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Abstract

Program specialisation aims at improving the overall performance of programs by performing

source to source transformations. A common approach within functional and logic program-

ming, known respectively as partial evaluation and partial deduction, is to exploit partial

knowledge about the input. It is achieved through a well-automated application of parts of the

Burstall-Darlington unfold/fold transformation framework. The main challenge in developing

systems is to design automatic control that ensures correctness, efficiency, and termination.

This survey and tutorial presents the main developments in controlling partial deduction over

the past 10 years and analyses their respective merits and shortcomings. It ends with an

assessment of current achievements and sketches some remaining research challenges.

KEYWORDS: program specialisation, logic programming, partial evaluation, partial deduc-

tion

1 Introduction

Program specialisation aims at improving the overall performance of programs by

performing source to source transformations. A common approach, known as partial

evaluation is to guide the transformation by partial knowledge about the input. In

contrast to ordinary evaluation, partial evaluation is processing a given program

P along with only part of its input, called the static input. The remaining part of

the input, called the dynamic input , will only be known at some later point in time

(which we call runtime). Given the static input S , the partial evaluator then produces

a specialised version PS of P which, when given the dynamic input D, produces the

same output as the original program P . The program PS is also called the residual

program.

The theoretical feasibility of this process, in the context of recursive functions, has

already been established in Kleene (1952), and is known as Kleene’s S-M-N theorem.

However, while Kleene was concerned with theoretical issues of computability and

his construction often yields functions which are more complex to evaluate than the
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original, the goal of partial evaluation is to exploit the static input in order to derive

more efficient programs.

Consider, for example, the following program written in some informal functional

syntax, to compute the n-th power of a given value x, where both x, n ∈ IN.

Example 1

power(x, n) = if (n = 1) then x

else (x ∗ power(x, n− 1))

Now, suppose we specialise the above program for the situation where we want

to compute the fifth power, that is n = 5. Looking at the definition of the power

function, we notice that the following statements depend only on the value of n:

• the test of conditional statement,

• the expression n− 1 in the recursive call,

• the recursive call, since the recursion is completely determined by the value of

n.

Performing these statements, and residualising the others, the result of specialising

the call power(x,5) is the residual program:

power(x, 5) = x ∗ x ∗ x ∗ x ∗ x
If the specialiser is correct, the residual program computes the same function as the

original program, but naturally only for inputs of which the static part equals the

values with respect to which the program was specialised. In the above example,

the residual program power(x, 5) still implements the power function, but only the

fifth-power function. It can be used to compute the fifth power of any value, but

can no longer compute the n-th power of a value.

As the example illustrates, a partial evaluator evaluates those parts of P which

only depend on the static input S and generates code for those parts of P which

require the dynamic input D. This process has therefore also been called mixed com-

putation (Ershov, 1982). What distinguishes partial evaluation from other program

specialisation approaches is that the transformation process is guided by the avail-

able input. Because part of the computation has already been performed beforehand

by the partial evaluator, the hope that we obtain a more efficient program PS seems

justified.

Partial evaluation (Consel & Danvy, 1993; Jones et al., 1993; Mogensen & Sestoft,

1997) has been applied to many programming languages: functional programming

languages (e.g. Jones et al., 1993), logic programming languages (e.g. Gallagher,

1993; Komorowski, 1992; Pettorossi & Proietti, 1994), functional logic programming

languages (e.g. Alpuente et al., 1996, 1998a, 1998b; Lafave & Gallagher, 1997), term

rewriting systems (e.g. Bondorf, 1988, 1989) and imperative programming languages

(e.g. Andersen, 1992, 1994).

In the context of logic programming, full input to a program P consists of a goal

G and evaluation corresponds to constructing a complete SLDNF-tree for P ∪ {G}.
For partial evaluation, the static input takes the form of a goal G′ which is more

general (less instantiated) than a typical goal G at runtime. In contrast to other
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programming languages, one can still execute P for G′ and (try to) construct an

SLDNF-tree for P ∪ {G′}. So, at first sight, it seems that partial evaluation for logic

programs is almost trivial and just corresponds to ordinary evaluation.

However, since G′ is not yet fully instantiated, the SLDNF-tree for P ∪ {G′}
is usually infinite and ordinary evaluation will not terminate. A technique which

solves this problem is known under the name of partial deduction . Its general idea

is to construct a finite number of finite trees and to extract from these trees a new

program that allows any instance of the goal G′ to be executed.

Overview. We present the essentials of this technique in section 2. Then, in section 3

we identify the main issues in controlling partial deduction, which we then address

in much more detail in sections 4 and 5. In section 6 we then discuss so-called

conjunctive partial deduction, which extends partial deduction in that it can specialise

entire conjunctions instead of just atoms. Finally, in section 7 we discuss issues that

arise for various extensions of logic programming and conclude with a critical

evaluation of the practical applicability of existing partial deduction systems and

techniques.

Terminology. The term “partial deduction” has been introduced in Komorowski

(1992) to replace the term partial evaluation in the context of pure logic programs (no

side effects, no cuts). Though in section 4.5 we briefly touch upon the consequences

of the impure language constructs, we adhere to this terminology because the word

“deduction” places emphasis on the purely logical nature of the source programs.

Also, while partial evaluation of functional and imperative programs evaluates only

those expressions which depend exclusively on the static input, in logic programming

one can, as we have seen above, in principle also evaluate expressions which depend

on the unknown dynamic input. This puts partial deduction closer to techniques such

as unfold/fold program transformations (Burstall & Darlington, 1977; Pettorossi &

Proietti, 1994), and therefore using a different denomination seems justified. Note

that partial evaluation and in particular partial deduction is not limited to evaluation

of expressions based on the static input. It can also exploit data present in the source

code of the program or gathered though program analysis. Finally, in the remainder

of this article we suppose familiarity with basic notions in logic programming (Apt,

1990; Lloyd, 1987).

2 Basics of partial deduction

In this section we present the technique of partial deduction, which originates

from Komorowski (1982). Other introductions to partial deduction can be found in

Komorowski (1992), Gallagher (1993) and Leuschel (1999b). Note that, for clarity’s

sake, we deviate slightly from the original formulation of Lloyd & Shepherdson

(1991).

To avoid constructing infinite SLDNF-trees for partially instantiated goals, the

technique of partial deduction is based on constructing finite, but possibly incomplete

SLDNF-trees. The clauses of the specialised program are then extracted from these
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trees by constructing one specialised clause per branch. A single resolution step with

a specialised clause now corresponds to performing all the resolutions steps (using

original program clauses) on the associated branch.

Before formalising the notion of partial deduction, we briefly recall some basics of

logic programming (Apt, 1990; Lloyd, 1987). Syntactically, programs are built from

an alphabet of variables (as usual in logic programming, variable names start with

a capital), function symbols (including constants) and predicate symbols. Terms are

inductively defined over the variables and the function symbols. Formulas of the

form p(t1, . . . , tn) with p/n a predicate symbol of arity n > 0 and t1, . . . , tn terms

are atoms. Literals come in two kinds; positive literals are simply atoms; negative

literals are of the form not A with A an atom. A definite clause is of the form a← B

where the head a is an atom and the body B is a conjunction of atoms. In normal

clauses, the body B is a conjunction of literals. A formula of the form ← B with

B a conjunction of atoms is a definite goal , with B a conjunction of literals, it is a

normal goal . Definite, respectively normal programs are sets composed of definite,

respectively normal clauses. In analogy with terminology from other programming

languages, a literal in a clause body or in a goal is sometimes referred to as a call.

As detailed in Apt (1990) and Lloyd (1987), a derivation step selects an atom

in a definite goal according to some selection rule. Using a program clause, it first

renames apart the program clause to avoid variable clashes and then computes a

most general unifier (mgu) between the selected atom and the clause head and, if an

mgu exists, derives the resolvent , a new definite goal. (We also say that the selected

atom is resolved with the program clause.) Now, we are ready to introduce our

notion of SLD-derivation. As common in works on partial deduction, it differs from

the standard notion in logic programming theory by allowing a derivation that ends

in a nonempty goal where no atom is selected.

Definition 1

Let P be a definite program and G a definite goal. An SLD-derivation for P ∪ {G}
consists of a possibly infinite sequence G0 = G, G1, . . . of goals, a sequence C1, C2,

. . . of properly renamed clauses of P and a sequence θ1, θ2, . . . of mgus such that

each Gi+1 is derived from Gi and Ci+1 using θi+1.

The initial goal of an SLD-derivation is also called the query. An SLD-derivation

is a successful derivation or refutation if it ends in the empty clause, a failing

derivation if it ends in a goal with a selected atom that does not unify with any

properly renamed clause head, an incomplete derivation if it ends in a nonempty goal

without selected atom; if none of these, it is an infinite derivation. In examples, to

distinguish an incomplete derivation from a failing one, we will extend the sequence

of a failing derivation with the atom fail. The totality of SLD-derivations form a

search space. One way to organise this search space is to structure it in an SLD-tree.

The root is the initial goal; the children of a (non-failing) node are the resolvents

obtained by selecting an atom and performing all possible derivation steps (a process

that we call the unfolding of the selected atom). Each branch of the tree represents

an SLD-derivation. A trivial tree is a tree consisting of a single node – the root –

without selected atom.
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SLDNF-derivations and SLDNF-trees originates from the extension towards

normal programs (Apt, 1990; Lloyd, 1987). As detailed in Apt (1990) and Lloyd

(1987), a negative ground literal not A can be selected in a goal, in which case a

subsidiary SLDNF-tree is built for the goal ← A. Eventually that tree contains a

refutation in which case the original goal fails, or fails finitely in which case the

original goal has a child – the resolvent – obtained by removing the negative literal

(the mgu of this derivation step is the empty substitution). Although it is possible

that a subsidiary tree never reaches the status where it contains a refutation or fails

finitely, we will ignore that possibility for the time being, making the assumption

that in such case the negative literal is not selected and the subsidiary tree is not

created (all goals on branches extending the original goal will contain the negative

literal). This assumption, that we reconsider in section 4.4, makes that the specialised

program can be extracted from the main tree, the tree that starts from the initial goal.

As a consequence, partial deduction for normal programs is hardly different from

partial deduction for definite programs. Finally, we say that an SLDNF-tree (resp.

SLDNF-derivation) is finite iff the main tree (resp. derivation) is finite. Observe

that an SLDNF-tree can be finite (and its construction can terminate) while some

of its subsidiary trees are infinite. Indeed, finding one successful derivation in an

infinite subsidiary tree is sufficient to infer failure of the node containing the selected

negative literal referred to by the subsidiary tree.

Note that floundering , the situation where it is impossible to select a literal in a

goal because it consists solely of nonground negative literals, is only a special case

of an incomplete derivation. In what follows, when we mention the branches of an

SLDNF-tree, we mean the branches of the main tree.

We now examine how specialised clauses can be extracted from SLDNF-derivations

and trees.

Definition 2

Let P be a program, G =← Q a goal, D a finite SLDNF-derivation of P ∪ {G}
ending in ← B, and θ the composition of the mgus in the derivation steps. Then the

formula Qθ ← B is called the resultant of D.

Note that the formula is a clause when Q is a single atom, as is the case in

standard partial deduction. Conjunctive partial deduction (Section 6) also allows Q

to be a conjunction of several atoms. The relevant information to be extracted from

an SLDNF-tree is the set of resolvents and the set of atoms occurring in the literals

at the non-failing leaves.

Definition 3

Let P be a program, G a goal, and τ a finite SLDNF-tree for P ∪{G}. Let D1, . . . , Dn
be the non-failing SLDNF-derivations associated with the branches of τ. Then

the set of resultants, resultants(τ), is the set whose elements are the resultants of

D1, . . . , Dn and the set of leaves, leaves(τ), is the set of atoms occurring in the final

goals of D1, . . . , Dn.

https://doi.org/10.1017/S147106840200145X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840200145X


466 M. Leuschel and M. Bruynooghe

fail

PPPPPPPPq← member(X, []),member(X,L)

?

← not bad (a),member(a, L)

← member(a, L)

{X/a}
?

← member(X, [a]),member(X,L)

← inboth(X, [a], L)

?

subsidiary SLDNF-tree:

← bad (a)

fail

PPPPPPPPq← member(a, T )← not bad (a)

?
�

{L/[a|T ]} {L/[Y |T ]}
?

← member(a, L)

Fig. 1. Incomplete SLDNF-trees for Example 2.

Example 2
Let P be the following program:

member(X, [X|T ])← not bad (X)

member(X, [Y |T ])← member(X,T )

inboth(X,L1, L2)← member(X,L1),member(X,L2)

bad (b)←
Figure 1 represents an incomplete SLDNF-tree τ for P ∪ {← inboth(X, [a], L)}.

This tree has just one non-failing branch and the set of resultants resultants(τ)

contains the single clause:

inboth(a, [a], L)← member(a, L)

Note that the complete SLDNF-tree for P ∪ {← inboth(X, [a], L)} is infinite.

With the initial goal atomic, the extracted resultants are program clauses: the

partial deduction of the atom.

Definition 4

Let P be a normal program, A an atom, and τ a finite non-trivial SLDNF-tree for

P ∪ {← A}. Then the set of clauses resultants(τ) is called a partial deduction of A in

P . If A is a finite set of atoms, then a partial deduction of A in P is the union of

the sets obtained by taking one partial deduction for each atom in A.

In analogy with terminology in partial evaluation, the partial deduction of A in

P is also referred to as the residual clauses of A and the partial deduction of A in

P as the residual program .

Example 3

Let us return to the program P of Example 2. Based on the trees in figure 1, we can

construct the following partial deduction of A = {inboth(X, [a], L),member(a, L)}
in P :
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member(a, [a|T ])←
member(a, [Y |T ])← member(a, T )

inboth(a, [a], L)← member(a, L)

Note that if τ is a trivial SLDNF-tree for P ∪{← A} then resultants(τ) = {A← A}
and the specialised program will be nonterminating for goals ← Aθ. The problem is

avoided by excluding trivial trees in Definition 4.

