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Abstract
Rare earth element extraction induces environmental damages and the balance problem. In
this article, we show that recycling can challenge both problems in a two-period framework.
We also find other results depending on the amount of scrap that can be recycled. If the
recycling activity is not limited by available scrap, it does not change extraction in the first
period. Environmental taxes on extracted quantities reduce extraction and favor recycling.
But if the recycling is limited, the extractor reduces extraction in period one, adopting a fore-
closure strategy, and environmental taxes can decrease recycling. In all cases, environmental
taxes are never equal to the marginal damage from pollution, in order to take into account
the recycling effect.

Keywords: rare earth elements; pollution; balance problem; recycling; Pigouvian taxation; Cournot
competition
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1. Introduction
Rare earth elements (REEs) are now vital for a vast array of modern technologies related
to the transition to a low carbon economy, such as energy generation and storage, energy
efficient lights, electric cars and catalytic converters, as well as military and aerospace
applications (Golev et al., 2014).1 According to the US Geological ServiceMineral Com-
modity Summaries 2016 report (USGS, 2016), REEs reserves worldwide amount to 130
million tons. China and Brazil hold the largest shares of such reserves with 16.9 per cent
and 42.3 per cent respectively, followed by Australia (2.5 per cent), India (2.4 per cent)
and the United States (2 per cent). Regarding mine extraction, out of the 124,000 metric

1REEs constitute a group of 17 chemically similarmetallic elements, composed of 15 lanthanide elements:
lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium,
dysprosium, holmium, erbium, thulium, ytterbium, and lutetium, and two other elements (scandium and
yttrium).
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tons estimated to have been produced in 2015, China contributed 87.5 per cent, fol-
lowed by Australia with 8.3 per cent and the United States with 3.4 per cent (Fernandez,
2017). Although the USA long dominated the rare earth industry, from themid-1960s to
the mid-1980s, China has become the main producer and now holds a quasi-monopoly.
This leading status is mainly attributed to lower labor costs and lower environmental
standards (Campbell, 2014; Muller et al., 2016).

REEs processing is water and energy-intensive and requires chemicals use (US EPA,
2012). The mining and processing of REEs usually result in significant environmental
impacts despite increasing efforts towards more efficient waste management (see e.g.
An et al., 2019, for the case of industrial waste management utilities in China). Many
deposits are actually characterized by high concentrations of radioactive elements such
as uranium and thorium (Massari and Ruberti, 2013) and acidic substances (Elshkaki
and Graedel, 2014) that are released into the environment without being treated (Folger,
2011). The Asian Rare Earth company which was located in Malaysia between 1982 and
1992 has often been reported as an example of radioactive pollution associated with the
processing of monazite ores (Ichihara and Harding, 1995). In China, mining of abun-
dant ionic clay resources induces significant damages due to severe erosion, air, water
and soil pollution, as well as biodiversity loss (Packey and Kingsnorth, 2016). Human
health issues are also reported. The case of Baotou in Inner Mongolia is an emblematic
location in which inhabitants are affected by cancers, respiratory diseases and dental
losses (Schüler et al., 2011), whereas the radioactive sludge lake makes the land around
this city unsuitable for agriculture.

Despite their name, REEs are not all rare (Falconnet, 1985; Wübbeke, 2013). Rare
earth ores contain one or several of the 17 elements, which makes several elements
relatively abundant compared to others. The balance problem arises when the market
demand for several REEs is not balanced with their natural abundance in REE ores
(Elshkaki and Graedel, 2014). It is a major concern for extractors in that they bear stor-
age costs for abundant REEs. For them, the balance problem is a more important issue
than the availability of REEs. For instance, some REEs such as neodymium, dysprosium,
terbium and lanthanum are not abundant and are high in demand (Binnemans, 2014;
Binnemans and Jones, 2015), whereas other elements such as cerium are abundant and
low in demand (Golev et al., 2014).2

Several options have been proposed so far to mitigate the balance problem (Binne-
mans et al., 2013a; Binnemans, 2014; Binnemans and Jones, 2015). In this paper, we
focus on the recycling of REEs that could postpone the extraction (Ba andMahenc, 2018)
and contribute to enhancing environmental quality (Duraiappah et al., 2002). For exam-
ple, the supply of neodymium and dysprosium from their recycling is expected to cover
about 5 per cent of the demand by 2050 (Elshkaki and Graedel, 2013). Several coun-
tries and corporations have already started to recycle REEs. China recovers REEs up
to a maximum level of 95 per cent (Yang et al., 2014) while Japan recycles a third of
REEs used in the production of magnets (Hetzel and Bataille, 2014). The Solvay Group
has recently developed the process for recovering REEs from lamp phosphors, batteries,
magnets and tailings in France and in Belgium (Binnemans et al., 2013b). Hitachi Ltd has
devised technologies to recycle rare earth magnets from hard disk drives (Hitachi, 2010,

2As an illustration of this, the forecast supply for neodymiumanddysprosium in 2016was 30–35,000 tons
and 1,300–1,600 tons respectively, while the forecast demand amounted to 25–30,000 tons and 1,500–1,800
tons respectively. The forecast supply for cerium was 75–85,000 tons, whereas the forecast demand was
60–70,000 tons (Kingsnorth, 2012).
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cited in Binnemans et al., 2013b). Osram is able to recover REEs from used phosphors
(Binnemans and Jones, 2014). Other processes now allow the recovery of REEs from the
scrap generated in the various end-uses sectors (Schüler et al., 2011). It is worth stressing
that mining companies such as Molycorp have also implemented recycling schemes for
magnets in order to reduce the overproduction of some abundant REEs (Binnemans et
al., 2013b). These efforts made by several companies are still insufficient (OECD, 2015).
One can, therefore, wonder whether environmental policies can have an effect on the
intensity of recycling.

Recycling has been the subject of several theoretical investigations. First, some papers
focus on the relationship between recycling and natural resource exhaustion. Andre and
Cerdà (2006), Weikard and Seyhan (2009) and Seyhan et al. (2012) show that recycling
delays the depletion of these resources. Ba and Mahenc (2018) analyze the extent to
which taking into account recycling challenges the Hotelling rule. Several other papers
explore the impact of recycling on market power. The results are somewhat contradic-
tory. One the one hand, recycling does not substantially affect the extractor’s long-run
market power (see Gaskins, 1974; Swan, 1980; Martin, 1982; Suslow, 1986; Hollander
and Lasserre, 1988; Grant, 1999). On the other hand, recycling increases the extractor’s
market power (see Gaudet and Long, 2003; Baksi and Long, 2009). Finally some papers
analyze instruments that favor recycling (see, for example, Yokoo and Kinnaman, 2013;
Gupt, 2015).

The main purpose of this paper is to investigate the extent to which recycling and
environmental taxes can alter both the balance problem and the pollution generated by
REEs extraction. To the best of our knowledge, our contribution is the first one that takes
into account the balance problem in an economic framework. It is also the first one that
designs environmental taxes in the presence of recycling.

There are two ways of modeling the production process of REEs. In the first, the
extraction is a joint production process. The valuation of the co-products ensures the
profitability of extraction. In the second, the extractor only cares about specific ele-
ments while others are byproducts. The latter only provides extra value to the mining
project and does not influence the optimal extraction. Fizaine (2013), for instance,
analyzes the link between mining byproducts and the primary products. This paper
formalizes the equilibrium between the supply and the demand for the primary ore
only. The price elasticity of the byproduct supply is null because the extractor over-
looks it. Yet, an equilibrium exists on the byproduct market between the inelastic
supply and the demand. Fizaine (2013) analyzes the market of minor metals but does
not address the balance problem, which is precisely what we intend to do in this
paper.

We rely on a two-period framework where a monopolist extracts two types of REEs,
namely abundant and non-abundant REEs. In the second period of the game, the
monopolist engages in competition with one firm that recycles part of the non-abundant
REEs consumed in the first period. This brings our model close to Ba and Mahenc’s
(2018) model. It is however different, in that the pollution and the balance problem are
both taken into account.

Our results are the following. We show that recycling always reduces extracted quan-
tities thereby mitigating the balance problem and environmental damages. Other results
depend on the amount of scrap that can be recycled. If the recycling activity is not limited
by this quantity, it does not change extraction in the first period. Otherwise, the extractor
adopts a foreclosure strategy in period one and reduces extraction of REE. The existence
of both pollution and market power in each period does not allow the optimum to be
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reached. We, therefore, propose to implement environmental taxes on extracted quan-
tities. If the environmental tax reduces extraction and favors recycling when recycling
is not limited by the available scrap, it can decrease recycling in the opposite case. This
result suggests that the regulator has to be very cautious if he wants the use of envi-
ronmental taxes to indirectly favor recycling. The second-best levels of environmental
taxes depend on the marginal damage, on the market power as well as on the recycling.
It is also worth noting that the environmental taxes are never equal to the marginal
damage.

