear that the
evolution of the spanwise velocity is closely related to the evolution of the forcing term —
growth and decay regions of the velocity follow the same regions of the forcing with a
time delay. For this mode, the forcing is dominated by the nonlinear term associated to the
most amplified streak interacting with mode (1,1). Therefore, even though the linearised
Navier—Stokes equation for w:?" does not depend on the other velocity components with
the same wavenumber (as mentioned in section § 4.2), its evolution is still determined by
the evolution of the streaks via nonlinear interactions. Considering that no clear forcing
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FIGURE 15. Self-sustaining process in turbulence as proposed by Hamilton et al. (1995). The
vortex regeneration mechanism obtained from nonlinear interactions analysed in the present
study is shown in red. The nonlinear interaction from ‘streaks’ and ‘x-dependent flow’ is
associated to the saturation of streaks.

reduction was found for mode (1,1), the role of this mode is highlighted here as an
‘inter-wavenumber energy transferring’ mode in this dynamics, connecting streaks to the
spanwise velocity mode. We show that this is a crucial element in the vortex regeneration
process.

In order to quantify the time delay between the energy of forcing and response shown in
figure 14(a,b), correlation coefficients between these two quantities were computed with
the respective mean value subtracted. Correlations were computed for the entire time series
using the main component of forcing depicted in figure 14(a,b), and the normalised results
are shown in figure 14(c). Two features stand out from this plot: first, forcing and response
are correlated for large time periods for both combinations of wavenumbers, highlighting
the low-dimensional dynamics of this low-Reynolds-number Couette flow. The oscillatory
correlations may be related to the nearly cyclic behaviour of the minimal flow unit. Second,
the correlations peak at low values of time lag: 7 = 5.5 for (1,0), and t = 7 for (0,1), thus
confirming the expected time delay between forcing and response in this flow, with forcing
that precedes the response.

In summary, energy flows from the streak (in #®") to the spanwise velocity mode via
triadic interactions with mode (1,1), which leads to an increase of w9, This growth, in
turn, leads to an increase of the nonlinear forcing related to the vortices of mode (0,1),
regenerating these structures. Finally, these will regenerate the streaks in the flow via
the lift-up effect. This vortex regeneration mechanism is summarised in figure 15, as an
addendum to the diagram proposed by Hamilton ez al. (1995). As a consequence of that,
the dynamics of the spanwise velocity for mode (1, 0) (followed closely by its main forcing
component) opposes the trend of the streamwise velocity of mode (0, 1), which agrees
with the analysis of streak breakdown for Couette flow performed by Schoppa & Hussain
(1999). The authors show that the streak instability is triggered by streamwise varying,
low-amplitude spanwise velocity disturbances; therefore, it is expected that an increase
in the w component of the velocity will lead to the breakdown of the streaks. Hamilton
et al. (1995) observed that the amplitudes of this component can reach the same order
of magnitude of the streamwise component during streak breakdown, highlighting the
importance of the underlying dynamics followed by w"? in this flow. The relevance of this
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mode was further detailed in the present analysis, where its role in the nonlinear dynamics
of the flow is also explored. The analysis in § 4.1 has shown that this component is essential
for the recovery of the velocity statistics of streaks; the simplified forcing of (4.8) has
its streamwise vortical component, f,,, strongly related to fluctuations in w. Therefore, in
order to recover the energy of mode (0, 1) (thus leading to streak regeneration), higher
amplitudes of spanwise velocity should be present in the flow.

6. Conclusions

Using a DNS of a minimal flow unit, taken for turbulent Couette flow at Re = 400, we
carried out an analysis of the nonlinear terms of the Navier—Stokes equations expanded
around the mean turbulent field, built as the product of velocity fluctuations in the
physical domain. It is shown that, even though resolvent response modes coming from
linear analysis correspond to SPOD modes if the nonlinear terms are uncorrelated, the
statistics of these terms actually play a substantial role in some cases, changing the shape
of the resulting energetic modes. Therefore, a proper consideration of these statistics is
necessary for high-fidelity response prediction, leading to considerable improvements
over the white-noise assumption often used. By detailing the process of recovering the
frequency-domain statistics of the velocity from the statistics of the nonlinear terms
(treated as a forcing term, in a resolvent formulation), we managed to understand the
influence of the windowing in the equations, which gives rise to new terms that must
be included in the formulation, as proposed by Martini er al. (2019); in the present
work we further show the validity of this result by applying the methodology for the
analysis of a turbulent flow. Most of the comparisons between SPOD and resolvent
modes in the literature do not consider, to the best of our knowledge, the error due to
windowing. For lower frequencies, this may lead to unexpected errors that may deteriorate
the comparisons. In order to correctly evaluate the validity of the models using linear
analysis, a correction term should be considered as an additional forcing (as done in the
present work), or as a correction of the statistics of the velocity. For the present analysis,
this error mainly affects low frequencies/wavenumbers. When the appropriate correction
is included, relative errors of about 107> are obtained, which ensures the accuracy of the
obtained CSDs of forcing and response for this flow.

