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To the memory of Paul Erdős

Extremal graph theory has a great number of conjectures concerning the embedding of

large sparse graphs into dense graphs. Szemerédi’s Regularity Lemma is a valuable tool

in finding embeddings of small graphs. The Blow-up Lemma, proved recently by Komlós,

Sárközy and Szemerédi, can be applied to obtain approximate versions of many of the

embedding conjectures. In this paper we review recent developments in the area.

This paper is based on my lectures at the DIMANET Mátraháza Workshop, October

22–28, 1995. On my transparencies, I wrote, ‘For more details see the survey of Komlós–

Simonovits in Paul Erdős is 80 [20]. Solutions to the conjectures mentioned today will be

presented in the Bolyai volume Paul Erdős is 90.’ As you can tell, at that time I expected

EP (who was sitting in the front row) to live to be 90 and more. The loss is obvious to all

of us, and it will certainly deepen further in time.

1. Introduction

Our concern in this paper is how Szemerédi’s Regularity Lemma can be applied to packing

(or embedding) problems. In particular, we discuss a lemma that is a powerful weapon in

proving the existence of embeddings of large sparse graphs into dense graphs.

After a brief passage in which we fix the notation, we start in Section 2 by recalling

some of the fundamental results and conjectures. Section 3 is about the Regularity Lemma

itself; we also demonstrate its power by reconstructing the elegant proof of Ruzsa and

Szemerédi for Roth’s theorem on arithmetic progressions of length 3.

In Section 4 we show how the Regularity Lemma can be applied to embedding a

large sparse graph into a dense graph. We describe a method of constructing such an

embedding in five separate phases; in this way we isolate the application of the Regularity

Lemma from the other issues that typically need to be dealt with.
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Section 5 is about the Blow-up Lemma, a result designed to overcome some of the

unpleasant technical difficulties often arising in applications of Szemerédi’s Regularity

Lemma. The main benefit of the Blow-up Lemma is that in suitable contexts we may

regard sufficiently regular pairs of subsets of vertices as spanning a complete bipartite

subgraph. We will illustrate this principle by a concrete example and mention recent

progress concerning major problems in the area.

Definitions and notation

We will write v(G) for the order of G, Gn for an n-graph (order n), and e(G) for the size

of G, that is, for the number of edges in G; we denote the minimum, the maximum, and

the average degree in G by δ(G),∆(G), and t(G), respectively. Also, deg(v) is the degree

of v, the number of edges incident with v, and deg(v, X) is the number of edges from v

to X. We write χ(G) for the chromatic number of G, and G for the complement of G.

Given a set U of vertices, G|U is the restriction of G to U. As usual, H ⊂ G means that

H is a subgraph of G, or at least that G has a subgraph isomorphic to H; we also say

that H embeds into G, that is, there is a one-to-one map (injection) ϕ : V (H) → V (G)

such that {x, y} ∈ E(H) implies {ϕ(x), ϕ(y)} ∈ E(G). We denote by ‖H → G‖ the number

of (labelled, but not necessarily induced) isomorphic copies of H in G. The graphs

G1 = (V , E1) and G2 = (V , E2) pack (or can be packed) if they can be placed without

overlapping edges. More precisely, they pack if there is a bijection ϕ : V → V such that

{x, y} ∈ E1 implies {ϕ(x), ϕ(y)} 6∈ E2. This is clearly the same as G1 ⊂ G2.

Finally, given a graph R and a positive integer t, let us write R(t) for the graph obtained

by replacing the vertices vi ∈ V (R) by (pairwise disjoint) t-sets Vi and replacing the edges

{vi, vj} ∈ E(R) by complete bipartite graphs between Vi and Vj .

2. Classical embedding results and conjectures

The overall form of all such results is the same: if G1 and G2 are ‘small’ then they pack.

But I will mostly use the embedding language: if H is ‘small’ and G is ‘large’ then H can

be embedded into G. Much of classical extremal graph theory can be stated in these loose

terms and it is the various specific meanings of ‘small’ and ‘large’ in different theorems

that give them different flavours.