The intuition underlying partial deduction is that a program P can be replaced by

a partial deduction ofA in P and that both programs are equivalent with respect to

queries which are constructed from instances of atoms in A. A first issue to clarify

is what is intended by equivalent. Lloyd & Shepherdson (1991) where the first to

examine it in detail. Using the completion semantics as the declarative semantics,

they can only show soundness: that logical consequences from the completion of the

specialised program are also logical consequences of the completion of the original

program; the other direction, completeness (for instances of atoms in A), does

not hold in general, it holds only for programs for which SLDNF is a complete

proof procedure. Note that the soundness result implies that answers obtained

by SLDNF from the specialised program are sound with respect to the original

program for any declarative semantics for which SLDNF is a sound procedure. For

procedural equivalence under the SLDNF proof procedure, Lloyd and Shepherdson

were able to obtain simple conditions guaranteeing equivalence. The correctness with

respect to the well-founded semantics (now widely acknowledged to be better suited

than completion semantics to capture the meaning of logic programs (Denecker

et al., 2001)) has been studied in Seki (1993), Przymusinska et al. (1994) and

Aravindan & Dung (1994). The results allow us to conclude that partial deduction,

as defined above, preserves declarative equivalence under the well-founded semantics

for ground atoms that are instances of A. Almost all works on partial deduction

aim at preserving the procedural equivalence under SLDNF. Before defining the

extra conditions required to ensure it, we introduce a few more concepts:

Definition 5

Let A1, A2, A3 be three atoms, such that A3 = A1θ1 and A3 = A2θ2 for some

substitutions θ1 and θ2. Then A3 is called a common instance of A1 and A2. LetA be

a finite set of atoms and S a set containing atoms, conjunctions, and clauses. Then

S is A-closed iff each atom in S is an instance of an atom in A. Furthermore we

say that A is independent iff no pair of atoms in A has a common instance.

The main result of (Lloyd & Shepherdson, 1991) about procedural equivalence

can be formulated as follows:

Theorem 1 (correctness of partial deduction)

Let P be a normal program, A a finite, independent set of atoms, and P ′ a partial

deduction of A in P . For every goal G such that P ′ ∪ {G} is A-closed the following

holds:

1. P ′ ∪ {G} has an SLDNF-refutation with computed answer θ iff P ∪ {G} does.

2. P ′ ∪ {G} has a finitely failed SLDNF-tree iff P ∪ {G} does.
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The theorem states that P and P ′ are procedurally equivalent with respect to the

existence of success-nodes and associated answers for A-closed goals. Furthermore,

if we are in a setting where SLDNF is complete for a particular declarative semantics

then partial deduction will preserve that semantics as well. Among others, this is the

case for definite programs. For such programs the least Herbrand models of P and

P ′ will have the same intersection with the set of A-closed ground atoms. The fact

that partial deduction preserves equivalence only for A-closed goals distinguishes it

from e.g. unfold/fold program transformations which aim at preserving equivalence

for all goals. Note that the theorem does not tell us how to obtain A. Also, it

guarantees neither that termination, e.g. under Prolog execution, is preserved, nor

that computed answers are found in the same order.

Returning to Example 3, we have that the partial deduction of the set A =

{inboth(X, [a], L), member(a, L)} in P satisfies the conditions of Theorem 1 for

the goals ← inboth(X, [a], [b, a]) and ← inboth(X, [a], L) but not for the goal ←
inboth(X, [b], [b, a]). Indeed, the latter goal succeeds in the original program but fails

in the specialised one. Intuitively, if P ′ ∪ {G} is not A-closed, then an SLDNF-

derivation of P ′ ∪ {G} may select a literal for which no clauses exist in P ′ while

clauses did exist in P . Hence, a query may fail while it succeeds in the original

program, or, due to negation, may succeed while it fails in the original program. If

A is not independent then a selected atom may be resolved with clauses originating

from the partial deduction of two distinct atoms. This may lead to computed answers

that, although correct, are not computed answers of the original program. Moreover,

this can in turn lead to a specialised program that has a computed answer while the

original program flounders. The next example illustrates these behaviours.

Example 4
Take the following program P :

p(a, Y )← q(Y )

p(X, b)←
q(c)←

Let A = {p(a, c)}. A partial deduction P ′ of A in P is:

p(a, c)←
P ′ ∪ {← p(c, b)} is not A-closed and P ′ ∪ {← p(c, b)} fails whereas P ∪ {← p(c, b)}
does not.
Now, let A′ = {p(a,X), p(Y , b)}. A partial deduction P ′′ of A′ in P is:

p(a, c)←
p(a, b)←
p(X, b)←

A′ is not independent and P ′′ ∪ {← p(Z, b)} produces the computed answers

{Z/X} and {Z/a}. The latter (redundant) answer is not produced by P∪{← p(Z, b)}.
Moreover, P ′′ ∪ {← p(Z, b),¬p(a, Z)} produces the computed answer {Z/a} whereas

P ∪ {← p(Z, b),¬p(a, Z)} flounders. While one might consider this an improvement,

it violates the requirement that the original and specialised program are procedurally

equivalent for the goal.

Note that the original unspecialised program P is also a partial deduction ofA =
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{member(X,L), inboth(X,L1, L2)} in P , which furthermore satisfies the correctness

conditions of Theorem 1 for any goal G. In fact, one can always obtain the original

program back by putting into A an atom p(X1, . . . , Xn) for every predicate symbol

p of arity n and by constructing an SLDNF-tree of depth 1 for every atom in A. In

other words, neither Definition 4 nor the conditions of Theorem 1 ensure that any

specialisation has actually been performed. Nor do they give any indication on how

to construct a suitable set A and a suitable partial deduction wrt A satisfying the

correctness criteria of the theorem. These considerations are all generally delegated

to the control of partial deduction, which we discuss in detail in the following

sections.

In the above development we deviated slightly from the original presentation in

Lloyd & Shepherdson (1991). They define a partial deduction of P wrt A to be “a

normal program obtained from P by replacing the set of clauses in P , whose head

contains one of the predicate symbols appearing in A with a partial deduction of

A in P .” In other words, one keeps the original definitions for those predicates

which do not appear in A. Hence, Theorem 1 is a corollary of the results in Lloyd

& Shepherdson (1991) and of the fact that the original definitions are not reachable

from any call which is A-closed. Note that our formulation, in contrast to Lloyd &

Shepherdson (1991), thus enables partial deduction to eliminate dead code, i.e. code

that can never be reached by executing a legal query to the specialised program.

Hence, the original definition of (Lloyd and Shepherdson 1991) is not used in any

partial deduction (or even partial evaluation) system we are aware of.

The following, more realistic example illustrates the practical benefits of partial

deduction.

Example 5

Let us examine the following program, defining the higher-order predicate map,

which maps predicates over lists:

map(P , [], [])←
map(P , [X|T ], [Px |Pt])← C = ..[P ,X, Px ], call (C), map(P , T , P t)

inv (0, 1)←
inv (1, 0)←

Note that the above program can be seen as a pure definite logic program by

conceptually adding a clause call (p(X1, . . . , Xn))← p(X1, . . . , Xn) for each n-ary predicate

symbol p and by adding a fact = ..(f(X1, . . . , Xn), [f,X1, . . . , Xn]) for each n-ary function

symbol f.

If we now want to map the inv predicate on a list, then we can specialise the

set A = {map(inv , In ,Out)}. If we build the incomplete SLDNF-tree represented in

Figure 2, the set of all the leaf atoms isA-closed and we can construct the following

residual program:

map(inv , [], [])←
map(inv , [0|T ], [1|Pt])← map(inv , T ,Pt)

map(inv , [1|T ], [0|Pt])← map(inv , T ,Pt)

All the higher-order overhead (i.e. the use of = .. and call ) has been removed;

also the calls to inv/2 have been unfolded. When running the above programs on

a set of queries one notices that the specialised program runs up to 2 times faster
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�

← map(inv , T , P t)← map(inv , T , P t)

@
@R

�
�	

�
�	

← inv (X, Px),map(inv , T , P t)

← call(inv (X, Px)),map(inv , T , P t)

?

?

← C = ..[inv , X, Px], call(C),map(inv , T , P t)

@
@R

← map(inv , In, Out)

{In/[], Out/[]} {In/[X|T ], Out/[Px|Pt]}

{C/inv (X, Px)}

{X/1, Px/0}{X/0, Px/1}

Fig. 2. Unfolding Example 5.

than the original one (depending on the particular Prolog system used; and can be

made even faster using filtering, as discussed in section 5.1).

The question that remains is, how do we come up with such (non-trivial and

correct) partial deductions in an automatic way? This is exactly the issue that is

tackled in the remainder of this article.

3 Main control issues

Partial deduction starts from an initial set of atoms A provided by the user that is

chosen in such a way that all runtime queries of interest are A-closed. As we have

seen, constructing a specialised program requires to construct an SLDNF-tree for

each atom inA. Moreover, one can easily imagine that the conditions for correctness

formulated in Theorem 1 may require to revise the set A. Hence, when controlling

partial deduction, it is natural to separate the control into two components (as

already pointed out in Gallagher (1993) and Martens & Gallagher (1995)):

• The local control controls the construction of the finite SLDNF-tree for each

atom in A and thus determines what the residual clauses for the atoms in A
are.

• The global control controls the content of A, it decides which atoms are

ultimately partially deduced (taking care that A remains closed for the initial

atoms provided by the user).

This gives rise to the generic scheme for a partial deduction procedure (similar to

the scheme in Gallagher (1993, 1995)) in figure 3.

The local control is exhibited by the function unfold (P , Ak) that returns a finite

SLDNF-tree for P ∪ {← Ak}. Once all trees constructed, the atoms in their leaves

are added to the set of atoms. Then the global control, exhibited by the function

revise(A′i) is responsible for adapting the set of atoms in such a way that all atoms

in A′i (and thus S as well as all the leaves) are Ai+1-closed and that, eventually,
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Procedure 1

Input: A program P and a set S of atoms of interest;

Output: A specialised program P ′ and a set of atoms A;

Initialise: i = 0, A0 = S;

repeat

for each Ak ∈ Ai do

let τk := unfold (P , Ak);

let A′i :=Ai∪ {B|B ∈ leaves(τk)};
let Ai+1 := revise(A′i);
let i := i+ 1

until Ai =Ai−1;

let A :=Ai;

let P ′ :=
⋃
Ak∈A resultants(τk)

Fig. 3. Generic partial deduction procedure.

a fixpoint is reached where Ai = Ai−1 and a correct specialised program can be

extracted. The specialised program can then be used for all queries that areA-closed.

To turn this scheme into a correct and usable algorithm, several issues have to

be considered. On the one hand, the specialised program has to be correct and

the partial deduction has to terminate. On the other hand, the specialised program

should be as efficient as feasible; it means that the available information, whether

in the input or in the context of calls to predicates, has to be exploited as much as

possible. These somewhat conflicting issues are elaborated below:

1. Correctness. It requires that the specialised program computes the same results

as the original for queries that are A-closed. Partial correctness is obtained

by ensuring that Theorem 1 can be applied. This can be divided into a (very

simple) local condition, requiring the construction of non-trivial trees, and into

a global one related to the independence and closedness conditions.

2. Termination. There are two sources of potential nontermination. First, one has

to ensure that a finite SLDNF-tree is generated in finite time. This is referred

to as the local termination problem. Secondly, one has to ensure that the

iteration over the successive sets Ai terminates and that the set itself remains

finite (otherwise an infinite set of trees would have to be built). This is referred

to as the global termination problem. A related pragmatic aspect is that the

partial deduction process finishes in a reasonable amount of time. What is

reasonable depends on the application, e.g. whether the specialised program is

to be used once or many times; whether the partial deduction process is part

of standard compilation or a separate process initiated by the user.

3. Degree of specialisation. The degree to which the available information is

exploited is called the degree of specialisation or precision , and unexploited

information is referred to as precision loss . We can again discern two aspects.

One which we might call local specialisation . At first glance, the more atoms

are unfolded, the more derivation steps are replaced by a single derivation

step in the specialised program, hence the better the specialised program is.

However, as discussed in section 4.1, one can unfold too much. Another issue

related to local specialisation is that the atoms in a leaf of an SLDNF-tree are
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treated separately. No information is exchanged between the SLDNF-trees of

distinct atoms. For instance, if we stop the unfolding process in Example 2

for G =← inboth(X, [a, b, c], [c, d, e]) at the goal G′ =← member(X, [a, b, c]),

member(X, [c, d, e]), partial deduction will not be able to infer the fact that the

only possible answer for G′ and G is {X/c} as the atoms member(X, [a, b, c])

and member(X, [c, d, e]) are specialised separately. (This problem is partially

remedied by conjunctive partial deduction, c.f. section 6.) Continuing the un-

folding of G′ =← member(X, [a, b, c]), member(X, [c, d, e]) achieves information

propagation between the individual atoms and brings this fact to the surface,

resulting in much better specialisation.

The second aspect could be called the global specialisation and is related to the

granularity ofA. In general having a more precise and fine grained setA (with

more instantiated atoms) will lead to better specialisation. For instance, given

the set A = {member(a, [a, b]),member(c, [d])}, partial deduction can perform

much more specialisation (i.e. detecting that the goal ← member(a, [a, b])

always succeeds exactly once and that ← member(c, [d]) fails) than given the

less instantiated setA′ = {member(X, [Y |T ])}, where member(X, [Y |T ]) is the

most specific atom which is more general than the atoms in A.

A third aspect, orthogonal to both previous ones, is the size of the specialised

program. Unfolding too much may result in code explosion, huge specialised

programs, not only requiring lots of memory but perhaps also slowing down

the execution. What counts for the user is not the amount of unfolding but

the speed of the specialised program. Unfortunately, the actual performance

is hard to predict and hence is not used to guide the specialisation process in

current approaches.

4 Local control

The function unfold (P , A), introduced in the generic partial deduction procedure of

Section 3, that computes a finite SLDNF-tree for P ∪ {← A} encapsulates the local

control and implements what is called an unfolding strategy. The unfolding strategy

performs a finite number of derivation steps, starting from the query← A. It should

not be confused with the unfold rule in the unfold/fold program transformation

framework that performs a single derivation step on an atom selected in a clause

body.