The remainder of the paper is structured as follows. Section 2 describes the assump-
tions of the model and the first-best outcome. We consider the decentralized economy
with recycling in section 3. We introduce an exogenous environmental regulation in
section 4, and second-best environmental taxation in section 5. Section 6 concludes the
paper. Technical proofs have been relegated to the appendix.

2. The model
In this section we present the assumptions of the model and, as a benchmark, the first-
best outcome.

2.1. Assumptions
We consider a two-period model where one firm extracts REEs from one mine. The
extracted ore contains abundant and non-abundant REEs. Let xt denote the supply of
non-abundant REEs and x̄t the supply of abundant REEs, where t= 1,2 is a time index.
Since both types of REEs are extracted from the same ore, the extraction of one type
mechanically induces the extraction of the other type such that x̄t = αxt , where α is a
positive parameter. The extraction cost is denoted byCt(xt) that has the usual properties
(C′ > 0 and C′′ > 0). For the sake of simplification, we assume that the discount factor
is normalized to one.

We assume that the market of non-abundant REEs is cleared while the supply of
abundant REEs exceeds the demand such as x̄t > xtd ∀ P̄t � 0, where xtd is the demand
of abundant REEs and P̄t their unit price.3 The balance problem for abundant REEs
incurs a storage cost borne by the extractor: cs

∑2
t=1(x̄t − xdt ), where cs > 0 is the

marginal cost of storage.
In the first period, the extractor is a monopolist whereas in the second period it faces

one recycler who recycles a quantity r ≤ kx1. The parameter k denotes the recycling
technology efficiency with k ∈ [0; 1]. If the strict inequality r < kx1 holds, it means that
depreciation occurs during recycling. Note that the non-abundant REEs are recycled at
a cost Cr(r) that is an increasing and convex function.

Extracted and recycled quantities of non-abundant REEs are perfectly substitutable.
Pt is their prevailing market price. The inverse demand function is Pt = P(Qt) with
P′ < 0 and P′′ � 0. We denote Qt the total quantity of non-abundant REEs supplied
such that Q1 = x1 and Q2 = x2 + r. We assume stationary demand functions.

3The equilibrium price for abundant REEs can be negative. In this case, the unbalance problem disap-
pears. Concerning the over-the-counter price P̄t , our analysis remains valid if P̄t ∈] − Cs, 0[ and does not
match with the equilibrium price: these prices enable the selling out of abundant REEs and consequently
the saving of storage costs.
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We assume that the extraction of REEs causes pollution. The damage induced by
REEs therefore depends on the quantities extracted and not on a pollution stock. Hence
the damage function is written as D(xt), which is an increasing and convex function.

In the rest of the paper, our results depend crucially on whether r ≤ kx1. In order to
ensure concavity in the extractor’s profit and to have tractable results, we restrict our
analysis to P′′ = 0 and C′′′ = 0 when r = kx1.

2.2. The first-best outcome
We define the first-best outcome as a situation where there is no market power and
strategic interactions and that takes into account environmental damages. We consider
a benevolent regulator acting under perfect information, who maximizes social welfare
under the constraint on available scrap that can be used by the recycler. The program of
the regulator is:

MaxW(x1, x2, r, λ) =
∫ x1

0
P(u) du + Sc(xd1) + xd1 P̄1 − C1(x1)

− cs[αx1 − xd1] − D(x1) +
∫ x2+r

0
P(z) dz + Sc(xd2)

+ xd2 P̄2 − C2(x2) − cs[αx1 + αx2 − xd1 − xd2]

− Cr(r) − D(x2),

s.t. r ≤ kx1, (1)

where λ is a Kuhn-Tucker multiplier and Sc(xd1) and Sc(xd2) the consumer surplus from
abundant REEs. The first-order conditions (FOCs) are:

P1(x1) − C′
1(x1) − 2αcs − D′(x1) + λk = 0, (2)

P2(x2 + r) − C′
2(x2) − αcs − D′(x2) = 0, (3)

P2(x2 + r) − C′
r(r) − λ = 0, (4)

λ[kx1 − r] = 0. (5)

Let us explore the first-best outcome by distinguishing the following two cases:
The non-binding case: when the recycling constraint is not binding – i.e., r < kx1

and λ = 0 – we get, after several rearrangements of (2), (3) and (4):

P1(x∗nc
1 ) = C′

1(x
∗nc
1 ) + 2αcs + D′(x∗nc

1 ), (6)

P2(x∗nc
2 + r∗nc) = C′

2(x
∗nc
2 ) + αcs + D′(x∗nc

2 ), (7)

P2(x∗nc
2 + r∗nc) = C′

r(r
∗nc), (8)

where the superscript ∗nc means the non-constrained first-best. In this case, the REEs
value set in each period is equal to the private marginal costs augmented by the marginal
environmental damage induced by extraction. Recycling and extracted quantities in
period 2 are such that social marginal costs of production are identical. We find:
∂x∗nc

1
∂cs < 0, ∂x∗nc

2
∂cs < 0, ∂r∗nc

∂cs > 0 (see appendix A.1). The balance problem leads to a
decrease in extracted quantities in both periods and favors recycling.
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The binding case: when the recycling constraint is binding, we have r = kx1 and
λ > 0. Rearranging equations (2), (3) and (4) gives the following optimal conditions:

P1(x∗c
1 ) − C′

1(x
∗c
1 ) − 2αcs − D′(x∗c

1 ) + k[P2(x∗c
2 + kx∗c

1 ) − C′
r(kx

∗c
1 )] = 0, (9)

P2(x∗c
2 + kx∗c

1 ) − C′
2(x

∗c
2 ) − αcs − D′(x∗c

2 ) = 0, (10)

where the superscript ∗c refers to the constrained first-best. The regulator defines the
level of the quantity extracted in period 1 taking into account the impact of this extrac-
tion during period 2. We find: ∂x∗c

1
∂cs < 0, ∂x∗c

2
∂cs < 0 and ∂r∗c

∂cs < 0 (see appendix B.1). If the
balance problem reduces extraction in both periods, it also reduces the level of recycled
quantities.

From equations (9) and (6), the extracted quantities in period 1 are higher in the
binding case than in the non-binding case: at the first-best – due to the convex damage
function – the regulator allows an increase in the damage in the first period in order to
favor recycling in period 2.4

3. Recycling
In this section, we analyze the effect of recycling in the decentralized economy. We first
investigate the economy without recycling and then with recycling.

3.1. Equilibriumwithout recycling
Without recycling, the extractor acts as a monopolist in both periods. The profit of the
extractor is the sum of revenues earned in both periods from selling both types of REEs
minus extraction and storage costs:

π e(x1, x2) = P1(x1)x1 − C1(x1) − cs[x̄1 − xd1] + xd1 P̄1 + P2(x2)x2

− C2(x2) + xd2 P̄2 − cs[x̄1 − xd1 + x̄2 − xd2].

FOCs take into account the relationship between both types of REEs:

P1(xwr1 ) + P′
1(x

wr
1 )xwr1 − C′

1(x
wr
1 ) − 2αcs = 0, (11)

P2(xwr2 ) + P′
2(x

wr
2 )xwr2 − C′

2(x
wr
2 ) − αcs = 0, (12)

where the superscriptwrmeans without recycling. Equations (11) and (12) indicate that
in each period the price of the non-abundant REEs is equal to the sum of the marginal
costs of extraction and storage, adjusted for the monopoly market power. The balance
problem, by introducing storage costs, leads to reduced extraction in each period. The
reduction is more pronounced in period 1 because the storage cost is reduced in period
2. We have:

xwr1 < xwr2 .

4Several elements explain the main underlying mechanisms and trade-offs in this framework (in the
binding or non-binding case). First, without discounting and recycling, the convexity in damage function
exerts a force toward smoothing extraction evenly over the two periods. Second, convexity in extraction and
recycling costs implies that recycling is welfare improving because it allows the extraction level in period 2
to be split into two, lowering the average cost.
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Proposition 1: due to the balance problem, extracted quantities without recycling in
period 2 are higher than extracted quantities in period 1.