Below I give a short list of some classical embedding results and conjectures. This list

is not at all complete and I usually mention only the simplest forms of these results. (For

relevant definitions and more information see Bollobás’s book [7] and Simonovits’s survey

[25].) The list is divided into five categories according to the order of H (the graph to be

embedded) relative to n, the order of the host-graph G:

(1) fixed H

(2) H of order o(n)

(3) medium-size H (i.e., v(H) ≈ cn, 0 < c < 1)

(4) large H (order (1− o(1))n – almost perfect packing)

(5) full-size H (order n – spanning subgraphs).
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2.1. Fixed H

The first theorem here, by Turán in 1941 [28], was the starting point of extremal graph

theory, and the second one, by Erdős and Stone in 1946 [14] and Erdős and Simonovits

in 1966 [12], summarizes its most important feature.

Theorem 1 (Turán [28]). If e(Gn) >
(
1− 1

r−1

)
n2

2
then Kr ⊂ Gn.

Theorem 2 (Erdős, Stone and Simonovits [14, 12]). For every ε > 0 and H there is an n0

such that, if n > n0 and

e(Gn) >

(
1− 1

χ(H)− 1
+ ε

)
n2

2
,

then H ⊂ Gn. In fact, ‖H → Gn‖ > αnv(H), where α = α(H, ε) > 0.

Hence, for the Turán number ex(n,H), one has

lim
n→∞

ex(n,H)(
n
2

) = 1− 1

χ(H)− 1
.

The main message from Theorem 2 is that in extremal graph theory χ(H) is the relevant

quantity. Contrast this to random graph theory, where the critical quantity is the average

degree t(H) or, more precisely, the maximum average degree MAD(H) = maxH ′⊂H t(H ′).
For a fixed H , one needs e(Gn) ∼ c(H)n2−2/MAD(H) to ensure that most n-graphs Gn contain

a subgraph isomorphic to H .

2.2. H of order o(n)

The following two theorems show the tremendous power of the Regularity Lemma in

extremal graph theory. They estimate the Turán and Ramsey numbers for very general

classes of graphs. They are both from the same landmark paper by Chvátal, Rödl,

Szemerédi and Trotter in 1983 [8] (the first one is only implicit in the paper and is quoted

by Alon, Duke, Leffman, Rödl and Yuster [3] as such).

Theorem 3 (Chvátal, Rödl, Szemerédi and Trotter [8]). For every ∆ and c > 0 there is

an α > 0 such that, if e(Gn) > cn2 and H is any bipartite graph of order less than αn and

maximum degree ∆(H) 6 ∆, then H ⊂ Gn.

Theorem 4 (Ramsey numbers of bounded degree graphs are linear [8]). For every ∆ there

is an α > 0 such that, if G is an n-graph and H is any graph of order less than αn and

maximum degree ∆(H) 6 ∆, then H ⊂ G or H ⊂ G. In other words, r(H) 6 c(∆(H))v(H)

for all graphs H .

2.3. Medium-size H

The classical conjectures in this category are about embedding trees. In this subsection,

T denotes trees while G are arbitrary graphs. The greedy algorithm proves the following

trivial claim: δ(G) > e(T ) implies T ⊂ G. A classical conjecture of Erdős and T. Sós from

1963 [13] says that minimum degree here can be replaced by average degree.
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Conjecture 5 (Erdős and Sós [13]). If t(G) > e(T )− 1 then T ⊂ G.

That is, if k-stars are forced, then so are all trees of size k.

(Since the above trivial claim implies that T ⊂ G whenever t(G) > 2e(T ), the conjecture

amounts to gaining a factor 2 in the condition for t(G).)

The following conjecture, on the other hand, is fairly recent.

Conjecture 6 (Loebl [11]). If Gn has at least n/2 vertices of degree at least n/2, then it

contains all trees of size at most n/2.

And here is a generalization by Komlós and T. Sós (see [2]). It says that the average

degree in Conjecture 5 can probably be replaced by the median of the degrees (median

degree, for short). (The number x is a median of the numbers d1, . . . , dn if at least half of

them exceed x and at least half of them do not exceed x.)

Conjecture 7 (Komlós and Sós [2]). A graph G contains all trees of size not exceeding the

median degree of G.