The unfolding strategy applied on an atom A determines exactly the SLDNF-

tree for that atom, hence its residual clauses. Consequently, it has a big impact on

the efficiency of the final program. In the next section, we explain why too much

unfolding can lead to inefficient residual clauses and how such deterioration can be

prevented.

4.1 Efficiency by determinacy

Example 6

The well known append program is as follows:
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app([], L, L)←
app([H |X], Y , [H |Z])← app(X,Y , Z)

Now, let us try to specialise this program without having any partial input, i.e.

A = {app(X,Y , Z)}. If we build an SLDNF-tree of depth 1 for app(X,Y , Z) we

just get the original program back. We have not obtained any improvements, but at

least we have not worsened the program either. Actually, without any partial input,

this is the best we can do. Indeed, if we unfold more and, for example, perform two

unfolding steps we obtain the following residual program:

app([], L, L)←
app([X], L, [X|L])←
app([H,H ′|X], Y , [H,H ′|Z])← app(X,Y , Z)

Although the residual program performs only half of the resolution steps per-

formed by the original program, it is not more efficient on standard Prolog imple-

mentations. Indeed, the code size has increased and the resolution steps themselves

have become more complicated. Performing more unfolding steps makes things

worse, as the following table shows (we ran a set of typical queries using SICStus

Prolog 3.8.6 on a Linux’86 machine; relative runtimes are actual runtimes divided

by runtime of the original program):

Unfolding depth 1 2 3 4 5 6 7 8 9 10 11 12
Relative runtime 1 1.3 1.6 1.6 1.7 1.8 1.9 2.0 2.0 2.2 2.4 2.5

As the table shows, two extra unfolding steps already incur a performance penalty

of 60%. This illustrates that too much unfolding can seriously harm the efficiency

of the residual program. The result of such transformations may well be very

implementation dependent as not only unifications are more complex but also the

clause selection process. The overhead of the latter is dependent on the quality of

the indexing of the implementation. As the phenomenon is typical for cases where

the number of clauses increases, one could call it local code explosion (there is a

similar problem of code explosion at the global level when the setA gets too large).

Another pitfall of too much unfolding is known as work duplication . The problem

is illustrated in the following example.

Example 7

Let P be the following program (adapted from Example 2):

member(X, [X|T ])←
member(X, [Y |T ])← member(X,T )

inboth(X,L1, L2)← member(X,L1),member(X,L2)

Let A = {inboth(a, L, [X,Y ]), member(a, L)}. By performing the non-leftmost

non-determinate unfolding for inboth(a, L, [X,Y ]) in Figure 4 (and doing the same

unfolding for member(a, L) as in figure 1), we obtain the following partial deduction

P ′ of P with respect to A:

member(a, [a|T ])←
member(a, [Y |T ])← member(a, T )

inboth(a, L, [a, Y ])← member(a, L)

inboth(a, L, [X, a])← member(a, L)

Let us examine the run-time goal G =← inboth(a, [h, g, f, e, d, c, b, a], [X,Y ]), for

which P ′ ∪ {G} is A-closed. Using the Prolog left-to-right computation rule the
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HHHHj

fail

← member(a, L),member(a, [])← member(a, L)

�����

← member(a, L),member(a, [Y ])

HHHHj
← member(a, L)

�
�	

← member(a, L),member(a, [X,Y ])
?

← inboth(a, L, [X,Y ])

{X/a}

{Y /a}

Fig. 4. Non-leftmost non-determinate unfolding for Example 7.

expensive sub-goal ← member(a, [h, g, f, e, d, c, b, a]) is only evaluated once in the

original program P , while it is executed twice in the specialised program P ′.
Observe that this is not a problem of local code explosion as in Example 6. The

increase from one to two inboth/3 clauses is arguably normal as calls to member/2

have been unfolded and this predicate is defined by two clauses.

Some partial evaluators, for instance, sage (Gurr, 1994b, a994a) do not prevent

such work duplication. This can result in arbitrarily big slowdowns, much higher

than those encountered in Example 6 (e.g. see Bowers & Gurr, 1995).

A common approach to prevent local code explosion and work duplication relies

on determinacy-based unfolding. It was first proposed in Gallagher & Bruynooghe

(1991) and Gallagher (1991, 1993).

Definition 6

The unfold function is determinate iff for every program P and every goal G it

returns an SLDNF-tree with at most one non-failing branch.

Applying determinate unfolding to an atom will produce an SLDNF-tree with

at most one resultant. Hence no local code explosion and no work duplication can

occur. Also, determinacy is a strong indication that enough input is available to

select the “right” derivation, the derivation that will be taken when the specialised

program is executed for the dynamic input.

Finally, determinate unfolding ensures that the order of solutions, e.g. under

Prolog execution, is not altered and that termination is preserved (termination might

however be improved, as e.g.← loop, fail can be transformed into← fail ; for further

details related to the preservation of termination we refer to Proietti & Pettorossi

(1991), Bossi & Cocco (1994, 1995) and Leuschel et al. (1998b)).

It is undecidable whether, for a given literal, one can construct an SLDNF-tree

with at most one non-failing branch. Hence, concrete unfold functions use a so-called

lookahead to decide whether a particular literal can be unfolded. Using a lookahead

of 0 means that a literal can only be unfolded if it produces one resultant or less,

while using a lookahead of 1 means that we can also select literals which produce

more than one resultant, provided that all but one of them fail at the next resolution

step.
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shower fork beam pure

Fig. 5. Three almost determinate trees and one determinate tree.

The determinate unfolding approach is too restrictive, as we have to prevent

trivial trees, and is usually replaced by almost determinate unfolding that allows one

non-determinate unfolding step. This non-determinate step may either occur only

at the root (used, for example, in Gallagher (1991)), only at the bottom (used in

Gallagher & Bruynooghe (1991) and Leuschel & De Schreye (1998a)), or anywhere

in the tree (an option which can be used within ecce (Leuschel, 1996)). These

three forms of almost determinate trees are illustrated in figure 5. However, as the

experiments in Leuschel et al. (1998a) show, even almost determinate unfolding can

be too restrictive and does not fare very well on highly non-deterministic programs,

such as the “contains” benchmark (Leuschel 1996) devised by Lam and Kusalik.

Nonetheless, as we will see in section 6, this is much less of an issue in the setting

of so-called conjunctive partial deduction.

To avoid the work duplication pitfall described in Example 7, the one non-

determinate unfolding step performed by an almost determinate unfolding rule

should mimic the runtime selection rule (leftmost for Prolog). Observe that for a

shower tree this is always satisfied, as there is only one literal in the root.

Among the three almost determinate unfolding trees, the shower is the most

restrictive one as it only allows a non-determinate step if necessary to avoid a

trivial tree. All three avoid local code explosion as the number of residual clauses

cannot exceed the number of program clauses defining the atom selected at the

non-deterministic step.

Unfortunately, fork and beam determinate unfolding can still lead to duplication

of work, namely in unification with multiple heads:

Example 8

Let us adapt Example 7 by usingA = {inboth(X, [Y ], [V ,W ])}. We can fully unfold

← inboth(X, [Y ], [V ,W ]) and we then obtain the following partial deduction P ′ of

P with respect to A:

inboth(X, [X], [X,W ])←
inboth(X, [X], [V ,X])←

No goal has been duplicated by the leftmost non-determinate unfolding, but the

unification X=Y for ← inboth(X, [Y ], [V ,W ]) has been duplicated in the residual

code. This unification can have a substantial cost when the corresponding actual

terms are large. In fact, code like the above could as well be written by hand,

and the problem could be attributed to poor compiler technology. We are here

touching upon a rather low level issue on the borderline between specialisation

and compilation that is not well mastered and not much studied. Ideally, unfolding

decisions should be based on a more precise performance model that takes into
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account the compiler technology of the target system such as clause indexing, the

cost of term construction operations, and the cost of having too many arguments

(often considerable slowdown occurs if the number of arguments exceed 32). In the

absence of such detailed modelling and of better compiler technology, pragmatic

solutions are either to use shower determinate unfolding only, or to provide a

postprocessor that avoids the unification overhead through the introduction of

explicit disjunctions (denoted “;” as in Prolog):

inboth(X, [X], [V ,W ])← (X=V ) ; (X=W )

or, even better on most Prolog systems1, through the introduction of an auxiliary

predicate (so called transformational indexing):

inboth(X, [X], [V ,W ])← one of (X,V ,W )

one of (X,X, )←
one of (X, ,X)←

4.2 Ensuring termination

Having solved the problems of local code explosion and work duplication, we

still have no adequate unfolding function. Indeed almost determinate unfolding

can result in infinite branches. In (strict) functional programs such a condition is

equivalent to an error in the original program. In logic programming (and in lazy

functional programming) the situation is somewhat different: a goal can infinitely

fail (in a deterministic way) during partial deduction but still finitely fail at run

time, i.e. when executed using fully instantiated input. In applications where one

searches an infinite space for the existence of a solution (e.g. theorem proving) even

infinite failures (i.e. infinite SLDNF-trees without a refutation in the main tree) at

run-time do not necessarily indicate an error in the program: they might simply be

due to non-existence of a solution. This is why, perhaps in contrast with functional

programming, additional measures on top of determinacy should be adopted to

ensure local termination.

Early approaches either did not guarantee termination or made ad-hoc decisions

to enforce termination. Subsumption checking (unfolding stops when the selected

atom is an instance of a previously selected atom) and variant checking (unfolding

stops when the selected atom is a variant of a previously selected atom) are examples

of the former approach and are mentioned in Takeuchi & Furukawa (1986), Fuller

& Abramsky (1988), Levi & Sardu (1988), Benkerimi & Lloyd (1990) and van

Harmelen (1989), but are inadequate (Bruynooghe et al. (1992), as the following

examples illustrate.

Example 9

Take the following simple program for reversing a list.

rev ([],Acc,Acc)←
rev ([H |T ],Acc,Res)← rev (T , [H |Acc],Res)

1 Private communication from Bart Demoen.
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Unfolding ← rev(X, [], R) using subsumption or variant checking will give rise to

an infinite SLD-tree.

The use of an arbitrary depth bound is an example of an ad-hoc approach.

Unavoidably, there are cases where this leads to either too much unfolding and code

explosion, or too little unfolding and under utilisation of the available information.

The hope is that the other components of the unfolding strategy will cause that the

depth bound is used only in pathological cases. Approaches using depth bounds are

in Venken (1984), Prestwich (1993), Fuller et al. (1996) and Sahlin (1993, 1991).

4.2.1 Offline approaches

One approach to ensure termination is to perform a preliminary analysis and to use

the results of this analysis to make the unfolding decisions.

1. Offline annotations. In this approach, often referred to as offline (because almost

all the control decisions are taken before the actual specialisation phase), unfolding

proceeds in a strict left-to-right fashion and every call in the program to be specialised

has an annotation specifying whether it is to be unfolded or not. In the latter case

the call is said to be residualised. One could annotate the programs by hand and

then check whether the annotation is correct, i.e. the unfolding will terminate. This

can be achieved by removing the literals annotated as to be residualised (as they are

residualised, they are not executed and do not create bindings) and to use existing

tools for termination analysis of logic programs (see De Schreye & Decorte (1994)

for a survey and the specialised literature for more recent work). It is a component

of the approach of Vanhoof & Bruynooghe (2001) described at the end of the next

paragraph.

However, in general one also wants to automatically derive the annotations itself:

this preliminary analysis is referred to as a Binding-Time Analysis (BTA). The first

fully implemented bta for logic programs was probably presented in (Gurr, 1994a),

for the sage system. This bta is monovariant and unfolding decisions are taken at

the predicate level, i.e. for each predicate all calls are either unfolded or residualised.

This is thus still too restrictive in practice. A more recent and more powerful bta (for

functional programs), which ensures termination and can even handle sophisticated

programs such as interpreters, is presented in Glenstrup & Jones (1996). Bruynooghe

et al. (1998) presented a step towards a polyvariant bta for logic programs. Assuming

an unfolding condition for every predicate is given, it employs abstract interpretation

to derive a polyvariant version of the original program where every call is annotated

with an unfolding decision (for some predicates, the clauses defining them can

be multiplied and each version is differently annotated). Vanhoof & Bruynooghe

(1999) have developed a binding time analysis for Mercury (Somogyi et al., 1996), a

typed and moded logic programming language. Given the features of Mercury, this

work is closer to work in partial evaluation of functional programs than to partial

deduction of logic programs. Vanhoof & Bruynooghe (1999) extended it to cope

with the higher-order features and module structure of Mercury. Finally, Vanhoof
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& Bruynooghe (1996) describe a full binding time analysis for logic programs. The

termination analyser of Codish & Taboch (1999) has been extended for the case that

it cannot prove termination. The extension identifies the atoms in clause bodies that

are at the origin of the failure to prove termination. This termination analyser is

then used in an iterative process. When it proves termination, all calls are annotated

as unfoldable. In the other case, one of the identified atoms is annotated as to be

residualised and the program with the residualised atom removed is again analysed

for termination. Eventually, enough atoms are annotated as residualised to allow a

proof that the execution (unfolding) terminates.

One of the big advantages of the offline approach is the efficiency of the spe-

cialisation process itself: indeed, once the annotations have actually been derived

(automatically by the above btas or by hand), the specialiser is relatively simple,

and can be made to be very efficient, since all decisions concerning local control are

made before and not during specialisation.

The simplicity of the specialiser also means that it is much easier to achieve

self-application, i.e. specialise the specialiser itself using partial evaluation. Indeed,

achieving effective self-application was one of the initial motivations for investiga-

ting offline control techniques (Jones et al., 1989). Self-application was first achieved

in the logic programming context in Mogensen & Bondorf (1992) for a subset of

Prolog and later in Gurr (1994b, 1994a) for full Gödel. Self-application enables a

partial evaluator to generate so-called “compilers” from interpreters using the sec-

ond Futamura projection and a compiler generator (cogen) using the third Futamura

projection (e.g. see Jones et al., 1993). However, the actual creation of the cogen

according to the third Futamura projection is not of much interest to users since

cogen can be generated once and for all when a specialiser is given. This is known

as the cogen-approach and has been successfully applied in many programming

paradigms (Beckman et al., 1976; Romanenko, 1988; Holst, 1989; Holst & Launch-

bury, 1992; Birkedal & Welinder, 1994; Andersen, 1994). In the logic programming

setting, (Neumann, 1990, 1991) presents a system for definite clause grammars which

is very similar to a cogen , but not from a partial evaluation perspective. The first

cogen for a logic programming language was thus (arguably) presented in Jørgensen

& Leuschel (1996) and Leuschel & Jørgensen (1999). The resulting system logen

performs the unfolding at speeds similar to ordinary execution, and is thus well

suited for applications, where speed of the specialisation is crucial (and where the

program to be specialised can be analysed beforehand by the bta).