It is fair to state that this result is (likely) not robust to the extension to the infinite
horizon. If we relax the assumption of stationary demand functions, Proposition 1 does
not hold anymore. For example, if the demand shrinks sufficiently from period 1 to
period 2, first period production could be larger than second period production. In the
same vein, if we introduce a discount factor, the extractor undervalues the storage cost
borne in period 2. Hence it increases extraction in period 1 compared to the case where
the discount factor is equal to one.

3.2. Equilibriumwith recycling
Recycling occurs only in the second period. Using backward induction, we first find the
equilibrium quantities in period 2 and we then solve for the quantity produced by the
extractor in period 1.

3.2.1. The second stage: the equilibrium quantities in period 2
Let us define the subgame-perfect Nash equilibrium in period 2. The extractor’s profit
function in the second period is the following:

π e(x2, r) = P2(x2 + r)x2 − C2(x2) + xd2 P̄2 − cs[αx1 − xd1 + αx2 − xd2].

The FOC gives:

P2(x2 + r) + P′
2(x2 + r)x2 − C′

2(x2) − αcs = 0.

The recycler maximizes its profit, subject to the constraint on the available resource:

π r(r, x2) = P2(x2 + r)r − Cr(r)

r ≤ kx1.

We find: {
P2(x2 + r) + P′

2(x2 + r)r − C′
r(r) = 0 ifr < kx1

r = kx1 otherwise, (13)

which represents the recycler’s best response function. The equilibrium depends on
whether the recycling constraint is binding (denoted by the superscript c) or not
(denoted by the superscript nc).

• If the available quantity of scrap is higher than the unconstrained profit-
maximizing quantity, the extractor and the recycler produce the quantities that
satisfy the following FOCs:{

P2(xnc2 + rnc) + P′
2(x

nc
2 + rnc)xnc2 − C′

2(x
nc
2 ) − αcs = 0

P2(xnc2 + rnc) + P′
2(x

nc
2 + rnc)rnc − C′

r(rnc) = 0.
(14)

The Implicit Function Theorem on FOCs given by (14) shows that reaction func-
tions are decreasing. The recycled scrap and the extracted output are strategic sub-
stitutes. Recycling reduces the quantity of non-abundant REEs which is extracted
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by the monopolist in the second period. This behavior was coined the ‘business-
stealing’ effect after Mankiw and Whinston (1986). The strategic response of
existing firms to new entry results in reducing their productionwhen a new entrant
‘steals business’ from incumbent firms. Solving the system given by (14) gives
the non-constrained subgame-perfect Nash equilibrium (xnc2 , rnc). The extracted
quantities and the level of recycled scrap in period 2 do not depend on the quantity
extracted in period 1.5

• If the available quantity of scrap is lower than the unconstrained profit-maximizing
quantity, the equilibrium in period 2 is given by:{

P2(xc2 + rc) + P′
2(x

c
2 + rc)xc2 − C′

2(x
c
2) − αcs = 0

r = kxc1.
(15)

Solving this system gives the constrained subgame-perfect Nash equilibrium
(xc2, r

c). We find xc2 = f (x1), with
dxc2
dx1 < 0. Hence, the extraction level in period

1 will affect the level of recycling as well as the extracted quantity in period 2.

Proposition 2: whatever the level of recycled scrap, the recycling activity reduces
extraction in the second period.

3.2.2. The first stage: the equilibrium quantities in period 1
In order to obtain the equilibriumquantity in period 1, we replace equilibriumquantities
in period 2 in the extractor’s profit function. The quantity in the first stage depends on
the subgame-perfect Nash equilibrium obtained in the second stage.

The non-binding case: if the available quantity of scrap does not constrain the
recycler from producing, we find:

π e(x1, xnc2 , rnc) = P1(x1)x1 − C1(x1) + xd1 P̄1 − cs[αx1 − xd1]

+ P2(xnc2 + rnc)xnc2 − C2(xnc2 ) + xd2 P̄2

− cs[αx1 − xd1 + αxnc2 − xd2].

The FOC is:
P1(xnc1 ) + P′

1(x
nc
1 )xnc1 − C′

1(x
nc
1 ) − 2αcs = 0. (16)

Recycling does not affect the quantity of REEs extracted by the monopolist in the first
period (equation (16) is similar to equation (11)). As expressed above, recycling slows
down extraction in the second period. Thus, recycling helps tomitigate the balance prob-
lem by reducing the stock of abundant REEs and also contributes to reducing pollution
in the second period. As far as total quantities traded in period 2, we find

Qnc
2 ≷ Qnc

1 = Qwr
1 .

On the one hand, without recycling, the storage cost induces more extraction in the sec-
ondperiod than in the first. On the other hand, recycling reduces extraction in the second

5We note that (xnc2 , rnc) do not depend on x1 if the recycling quantity is lower than the threshold, but
this threshold depends on x1.
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period. Thus, depending on the magnitude of the storage cost, the total quantities can
either increase or decrease between periods 1 and 2.

Moreover we find that (see appendix A.2):

∂xnc1
∂cs

< 0;
∂xnc2
∂cs

< 0;
∂rnc

∂cs
> 0.

If the storage costs reduce extracted quantities in each period, they boost the recycled
quantity in period 2. The effects of the balance problem are similar to the ones under
‘first-best’.

Proposition 3: in the non-binding case, recycling does not change extraction in period
1. The balance problem favors recycling in period 2 and mitigates environmental damages
in both periods.

Thebinding case: if the collected scrap constrains the production level of the recycler,
the profit of the extractor reads as follows:

π e(x1) = P1(x1)x1 − C1(x1) + xd1 P̄1 − cs[αx1 − xd1] + P2(xc2(x1) + kx1))xc2(x1)

− C2(xc2(x1)) + xd2 P̄2 − cs[αx1 − xd1 + αxc2(x1) − xd2].

The FOC is the following:

P1(xc1) + P′
1(x

c
1)x1 − C′

1(x
c
1) − 2αcs + dxc2(x

c
1)

dxc1
[P2(xc1)

+ P′
2(x

c
1)x

c
2(x

c
1) − C′

2(x
c
1) − αcs] + kP′

2(x
c
1)x

c
2(x

c
1) = 0. (17)

Comparing equations (16) and (17) gives xc1 < xnc1 . Contrary to the non-binding case,
recycling reduces the first period extracted quantity of REEs. By reducing extraction,
the extractor, acting as a leader, curtails recycling in the second period. That enables
future competition to be reduced. The extractor adopts a foreclosure strategy in order to
keep strong market power in period 2. Hence, recycling strengthens the market power
in period 1. Finally, we obtain the following result on global quantities:

Qnc
2 ≷ Qc

1.

We also find (see appendix B.2):

∂xc1
∂cs

< 0;
∂xc2
∂cs

< 0;
∂rc

∂cs
< 0.

If a high storage cost favors recycling in the non-binding case, it reduces recycling if
r = kx1. In this case, the balance problem indirectly limits recycling and, hence, compe-
tition in the second period.

Proposition 4: in the binding case, recycling leads to foreclosure behavior in the first
period.6 The balance problem limits recycling and, hence, triggers environmental damages
in the second period.

6In Ba and Mahenc (2018), the extractor always reduces its extraction in period 1 expecting recycling in
period 2. But contrary to our paper, this behavior depends on a fixed cost borne by the recycler. Moreover
they assume that the resource is exhausted in period 2.
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Comparing equations (14) and (16) with equations (6) to (8), and equations (15) and
(17) with (9) and (10), shows that the market equilibrium never reaches the first-best. In
each case, the storage cost of abundant REEs induces the extractor to take the balance
problem into account. Both market power and pollution, however, prevent the first-best
outcome from being reached. As is widely acknowledged in the literature, one way to
restore the social optimum is to tax negative externalities. Below we will analyze what
will happen with the implementation of a tax scheme by the benevolent regulator.

4. Exogenous environmental regulation
In order to internalize the negative externality, i.e., pollution induced by extraction,
the regulator sets environmental taxes τt , which it levies on each extracted unity in
each period. As in section 3, we solve the game by backward induction. We first define
equilibrium quantities in period 2, then in period 1.

4.1. The second stage: the equilibrium quantities in period 2
If an environmental tax is levied on the extraction, the extractor’s profit maximization
program in period 2 becomes:

π e(x1, x2,r) = P2(x2 + r)x2 − C2(x2) + yd2 P̄2 − cs[αx1 − yd1 + αx2 − yd2] − τ2x2.