I am not going to discuss these tree conjectures in the rest of the paper.

2.4. Large H

The interpretation of ‘large’ G is different here. Large e(Gn) is no longer sufficient: we

need lower bounds on all degrees.

Theorem 8 (Alon and Yuster [5]). For every ε > 0 and H there is an n0 such that, if

n > n0 and

δ(Gn) >

(
1− 1

χ(H)

)
n,

then Gn contains at least (1− ε)n/|V (H)| vertex-disjoint copies of H .

(Note the change of χ−1 to χ. We want a very large H-factor; for a number between the

two we would still get an H-factor covering a certain positive proportion of the vertices

of Gn.)

The following two easy theorems are about embedding almost spanning trees, cycles

and paths. For stronger statements see the next subsection.

Theorem 9. For every ε > 0 there are α > 0 and n0 such that, if n > n0, δ(Gn) >
1
2
n, and

T is a tree with e(T ) < (1− ε)n and ∆(T ) < αn, then T ⊂ Gn.

Theorem 10. For every ε > 0 there is an n0 such that, if n > n0, δ(Gn) >
2
3
n, |V (H)| <

(1− ε)n, and ∆(H) 6 2, then H ⊂ Gn.

2.5. Full-size H

This is certainly the most interesting and hardest class.
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Table 1

Powers of a cycle Bounded degree trees Bounded degree graphs

If δ(Gn) > n/2 If δ(Gn) > (n− 1)/2 If δ(Gn) > (n− 1)/2

then Gn contains then Gn contains then Gn contains

a Hamiltonian cycle a Hamiltonian path a ‘perfect’ matching

Pósa & Seymour (Conjecture 11) Bollobás (Conjecture 12) Hajnal & Szemerédi (Theorem 13)

Bollobás & Eldridge (Conjecture 14)

Alon & Yuster (Conjecture 15)

The mother of all full-size packing problems is Dirac’s theorem of 1952 [10]. Here are

various forms and problems that can be considered their generalizations. In Table 1 we

arrange them in tabular form: the column headers indicate the main feature of the graph

H to be embedded. Below, we state them one by one.

Conjecture 11 (Pósa and Seymour [24]). If δ(Gn) >
r
r+1
n, then Gn contains the rth power

of a Hamiltonian cycle. (This would actually imply Theorem 13 below.)

Conjecture 12 (Bollobás [7]). For every ε > 0 and ∆ there is an n0 such that, if n > n0,

δ(Gn) > ( 1
2

+ ε)n, and T is a tree of order n with maximum degree ∆(T ) 6 ∆, then T ⊂ Gn.

The following beautiful (and hard!) classical theorem is one of the main tools in

embedding algorithms. (The original formulation was about colouring. The case r = 3

was solved by Corrádi and Hajnal [9].)

Theorem 13 (Hajnal and Szemerédi [15]). If δ(Gn) > (1 − 1
r
)n, then Gn contains bn/rc

vertex-disjoint copies of Kr .

Theorem 13 would follow from the following very hard packing conjecture.

Conjecture 14 (Bollobás and Eldridge [7]). If v(G1) = v(G2) = n and

(∆(G1) + 1)(∆(G2) + 1) 6 n+ 1,

then G1 and G2 pack.

(For ∆(G1) = 2, this is about the union of cycles and paths, and was conjectured by

Sauer and Spencer [23], and proved by Aigner and Brandt [1] as well as by Alon and

Fischer [4].)

Theorems 2 and 8 suggest that the chromatic number should be the right quantity, not

the maximum degree. Here is another beautiful conjecture expressing this.
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Conjecture 15 (Alon and Yuster). For every H there are n0 and K such that, if n > n0 and

δ(Gn) >

(
1− 1

χ(H)

)
n, (2.1)

then Gn contains at least (n−K)/|V (H)| vertex-disjoint copies of H .

Alon and Yuster [6] give an approximate solution by showing that, for every ε > 0 and

H , there is an n0 such that, if n > n0,

δ(Gn) >

(
1− 1

χ(H)
+ ε

)
n, and |V (H)| divides n,

then Gn can be perfectly tiled by copies of H .