2. Delay declarations. Instead of taking all unfolding decisions at analysis time, one

can also infer conditions under which unfolding is guaranteed to terminate and

leave it to the specialiser to check whether a particular atom meets the condition

and can be unfolded. The specialiser, knowing the actual static input, may then be

able to unfold more atoms than a binding time analyser would consider safe. The

required analysis has lots in common with the analysis used for logic programs with

delay declarations (also called coroutining). When executing such programs, calls

are suspended until they meet their delay declarations. Analysis can be developed

that can verify whether the program terminates for a given delay declaration or
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that can infer delay declarations ensuring termination. Relevant work is in Naish

(1993), Lüttringhaus-Kappel (1993), Marchiori & Teusink (1995) and Martin &

King (1997). Using the delay declarations for which the program terminates to decide

whether atoms should be unfolded or residualised ensures termination of unfolding

(Incomplete branches in the SLDNF-tree correspond to deadlocked derivations).

Such an approach has actually not been very widely used yet, with the exception

of Fujita & Furukawa (1988), Leuschel (1994), Leuschel & De Schreye (1998b)

and Martin & Leuschel (1999) and Martin (2000). Note that some of the delay

declarations derived by Naish (1992), Marchiori & Teusink (1995) and Martin &

King (1997) can be overly restrictive in the context of unbounded (i.e. partially in-

stantiated) datastructures (common in partial deduction). Hence, Martin & Leuschel

(1999) and Martin (2000) extend this approach by pre-computing minimum sizes

for the unbounded structures and unfold atoms as long as sizes remain under the

minimum.

4.2.2 Online approaches: well-founded and well-quasi orders

In this section we look at so called online approaches that monitor the growth of

branches of SLDNF-trees, continue unfolding as long as there is some evidence that

interesting computations are performed but are also guaranteed to terminate. To

achieve this, they maintain orders over the nodes of a branch that are chosen in

such a way that infinite branches are impossible. If care is taken that there cannot

be an infinite number of attempts to rebuild a branch, the construction of the tree

must terminate.

Well-founded orders and well-quasi orders are well known to allow the definition

of admissible sequences that are always finite. Their definitions are as follows:

Definition 7

A strict partial order <S on a set S is an irreflexive, transitive, and thus asymmetric

binary relation on S . A quasi order (also called preorder) 6S on a set S is a reflexive

and transitive binary relation on S .

Definition 8

Let <S be a strict partial order on a set S . A sequence of elements s1, s2, . . . in S

is called admissible with respect to <S iff si + 1 < si, for all i > 1. The relation <S

is a well-founded order (wfo) iff there is no infinite admissible sequence with respect

to <S .

Definition 9

Let 6S be a binary relation on S . A sequence of elements s1, s2, . . . in S is called

admissible with respect to 6S iff there are no i < j such that si 6S sj . The relation 6S
is a well-binary relation (wbr) on S iff there are no infinite admissible sequences with

respect to 6S . The relation 6S is a well-quasi order (wqo) on S iff it is a well-binary

relation and a quasi order.

In what follows, we define an expression to be either a term, an atom, a conjunction,

or a goal.
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When defining orders over the sequence of nodes in a branch, nobody has found

it useful to compare complete goals, only the selected atoms are compared. Also,

it was quickly realised that it was difficult to define an order relation on the full

sequence that was giving good unfoldings and that it was sufficient and easier to

do so on certain subsequences. The essence of the most advanced technique, based

on covering ancestors Bruynooghe et al. (1992) can be captured in the following

definitions.

Definition 10

If a program clause H ← B1, . . . , Bn is used in a derivation step with selected atom

A then, for each i, A is the parent of the instance of Bi in the resolvent and in each

subsequent goal where an instance originating from Bi appears (up to and including

the goal where Bi is selected). The ancestor relation is the transitive closure of the

parent relation.

Definition 11

Let G0, G1, . . . , Gn be an SLDNF-derivation with selected atoms A1,A2, . . . , An.

The covering ancestor sequence of Ai, a selected atom, is the maximal subsequence

Aj1 , Aj2 , . . . Ajm = Ai of A1, A2, . . . , Ai such that all atoms in the sequence have the

same predicate symbol and, for all 1 6 k < m it holds that Ajk is an ancestor of

Ajk+1
.

An SLDNF-derivation G0, G1, . . . , Gn is safe with respect to an order (wfo or

wqo) if all covering ancestor sequences of the selected atoms are admissible with

respect to that order.

Covering ancestors, first introduced for well-founded orders (Bruynooghe et

al. (1992), and later also used with well-quasi orders (Leuschel et al., 1998a), are so

useful because an infinite derivation must have at least one infinite covering ancestor

sequence. Hence, an atom can be unfolded when the SLDNF-derivation remains

safe. Moreover, experience has shown that the admissibility of the covering ancestor

sequences is a strong indication that some interesting specialisation is going on.

Well-founded orders. Inspired by their usefulness in the context of static termination

analysis (see Dershowitz & Manna (1979) and De Schreye & Decorte (1994)), well-

founded orders have been successfully employed to ensure termination of partial

deduction in (Bruynooghe et al. (1992), Martens et al. (1994), Martens & De Schreye

(1996) and Martens (1994). In addition, the unfolding performed by these techniques

is related to the structural aspect of the program and goal to be partially deduced.

They are arguably the first theoretically and practically satisfying solutions for the

local termination problem.

Example 10

A simple well-founded order can be obtained by comparing the termsize of atoms: we

say that A < B iff termsize(A) < termsize(B), where termsize(t) of an expression t is

the number of function and constant symbols in t. Let us apply this to the member

program P of Example 2. Based on that wfo, the SLDNF-tree with successive

goals ← member(X, [a, b|T ]), ← member(X, [b|T ]) and ← member(X,T ) results in
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the covering ancestor sequence member(X, [a, b|T ]), member(X, [b|T ]), member(X,T )

which is admissible because the termsize of the selected atoms strictly decreases at

each step. However, it is not allowed to perform a further unfolding step as the

addition of the element member(X,T ′) to the covering ancestor sequence makes the

sequence inadmissible.

In general, measuring just the termsize of atoms leads to overly conservative

unfolding. Take for example the rev program from Example 9. Given, e.g., the

goal ← rev([a, b], [], R) one would ideally want to achieve full unfolding. Fully

unfolding ← rev([a, b], [], R) results in a covering ancestor sequence rev([a, b], [], R),

rev([b], [a], R), rev([], [b, a], R). Unfortunately, as the termsize is 6 for all the elements,

the sequence is not admissible and the derivation is not safe. However, using a wfo

which just examines the termsize of the first argument, the branch is admissible and

full unfolding can be achieved. This illustrates that it is difficult to decide beforehand

which is the wfo that gives the best unfolding and that there is a need to adjust the

wfo while unfolding.

Such an approach is followed in (Bruynooghe et al. (1992), Martens et al. (1994),

Martens & De Schreye (1996) and Martens (1994). They start off with a simple wfo

and then refine it during the unfolding process.

Example 11

Consider a query G1 = ← rev ([a, b|T ], [], R) for the rev program P of Example 9.

One starts with the wfo based on summing up the termsizes of the arguments

whose positions are in the set S1 = {1, 2, 3}. Unfolding one step, the resolvent is

G2 = ← rev ([b|T ], [a], R) and the covering ancestor sequence is rev ([a, b|T ], [], R),

rev ([b|T ], [a], R). Using the wfo based on S1, both atoms have size 5 and the

covering ancestor sequence is inadmissible. The adjustment of the wfo removes

a minimal number of elements from S1 such that the sequence becomes admiss-

ible. Using S2 = {1, 3} achieves this. Another unfolding step yields the goal

G3 = ← rev (T , [b, a], R) and the covering ancestor sequence remains admissible.

Performing another unfolding step results in the goal ← rev (T ′, [H ′, b, a], R) and

the covering ancestor sequence rev ([a, b|T ], [], R), rev ([b|T ], [a], R), rev (T , [b, a], R),

rev (T ′, [H ′, b, a], R), which is not admissible for S2 and for any subset of it. Hence it

is not allowed to perform the last step.

The above example suggests two critical points. First, one has to ensure that one

cannot continuously refine a wfo. In the above example this was ensured by only

allowing arguments to be removed. In a more general setting (e.g. where one can

vary weights associated with constants and function symbols) one has to ensure that

the successive wfos are themselves well-founded.

Secondly, when selecting a new wfo, verifying that the last atom in the covering

ancestor sequence is strictly smaller than the previous one does not guarantee that

the whole sequence is admissible (while it suffices when extending an admissible

sequence for a given wfo with one atom). Hence, early algorithms tested the whole

sequence on admissibility. This can be expensive for long sequences.

Martens & De Schreye (1996) and Martens (1994) therefore advocates another

solution: not re-checking the entire sequence on the grounds that it does not threaten
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termination (provided that the refinements of the wfo themselves are well-founded).

This leads to sequences s1, s2, . . . of selected literals which are not well-founded but

nearly-founded Martens & De Schreye (1996) and Martens (1994) meaning that

si 6< sj only for a finite number of pairs (i, j) with i > j. This improves the efficiency

of the unfolding process, but has the tradeoff that it can lead to sequences of covering

ancestors which contain more than one occurrence of exactly the same selected literal

(Leuschel, 1998a), which is considered a clear sign of too much unfolding.

Well-quasi orders. A drawback of the above mentioned wfo approaches, is that they

will not be able to satisfactorily handle certain programs. For example, Datalog

programs (logic programs without functors) will pose problems as all constants

have the same size under the measures that are typically used in wfos. Assigning a

different size to each constant will not solve the problem. As the ordering is total,

there will be situations where it leads to suboptimal unfolding. For Datalog program

on could use variant checking as the number of distinct variants is finite. A more

fundamental solution is to use quasi orderings.

Local termination is ensured in a similar manner as for wfos by allowing only safe

SLDNF-trees. The difference is that the admissibility of covering ancestor sequences

is based on well-quasi orders. Hence an element added to an admissible sequence is

not necessarily strictly smaller than all elements in the sequence as is the case for a

wfo. This, for example, allows a wqo to have no a priori fixed size or order attached

to functors and arguments and avoids to focus in advance on specific sub-terms.

The latter is crucial to obtain good unfolding of metainterpreters (Leuschel, 1998b,

1998a).

The first explicit uses of wqos to ensure termination of partial deduction are in

Bol (1993) and Sahlin (1993). Prestwich (1992a) presents a method which can be

seen as a simple wqo: it maps atoms to so-called “patterns” (of which there are

only finitely many) and unfolds every pattern at most once. Prestwich (1992a) also

presents an improvement whereby it is always allowed to decrease the termsize. This

can still be seen as a wqo. In fact, every wfo can be mimicked by a wqo and the

combination of two wqos is still a wqo (Leuschel, 1998b, 1998a).

An interesting wqo is the homeomorphic embedding relation E, which derives

from results by Higman (1952) and Kruskal (1960). It has been used in the context of

term rewriting systems in Dershowitz (1987) and Dershowitz & Jouannaud (1990),

and adapted for use in supercompilation in Sørensen & Glück (1995).

What follows is an adaptation of the definition from Sørensen & Glück (1995),

in turn based on the so-called pure E in Dershowitz & Jouannaud (1990). It has a

simple treatment of variables.

Definition 12

The homeomorphic embedding relation E on terms and atoms is defined inductively

as follows (i.e. E is the least relation satisfying the rules), where n > 0, p denotes

predicate symbols, f denotes function symbols, and s, s1, . . . , sn, t, t1, . . . , tn denote

terms:

1. X E Y for all variables X,Y
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2. sE f(t1, . . . , tn) if sE ti for some i

3. f(s1, . . . , sn)E f(t1, . . . , tn) if ∀i ∈ {1, . . . , n} : si E ti.
4. p(s1, . . . , sn)E p(t1, . . . , tn) if ∀i ∈ {1, . . . , n} : si E ti.

When s E t we also say that s is embedded in t or t is embedding s. By s C t we

denote that sE t and t 6E s. The important property is that E is a well-quasi order

Sørensen & Glück (1995).

The intuition behind the above definition is that AEB iff A can be obtained from

B by removing some symbols i.e. that the structure of A, splitted in parts, reappears

within B. For instance we have p(a) E p(f(a)) because p(a) can be obtained from

p(f(a)) by removal of “f()” Observe that the removal corresponds to the application

of rule 2 (also called the diving rule) and that we also have p(a) C p(f(a)). Other

examples are X EX, p(X)C p(f(Y )), p(X,X)E p(X,Y ) and p(X,Y )E p(X,X).

In order to adequately handle some built-ins, the embedding relation E of Defi-

nition 12 has to be adapted. Indeed, some built-ins (like = ../2 or is/2) can be used

to dynamically construct new constants and functors. With an unbounded number

of constants and functors, E is not a wqo. To remedy this Leuschel et al. (1998a)

partition the constants and functors into the static ones (those occurring in the

original program and the partial deduction query) and the dynamic ones (those

created during program execution)2. As with the set of variables, the set of dynamic

constants and functors is unbounded. Hence, not surprisingly a wqo is obtained by

adding to Definition 12 a rule similar to the rule for variables:

f(s1, . . . , sm)E g(t1, . . . , tn) if both f and g are dynamic

Comparing wfos and wqos. The homeomorphic embedding allows us to continue

unfolding in situations where no suitable wfo exists. For example, on its own (i.e.

not superimposed on a determinate unfolding strategy) it will allow the complete

unfolding of most terminating Datalog programs.

The homeomorphic embedding E allows also better unfolding in the context of

metaprogramming (see Leuschel (1998a) and Vanhoof (2001)).