The profit function of the recycler is not modified by the environmental taxation.
Extracted quantities in period 2 depend on the constraint on recycling:

• If the available quantity is higher than the unconstrained profit-maximizing quan-
tity, the extractor and the recycler produce the quantities that satisfy the following
FOCs:

{
P2(xnct2 + rnct) + P′

2(x
nct
2 + rnct)xnct2 − C′

2(x
nct
2 ) − αcs − τ2 = 0

P2(xnct2 + rnct) + P′
2(x

nct
2 + rnct)rnct − C′

r(rnct) = 0.
(18)

Solving this system gives the unconstrained subgame-perfect Nash equilibrium
(xnct2 (τ2), rnct(τ2)), with

∂xnct2
∂τ2

< 0 and ∂rnct
∂τ2

> 0 (see appendix A.3). Equilibrium
quantities in period 2 do not depend on the extracted quantities in period 1.

• If the recycler is limited by the available quantity of scrap, the constrained
subgame-perfect Nash equilibrium is given by:

{
P2(xct2 + rct) + P′

2(x
ct
2 + rct)xct2 − C′

2(x
ct
2 ) − αcs − τ2 = 0

rct = kx1.
(19)

Solving this system gives xct2 (x1, τ2), with
∂xct2
∂x1 < 0.

4.2. The first stage: the equilibrium quantities in period 1
Quantities in period 1 depend on the outcome of the subgame-perfect Nash equilibrium.
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The non-binding case. If r < kx1, quantities in period 2 do not depend on x1. The
extractor maximizes its profit in the first period. We have:

π e(x1) = P1(x1)x1 − C1(x1) + xd1 P̄1 − cs[αx1 − yd1] − τ1x1

+ P2(xnct2 + rnct)xnct2 − C2(xnct2 )

+ yd2 P̄2 − cs[αx1 − yd1 + αxnct2 − yd2] − τ2xnct2

P1(xnct1 ) + P′
1(x

nct
1 )x1 − C′

1(x
nct
1 ) − 2αcs − τ1 = 0. (20)

If we compare equation (20) to equation (16), we show that the extractor reduces the
extracted quantity in period 1 under environmental taxation. Solving equation (20)
enables us to obtain xnct1 as a function of τ1, with

∂xnct1
∂τ1

< 0 (appendix A.3). Each per-
period extracted quantity decreases with the per-period tax rate. Hence taxes increase
the recycled output, since recycling and the second period extracted output are strategic
substitutes.

Proposition 5: when the recycling activity is not bounded by the available scrap,
environmental taxation favors recycling.

The binding case. We replace xct2 (x1, τ2) and rct = kx1 in the profit of the extractor.
We obtain:

π e(x1) = P1(x1)x1 − C1(x1) + xd1 P̄1 − cs[αx1 − yd1] − τ1x1

+ P2(xct2 (x1, τ2) + kx1)xct2 (x1, τ2)

− C2(xct2 (x1, τ2)) + yd2 P̄2 − cs[αx1 − yd1 + αxct2 (x1, τ2) − yd2] − τ2xct2 (x1, τ2).

The FOC reads as follows:

P1 + P′
1x

ct
1 − C′

1 − 2αcs − τ1 + ∂xct2
∂xct1

[P′
2x

ct
2 + P2 − C′

2 − αcs − τ2] + P′
2kx

ct
2 = 0.

(21)
Solving equation (21) yields xct1 (τ1, τ2) and hence xct2 (τ1, τ2) with

dxct1
dτ1 = dxct2

dτ2 < 0 and
dxct1
dτ2 = dxct2

dτ1 > 0 (see appendix B.3). Depending on τ1 and τ2, the extracted quantities in
the first period (second period) can increase if τ2 (τ1) is high enough.Hence the recycling
activity increaseswith the tax in the second period – as in the binding case – but decreases
with the tax in the first period. Thus environmental taxes can disadvantage recycling
activity.

Proposition 6: environmental taxation can reduce recycling when the recycling activ-
ity is limited by available scrap.

5. The second-best environmental regulation
The regulator determines the second-best environmental taxes7 maximizing the wel-
fare function (given by equation (1)), replacing quantities depending on the tax levels

7See Buchanan (1969), Barnett (1980), Levin (1985), Simpson (1995) and, among others, David and
Sinclair-Desgagné (2005).
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found in the preceding section.8 The solution depends on the subgame-perfect Nash
equilibrium, i.e., whether the recycler is limited or not by the collected scrap quantity.

5.1. The non-binding case
We replace xnct1 (τ1), xnct2 (τ2) and rnct(τ2) in the welfare function that we maximize with
respect to τ1 and τ2. The FOCs are the following:

dx1
dτ1

[P1(x1) − C′
1(x1) − 2αcs − D′(x1)] = 0,

dx2
dτ2

[P(x2 + r) − C′
2(x2) − αcs − D′(x2)]

+ dr
dτ2

[P2(x2 + r) − C′
r(r)] = 0.

(22)

Substituting (18) and (20) into (22) yields the following pair of tax rates:

τnct1 = D′(x1) + P′(x1)︸ ︷︷ ︸
Usual result

x1

τnct2 = D′(x2) + P′(x2 + r)x2︸ ︷︷ ︸
Usual result

+
dr(τ2)
dτ2

dx2(τ2)
dτ2

[P′
2(x2 + r)r]

︸ ︷︷ ︸
Recycling effect

. (23)

The tax rate in period 1 depends only on the active distortions over this period. One
is the distortion from the negative externality generated by the pollution, the other
is the distortion from the extractor’s market power in the market of non-abundant
REEs. Since P′

1(x1) < 0, the tax rate is lower than the marginal damage (see Barnett,
1980).9 The benevolent regulator sets the tax at this level in order to reduce the ten-
dency of the monopolist to underproduce. In this case, the tax could be either positive
or negative. Its sign depends on the prevailing distortion. If the distortion from the envi-
ronmental damage is larger than the distortion from the extractor’s market power, i.e.,
D′(x1) > −P′

1(x1)x1, then τnct1 > 0 and turns out to be a tax. Otherwise, τnct1 < 0 and
τnct1 is a subsidy. It is worth noting that recycling does not influence the first period tax
rate because it does not affect the extraction in that period.

According to equation (23), the second-period tax depends only on distortions in this
period. It is also composed of both usual distortions but is adjusted by an additional term
emanating from the recycling activity. As dr(τ2)

dτ2 /
dx2(τ2)
dτ2 < 0 and [P′

2(x2 + r)r] < 0, the
recycling effect is positive. The regulator increases further the second period tax rate in
order to foster recycling. If this recycling effect is strong enough, the second period tax
rate will be higher than the marginal damage. Note that the recycling effect catches the
capacity of τ2 to modify the price in the second period. Thus the regulator increases the

8The welfare function is maximized without taking into account the constraint on available scrap: this
constraint has already been taken into account in the quantities determination in section 4.

9In the case of one distortion in an economy – a negative externality – the first-best can be reached
with an environmental tax set at the marginal damage, that is usually called a ‘Pigouvian tax’. Following
Barnett (1980), an environmental tax designed with other imperfections is called a second-best optimal tax,
which is not equal to the marginal damage. Barnett speaks about ‘the Pigouvian tax rule under monopoly’.
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tax in the second period in order to both favor competition and reduce environmental
damage. If we replace τnct1 and τnct2 in equations (18) and (20), we find:

P(x1) − C′
1(x1) − 2αcs − D′(x1) = 0 (24)

P(x2 + r) − C′
2(x2) − αcs − D′(x2) −

dr(τ2)
dτ2

dx2(τ2)
dτ2

P′(x2 + r)r = 0. (25)

As equation (24) is similar to equation (6), second-best environmental taxation in the
first period enables the first-best outcome to be reached. The tax internalizes both mar-
ket failures induced by market power and pollution. As equation (25) is different from
equation (7), a tax in period 2 cannot simultaneously cope with distortions enacted by
market power and the environmental damagewhile taking into account the recycled out-
put. Second-best taxation in the second period therefore enables a second-best outcome
to be reached.

The taxation effect on the balance problem depends on the sign of τnct1 and τnct2 . The
balance problem is enhanced if tax rates are negative. On the contrary, positive tax rates
lead to reduced extracted quantities, thereby alleviating the balance problem.

Proposition 7: due to market power, the second-best tax in period 1 is lower than the
marginal damage which leads to achieving the first-best quantity. In period 2, recycling
increases the tax whereas the market power reduces it. Finally the second-best tax level in
period 2 can be higher than the marginal damage.