Remark. The conjecture is false for ε = 0, that is, without the extra term εn. However,

Alon and Yuster conjectured that an extra C = C(H) suffices. In 1990, Erdős and

Faudree conjectured that this latter conjecture is true with C(H) = 0 for the special case

H = C4.

Since chromatic number is the relevant quantity for embedding problems, the following

would be a natural extension of Theorem 8.

Replace ∆(G1)+1 in Conjecture 14 by χ(G1). That is, for every ε > 0, r and ∆ there is an

n0 such that, if v(G1) = v(G2) = n > n0, χ(G1) 6 r, ∆(G1) 6 ∆, and χ(G1)∆(G2) 6 (1− ε)n,
then G1 and G2 pack. Alternatively, in embedding form: if v(H) = v(G) = n > n0,

χ(H) 6 r, ∆(H) 6 ∆, and δ(G) >
(
1− 1

r
+ ε
)
n, then H ⊂ G.

Unfortunately, this is false even for r = 2. Let G be the union of two cliques with only

a little overlap, and H a random bipartite graph (an expander).

Why did it work for copies of H? It may have something to do with band-width. Let

us write w(G) for the band-width of the graph G.

Conjecture 16 (Bollobás and Komlós). For every ε > 0, r and ∆, there are α > 0 and n0 such

that, if v(H) = v(G) = n > n0, χ(H) 6 r, ∆(H) 6 ∆, w(H) < αn, and δ(G) >
(
1− 1

r
+ ε
)
n,

then H ⊂ G.

Another way to sharpen Theorem 8 and Conjecture 15 is to observe that the minimum

degree (1−1/r)n (where r = χ(H)) is necessary only for graphs similar to Kr . For example,

a special case of a famous conjecture of El-Zahar [29] says that when H = Ck (cycle of

length k) the minimum degree needed to get an H-factor in an n-graph is n/2 when k

is even (as it should be) but only (1/2 + 1/(2k))n when k is odd, rather than (2/3)n as

in Conjecture 15. The question naturally arises as to what quantity χ′ can replace χ in

(2.1).

An obvious obstruction is that one cannot embed a graph H into a graph Gn of lower

chromatic number. That is, we certainly cannot replace r = χ in (2.1) with anything less

than χ − 1, as the example of Gn = Kr−1(n/(r − 1)) shows, but there may be room for

improvement between χ and χ− 1.
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Here is a more subtle obstruction. For an r-chromatic graph H , let us define the

i-independence number αi as the maximum possible sum of i colour-class sizes in any

r-colouring of H , and the i-chromatic number as

χi(H) = i
v(H)

αi(H)
.

(Thus, χi > i for i < χ and χi = i for i > χ.)
Now, let Gn be a complete r-partite graph with the following colour-class sizes (n is

large): i classes of size greater than n/χi each, and one left-over class (of size less than

n(1 − i/χi)). Then, clearly, H 6⊂ Gn. Thus, one could attempt to replace χ in (2.1) by the

largest of the numbers χi, i < χ. But it is easy to see that

v(H)

α(H)
6 χ1 6 χ2 6 . . . 6 χr = χ(H),

and thus χr−1 is the largest one. Hence I suggest the following quantity:

χ′(H) = (χ(H)− 1)v(H)/α′(H), (2.2)

where α′ is the maximum possible sum of χ(H)− 1 colour-class sizes in any colouring of

H with χ(H) colours. (It is easy to see that χ− 1 < χ′ 6 χ, and χ′ = χ = r can hold only

for graphs in which every r-colouring has equal colour-sizes.) In other words, I propose

the following conjecture.

Conjecture 17. For every H there is a K such that, if

δ(Gn) >

(
1− 1

χ′(H)

)
n, (2.3)

then Gn contains an H-factor covering all but at most K vertices.

The above example shows that the conjecture – if true – is best possible for any H .

All the above were about two types of H: bounded degree graphs (fixed H , or the union

of its copies, powers of a Hamilton cycle, etc.) and trees (forests) (with degrees up to αn).

In the rest of the paper I’ll concentrate on bounded degree subgraphs.