Take, for example, the atoms A = p([], [a]) and B = p([a], []). This is a situation

where a homeomorphic embedding allows more unfolding than any wfo: it allows

us to unfold A when B is in its covering ancestor sequence, but also the other way

around, i.e. it allows us to unfold B when A is in its covering ancestor sequence. A wfo

will at best assign a different size to both atoms and the total order, fixed in advance

implies that only one of the two unfoldings can be performed. The dynamic adjust-

ment of wfos which we described in Example 11 will allow both unfoldings. However,

if we make the above example slightly more complicated, e.g. by using the atoms

A = solve(p([], [a])) B = solve(p([a], [])) or even A = solve1(. . . solven(p([], [a])) . . .)

B = solve1(. . . solven(p([a], [])) . . .) instead, then the scheme of Example 11 will no

longer work (while E still allows both unfoldings). For such a wfo scheme to allow

both unfoldings, we have to make the dynamic argument selection process more

refined but then we run into the problem that infinitely many dynamic refinements

2 A similar division was used in mixtus (Sahlin, 1993) to solve problems with subsumption checking.
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might exists (Martens & De Schreye, 1996; Martens, 1994), and to our knowledge

no satisfactory solutions exists as of yet.

However, the above example also illustrates why, when using a wqo, one has to

compare with every predecessor. Otherwise one will get infinite derivations where in

turn the atoms p([a], []), p([], [a]) and again p([a], []) are selected. When using a wfo

one has to compare only to the closest predecessor, because of the transitivity of

the order and the strict decrease enforced at each step.

Formally, one can prove that E is strictly more powerful than so-called simplifi-

cation orderings (such as lexicographic path ordering; see Dershowitz & Jouannaud

(1990)) and so-called monotonic wfos (Leuschel, 1998b): the admissible sequences

with respect to E are a strict superset of the union of all admissible sequences with

respect to simplification orderings and monotonic wfos. Almost all wfos presented in

the online partial deduction literature so far fall into this category. Also, compared

to all these wfo-approaches, the E approach is relatively easy to implement. The

combined power and simplicity explains its popularity in the recent years (Sørensen

& Glück, 1995; Leischel et al., 1998a; Glück et al., 1996; Jørgensen et al., 1996;

Alpuente et al., 1997; Lafave & Gallagher, 1997; Albert et al., 1998; De Schreye et

al., 1999).

There are, however, natural wfos which are neither simplification orderings nor

monotonic. For such wfos, there can be sequences which are not admissible wrt E
but which are admissible wrt the wfo. Indeed, E takes the whole term structure into

account while wfos in general can ignore part of the term structure. For example,

the sequence 〈[1, 2], [[1, 2]]〉 is admissible wrt the “listlength” measure but not wrt

E, where “listlength” measures a term as 0 if it is not a list and by the number of

elements in the list if it is a list (Martens & De Schreye (1996).

In summary, the only circumstances when one might consider using wfos for

online control instead of a wqo such as E are:

1. When the use of the wqo E is considered too inefficient (checking the extension

of an admissible sequence for admissibility is much less expensive with a wfo

than with a wqo).
2. When there is a need to consider only parts of the terms structures inside

atoms. It is unclear how often this is going to be important in practice.
3. When one wants to explicitly restrict the amount of unfolding, e.g. for prag-

matic reasons.

4.3 Local control in ecce

Experience with ecce, an online partial deduction system (Leuschel 1996), has

resulted in the following recommendations for unfolding a goal: (the query is always

unfolded, as needed for correctness):

• If the goal fails (has a literal that does not unify with any clause head) then

label the derivation as a failing one.
• Else, try to find a determinate literal whose unfolding yields an SLDNF-

derivation that is safe with respect to the wqo E and unfold it. To decide

whether a literal is determinate a lookahead of 1 is used.
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• Else, unfold the leftmost literal and stop with further unfolding of this branch

(apart from identifying failing resolvents). This rule is not always giving the

best unfolding. There are derivations where non-determinate unfolding is

better omitted. Also it can be that the leftmost literal is a built-in or another

literal that cannot be unfolded because its definition is not available. In such

case, non-leftmost non-determinate unfolding can be considered if the amount

of work duplication to be introduced is minimal (which is the case for cheap

built-ins such as \=) or will be minimised by a postprocessor or smart Prolog

compiler.

These recommendations are not always sufficient. On benchmarks such as the

highly non-deterministic “contains” referred to in section 4.1, they are too restrictive.

Obtaining good specialisation requires to perform non-determinate unfolding (and,

as for determinate unfolding, it must be safe with respect to the wqo E). Interestingly,

the default setting of ecce includes so-called “conjunctive” partial deduction (to be

discussed in section 6) and determinate unfolding is sufficient to handle “contains”

and similar benchmarks. The first version of ecce described in Leuschel et al. (1998a)

did not include conjunctive partial deduction and thus non-determinate unfolding

was employed.

4.4 Termination within subsidiary SLDNF-trees

In an SLDNF-derivation, there is not only the possibility of non-termination for

the main SLDNF-tree but also for all the subsidiary SLDNF-trees. Under SLDNF,

such subsidiary trees are only created for ground atoms, hence their unfolding at

specialisation-time is not different from their execution at run-time. However, as

control is different, some subsidiary trees can be created during partial deduction

which are never created at run-time. Moreover, the original program may be er-

roneous in the sense that the execution of some of the subsidiary trees created at

run-time does not terminate. So, to ensure that the partial deduction of a program

always terminates, one has to control the execution of the subsidiary trees.

Non-termination can have two sources. On the one hand, an infinite branch can

be created. This is similar to the problem of creating an infinite branch in the main

tree, and the same local control techniques can be used to prevent it. On the other

hand, a ground negative literal can be selected in a subsidiary tree, leading to the

creation of another subsidiary tree, and so on, eventually resulting into an infinite

set of subsidiary trees. This problem is similar to the global termination problem

mentioned in section 3 and can also be solved by the same techniques (to be

described in section 5). Alternatively, one could conceptually attach the subsidiary

trees to the main tree (i.e. when building a subsidiary tree for an atom A we consider

all childrens of A also as childrens of ¬A in the main tree) and then use the local

control techniques which we discussed.

If the control interrupts the execution of the subsidiary tree before it reports
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success or failure to the main node, then the negative atom cannot be selected and

the node becomes either an incomplete leaf or another atom has to be selected.3

4.5 From pure logic programming to Prolog

Pure Prolog. As already mentioned, Theorem 1 guarantees neither that termination

under, e.g. Prolog’s left-to-right selection rule is preserved, nor that solutions are

found in the same order. However, as shown in Proietti & Pettorossi (1991), there

are further restrictions on the unfolding that can be imposed to remedy this (and no

further restrictions on the global control are necessary). First, we have already seen

that determinate unfolding can only improve termination and will not change the

order of solutions under Prolog. Secondly, leftmost unfolding (determinate or not)

changes neither the termination nor the order of solution under Prolog execution.

Thus, if one prevents non-leftmost, non-determinate unfolding (as already discussed

in Example 7 this is also a good idea for efficiency) then partial deduction will

always preserve termination (and could improve it) as well as the order of solutions

for pure Prolog programs.

Full Prolog. So far we have only considered pure logic programs with declarative

built-ins (such as functor , arg , call , cf., Example 5). We were thus able to exploit

the independence of the selection rule (Apt, 1990; Lloyd (1987), in the sense that the

unfolding rule did not have to systematically select the leftmost literal in a goal.

We were thus able, e.g., to perform non-leftmost determinate unfolding steps (which

can be the source of big speedups, see Leuschel & De Schreye (1998b)). In this

section we briefly touch upon the differences between partial deduction of pure logic

programs and partial evaluation of impure Prolog.

When we move towards full Prolog with extra logical built-ins, such as var , the

cut, or even assert , we can no longer make use of the independence of the selection

rule and our unfolding choices become more limited as everything that modifies the

procedural semantics of the program may have an effect on the results computed

by it.

For the cut, the order of solutions is important, as the cut commits to the first

solution. Predicates such as nonvar/1 and var/1 are what is called binding-sensitive.

Success or failure for e.g. var(X), p(X) can be different than for p(X), var(X) and

unfolding p(X) in var(X), p(X) can result in so called backpropagation of bindings

onto the binding-sensitive call to var/1. Also the side effect of a printing statement

is binding-sensitive and backpropagation of a failure may eliminate its execution

altogether as in the specialisation of print(hello), fail into fail . Thus, any non-leftmost

unfolding step, even when determinate, may cause a change in the procedural

semantics. Proposals to overcome this limitation can be found in, for example,

O’Keefe (1985), Bugliesi & Russo (1989), Prestwich (1992b), Sahlin (1993, 1991) and

Leuschel (1994). In essence, one has to avoid backpropagation of bindings onto

3 In both cases the negative literal will feature in the residual program, and one should not throw the
subsidiary trees away, as they can be used for code generation.
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binding-sensitive predicates. For example, given a program P containing a single

fact p(a) ← for the predicate p, the goal ← var(X), q(X), p(X) (with q not binding-

sensitive) is specialised into ← var(X), X=a, q(a). This avoids the backpropagation

of a into var(X).

Similarly, one has to avoid backpropagation of failure onto predicates with side-

effects such as print . For example, for the same program P and a goal← print(a), q(b),

assuming all unfoldings of q(b) end in failure, one cannot specialise the goal into

← fail but has to specialise it into ← print(a), fail instead.

A problem related to the cut is that unfolding an atom with a program clause

containing a cut modifies the scope of the cut: the SLDNF-tree resulting from

the execution of the specialised program is pruned differently by the cut than the

SLDNF-tree from the execution of the original program. This problem is overcome

by providing special built-ins (mark-cut). They allow us to preserve the meaning of

cut under unfolding. The if-then-else, with its local cut, poses much less problems

and is preferable from a partial evaluation perspective (O’Keefe, 1985).

Another problem relates to the specialisation of modules. Some systems (e.g. ecce

(Leuschel 1996)) allow some predicates to be annotated as open. The specialiser

assumes that the definitions will be provided at runtime and does not unfold such

predicates. (For specialising Prolog, one should in addition declare whether or not

these predicates are binding-sensitive). A solution for the Gödel module system is

presented in Gurr (1994a), using the concept of a script where the module structure

has basically been flattened.

In summary, extending the control techniques to full Prolog is feasible. In essence,

one has to prevent the backpropagation of bindings, either by only performing

leftmost unfolding or by some other means (e.g. the explicit introduction of equali-

ties). However, as backpropagation can lead to early detection of failure and hence

important speedups, it means that some interesting specialisations are no longer

possible. Figuring out, via some analysis, when a substitution can safely be back-

propagated beyond a binding sensitive predicate call is a difficult challenge, and, to

our knowledge, no satisfactory solution exists.

5 Global control

5.1 Independence and renaming/filtering

As we have seen in section 2, correctness of partial deduction requires that the atoms

in A are independent. There are two ways to ensure the independence condition.

The first one is to replace the atoms which are not independent by a more general

atom (first proposed in Benkerimi & Lloyd (1990)). For example, replacing the

dependent atoms member(a, L) and member(X, [b]) by member(X,L) in a set A
removes the dependency; moreover the new set is closed with respect to all atoms

in the old one. As discussed below, this approach can also be used to ensure global

termination. However, it introduces precision loss as information about specific calls

is disregarded; hence it can worsen the degree of global specialisation.

A better way to address the independence problem uses a so-called renaming
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transformation, which renames every atom of A by giving it a distinct predicate

symbol; the set of atoms to be specialised thus becomes independent without in-

troducing any precision loss. For instance, given the dependent atoms member(a, L)

and member(X, [b]), renaming the second one into member ′(X, [b]) removes the in-

dependence. The renaming transformation then also has to map the atoms inside

the bodies of the residual program clauses of P ′ as well as atoms in queries for the

specialised program to the correct versions. For example it should rename the query

← member(a, [a, c]),member(b, [b]) into ← member(a, [a, c]),member ′(b, [b]).
Renaming can often be combined with so-called argument filtering to improve

the efficiency of the specialised program. The basic idea is to filter out constants and

functors and to keep only the variables as arguments. In terms of the fold/unfold

transformation framework (Burstall & Darlington, 1977; Tamaki & Sato, 1984;

Pettorossi & Proietti, 1994) it consists of defining new predicates and using it to fold

occurrences in A, P ′, and G. Considering the same examples, defining mema (L) ←
member(a, L) and memb(X) ← member(X, [b]), the dependent atoms member(a, L)

and member(X, [b]) are folded into the independent atoms mema ([a, c]) and memb(b),

while the query is folded into← mema ([a, c]),memb(b). Further details about filtering

can be found in Gallagher & Bruynooghe (1991), Benkerimi & Hill (1993), Leuschel

& Sørensen (1996) or Proietti & Pettorossi (1993). The specialisations shown in

Safra & Shapiro (1986) strongly suggest that the authors already applied a form of

argument filtering; it has also been referred to as “pushing down meta-arguments”

in Sterling & Beer (1989) or “PDMA” in Owen (1989). In functional programming

the term of “arity raising” has also been used. It has also been studied in an offline

setting, where filtering is more complicated.

Renaming and filtering are used in a lot of practical approaches (e.g. Gallagher,

1991, 1993; Gallagher & Bruynooghe, 1991; Leuschel & De Schreye, 1995, 1998b;

Leuschel et al., 1998a) and adapted correctness results can be found in Benkerimi

& Hill (1993). To avoid the need for a renaming transformation on queries to

the specialised program, interface predicates are provided that define the original

predicates in terms of the renamed ones.

5.2 Syntax-based Global Control

Having solved the independence problem without introducing any precision loss,

we can now turn our attention to the problem of ensuring closedness and global

termination while maximising the degree of global specialisation. In a so called

monovariant analysis, the problem is solved by keeping at most one atom in A
for each predicate. When several atoms occur with the same predicate symbol, they

are replaced by a generalisation. This ensures that each predicate has at most one

specialised version, ensuring correctness and – as there are no infinite chains of

strictly more general expressions (Huet, 1980) – termination. However, as already

said, generalising atoms introduces precision loss, hence it is worthwhile to consider

polyvariance, the construction of several specialised versions of the same predicate.