5.2. The binding case
In this case, we replace xct1 (τ1, τ2), xct2 (τ1,τ2) and rct(τ1, τ2) in the welfare function and
maximize with respect to τ1 and τ2. After rearranging the first-order conditions, we find:

dx1
dτ1

[P1(x1) − C′
1(x1) − 2αcs − D′(x1) + P2(x2 + kx1)k − kC′

r(kx1)]

+ dx2
dτ1

[P2(x2 + kx1) − C′
2(x2) − αcs − D′(x2)] = 0,

dx1
dτ2

[P1(x1) − C′
1(x1) − 2αcs − D′(x1) + P2(x2 + kx1)k − kC′

r(kx1)]

+ dx2
dτ2

[P2(x2 + kx1) − C′
2(x2) − αcs − D′(x2)] = 0.

(26)

Substituting (19) and (21) in (26), we find the following taxes:

τ ct1 = P′(x1)x1 + D′(x1)︸ ︷︷ ︸
Usual result

−k[P2(x2 + kx1) − C′
r(kx1) − P′

2(x2 + kx1)x2]︸ ︷︷ ︸
Recycling effect

τ ct2 = P′
2(x2 + kx1)x2 + D′(x2)︸ ︷︷ ︸

Usual result

.
(27)

As the quantity extracted in period 1 has an effect on period 2, the design of τ ct1 has
to consider effects in both periods. The first two terms catch usual effects in period 1

https://doi.org/10.1017/S1355770X20000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1355770X20000054


Environment and Development Economics 647

and other terms take into account effects in period 2. τ ct1 diminishes with the marginal
profit of the recycler and with the price variation induced by recycling. Finally τ ct1 is
always inferior to the marginal damage and so is τ ct2 . Replacing both taxes in (19) and
(21) yields the equations (9) and (10). The regulator is able to implement the first-best
outcome provided the recycling constraint is binding.

Proposition 8: the second-best taxation scheme enables the first-best quantities to be
reached in each period. Tax in period 1 (period 2) takes into account market power and
recycling (market power). Both taxes are lower than the marginal damage.

6. Conclusion
The extraction of REEs raises serious pollution problems and leads to the balance prob-
lem. This paper theoretically analyzed the effect of recycling and environmental tax
regulation on both the balance problem and pollution. It contributes to the theoretical
analysis of green policies aiming at downscaling resource use while promoting recycling
activities.

We set up a Cournot model in which one firm involved in the extraction sector
simultaneously supplies two types of REEs – abundant and non-abundant – over two
consecutive periods. In the second period, it competes with a recycler of non-abundant
REEs that are used in the first period. We first showed that recycling always reduces
extracted quantities, thus mitigating both the balance problem and the environmental
damages. Our results crucially depend on whether the recycler can recycle the whole
quantity of scrap it wants. If its activity is not limited, the first period extracted quanti-
ties are unchanged. Otherwise, the extractor adopts a foreclosure strategy that consists of
reducing its extraction in the first period. Because there are distortions in the economy
(pollution and market power), both equilibria are not optimal. Owing to those distor-
tions, second-best environmental taxation is introduced in each period. We showed
that environmental taxation always favors recycling when the constraint on the scrap
availability is not binding, whereas recycled quantities can decrease if the constraint is
binding. From this point of view, the regulator should pay careful attentionwhen shaping
environmental taxation in order to indirectly favor recycling. In addition, we established
that the second-best levels of environmental taxes depend on the marginal damage, on
the market power as well as on the recycling.

This article is, according to our knowledge, the first to theoretically investigate the bal-
ance problem and to design environmental taxes in the presence of recycling. It can be
considered as providing several theoretical insights that could be valuable for the proper
functioning of the circular economy. It is important to note that this normative analysis
is conducted on a global scale since the extractor and the recycler belong to the same
economy. It, therefore, overlooks the fact that rare earth ores are mainly extracted in
China and that recycling activities are disseminated in several countries. Taking into
account this geopolitical specificity would warrant another game theoretical set-up, i.e.,
a game between a monopoly and a competitive fringe under the assumption that REEs
are traded without transportation costs. The environmental taxes would also be imple-
mented in the extracting country while not taking into account the global consumer
surplus, as it is done in this article – but only the consumer surplus from the quantity
consumed in this country. These new assumptions would not fundamentally change the
extractor strategy but, rather, the environmental tax levels. According to our results, if
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China implements environmental taxes on extraction of REEs, recycling would not nec-
essarily be boosted. China could instead strategically implement environmental taxes in
order to reduce recycling if the available scrap is low.

This paper can be extended in several directions. We do not consider that the stock
of unsold abundant REEs can be polluting. Likewise, we do not take into account that
REEs recycling activity can also be polluting. This would lead the regulator to poten-
tially consider other damages and, consequently, to introduce other environmental taxes.
That would change the level of recycling and therefore extraction. We also neglect the
strategic aspects for a country related to the holding of REEs. In this case, the regulator
may wish to develop recycling to ensure the security of rare earth supply (Golev et al.,
2014). An extension of our paper would be to not consider the balance problem but
the environmental tax implementation when there is an equilibrium on the byproduct
market. Lastly, it would be interesting to extend this model over infinite time in order
to assess whether the asymmetry between periods would still hold. This analysis would
take into account the REE stock. Further research is needed to investigate these different
questions.

References
An Y, Zhang L and Adom P (2019) Economics of wastewater management in China’s industry. Environ-

ment and Development Economics 24, 457–478.
Andre FJ and Cerdà E (2006) On the dynamics of recycling and natural resources. Environmental and

Resource Economics 33, 199–221.
Ba BS and Mahenc P (2018) Is recycling a threat or an opportunity for the extractor of an exhaustible

resource? Environmental and Resource Economics 73, 1109–1134.
Baksi S and Long NV (2009) Endogenous consumer participation and the recycling problem. Australian

Economic Papers 48, 281–295.
Barnett AH (1980) The Pigovian tax under monopoly. American Economic Review 70, 1037–1340.
Binnemans K (2014) Economics of rare earths: the balance problem. Paper presented at the 1st European

Rare Earths Resources Conference, 4–7 September 2014, Milos, Greece.
Binnemans K and Jones PT (2014) Perspectives for the recovery of rare earths from end-of-life fluorescent

lamps. Journal of Rare Earths 32, 195–200.
Binnemans K and Jones PT (2015) Rare earths and the balance problem. Journal of Sustainable Metallurgy

1, 29–38.
Binnemans K, Jones PT, Acker KV, Blanpain B,Mishra B and Apelian D (2013a) Rare earths economics:

the balance problem. Journal of Metals 65, 846–848.
Binnemans K, Jones PT, Blanpain B, Gerven TV, Yang Y, Walton A and Buchert M (2013b) Recycling

of rare earths: a critical review. Journal of Cleaner Production 51, 1–22.
Buchanan J (1969) External diseconomies, corrective taxes, and market structure. The American Economic

Review 59, 174–177.
Campbell G (2014) Rare earth metals: a strategic concern.Mineral Economics 27, 21–31.
David M and Sinclair-Desgagné B (2005) Environmental regulation and the eco-industry. Journal of

Regulatory Economics 28, 141–155.
Duraiappah AK, Xin Z and Van Beukering PJH (2002) Issues in production, recycling and international

trade: analysing the Chinese plastic sector using an optimal life cycle (OLC) model. Environment and
Development Economics 7, 47–74.

Elshkaki A and Graedel TE (2013) Dynamic analysis of the global metals flows and stocks in electricity
generation technologies. Journal of Cleaner Production 59, 260–273.

Elshkaki A andGraedel TE (2014) Dysprosium, the balance problem, and wind power technology.Applied
Energy 136, 548–559.

Falconnet P (1985) The economics of rare earths. Journal of the Less-Common Metals 111, 9–15.
Fernandez V (2017) Rare-earth elements market: a historical and financial perspective. Resources Policy 53,

26–45.

https://doi.org/10.1017/S1355770X20000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1355770X20000054


Environment and Development Economics 649

Fizaine F (2013) Byproduct production ofminormetals: threat or opportunity for the development of clean
technologies? The PV sector as an illustration. Resources Policy 38, 373–383.