3. The Regularity Lemma

In a bipartite graph G = (A,B, E) (A and B are the colour classes), the density is defined as

d(A,B) =
e(A,B)

|A| · |B| .
We say that G = (A,B, E) is an ε-regular pair (or more often we say that (A,B) is an

ε-regular pair) if

X ⊂ A, |X| > ε|A|, Y ⊂ B, |Y | > ε|B| imply |d(X,Y )− d(A,B)| < ε.

We say that G = (A,B, E) is an (ε, δ)-super-regular pair if

X ⊂ A, |X| > ε|A|, Y ⊂ B, |Y | > ε|B| imply e(X,Y ) > δ|X||Y |;
furthermore, deg(a) > δ|B| for all a ∈ A, and deg(b) > δ|A| for all b ∈ B.
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The following fact is the most important property of regular pairs.

Fact. (Most degrees into a large set are large) Let (A,B) be an ε-regular pair with

density d. Then (with δ = d− ε), for any Y ⊂ B, |Y | > ε|B|,
#{x ∈ A : deg(x, Y ) 6 δ|Y |} 6 ε|A|.

Naturally, a similar bound holds for the number of vertices x with deg(x, Y ) > (d+ε)|Y |.
In particular, most pairs of vertices in A have about the right number of common

neighbours (about d2|B|) and the same holds for B. This latter property turns out to

be equivalent to regularity ([26] on pseudo-random graphs). That is, the property that a

bipartite graph is a regular pair is equivalent to its bipartite adjacency matrix being close

to the sum of an orthogonal matrix and a constant matrix.

An ε-regular pair of density d nicely imitates random bipartite graphs, provided ε is

small enough in terms of d (often ε 6 d/2 is enough). Let me list a few such random-

like properties in an informal way: all small trees are subgraphs; all small bipartite

graphs of bounded degree are subgraphs; large chunks of a regular pair are regular; an

(ε, δ)-super-regular pair (with ε small enough) has diameter at most 4.

Now, Szemerédi’s Regularity Lemma (Theorem 18 below) says that every (dense) graph

is the union of a small number of regular pairs plus a little noise.

Theorem 18 (Regularity Lemma [27]). For every ε > 0 and m there are M and n0 with

the following property: for every graph G = (V , E) with n > n0 vertices there is a partition

of the vertex set into k + 1 classes (clusters)

V = V0 + V1 + V2 + . . .+ Vk,

such that

• m 6 k 6M
• |V1| = |V2| = . . . = |Vk|
• |V0| < εn

• all but at most εk2 of the pairs {Vi, Vj} are ε-regular.

This is not a very transparent theorem, but it grows on you with time. The following is

a simple consequence.

Theorem 19 (Regularity Lemma: degree form). For every ε > 0 there is an M = M(ε)

such that, if G = (V , E) is any graph and d ∈ [0, 1] is any real number, then there is

a partition of the vertex set V into k + 1 clusters V0, V1, . . . , Vk , and there is a subgraph

G′ ⊂ G with the following properties:

• k 6M
• |V0| 6 ε|V |
• all clusters Vi, i > 1, are of the same size N 6 dε|V |e
• degG′(v) > degG(v)− (d+ ε)|V | for all v ∈ V
• for each i > 1, G′|Vi is empty

• all pairs G′|Vi×Vj (1 6 i < j 6 k) are ε-regular, each with a density either 0 or exceeding d.
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A graph, such as G′′ = G′|V−V0
, satisfying the last two properties will be called pure.

The reduced graph

Given an ε-regular partition and a number d > 0, we define the reduced graph R on

{V1, V2, . . . , Vk} by connecting Vi and Vj if (Vi, Vj) is an ε-regular pair with density > d.

The graph R reflects many properties of G. For instance, R contains a triangle if and

only if G contains many of them (cn3). For much stronger properties see the Key Lemma

and the Blow-up Lemma later.

For the graph G′′ in the degree form , Vi and Vj are adjacent in the reduced graph if

and only if there are any edges of G′′ between them. But then, automatically, there are

many (dN2 = cn2) edges of G′′ between them, since the density d(Vi, Vj) > d. Here is a

beautiful illustration of this.