Deciding exactly how many versions is referred to as the control of polyvariance

problem.
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Let us examine how the closedness, global termination and the degree of global

specialisation interact:

• Closedness vs. Global Termination.

As we have seen in Procedure 1, closedness can be simply ensured by repeat-

edly adding the atoms which are not A-closed to A and unfolding them.

Unfortunately this process (first presented in Benkerimi & Hill (1993)) is not

guaranteed to terminate.

• Global Termination vs. Global Specialisation.

To ensure global termination one can use for the revise function in Procedure

1, a so-called generalisation operator, which generates a set of more general

atoms. While replacing atoms by strictly more general ones introduces precision

loss, it is sometimes essential to ensure termination.

The notion of generalisation can be formalised as follows:

Definition 13

Let A and A′ be sets of atoms. Then A′ is a generalisation of A iff every atom in

A is an instance of an atom in A′. A generalisation operator is an operator which

maps every finite set of atoms to a generalisation of it which is also finite.

A generalisation operator is often referred to as an abstraction operator in the

literature, but we think the term generalisation is more appropriate.

With A′ a generalisation of A, any set of clauses which is A-closed is also

A′-closed. Using a generalisation operator as revise function in Procedure 1 does

not guarantee global termination. But, if the procedure terminates then closedness is

ensured, i.e. P ′ ∪ {S} is A-closed (modulo renaming). With this observation we can

reformulate the control of polyvariance problem as one of finding a generalisation op-

erator which maximises the global degree of specialisation while ensuring termination.

In the rest of this section we will survey methods that only consider the syntactic

structure of the atoms to be specialised.

5.2.1 Most specific generalisation

Definition 14

The most specific generalisation or least general generalisation of a finite set of

expressions E, denoted by msg(E), is the most specific expression M such that all

expressions in E are instances of M.

Some examples can be found in figure 6. The msg can be effectively computed

(Lassez et al. (1988). The algorithm is also known as anti-unification. and dates back

to Plotkin (1969) and Reynolds (1969). As already mentioned, given an expression

A, there are no infinite chains of strictly more general expressions (Huet 1980).

This makes the msg well suited for use in a generalisation operator. One of the

first generalisation operators was proposed in Benkerimi & Lloyd (1990). It applied

the msg on atoms which have a common instance. As first pointed out in Martens

et al. (1994), this does not ensure termination, as can be seen when specialising
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A B msg({A,B})

a b X

p(a, b) p(a, c) p(a,X)

p(a, a) p(c, c) p(X,X)

p(0, s(0)) p(0, s(s(0))) p(0, s(X))

q(0, f(0), 0) q(a, f(a), f(a)) q(X, f(X), Y )

r(a) r(s(a)) r(X)

Fig. 6. Examples of msg.

Example 9 for the initial goal← rev (X, [], R) (no matter which terminating unfolding

rule is used, all atoms in A′i are independent, hence generalise(A′i) =A′i and the set

is growing forever).

A simple generalisation operator which ensures termination is obtained by impos-

ing a finite maximum number of atoms in Ai for each predicate and using the msg

to stick to that maximum (e.g. Martens et al., 1994). However, the msg introduces

precision loss and is applied at an arbitrary point. As illustrated in Martens et

al. (1994, there will be cases where the msg is applied too early and precision loss

is introduced that should have been avoided; in other cases, the msg is applied too

late, resulting in too many uninteresting variants and code explosion.

5.2.2 Global Trees with wfos and wqos

We therefore need a more principled approach to global termination, much as we

needed a more principled approach to local termination in section 4. Probably the

first such solution, not depending on any ad hoc bound, is Martens & Gallagher

(1995). The idea is to use the wfo approach also to ensure global termination. To

do this, Martens & Gallagher (1995) proposed to structure the current atoms Ai

(see Procedure 1) to be partially deduced as a so-called global tree, i.e. a tree whose

nodes are labeled by atoms and where A is a child of B if specialisation of B leads

to the specialisation of A, in the sense that A ∈ leaves(unfold (P , B)). This gives us

a structure very similar to the SLDNF-trees encountered by the local control, and

thus enables to apply wfo in much the same manner. In Leuschel et al. (1998a), this

was extended to also accommodate wqos (and characteristic trees; which we discuss

later).

Figure 7 contains a generic procedure based upon Martens & Gallagher (1995)

and Leuschel et al. (1998a).

The procedure is parameterised by the unfold function unfold (P ,A), the predicate

covered (N, γ), the whistle function whistle(N, γ) and the generalisation function

generalise(N,W, γ). The unfold function takes care of the local control and returns

a finite SLDNF-tree. The predicate covered (N, γ) decides whether there is already a

partial deduction suitable for the atom label (N). Termination and correctness require

that it must return true when there is another marked node in the same branch
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Procedure 2

Input: a program P and a set S of atoms of interest;

Output: A specialised program P ′ and a set of atoms A;

let γ = a “global” tree consisting of a marked unlabeled root node R;

for each A ∈ S do

create in γ a new unmarked node C as a child of R;

let label (C) := A

repeat

pick an unmarked leaf node N in γ;

if covered (N, γ) then mark N as covered

else

let W = whistle(N, γ);

if W 6= fail then let label (N) := generalise(N,W, γ)4

else

mark N as processed

for all atoms A ∈ leaves(unfold (P , label (N))) do

create in γ a new unmarked node C as a child of N;

let label (C) := A

until all nodes are marked;

let A := {label (N) | N ∈ γ and N is not marked as covered};
let P ′ :=

⋃
A∈A resultants(unfold (P , A))

Fig. 7. Generic tree-based partial deduction procedure.

labelled with a variant of label (N) and that, whenever it returns true, the global

tree γ has a marked node M such that label (M)θ = label (N) for some substitution

θ. The whistle function whistle(N, γ) prevents the growth of infinite branches in the

global tree by using wfos or wqos; it raises an alarm by returning an ancestor node

W of N in case N is not an admissible descendant of W (hence label (W ) has the

same predicate symbol as label (N)) and fail otherwise. If N is not admissible, it

has to be generalised. The generalisation function generalise(N,W, γ) computes a

generalisation of label (N). To ensure termination, it must be a strict generalisation.

Besides N it takes as parameters W and γ. The latter allows the function to return

a generalisation that is admissible with respect to the whole branch ending in N. As

the generalisation can now be covered by another marked node of the global tree, N

should not yet be marked. If N is admissible, its label is unfolded and the leaves of

the obtained SLDNF-tree are added as unmarked children of N while N is marked.

Once all nodes are marked, the set A and the specialised program are extracted.

Observe that in the above procedure the generalisation operator of Definition 13 is

split up into three components covered (N, γ), generalise(N,W, γ), and whistle(N, γ).

An instantiation of these three components that ensures correctness and terminations

and uses the wqo E for whistle(N, γ) is as follows (this is one of the possible settings

in ecce):

• whistle(N, γ) = W iff W is the closest ancestor of L such that label (W ) E
label (L) and label (L) is not strictly more general than label (W ),5;

whistle(L, γ) = fail if there is no such ancestor.

5 This latter test is required to avoid some technical difficulties with the way E treats variables; see
Leuschel et al. (1998a) and Leuschel (1998a).
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• generalise(N,W, γ) = msg(label (N), label (W ))

• covered (N, γ) = true if there is a node M in γ such that label (M) is a variant

of label (N);

covered (N, γ) = false otherwise.

Discussion There are a few works within partial deduction of logic programs, in

which the local and global control interact much more tightly, in the sense that the

local control also takes information from the global control into account (Sahlin,

1993; Glueck et al., 1996; De Schreye et al., 1999; Vanhoof & Martens, 1997).

Also observe that, in other programming paradigms such as supercompilation of

functional languages (Turchin, 1986; Glueck & Sørensen, 1996; Sørensen et al.,

1996; Sørensen & Glück, 1999), historically there has not been a clear distinction

between local and global control. In these settings (e.g. Sørensen & Glück, 1995;

Sørensen et al., 1996; Sørensen, 1998) there is only one big “global” tree which

is then cut up into local trees during the code generation. This approach is also

taken in the “compiling control” transformation of logic programs in Bruynooghe

et al. (1989). In the future, it might be interesting to compare these two approaches

systematically from a pragmatic point of view.

5.3 Computation-based global control

5.3.1 Characteristic trees

While the global trees of section 5.2.2 show the relationship between roots and

leaves of constructed SLDNF-trees, the generalisation function which generalises

the atoms is purely syntactical. It only takes into account the atoms as they appear

in the global tree. However, the same two atoms can behave in a very similar

way in the context of one program P1, but in a very dissimilar fashion in the

context of another program P2. The syntactic structure of the two atoms being

unaffected by the particular context, the generalisation function generalise(N,W, γ)

will thus perform exactly the same generalisation6 within P1 and P2, even though

very different action might be called for. A much more appealing approach, might

therefore be to examine the SLDNF-trees generated for these atoms. These trees

capture (to some depth) how the atoms behave computationally in the context of

the respective programs. They also depict the specialisation that has been performed

on these atoms. A generalisation operator which takes these trees into account will

notice their similarity in the context of P1 and their dissimilarity in P2, and can

therefore take appropriate actions in the form of different generalisations.

This observation lead to the definition of characteristic trees , initially presented

in Gallagher & Bruynooghe (1991) and Gallagher (1991), and later exploited in

Leuschel & De Schreye (1998a) and Leuschel et al. (1998a). In essence, characteristic

trees abstract SLDNF-trees by only remembering, for the non-failing branches:

1. The position of the selected literals.

6 Note, however, that whistle(N, γ) can behave differently as γ will have a different structure.
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?

@
@R

�
�	

�
�	

fail

� ← arc(b, Y ), path([Y |T ])

@
@R

← path([b|T ])

← path([b|T ])

← arc(X,Y ), path([Y |T ])�

← path(L)

Fig. 8. SLD-trees for Example 12 .

2. An identification of the clauses C1, C2, . . . used in the SLDNF-derivation of

the branch.

We use pos ◦ cl to denote a derivation step that selects a literal at position pos and

uses the clause identified by cl to compute a resolvent. A derivation or branch is

represented as a sequence of derivation steps and a characteristic tree as a set of

branches. The information in a characteristic tree is sufficient to rebuild the whole

SLDNF-tree, hence it represents, directly or indirectly, all successful, failing and

incomplete derivations. Two atoms with the same characteristic tree have so much

in common (same number and “shape” of residual clauses) that one would expect

that the same residual clauses can be used for both. We will discuss below whether

and how that can be achieved. First we look at an example which shows that

characteristic trees can also be useful for the whistle function whistle(N, γ):

Example 12

Let P be the following definite program:

(1) path([N])←
(2) path([X,Y |T ])← arc(X,Y ), path([Y |T ])

(3) arc(a, b)←
Unfolding← path(L) (e.g., using an unfolding rule based on E; see figure 8 for the

SLD-trees constructed) will result in lifting path([b|T ]) to the global level. Notice that

we have a growth of syntactic structure (path(L) E path([b|T ])). However, one can

see that further unfolding path([b|T ]) results in an SLD-tree whose characteristic

tree τB = {〈1 ◦ 1〉} is strictly smaller than the one for path(L) (which is τA =

{〈1 ◦ 1〉, 〈1 ◦ 2, 1 ◦ 3〉}).
As the example illustrates the growth of syntactic structure can be accompanied

by a shrinking of the associated SLDNF-trees. In such situations there is, despite

the growth of syntactic structure, actually no danger of non-termination. A whistle

function solely focussing on the syntactic structure would unnecessarily force gen-

eralisation, possibly resulting in a loss of precision. Other examples can be found in

Leuschel et al. (1998a).

Incorporating characteristic trees into the global control has proven to be an

elegant solution to avoid over-generalisation in several circumstances (when spe-

cialising meta-interpreters (Leuschel, 1997; VanHoof & Martens, 1997) or when

specialising pattern matchers to obtain the “Knuth–Morris–Pratt” effect (Sørensen

& Glück, 1999)).
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A straightforward use of characteristic trees is as follows: classify atoms at the

global control level by their associated characteristic tree and apply generalisation

(msg) only on those atoms which have the same characteristic tree. This is basically

the approach pursued in Gallagher & Bruynooghe (1991) and Gallagher (1991).

Unfortunately, the approach has some problems. First, generalisation induces preci-

sion loss, even to the extent that the generalised atom has a different characteristic

tree. Second, in case the number of distinct characteristic trees is not bounded, this

approach will not terminate. We illustrate these two problems, and how to remedy

them, in the next two subsections.

5.3.2 Preserving characteristic trees upon generalisation

Example 13

Let P be the program:

(1) p(X)← q(X)

(2) p(c)←
Let A = {p(a), p(b)}. Assume that q(X) is not unfolded. The atoms p(a) and p(b)

have the same characteristic tree τ = {〈1 ◦ 1〉}. Their msg, the atom p(X) has a

different characteristic tree, namely τ′ = {〈1 ◦ 1〉, 〈1 ◦ 2〉} 6= τ and the specialisation

for the atoms p(a) and p(b), due to the inapplicability of clause (2), is lost in the

partial deduction of p(X). More importantly, there exists no atom, more general

than p(a) and p(b), which has τ as its characteristic tree.

The problem is that derivations that were absent in the original characteristic

trees appear in the characteristic tree of the generalised atom. With negative literals,

another source of difference is that a negative literal, ground (and selected) at some

point in the original derivation is not necessarily ground, hence cannot be selected,

in the SLDNF-tree of the generalised atom. More realistic examples can be found

in Leuschel et al. (1998a) and Leuschel & De Schreye (1998a).

Two different solutions to this problem are:

1. Ecological Partial Deduction. (Leuschel, 1995; Leuschel et al., 1998a)

The basic idea is to use the characteristic tree as a recipe to build part of the

SLDNF-tree (and to ignore the part not constructed by following the recipe).

In Example 13, it means that the atom p(X) is selected and clause (1) is used

to construct a resolvent but that clause (2) is discarded as the branch using

clause (2) is missing from the characteristic trees of p(a) and p(b). Extracting

the residual clauses from the part of the SLDNF-tree that has been built yields

the clause p(X)← q(X).