Folger T (2011) The secret ingredients of everything. National Geographic Magazine, June 2011.
Gaskins D (1974) Alcoa revisited: the welfare implications of a secondhand market. Journal of Economic

Theory 7, 254–271.
GaudetG and LongNV (2003) Recycling redux: a Nash–Cournot approach.The Japanese Economic Review

54, 409–419.
Golev A, ScottM, Erskine PD, Ali SH and Ballantyne GR (2014) Rare earths supply chains: current status,

constraints and opportunities. Resources Policy 41, 52–59.
Grant D (1999) Recycling and market power: a more general model and re-evaluation of the evidence.

International Journal of Industrial Organization 17, 59–80.
Gupt Y (2015) Economic instruments and the efficient recycling of batteries in Delhi and the National

Capital Region of India. Environment and Development Economics 20, 236–258.
Hetzel P and Bataille D (2014) Etudes de faisabilité de la saisine sur les enjeux stratégiques des terres rares.

Office Parlementaire d’Evaluation des Choix Scientifiques et Technologiques, n◦ 617 tome I (2015–2016)
(in French).

Hollander A and Lasserre P (1988) Monopoly and the preemption of competitive recycling. International
Journal of Industrial Organization 6, 489–497.

Ichihara M and Harding A (1995) Human rights, the environment and radioactive waste: a study of the
Asian rare earth case in Malaysia. Review of European, Comparative and International Environmental
Law 4, 1–14.

Kingsnorth DJ (2012) The global rare earths industry: a delicate balancing act. Paper presented at Deutsche
Rohstoffagentur, 16 April 2012, Berlin, Germany. Available at http://www.deutsche-rohstoffagentur.de/
DERA/DE/Downloads/RD_kingsnorth_2012.pdf?__blob=publicationFile&v=2.

Levin D (1985) Taxation within Cournot oligopoly. Journal of Public Economics 27, 281–290.
Mankiw NG and Whinston MD (1986) Free entry and social inefficiency. Rand Journal of Economics 17,

48–58.
Martin RE (1982) Monopoly power and the recycling of rawmaterials. The Journal of Industrial Economics

30, 405–419.
Massari S and Ruberti M (2013) Rare earth elements as critical raw materials: focus on international

markets and future strategies. Resource Policy 38, 36–343.
Muller M, Schweizer D and Seiler V (2016) Wealth effects of rare earth prices and China’s rare earth

elements policy. Journal of Business Ethics 138, 627–648.
OECD (2015) Rare earth elements factsheet. InMaterial Resources, Productivity and the Environment. Paris:

OECD Editions.
Packey DJ and Kingsnorth D (2016) The impact of unregulated ionic clay rare earth mining in China.

Resources Policy 48, 112–116.
SchülerD, BuchertM, LiuR,Dittrich S andMerzC (2011) Study on Rare Earths and Their Recycling. Final

Report for the Greens/EFA Group in the European Parliament. Öko-Institut e.V., Freiburg, Germany.
Seyhan D, Weikard HP and Ierland EV (2012) An economic model of long-term phosphorus extraction

and recycling. Resources, Conservation and Recycling 61, 103–108.
Simpson RD (1995) Optimal pollution taxation in a Cournot duopoly. Environmental and Resource

Economics 6, 359–369.
Suslow VY (1986) Estimating monopoly behavior with competitive recycling: an application to Alcoa. The

Rand Journal of Economics 17, 389–403.
Swan PL (1980) Alcoa: the influence of recycling on monopoly power. Journal of Political Economy 88,

76–99.
US EPA (2012) Rare Earth Elements: A Review of Production, Processing, Recycling, and Associated Envi-

ronmental Issues (Report number EPA-600-R-12-572). US Environmental Protection Agency, Office of
Research and Development. Available at https://nepis.epa.gov/Adobe/PDF/P100EUBC.pdf.

US Geological Survey (2016) Mineral Commodity Summaries 2016. US Geological Survey. Available at
http://dx.doi.org/10.3133/70140094.

Weikard HP and Seyhan D (2009) Distribution of phosphorus resources between rich and poor countries:
the effect of recycling. Ecological Economics 68, 1749–1755.

https://doi.org/10.1017/S1355770X20000054 Published online by Cambridge University Press

http://www.deutsche-rohstoffagentur.de/DERA/DE/Downloads/RD_kingsnorth_2012.pdf?__blob=publicationFile&v=2
http://www.deutsche-rohstoffagentur.de/DERA/DE/Downloads/RD_kingsnorth_2012.pdf?__blob=publicationFile&v=2
https://nepis.epa.gov/Adobe/PDF/P100EUBC.pdf
http://dx.doi.org/10.3133/70140094
https://doi.org/10.1017/S1355770X20000054


650 Bocar Samba Ba et al.

Wübbeke J (2013) Rare earth elements in China: policies and narratives of reinventing an industry.
Resources Policy 38, 384–394.

YangX, Zhang J andFangX (2014) Rare earth element recycling fromwaste nickel-metal hydride batteries.
Journal of Hazardous Materials 279, 384–388.

Yokoo H and Kinnaman T (2013) Global Reuse and optimal waste policy. Environment and Development
Economics 18, 595–614.

Appendix A: The non-binding case

A.1. The first-best
Concavity of the program

From (2), (3) and (4) we find: H(W(x1, x2, r)) =
⎡
⎣ P′

1−C′′
1−D′′

1 0 0

0 P′
2−C′′

2−D′′
2 P′

2

0 P′
2 P′

2−C′′
r

⎤
⎦, with

M1 = P′
1 − C′′

1 − D′′
1 < 0; M2 = [P′

1 − C′′
1 − D′′

1][P
′
2 − C′′

2 − D′′
2] > 0; M3 = [P′

1 − C′′
1 −

D′′
1]{[P′

2 − C′′
2 − D′′

2][P
′
2 − C′′

r ] − P′2
2 } = [P′

1 − C′′
1 − D′′

1]{[−C′′
2 − D′′

2][P
′
2 − C′′

r ] + P′
2[−C′′

r ]}︸ ︷︷ ︸
∇

< 0.

Effect of a change in cs
x∗nc
1 (cs) solves P1(x∗nc

1 ) − C′
1(x

∗nc
1 ) − 2αcs − D′(x∗nc

1 ) = 0. We set F(x1, cs) = P1(x1) −
C′
1(x1) − 2αcs − D′(x1). We apply the Implicit Function Theorem, and we find:

∂x∗nc
1

∂cs
= − ∂F(x1, cs)/∂cs

∂F(x1, cs)/∂x1
= −−2α

M1
< 0

x∗nc
2 (cs) and r∗nc(cs) solve:

{
P2(x∗nc

2 (cs) + r∗nc(cs)) − C′
2(x

∗nc
2 (cs)) − αcs − D′

2(x
∗nc
2 (cs)) = 0

P2(x∗nc
2 (cs) + r∗nc(cs)) − C′

r(r∗nc(cs)) = 0.

If we differentiate this system with respect to cs, we obtain after simplification:⎧⎪⎪⎨
⎪⎪⎩
P′
2
dx∗nc

2
dcs

+ P′
2
dr∗nc

dcs
− C′′

2
dx∗nc

2
dcs

− D′′
2
dx∗nc

2
dcs

= α

P′
2
dx∗nc

2
dcs

+ P′
2
dr∗nc

dcs
− C′′

r
dr∗nc

dcs
= 0

[
P′
2 − C′′

2 − D′′
2 P′

2
P′
2 P′

2 − C′′
r

]⎡
⎢⎢⎣
dx∗nc

2
dcs
dr∗nc

dcs

⎤
⎥⎥⎦ =

[
α

0

]

⎡
⎢⎢⎣
dx∗nc

2
dcs
dr∗nc

dcs

⎤
⎥⎥⎦ = 1

∇
[
α(P′

2 − C′′
r )

−αP′
2

]
with the property that

[
(< 0)
(> 0)

]
, with ∇ > 0.
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A.2. The recycling activity
Stability of the equilibrium.
As we have π e

x2x2 = 2P′
2 + P′′

2x2 − C′′
2 < 0; π e

x2r = P′
2 + P′′

2x2 < 0; π r
rr = 2P′

2 + P′′
2 r −

C′′
r < 0; π r

rx2 = P′
2 + P′′

2 r < 0. We find: π e
x2x2 < π e

x2r < 0 and π r
rr < π r

x2r < 0, so � =
π e
x2x2π

r
rr − π r

x2rπ
e
rx2 > 0. As π e

x2x2 < 0,π r
rr < 0 and � > 0, the Gale-Nikaido condition is

satisfied, meaning global uniqueness of the Cournot equilibrium. � > 0 is also the Routh-
Hurwitz condition for reaction function stability. As π e

x2r < 0 and π r
rx2 < 0, the quantity

x2 and r are strategic substitutes.