Considering that the CSDs of forcing (P) and response (S) are accurately related to
each other by the resolvent operator, we further analysed the linearised Navier—Stokes
equations in order to evaluate which parts of the forcing were relevant for the prediction
of the statistics of the velocity. This was done for the two most energetic cases at low
frequencies: the case (ny, ng) = (0, 1) (streaks), and (n,, ng) = (1, 0) (spanwise velocity
modes). These analyses were performed for @ — 0, as spectra for the two wavenumbers
have highest levels for the lowest frequencies, a consequence of the zero phase speed of
dominant modes in Couette flow with walls moving in opposite directions. The first mode,
(0, 1), is characterised by the appearance of streaks and streamwise vortices. We have
shown that using spatial white noise as statistics of the forcing leads to a partial agreement
between the prediciton of the covariance of the response using the resolvent operator
and that obtained from the simulation; even though streamwise vortices and streaks
are obtained from white-noise forcing, there is a mismatch in their relative amplitudes.
The forcing is shown to act with a destructive interference between direct forcing of streaks
by streamwise forcing and the lift-up mechanism, where the streamwise vortical part of the
forcing leads to streamwise vortices and streaks. This behaviour is similar to that observed
by Rosenberg & McKeon (2019) for the (u, v) statistics in the case of an exact coherent
state in channel flows. Simplification of nonlinear terms is also possible, with four of them
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(among nine possible ones) leading to the bulk of the response statistics; of particular
relevance is the contribution of spanwise velocity in forcing, as it appears in three of the
four dominant terms.

The same process was performed for the wavenumber (1, 0). The equations for this case
decouple for the spanwise velocity. As this component is the most energetic one for this
case, only the spanwise forcing would be needed to recover most of the covariance matrix
of the response. By applying the same process as the previous case, we manage to reduce
the forcing to only one term, zdw/dx. Simplification of the forcing as white noise again
led to a mismatch in the predicted flow responses; here, the amplitude distribution of the
forcing, which is stronger closer to the walls, is a salient feature, leading to the observed
flow response. Even though no significant forcing reduction was found for mode (1,1),
a connection with this oblique wave mode was also made in the self-sustaining process
framework, showing that the interaction between the streaks and the (1,1) wavenumber
mode dominates the excitation of mode (1,0). By analysing the nonlinear terms from
the DNS, we managed to isolate dominant terms and interactions in the excitation of
each mode, clarifying some of the relevant steps of the vortex regeneration process. In
summary, energy is transferred from mode (0,1) (streaks) into (1,0) (spanwise velocity)
through the oblique wave mode (1,1). This is followed by a second interaction, where
energy is transferred from the (1,0) mode (and the oblique (1,1)) back into the (0,1) mode
through the breakup of the x-dependent motions.

Even though only two wavenumbers were analysed in this work, the conclusions
presented herein lead to a better understanding of the turbulence dynamics in
wall-bounded flows. Instead of modelling the effects of the nonlinearities, we show the
structure of the nonlinear terms explicitly, pointing out that these can be simpler than
the general understanding. Moreover, the cases studied are connected to the self-sustained
process in turbulence, which is considered to be one of the building blocks of the turbulent
flows; knowing more about the action of the nonlinearities in such case affects the
understanding about the whole dynamics. This can also support the design of new control
strategies aiming to reduce turbulence levels close to walls (as in Canton et al. 2016), thus
leading to drag reduction.

The results presented herein aim to clear the usual complexity related to dealing with
the nonlinear terms. Even though these may be considered as an external forcing of the
system for a simplified analysis, leading, for instance, to interesting conclusions about
linear optimal responses of the system, we must keep in mind that these ‘forcing’ terms
come from the dynamics of the flow. Turbulence thus leads to a particular structure, or
colour, to these forcing terms, and such structure has been shown to be relevant if one
wishes to obtain accurately the flow responses via resolvent analysis, as shown by several
previous works (Zare et al. 2017; Martini et al. 2020; Towne et al. 2020); the present work
confirms these conclusions, and deepen the analysis by analysing the shapes of the most
energetic structures of the forcing. It is notable that for the two considered wavenumbers,
at low frequencies, the forcing CSD is of low rank, dominated by its first eigenfunction.
Even though nonlinear forcings are not expected to be low rank over all frequencies and
wavenumbers, especially in higher-Reynolds-number flows, the present analysis suggests
that orderly structures in the forcing terms may still be found, and these can be particularly
important in the dynamics of turbulent flows, such as in the self-sustained process in
wall-bounded flows. A recent example is found in Morra et al. (2020), where the nonlinear
forcing was shown to be rank-2 for the most energetic frequencies of channel flows at
moderate Reynolds numbers (Re, = 180, 550), suggesting that, even though the forcing
may not be low rank over all frequencies, it has low rank for the most dynamically
important frequencies of the flow. In the present Couette flow, despite the apparent
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complexity of the bulk of nonlinear terms, order can still be found. Such organisation
contributes to the aforementioned constructive or destructive interferences in leading to
flow responses. In light of the present results, it is thus relevant to understand and model
how coherent structures in turbulent flows give rise to such organised nonlinear terms.
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Appendix A. Correction due to windowing