The pruning possible for p(a) and p(b) is now preserved. However, the

residual code is not correct for all instances of p(X); it is only correct for those

instances for which τ is a possible characteristic tree. Hence, in Algorithm

2, the function covered (N, γ) should return true only if there is a node M

such that label (N) is an instance of label (M) and if both have the same

characteristic tree. In the example, the residual clause is correct for p(a), p(b),

p(d), but neither for p(c) nor for p(X). Note that this approach also works with
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negative selected literals, and the above covered (N, γ) test ensures that these

negative literals do not become non-ground for the instances.

2. Constrained Partial Deduction. (Leuschel & De Schreye 1998a, Lafave &

Gallagher, 1997)

Whereas in standard partial deduction the members of A hence the roots of

the SLDNF-trees are atoms, in constrained partial deduction, they are con-

strained atoms of the form C �A, where A is an atom and C a constraint

over some domain D (see Jaffar & Maher (1994) for details on constraint

logic programming). Leuschel & De Schreye (1998a) use inequality constraints

over the Herbrand universe. Considering again the generalisation of the char-

acteristic trees for the atoms p(a) and p(b) of Example 13, they derive as

generalisation the constrained atom X 6= c � p(X). This atom has the same

characteristic tree as the original atoms. This also requires the covered (N, γ) to

be adapted, namely to check constraint entailment. However, constraints only

appear during the partial deduction phase and the final specialised program

is a pure logic program without constraints. Finally, this approach does not

allow us to select negative literals, but is more powerful than the ecological

partial deduction approach for definite programs, as the derived constraints

are not just used locally to obtain the desired characteristic tree but they can

be propagated globally to other atoms in A as well.

Recently, trace terms have also been used in place of characteristic trees (Gallagher

& Lafave, 1996). Trace terms abstract away from the particular selection rule, making

them more appealing in the context of pure logic programs. They also have the effect

of providing a recipe during specialisation thus achieving the effect of ecological

partial deduction, and they are easier to generate when using the cogen approach

(Martin & Leuschel, 1999; Martin, 2000).

5.3.3 Ensuring termination without depth-bounds

It turns out that for a fairly large class of realistic programs (and unfolding rules), the

characteristic tree based approaches described above only terminate when imposing

a depth bound on characteristic trees. As the following simple example shows, this

can lead to undesired results when the depth bound is actually required.

Example 14

A list type check on the second argument (the “accumulator”) is added to the reverse

program from Example 9

(1) rev ([],Acc,Acc)←
(2) rev ([H |T ],Acc,Res)← ls(Acc), rev (T , [H |Acc],Res)

(3) ls([])←
(4) ls([H |T ])← ls(T )

As can be noticed in figure 9, by using, e.g., determinate, E-based, or well-founded

unfolding we obtain an infinite number of different atoms, all with a different

characteristic tree. Imposing a depth bound of say 100, we obtain termination;
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(1)
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(2)

← rev (L, [], R)

← ls([]), rev (T , [H], R)

← rev (T , [H], R)

(3)

@
@R

�
�	

?

?

(1)

�

(2)

← rev (T , [H], R)

← ls([H]), rev (T ′, [H ′, H], R)

← rev (T ′, [H ′, H], R)

(3)

← ls([]), rev (T ′, [H ′, H], R)

(4)

@
@R

�
�	

?

?

?

In general:

(1)

�

(2)

(4)

← rev (T ,

n︷︸︸︷
[...] , R)

← ls([...]), rev (T ′, [H ′, ...], R)

← rev (T ′, [H ′, ...], R)

(3)

← ls([]), rev (T ′, [H ′, ...], R)

(4)

...

 n

Fig. 9. SLD-trees for Example 14. .

however, 100 different characteristic trees (and instantiations of the accumulator)

arise, and 100 different versions of rev are generated: one for each characteristic tree.

The resulting specialised program is certainly far from optimal and clearly exhibits

the ad hoc nature of the depth bound.

Situations like the above typically arise when some argument is growing with the

level of recursion and when this argument has an influence on the characteristic

tree of the SLDNF-tree built by the unfold function. With simple programs such

as Example 9, the growing argument has no effect on the characteristic tree and

it was believed for some time that the problem would not arise in “natural” logic

programs. However, among larger and more sophisticated programs, cases like the

above become more and more frequent, even in the absence of type-checking.

A solution to this problem is developed in Leuschel et al. (1998a), whose basic

ingredients are as follows:

1. Register descendancy relationships among atoms and their associated char-

acteristic trees at the global level, by putting them into a global tree (as in

Section 5.2.2).

2. Watch over the evolution of the characteristic trees associated with atoms

along the branches of the global tree to detect inadmissible branches (as

in section 5.2.2). As suggested by figure 9, a measure is needed that can

spot when a characteristic tree (piecemeal) “contains” characteristic trees

appearing earlier in the same branch of the global tree. An extension of

the homeomorphic embedding relation can be used for this (Leuschel et

al., 1998a). If such a situation arises – as it indeed does in Example 14 – one

stops expanding the global tree, generalises the offending atoms, and produces

a specialised procedure for the generalisation instead. Note that in this case, it
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is actually impossible to preserve the characterstic trees upon generalisation,

as the offending atoms will have different characteristic trees.

The techniques formally elaborated in Leuschel et al. (1998a) have led to the

implementation of the ecce system (Leuschel, 1996). The ecce system also handles

(declarative) Prolog built-ins; these are also registered within the characteristic trees

(see Leuschel, 1997).

6 Conjunctive partial deduction and unfold/fold

6.1 Principles

Partial deduction, as defined above (i.e. based upon the Lloyd–Shepherdson frame-

work (Lloyd and Shepherdson 1991)), specialises a set of atoms. Even though con-

junctions of literals may appear within the SLDNF-trees constructed for these

atoms, only atoms are allowed to appear at the global level. In other words, when

we stop unfolding, every conjunction at the leaf is automatically split into its atomic

constituents which are then specialised (and possibly further abstracted) separately

at the global level. This restriction often considerably restricts the potential power of

partial deduction, e.g. preventing the elimination of unnecessary variables (Proietti

& Pettorossi, 1991b) (also called deforestation and tupling).

To overcome this limitation, Leuschel et al. (1996), Glück et al. (1996) and Leuchsel

(1997) present a relatively small extension of partial deduction, called conjunctive

partial deduction. This technique extends the standard partial deduction approach

by considering sets S = {C1, . . . , Cn} where the elements Ci are now conjunctions of

atoms (to some extent negative literals can also be used within conjunctions) instead

of just single atoms.

Now, as the SLDNF-trees constructed for each Ci are no longer restricted to

having atomic top-level goals, resultants (cf. Definition 2) are not necessarily Horn

clauses anymore: their left-hand side may contain a conjunction of literals. To

transform such resultants back into standard clauses, conjunctive partial deduction

requires a renaming transformation, from conjunctions to atoms, in a post-processing

step. As with argument filtering, it can be formalised in the fold/unfold transfor-

mation framework by defining a new predicate and folding. The formal details are

in Leuschel et al. (1996), Glück et al. (1996), Leuchsel (1997) and De Schreye et

al. (1999). On the control side, there are two important issues that arise, which we

address in the next two subsections.

6.2 Improved local specialisation

In addition to enabling tupling- and deforestation-like optimisations, conjunctive

partial deduction also solves a problem already identified in Owen (1989). Take for

example a metainterpreter containing the clause solve(X) ← exp(X), clause(X,B),

solve(B), where exp(X) is an expensive test which for some reason cannot be (fully)

unfolded. Here “classical” partial deduction faces an unsolvable dilemma, e.g. when

specialising solve (̄s), where s̄ is some static input. Either it unfolds clause (̄s, B), thereby
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propagating the static input s̄ over to solve(B), but at the cost of duplicating exp (̄s)

and most probably leading to inefficient programs (cf. Example 7). Or “classical”

partial deduction can stop the unfolding, but then the partial input s̄ can no longer

be exploited inside solve(B) as it will be specialised in isolation. Using conjunctive

partial deduction however, we can be efficient and propagate information at the

same time, simply by stopping unfolding and specialising the conjunction C =

clause (̄s, B)∧ solve(B). This will result in a specialised clause of the form: solve (̄s)←
exp (̄s), conj cs (̄s), where conj cs is the predicate defined by the clauses resulting from

specialising the conjunction C . Experiments in Jørgensen et al. (1996) and Leuschel

(1996) show that conjunctive partial deduction gives superior specialisation on

programs as the above.

An additional benefit of this is that there is now much less need for non-

determinate unfolding rules. For instance, while classical partial deduction with

(almost) determinate unfolding performs badly on highly nondeterministic programs,

this is no longer true for conjunctive partial deduction. The following table (extracted

from Jørgensen et al., 1996) for the “contains” benchmark underlines this:

System ecce ecce mixtus ecce
Type of PD Classical Classical Classical Conjunctive
Unfolding almost determinate non-determinate non-determinate almost determinate

Speedup 1.18 11.11 6.25 9.09

6.3 Global control and implementation

Now, while it becomes easier to define an unfolding function that exploits all

available information, there is a termination problem specific to conjunctive partial

deduction. It lies in the possible appearance of ever growing conjunctions at the

global level. To cope with this, generalisation in the context of conjunctive partial

deduction must include the ability to split a conjunction into several parts, thus

producing subconjunctions of the original one. A method to deal with this problem

has been developed in Glück et al. (1996) and De Schreye et al. (1999), which

treats the conjunction operator as an associative operator within E and then splits

a conjunction according to the growth detected by E and computes the msg with

the best matching subconjunction. This splitting reintroduces the problem that no

information is exchanged between different components of a leaf, however, the

components are now conjuncts instead of individual atoms.

For example, if the conjunction C = p(X), q(f(X), s(0)), r(f(X)), s(X) has C ′ =

q(Z, 0), r(Z) as ancestor, then C ′ is embedded in C and one would split C into

C1=p(X), C2=q(f(X), s(0)), r(f(X)), C3=s(X). One would then compute the msg of

C ′ and C2, giving C ′′ = q(Z,C), r(Z) as generalisation. Finally, as in classical partial

deduction, one would then specialise C ′′ instead of C ′.
Apart from the above modifications, the conventional control notions described

earlier also apply in a conjunctive setting. Notably, the concept of characteristic

trees can be generalised to handle conjunctions. The ecce system (Leuschel, 1996),
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discussed earlier, has been extended to handle conjunctive partial deduction and

the extensive experiments conducted in Jørgensen et al. (1996) and Leuschel (1997)

suggest that it was possible to consolidate partial deduction and unfold/fold program

transformation, incorporating most of the power of the latter while keeping the

automatic control and efficiency of the former.

6.4 Relationship to unfold/fold

Unfold/fold transformations of logic programs have been studied by Tamaki & Sato

(1984) and Pettorossi & Proietti (1994), and were originally introduced by Burstall &

Darlington (1977) in functional programming. The relation between unfold/fold and

partial deduction has been a matter of research, discussion, and controversy over the

years (Bossi et al., 1990; Proietti & Pettorossi, 1993; Pettorossi & Proietti, 1994; Seki,

1993; De Schreye et al., 1993). Within the fold/unfold transformation framework,

there is work that aims at developing strategies that can be automated. For example,

Pettorossi & Proietti (1994) describe a strategy for partial deduction. Their technique

relies on a simple folding strategy involving no generalisation, so termination of the

strategy is not guaranteed. Similar approaches are described in Proietti & Pettorossi

(1991b, 1993) (in Proietti & Pettorossi (1993), generalisation is present in the notion

of “minimal foldable upper portion” of an unfolding tree). Also, as unfold/fold

transformations are equivalence preserving one needs a post-processing reachability

analysis to delete dead code (for the queries under consideration). Such a reachability

analysis is an integral part of partial deduction algorithms.

Another related approach is described in Boulanger & Bruynooghe (1993). The

authors extend OLDT (Tamaki & Sato, 1986) to cope with conjunctions, similar

to the way conjunctive partial deduction extends classical partial deduction. They

then use abstract interpretation (in practice, generalisation is used as in partial

deduction) to build a finite extended OLDT tree from which a specialised program

is extracted. A major difference with (conjunctive) partial deduction is that a single

global tree is built. The strategies needed to guide the construction of the optimal

tree are lacking. It is plausible that the local and global control strategies developed

for partial deduction could be translated into adequate strategies for building the

extended OLDT tree.

In general, unfold/fold (together with a post-processing reachability analysis)

can be seen to subsume both partial deduction and conjunctive partial deduction.

However, from a practical point of view, partial deduction has advantages. Due to

its more limited applicability, and its resulting lower complexity, the transformation

can be more effectively and easily controlled. In fact, to our knowledge, no fully

automatic unfold/fold systems are available for experimentation. However, some

explicit strategies for unfold/fold transformation have been proposed and recently

a semi-automatic system has been developed (Renault et al., 1998). Let us consider

some of the most well-known strategies: Loop Absorption and Generalisation

(LAG) (Proietti & Pettorossi, 1993) and unfold-definition-fold (UDF) (Proietti and

Pettorossi 1991b) (see also Pettorossi & Proietti (1994)). Both LAG and UDF use

a class of computation rules, called synchronised descent rules; a heuristic tuned
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towards foldability (and therefore, indirectly, termination of the strategy) and the

generation of optimal transformed programs. However, neither LAG nor UDF

guarantee termination in general. Instead, classes of programs are identified for

which termination is ensured. As we have seen in this article, in partial deduction,

methods have been proved to secure termination for all programs. Moreover, notions

capturing the specialisation behaviour, such as characteristic trees, have been shown

instrumental in providing precise generalisation. This level of technical detail has

facilitated implementation, experimental evaluation and further improvements.

6.5 Relationship to other approaches

Techniques in Functional Programming. Partial deduction and related techniques in

functional programming are often very similar (Glück & Sørensen (1994) (and cross-

fertilisation has taken place). Actually, conjunctive partial deduction has in part been

inspired by supercompilation of functional programming (Turchin, 1986; Glück &

Sørensen, 1996; Sørensen et al., 1996; Sørensen & Glück, 1999) (and by unfold/fold

transformation techniques) and the techniques have a lot in common. However,

there are still some subtle differences. Notably, while conjunctive partial deduction

can perform deforestation and tupling, supercompilation is incapable of achieving

tupling. On the other hand, the techniques developed for tupling of functional pro-

grams (Chin, 1993; Chin & Khoo, 1993) are incapable of performing deforestation.