Effect of a change in cs
From (16), xnc1 (cs) solves P1(xnc1 ) + P′

1(x
nc
1 )xnc1 − C′

1(x
nc
1 ) − 2αcs = 0. We set: F(x1, cs) =

πx1 = P1(x1) + P′
1(x1)x1 − C′

1(x1) − 2αcs. We apply the Implicit Function Theorem, and
we find:

∂xnc1
∂cs

= − ∂F(x1, cs)/∂cs
∂F(x1, cs)/∂x1

= − −2α
2P′

1 + P′′
1x1 − C′′

1
= − −2α

πx1x1
< 0.

xnc2 (cs) and rnc(cs) solve:

{
P2(xnc2 (cs) + rnc(cs)) + P′

2(x
nc
2 (cs) + rnc(cs))xnc2 (cs) − C′

2(x
nc
2 (cs)) = αcs

P2(xnc2 (cs) + rnc(cs)) + P′
2(x

nc
2 (cs) + rnc(cs))rnc(cs) − C′

r(rnc(cs)) = 0.

If we differentiate this system with respect to cs, we obtain after simplification:

⎧⎪⎪⎨
⎪⎪⎩
dxnc2
dcs

[2P′
2 + P′′

2x
nc
2 − C′′

2 ] + drnc

dcs
[P′

2 + P′′
2x

nc
2 ] = α

dxnc2
dcs [P

′
2 + P′′

2 r
nc] + drnc

dcs
[2P′

2 + P′′
2 r

nc − C′′
r ] = 0

⎧⎪⎪⎨
⎪⎪⎩
dxnc2
dcs

[π e
x2x2 ] + drnc

dcs
[π e

x2r] = α

dxnc2
dcs

[π r
rx2 ] + drnc

dcs
[π r

rr] = 0

⎡
⎢⎢⎣
dxnc2
dcs
drnc

dcs

⎤
⎥⎥⎦ = 1

�

[
π r
rr −π e

rx2−π r
x2r π e

x2x2

] [
α

0

]

⎡
⎢⎢⎣
dxnc2
dcs
drnc

dcs

⎤
⎥⎥⎦ = 1

�

[
απ r

rr
−απ r

x2r

]
with the property that

[
(< 0)
(> 0)

]
with � = π e

x2x2π
r
rr − π r

x2rπ
e
rx2 > 0.
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A.3. Exogenous environmental regulation
Effect of a change in τ1
xnct1 (cs, τ1) solves: P′

1(x
nct
1 (cs, τ1))xnct1 (cs, τ1) + P1(xnct1 (cs, τ1)) − C′

1(x
nct
1 (cs, τ1)) − 2αcs −

τ1 = 0. We set: F(x1, cs, τ1) = P′
1(x1)x1 + P1(x1) − C′

1(x1) − 2αcs − τ1. We apply the

Implicit FunctionTheorem, andwe find: ∂xnct1
∂τ1

= − ∂F(x1,cs ,τ1)/∂τ1
∂F(x1,cs ,τ1)/∂x1 = − −1

P′′
1x1+2P′

1−C′′
1 (x1)

< 0.

Effect of a change in τ2
xnct2 (cs, τ2) and rnct(cs, τ2) solve:⎧⎨
⎩
P′
2(x

nct
2 (cs, τ2) + rnct(cs, τ2))xnct2 (cs, τ2) + P2(xnct2 (cs, τ2) + rnct(cs, τ2)) − C′

2(x
nct
2 (cs, τ2))

−αcs − τ2 = 0
P2(xnct2 (cs, τ2) + rnct(cs, τ2)) + P′

2(x
nct
2 (cs, τ2) + rnct(cs, τ2)rnct − C′

r(r
nct

(cs, τ2)) = 0.

If we differentiate this system with respect to τ2, we obtain after simplification:

⎧⎪⎪⎨
⎪⎪⎩
dxnct2
dτ2

[2P′
2 + P′′

2x
nct
2 − C′′

2 ] + drnct

dτ2
[P′

2 + P′′
2x

nct
2 ] = 1

dxnct2
dτ2

[P′
2 + P′′

2 r
nct] + drnct

dτ2
[2P′

2 + P′′
2 r

nct − C′′
r ] = 0

⎧⎪⎪⎨
⎪⎪⎩
dxnct2
dτ2

[π e
x2x2 ] + drnct

dτ2
[π e

x2r] = 1

dxnct2
dτ2

[π r
rx2 ] + drnct

dτ2
[π r

rr] = 0

⎡
⎢⎢⎣
dxnct2
dτ2
drnct

dτ2

⎤
⎥⎥⎦ = 1

�

[
π r
rr −π e

rx2
−π r

x2r π e
x2x2

][
1
0

]

⎡
⎢⎢⎣
dxnct2
dτ2
drnct

dτ2

⎤
⎥⎥⎦ = 1

�

[
π r
rr

−π r
x2r

]
with the property that

[
(< 0)
(> 0)

]
with � > 0.

Appendix B: The binding case
We assume P′′ = 0 and C′′′ = 0.

B.1. The first-best
Concavity of the program.
From (9) and (10) we find:

H(W(x1, x2, r)) =
[
P′
1 − C′′

1 − D′′
1 + k2P′

2 − k2C′′
r kP′

2
kP′

2 P′
2 − C′′

2 − D′′
2

]
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Wx1x1 = [P′
1 − C′′

1 − D′′
1 + k2P′

2 − k2C′′
r ] < 0; Wx1x2 = kP′

2 = Wx2x1 < 0; Wx2x2 = P′
2 −

C′′
2 − D′′

2 < 0.
DetH = � = [P′

1 − C′′
1 − D′′

1 + k2P′
2 − k2C′′

r ][P′
2 − C′′

2 − D′′
2] − [kP′

2]
2 = [P′

1 − C′′
1 − D′′

1 −
k2C′′

r ][P′
2 − C′′

2 − D′′
2] + k2P′

2[−C′′
2 − D′′

2] > 0.

Effect of a change in cs
x∗c
1 (cs) and x∗c

2 (cs) solve:

⎧⎨
⎩
P1(x∗c

1 (cs)) − C′
1(x

∗c
1 (cs)) − 2αcs − D′

1(x
∗c
1 (cs)) + k[P2(x∗c

2 (cs) + kx∗c
1 (cs))

−C′
r(kx

∗c
1 (cs))] = 0

P2(x∗c
2 (cs) + kx∗c

1 (cs)) − C′
2(x

∗c
2 (cs)) − αcs − D′

2(x
∗c
2 (cs)) = 0.

If we differentiate this system with respect to Cs, we obtain after simplification:

⎧⎪⎪⎨
⎪⎪⎩
P′
1
dx∗c

1
dcs

− C′′
1
dx∗c

1
dcs

− D′′
1
dx∗c

1
dcs

+ k[P′
2

[
dx∗c

2
dcs

+ k
dx∗c

1
dcs

]
− k2C′′

r
dx∗c

1
dcs

] = 2α

P′
2

[
dx∗c

2
dcs

+ k
dx∗c

1
dcs

]
− C′′

2
dx∗c

2
dcs

− D′′
2
dx∗c

2
dcs

= α

⎧⎪⎪⎨
⎪⎪⎩
dx∗c

1
dcs

[P′
1 − C′′

1 − D′′
1 + k2P′

2 − k2C′′
r ] + dx∗c

2
dcs

kP′
2 = 2α

dx∗c
2

dcs
[P′

2 − C′′
2 − D′′

2] + P′
2k

dx∗c
1

dcs
] = α

⎡
⎢⎢⎣
dx∗c

1
dcs
dx∗c

2
dcs

⎤
⎥⎥⎦ = 1

�

[
P′
2 − C′′

2 − D′′
2 −kP′

2
−kP′

2 P′
1 − C′′

1 − D′′
1 + k2P′

2 − k2C′′
r

][
2α
α

]

with � > 0, we obtain :

⎧⎪⎪⎨
⎪⎪⎩
dx∗c

1
dcs

= α

�
{P′

2(2 − k) − 2C′′
2 − 2D′′]} < 0

dx∗c
2

dcs
= α

�
{P′[k2 − 2k + 1] − C′′

1 − D′′
1 − k2C′′

r } < 0

B.2. The recycling activity
Variation of xc2 with respect to x

c
1:

From (15), we note F(x1, x2) = P2(x2 + kx1) + P′
2(x2 + kx1)x2 − C′

2(x2) − αcs = 0. So
∂xc2
∂xc1

= − ∂F(x2,x1)/∂x1
∂F(x2,x1)/∂x2 = − kP′

2
2P′

2−C′′
2

< 0.