The equations shown in § 2.2 are exact when no windowing function is applied to the
turbulent signals; CSDs can be obtained as Fourier transforms of the correlation function.
Still, considering most applications, windowing and segment averaging are applied to time
series in order to apply Welch’s method for a faster determination of CSDs. As windowing
is unavoidable when dealing with large datasets, one can choose the window in order
to minimise spectral leakage and/or aliasing. The inclusion of a window in the signal
processing, in turn, leads to the appearance of new terms in the equations. Following
the formulation of Martini et al. (2019), the linearised, time-invariant, Navier—Stokes
equations,

d
H g—(t) = Li(n +F ), (A1)

when multiplied by a window function /(¢), can be rewritten as

a(h(t)q oh
H%tq(’)) = L(i(0g(1) + (h(f (1) + H ( o ) 0. (A2)

where g =[u v w p] f [/, fy f. 0]T are the response and forcing in time domain,
and H is defined to disregard the derlvatlve of the pressure in the equations. The Fourier
transform of the windowed signal in each segment is given by

. 1 to+T . )
i) = 7 / h(O(r) ¢ db, (A3)

fo

and equivalently for f, where 7, denotes the initial time for each segment and 7 the duration
of time segments. Defining

dh(@) . = o
q(w) = T / q(n e dt, (A4)
0


https://doi.org/10.1017/jfm.2020.918

https://doi.org/10.1017/jfm.2020.918 Published online by Cambridge University Press

Forcing statistics in resolvent analysis 908 A32-29

(A 2) can be written as
(~ioH ~ L) = (f + Ha) =i, (AS)

where the right-hand side becomes the effective force of the windowed signal, which is the
sum of the external driving force and the external extra term due to windowing. Equation
(A5) indicates that, even if we manage to obtain converged statistics for the forcing and
the response, the fact that we multiply the signal by a window leads to a mismatch between
the statistics of the response computed from the velocity fields, and the recovered statistics
from the nonlinear terms (by using RPR™). This error is well defined and is a function of
the window used in the Welch method, of the operator used in the analysis and of the
chosen frequency. Fundamentally the error comes from the difference between ¢, the true
Fourier transform of the signal and g, its estimate obtained with using the window h(7), the
difference also being present for f. Such error is reduced when long segments are taken,
which decreases the magnitude of the time derivative of the windowing function in (A 4);
however, the use of sufficiently long segments for negligible correction terms is potentially
prohibitive.

Appendix B. Rank of nonlinear forcing for higher frequencies

The paper focused on the analysis of the forcing statistics in the minimal Couette flow.
From the full forcing statistics, reduced-order forcings based on the identification of the
relevant parts of the nonlinear terms were proposed in order to simplify the analysis.
One of the main outcomes of this survey was that coherent structures in the nonlinear
terms could be clearly distinguished, revealing some of the dynamics behind the streak
generation. In the present analysis nonlinear terms from the Navier—Stokes equations were
shown to have low rank for the chosen combination of wavenumbers and frequency. Still,
one should be careful when generalizing these results to flows with higher Reynolds
number or to higher frequencies, since forcings can acquire further complexity as the
dynamics gets more intricate. One possible limitation lies in the fact that nonlinear forcing
may not be considered of low rank throughout the frequency spectrum.

Figure 16 shows the three first SPOD energies compared with the total energy from both
forcing and response CSD, for wavenumbers (0,1) and (1,0), as function of frequency. The
analysis in the paper considered w — 0, the first data point of these plots, detailed in
figures 8 and 12; forcing and response are clearly of low rank for this frequency. For the
case (0,1), figure 16(a,c) shows that this forcing may be considered reasonably low rank
over a range of low frequencies, where elements of the present analysis are expected to
hold (such as the ‘colour’ of the forcing affecting directly the streak-to-roll ratio), but
the simplifications performed in § 4.1.3 may not be as straightforward. As the frequency
increases, suboptimals start to become more important in the SPOD spectrum, showing
that the forcing cannot be characterised by a single mode. Changes are expected to be less
drastic for the case (1,0); figure 16(b,d) shows that both forcing and response have low
rank for a broader range of frequencies, and modes related to suboptimal SPOD modes are
less important than for the (0,1) case. Considering that this mode has a simpler dynamics,
basically involving a single velocity component, the conclusions drawn in the present work
can shed light on the overall influence of such mode in the flow dynamics beyond the
region of vanishing frequency.
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FIGURE 16. Energies from SPOD modes of P and S for the different combination of
wavenumbers chosen in the present analysis: (a) forcing (0,1); (b) forcing (1,0); (c) response
(0,1); and (d) response (1,0).
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