The reason for this extra power conferred by conjunctive partial deduction, is that

conjunctions with shared variables can be used both to elegantly represent nested

function calls

f(g(X)) 7→ g(X,ResG), f(ResG ,Res)

as well as tuples

〈f(X), g(X)〉 7→ g(X,ResG), f(X,ResF )

or any mixture thereof. The former enables deforestation while the latter is vital for

tupling, explaining why conjunctive partial deduction can achieve both.

Let us, however, also note that actually achieving the tupling or deforestation in a

logic programming context can be harder. For instance, in functional programming

we know that for the same function call we always get the same, unique output. This

is often important to achieve tupling, as it allows one to replace multiple function

calls by a single call. For example we can safely transform fib(N) + fib(N) into let

X = fib(N) in X + X. However, in the context of logic programming, it is unsafe

to transform the corresponding conjunction fib(N,R1)∧ fib(N,R2)∧Res is R1 +R2

into fib(N,R) ∧ Res is R + R unless it is proven or declared by the user that the

relation fib/2 is functional in its first argument. Tupling in logic programming thus

often requires one to establish functionality of the involved predicates. This can for

instance be done via abstract interpretation (c.f. section 7) or via user declarations

that are assumed to be correct or verified through analysis.

Furthermore, in functional programming, function calls cannot fail while pre-

dicate calls in logic programming can. This means that reordering calls in logic

programming can induce a change in the termination behaviour; something which
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is not a problem in (pure) strict functional programming. Unfortunately, reordering is

often required to achieve deforestation or tupling. This means that to actually achieve

deforestation or tupling in logic programming one often needs an additional analysis

to ensure that termination is preserved (Bossi et al., 1995; Bossi & Cocco, 1996).

Partial evaluation of functional logic programs. Functional logic programming ex-

tends both logic and functional programming (Hanus, 1994). A lot of work has re-

cently been carried out on partial deduction of such languages (Alpuente et al., 1996,

1997, 1998; Albert et al., 1998, 1999) (treating languages based on narrowing) and

Lafave & Gallagher (1997) (treating languages based on rewriting). The developed

control techniques have been strongly influenced by those developed for supercompi-

lation of functional programs and (conjunctive) partial deduction of logic programs.

Compiling control. Another transformation technique close to both partial deduction

and supercompilation is compiling control (Bruynoogheeeeee et al., 1989). A major

difference with partial deduction is that the purpose is not to specialise a program

based on the available static input but based on a better computation rule that

reorders the execution of (generate and test) programs by performing tests as soon

as their necessary inputs are available. To do so, the program is executed using

a symbolic input (in fact, using an abstraction that abstracts ground terms by a

“ground” symbol and leaves non-ground terms intact) and builds an initial segment

of an infinite SLD-tree using an oracle to define the optimal execution order. The

oracle either selects an atom for one unfolding step or for complete execution. In the

latter case, the answers of the execution are abstracted using the ground symbol for

ground terms (a more sophisticated abstraction, performing some generalisation on

non-ground terms is needed in cases where this abstraction does not lead to a finite

number of answers). The obtained incomplete tree is similar to the SLDNF-tree

of partial deduction in that its nodes are goal statements. A difference with major

partial deduction approaches is that a single global tree is built. Next, classes of

similar nodes are identified in the tree. The similarity criterion is based on the

selected atom and on the predicate symbols of the atoms presented in the nodes.

Finally, the specialised program is extracted. In the context of partial deduction, that

extraction can best be understood, as performing a local unfolding for each class

(again using the oracle to guide the selection of atoms) until a leaf is reached that

is a member of some class. At which point the resultants can be extracted and give

rise to the specialised program. It is noteworthy that examples are treated which go

beyond conjunctive partial deduction in the sense that goals, conjoined in a new

predicate, can have – for some predicate symbols – a varying number of atoms. The

atoms in question are joined in a list structure.

7 Discussion and conclusion

Research challenges

Despite over 10 years of research on logic program specialisation, there are still plenty

of research challenges related to improving the actual specialisation capabilities.
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Below, we present what we believe to be the major research challenges for the

coming years.

Control: Low-level cost model. Existing systems do not use a sufficiently precise

model of the compiler of the target system to guide their decisions during spe-

cialisation. We have seen that determinate unfolding will usually prevent drastic

slowdowns, but it is unable to exclude all slowdowns. Moreover, it is sometimes

too conservative and prevents important improvements. While there is some recent

work (Debray, 1997) to address this, it is a largely ignored area and some of the

problematic issues raised in Venken & Demoen (1988) are still valid today.

A suitable low-level cost model would allow a partial deduction system to make

more informed choices about the local control (e.g. is this unfolding step going to

be detrimental to performance) and global control (e.g. does this extra polyvariance

really pay off). However, such a low-level cost model will depend on both the

particular Prolog compiler and on the target architecture and it is hence unlikely that

one can find an appropriate mathematical theory. This means that further progress

on the control of partial deduction will probably not come from ever more refined

mathematical techniques such as new wqos, but probably more from heuristics and

artificial intelligence techniques such as case-based reasoning or machine learning.

For example, one might imagine a self-tuning system, which derives its own cost

model of the particular compiler and architecture by trial and error. Such an

approach has already proven to be highly successful in the context of optimising

scientific linear algebra software (Whaley et al., 2001). Some promising initial work

on cost models for logic and functional programming has already been made in

Albert et al. (2001) and Albert & Vidal (2001).

Predictable specialisation. Another drawback of existing specialisation systems (es-

pecially for online systems) is the lack of predictability for both the specialisation

time and for the size of the generated residual program.

Indeed, while existing online systems and methods guarantee termination, their

use sometimes results in code explosion without achieving substantial specialisation.

One situation where this tends to happen is when the program to be specialised

has a combination of arguments that can grow and shrink and when the initial

atom to be specialised has partially instantiated parameters. The problem is that

techniques such as E have, even given a fixed initial atom, no upper bound on

the length of admissible sequences. For example, 〈p(a, b), p(f(b), g(f(b), f(a)))〉 is

admissible wrt E, as the growth of the second argument has been countered by the

first argument (where we have a 6Ef(b)). A good example where such a behaviour

can appear during specialisation is the “groundunify” benchmark within the dppd

library (Leuschel 1996), where two arguments are the terms to be unified (which are

decomposed and thus usually shrink during specialisation) and another argument is

the unifier so far (which will usually grow during specialisation). Using determinate

unfolding for local control and E and characteristic trees for global control will

lead to a global tree with 480 nodes and 85 specialised predicate definitions for
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this benchmark. The specialisation effort here is out of proportion with the actual

speedup obtained.

Developing control techniques with predictable and reasonable specialisation com-

plexity is thus a worthwhile, but also challenging research objective. Alternatively,

developing an incremental partial deduction approach could overcome these prob-

lems in some cases. Indeed, one could start by a very conservative partial deduction

and then incrementally adapt the partial deduction, concentrating the efforts on

the parts where improvements in efficiency or precision will arise. This could go

hand-in-hand with a self-tuning system and a low-level cost model. Finally, as a

side-benefit a user could stop the partial deduction at any point and still obtain a

correct specialised program.

Improved precision: Combining program specialisation and abstract interpretation. As

we have seen, E and characteristic trees provide a quite refined way to decide when

the generalisation has to be applied. However, once a growth has been detected by E,

all of these existing specialisation techniques still rely on rather crude generalisation

functions, such as msg , because the resulting generalisation has to be expressed as

an atom, which implicitly represents all its instances. For instance, if we add the

atom A2 = p(f(a)) as a child of A1 = p(a) in a global tree then the homeomorphic

embedding E will signal danger (A1 E A2) and one can even pinpoint the extra f(.)

in A2 as the potential source of non-termination. But the msg of A1 and A2 – the

most specific expression which is more general than both A1 and A2 – is just p(X)

and no use of the information provided by E was made (nor is it possible to do

so in classical partial deduction). In particular, atoms like p(b) and p(g(a)) are also

instances of p(X), possibly leading to unacceptable losses of precision. In some cases

the characteristic tree based global control will avoid these imprecisions. However,

the present generalisation operation on the characteristic trees themselves is still a

bit crude (common initial subsection). We think this problem in particular and other

precision problems in general can be overcome by providing a better integration of

partial deduction with abstract interpretation. This will also add other benefits, such

as bottom-up success information propagation and success information propagation

between atoms at the global level as well.

A full integration of partial deduction with abstract interpretation is thus another

of the big challenges. Indeed, it is often felt that there is a close relationship between

abstract interpretation and program specialisation. Some techniques preceding the

recent advancements of partial deduction, notably compiling control (Bruynooghe

et al., 1989) and the work in Boulanger & Bruynooghe (1993) combine features

of abstract interpretation with features of partial deduction. Recently, there has

been a lot of interest in the integration of these two techniques (Jones, 1994,

Leuschel & De Schreye, 1996, Puebla & Hermenegildo, 1996, Jones, 1997, Puebla

et al., 1997, Leuschel, 1998c, Gallagher & Peralta, 2001). The use of more refined

abstract domains, improved bottom-up and side-ways information propagation,

will improve specialisation and precision and opens up new areas for practical

applications, such as infinite model checking (Leuschel & Massart, 1999, Leuschel

and Lehmann, 2000b, Fioravanti et al., 2001). In fact, such a combined approach
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enables optimisations (and analysis) which cannot be achieved by either method

alone (Leuschel and De Schreye 1996). Finally, having more precise generalisation

capabilities might actually make the global and local control of partial deduction

simpler, as much less precision would be lost if the control makes a “wrong” decision.

Tabling and constraints. Finally, features such as co-routining, constraints, and

tabling provided by the latest generation Prolog systems, apart from being very

useful in practice, also mean that declarative programming is now much more of

a reality than in a classical Prolog environment. It is thus important that partial

deduction be adapted to treat these features.

First, logic programming with inequality constraints provides a more sophisticated

way to handle negated literals: by using so called constructive negation one can even

specialise non-ground negative literals (Chan & Wallace, 1989). This idea was

successfully used within the sage system (Gurr 1994a).

On the side of specialising arbitrary constraint logic programs themselves, we can

mention the works of Smith & Hickey (1990), Smith (1991), Marriott & Stuckey

(1993), Etalle & Gabbrielli (1996) and Bensaou & Guessarian (1998). Future work

should advance the state of the art of specialising constraint logic programming

to that for standard logic programming. First steps in that direction have been

presented in Fioravanti et al. (1999, 2000).

In the context of tabled-evaluation of logic programs (Chen & Warren, 1996), some

specialisation techniques have been successfully built into the execution mechanism

itself (Dawson et al., 1995), but there has been relatively little work on transforming

or specialising tabled logic programs. Somewhat surprisingly, as shown in Leuschel

et al. (1998b) and Sagonas & Leuschel (1998), tabled logic programming generates

some new challenges to program transformation in general and partial deduction in

particular. For example, contrary to the untabled setting, unfolding can transform a

program terminating under tabled-evaluation into program that is non-terminating

under tabled-evaluation.

Practical challenges: on the uptake of partial deduction

Despite some success stories and the increasing integration of partial deduction

methods into compilers (e.g., the Mercury compiler specialises higher-order pred-

icates such as map), the general uptake of partial deduction methods might be

deemed disappointing. In the following we present some factors which we believe

explain this situation:

• non-declarative features: most Prolog programs contain some form of non-

declarative parts. Now, whereas systems such as mixtus or paddy can handle

such programs, non-declarative features impose severe restrictions on the

specialiser, and the speedups obtained are often disappointing. In addition,

most programs do not have a clear distinction between pure and impure parts,

and it is thus difficult to apply systems such as sp or ecce to large parts of

the code.
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To solve this problem, one might turn to more powerful, complementary

analysis techniques, so as to lift some of the restrictions in the presence of

impure features. E.g., one might integrate a partial evaluation system into

Ciao Prolog where it could benefit from other analyses and/or optional

user declarations. However, this is likely to involve considerable research and

development effort.

Another solution is to promote a more declarative style of programming,

more suitable for specialisation: e.g., programs written in Mercury, Gödel,

or even pure Prolog with declarative built-ins and if-then-else and clearly

separated i/o (or “declarative” i/o).

• For the offline approach, the lack of an implementation with a fully auto-

matic bta, means that basically only expert users can use the current systems.

However, as discussed earlier, some important steps towards automatisation

of bta have recently been made and hopefully, they will soon become part of

available systems.

• In principle, existing online systems such as mixtus and ecce are fully auto-

matic and can be used by a näıve user. However, as we have discussed

above, for more involved programs, these systems can sometimes still lead to

substantial code explosion and substantial specialisation times. Currently, to

overcome this, user expertise is still required to fine tune the specialisation of

the program at hand.

• Also, as we have seen above, existing systems do not use a sufficiently precise

low-level cost model to guide the specialisation process. Consequently, they are

unable to exclude anomalies such as slow-down of the specialised program.

• Finally, existing specialisers are not yet fully integrated within a programming

environment. On the one hand, this means that it is more cumbersome to

apply these tools (the user has to link up the specialised code with the rest of

his application, the user has to know when parts of his application have to be

respecialised,...). On the other hand, this means that currently specialisers are

often only applied late in the development on already hand-optimised code.

This makes the specialisers task more difficult and reduces the speedup and

benefit.

Thus, one of the practical challenges is to produce a partial deduction system

that is fully integrated with a compiler, so that it can be easily used during and

as part of the development process. Also, provide support for non-declarative

parts and modules. Another difficulty is the interference with debugging, as

users want to debug the code they wrote, not the specialised code.

However, we feel that it is possible to overcome the above obstacles and that

in the not too distant future one could lift program specialisation towards more

widespread practical use and realise its potential as a tool for systematic program

development. As to the future of the off-line versus on-line debate, we believe that

hybrid approaches might prove to be the way to go for many applications, delivering

a good compromise between fast transformation speeds and precise specialisation.

In fact, one approach which we have already found to be useful (Leuschel and
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Lehmann 2000b) is to first perform an off-line specialisation followed by an on-line

specialisation.
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