Concavity of the profit in the first stage
From (17), 	e

x1 = P1(xc1) + P′
1(x

c
1)x

c
1 − C′

1(x
c
1) − 2αcs + dxc2

dxc1
[P2(xc2(x

c
1) + kxc1) + P′

2(x
c
2

(xc1) + kxc1)x
c
2(x

c
1) − C′

2(x
c
2(x

c
1)) − αcs] + kP′

2(x
c
2(x

c
1) + kxc1)x

c
2(x

c
1)

	e
x1x1 = 2P′

1 − C′′
1 + dxc2

dxc1
{dx

c
2

dxc1
[2P′

2 − C′′
2 ] + 2kP′

2}
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= 1
[2P′

2 − C′′
2 ]

{[2P′
1 − C′′

1 ][2P
′
2 − C′′

2 ] − [kP′
2]

2}

= 1
[2P′

2 − C′′
2 ]

{[P′]2(4 − k) − C′′
1 [2P

′
2 − C′′

2 ] − 2P′
1C

′′
2︸ ︷︷ ︸


>0

} < 0.

Effect of a change in cs
At the equilibrium, xc1(cs) and xc2(cs) solve:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
P1(xc1) + P′

1(x
c
1)x

c
1 − C′

1(x
c
1) − 2αcs + dxc2

dxc1
[P2(xc2 + kxc1)

+P′
2(x

c
2 + kxc1)x

c
2 − C′

2(x
c
2) − αcs] + kP′

2(x
c
2 + kxc1)x

c
2 = 0

P2(xc2 + kxc1) + P′
2(x

c
2 + kxc1)x

c
2 − C′

2(x
c
2) − αcs = 0.

If we differentiate this system with respect to cs, we obtain:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dxc1
dcs

[2P′
1 + P′′

1x
c
1 − C′′

1 + dxc2(x
c
1)

dxc1
[P′

2k + kP′′
2x

c
2 + k2P′′

2x
c
2]

+dxc2
dcs

[
kP′′

2x
c
2 + kP′

2 + dxc2(x
c
1)

dxc1
(2P′

2 − C′′
2 + P′′

2x2)
]

= 2α + dxc2(x
c
1)

dxc1
α

dxc1
dcs

[kP′
2 + kP′′

2x
c
2] + dxc2

dcs
[2P′

2 + P′′
2x

c
2 − C′′

2 ] = α

⎡
⎢⎢⎣
dxc1
dcs
dxc2
dcs

⎤
⎥⎥⎦ = 1




⎡
⎢⎢⎣
2P′

2 − C′′
2 −

[
kP′

2 + dxc2(x
c
1)

dxc1
(2P′

2 − C′′
2 )

]

−[kP′
2] 2P′

1 − C′′
1 + dxc2(x

c
1)

dxc1
[P′

2k]

⎤
⎥⎥⎦

⎡
⎣α

[
2 + dxc2(x

c
1)

dxc1

]
α

⎤
⎦

With 
 = [2P′
1 − C′′

1 ][2P
′
2 − C′

2] − [kP′
2]

2 > 0,

we find :

⎧⎪⎪⎨
⎪⎪⎩
dxc1
dcs

= 1


[αP′

2[4 − k] − 2αC′′
2 ] < 0

dxc2
dcs

= α


[2P′(1 − k) − C′′

1 ] < 0.

B.3. Exogenous environmental regulation
Effect of a change in τ1 and τ2
xct1 (cs, τ1, τ2) and xct2 (cs, τ1, τ2) solve:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1(xct1 (cs, τ1, τ2)) + P′
1(x

ct
1 (cs, τ1, τ2))xct1 (cs, τ1, τ2) − C′

1(x
ct
1 (cs, τ1, τ2)) − 2αcs − τ1

+ dxc2
dxc1

[P2(xct2 (cs, τ1, τ2) + kxct1 (cs, τ1, τ2)) + P′
2(x

ct
2 (cs, τ1, τ2)

+ kxct1 (cs, τ1, τ2))xct2 (cs, τ1, τ2) − C′
2(x

ct
2 (cs, τ1, τ2))

−αcs − τ2] + kP′
2(x

ct
2 (cs, τ1, τ2) + kxct1 (cs, τ1, τ2))xct2 (cs, τ1, τ2) = 0

P2(xct2 (cs, τ1, τ2) + kxct1 (cs, τ1, τ2)) + P′
2(x

ct
2 (cs, τ1, τ2) + kxct1 (cs, τ1, τ2))x2

−C′
2(x

ct
2 (cs, τ1, τ2)) − αCs − τ2 = 0.
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If we differentiate this system with respect to τ1 and τ2, we obtain after simplification:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2P′
1
dxct1
dτ1

− C′′
1
dxct1
dτ1

+ dxct2
dxct1

{
P′
2

[
dxct2
dτ1

+ k
dxct1
dτ1

]
+ P′

2
dxct2
dτ1

− C′′
2
dxct2
dτ1

}
+ kP′

2
dxct2
dτ1

= 1

2P′
1
dxct1
dτ2

− C′′
1
dxct1
dτ2

+ dxct2
dxct1

{
P′
2

[
dxct2
dτ2

+ k
dxct1
dτ2

]
+ P′

2
dxct2
dτ2

− C′′
2
dxct2
dτ2

}
+ kP′

2
dxct2
dτ2

= dxct2
dxct1

P′
2

[
dxct2
dτ1

+ k
dxct1
dτ1

]
+ P′

2
dxct2
dτ1

− C′′
2
dxct2
dτ1

= 0

P′
2

[
dxct2
dτ2

+ k
dxct1
dτ2

]
+ P′

2
dxct2
dτ2

− C′′
2
dxct2
dτ2

= 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dxct1
dτ1
dxct2
dτ1
dxct1
dτ2
dxct2
dτ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣
A 0 0 0
0 0 A 0
C D 0 0
0 0 C D

⎤
⎥⎥⎥⎦

−1
⎡
⎢⎢⎢⎢⎢⎣

1
dxct2
dxct1
0
1

⎤
⎥⎥⎥⎥⎥⎦ ,

with: A = 2P′
1 − C′′

1 − (kP′
2)

2

2P′
2−C′′

2
< 0; B = − kP′

2
2P′

2−C′′
2
[2P′

2 − C′′
2 ] + kP′

2 = 0; C = P′
2k < 0;

D = 2P′
2 − C′′

2 < 0.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dxct1
dτ1
dxct2
dτ1
dxct1
dτ2
dxct2
dτ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
A

0 0 0

− C
AD

0
1
D

0

0
1
A

0 0

0 − C
AD

0
1
D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

1
dxct2
dxct1
0
1

⎤
⎥⎥⎥⎥⎥⎦

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxct1
dτ1

= 1
A

= 1

2P′
1 − C′′

1 − (kP′
2)

2

2P′
2 − C′′

2

= dxct2
dτ2

< 0

dxct2
dτ1

= − C
AD

= − P′
2k

2P′
1 − C′′

1 − (kP′
2)

2

2P′
2 − C′′

2

1
[2P′

2 − C′′
2 ]

= dxct1
dτ2

> 0

dxct1
dτ2

= 1
A
dxc2
dxc1

= 1

2P′
1 − C′′

1 − (kP′
2)

2

2P′
2 − C′′

2

(
− kP′

2
2P′

2 − C′′
2

)
= dxct2

dτ1
> 0

dxct2
dτ2

= − C
AD

dxc2
dxc1

+ 1
D

= 1

2P′
1 − C′′

1 − (kP′
2)

2

2P′
2 − C′′

2

= dxct1
dτ1

< 0.
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Total variation of extracted quantities
dxcti = ∂xcti

∂τ1
dτ1 + ∂xcti

∂τ2
dτ2 ≶ 0 depending on dτ1 and dτ2. If dτ1 = dτ2 = dτ > 0, dxi =

dτ
[

∂xcti
∂τ1

+ ∂xcti
∂τ2

]
= dτ

⎡
⎣ 1

2P′
1−C′′

1−
(kP′

2)2

2P′
2−C′′

2

⎤
⎦ [

1 − kP′
2

2P′
2−C′′

2

]
< 0.
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