Theorem 20 (Roth [21]). Every subset of Z of positive density contains an arithmetic

progression of three terms.

Roth’s original proof uses Fourier analysis. Here is an elegant proof by Ruzsa and

Szemerédi from 1976 (see [22]), based on the Regularity Lemma.

Proof. Let R = r3(n), and let (1 6)a1 < a2 < · · · < aR(6 n) be a maximum length

sequence without a three-term arithmetic progression. Define a bipartite graph G = G5n =

(A,B, E) as follows. A = [2n], B = [3n] and

E ⊂ A× B, E = {(x+ ai, x+ 2ai) : x ∈ [n], i ∈ [R]}.
G5n is the union of the n matchings

Mx = {(x+ ai, x+ 2ai) : i ∈ [R]}.
We say that a subgraph H ⊂ G is induced in G if the restriction of G to V (H) equals H .

Claim. The matchings Mx are induced in G.

Here we sketch two different ways to see this.

Geometrically: if we had a ‘cross-edge’, the slopes would form an arithmetic progression.

Algebraically: x + 2ai = y + 2ak and x + aj = y + ak would imply 2ai − aj = ak , an

arithmetic progression.

Now the main tool for proving Theorem 20 is the following result.

Theorem 21 (Induced matchings). If Gn is the union of n induced matchings, then

e(Gn) = o(n2).

Now this indeed proves Theorem 20, since we have Rn = e(G5n) < 2ε(5n)2 + nε(5n)

provided 5n > 2M(ε)/ε2. Hence, R = r3(n) < 55εn.

Theorem 21, in turn, is a corollary of the next lemma (used with d = 2ε).
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Lemma 22. Let Gn be pure with parameters ε, d, write β = d− ε, and assume N > 1/(βε)

(which is certainly satisfied if n > 2M(ε)/(βε)). If IM is an induced matching in Gn, then

|IM| 6 εn.

Proof. Write U = V (IM) for the vertex set of IM, and Ui = U∩Vi. Define I = {i : |Ui| >
ε|Vi|}, and set L = ∪i∈IUi and S = U \ L. Clearly |S | 6 εn. Hence, if we had |U| > 2εn,

then we would have |L| > |U|/2, and thus there would exist two vertices u, v ∈ L adjacent

in IM. Let u ∈ Vi and v ∈ Vj . We would thus have an edge between Vi and Vj , and hence,

by purity, a density more than β + ε between them. The sets Ui and Uj , being of size

larger than εN each, would have a density more than β between them. This means more

than β|Ui||Uj | > min{|Ui|, |Uj |} edges, a contradiction with IM being induced.

4. General framework for embedding H into G

A typical embedding procedure using the Regularity Lemma has several distinct phases:

the last one is our main focus here.

(A) Prepare H

(B) Prepare G

(C) Assignment

(D) Making connections

(E) Piecewise embedding

Here are these five steps in more detail. We will use Alon and Yuster’s proof of Theorem 8

to illustrate this structure. Since our notation H may be confused with the H there, we

will use H for the whole graph to be embedded, so that in the Alon and Yuster example

H is a vertex-disjoint union of copies of a fixed graph F .

(A) Prepare H . That is, chop it into (a constant number of) small pieces. Since H in

Theorem 8 is a union of cn copies of F , the subdivision here is simply grouping them into

clusters of εn copies.

(B) Prepare G. This has a number of steps, as follows.

(B1) Apply the Regularity Lemma to G.

(B2) Clean up the ‘noise’ to make it pure (that is, apply the degree form of the Regularity

Lemma – degrees don’t drop much), and define the reduced graph R.

We often need the following step.

(B3) Select a large (or perfect) matching in R (using standard matching theory)

or, in general, a large Kr-factor (using Theorem 13).

In the example, we use r = χ(F), since every graph of chromatic number r is a subgraph

of Kr(`) for some `. In fact, the union of r vertex-disjoint copies of F is a spanning

subgraph of Kr(`) with ` = v(F). Since there is a slack ε in Theorem 8, the degrees in the

reduced graph R are still over (1− 1/r)v(R), so Theorem 13 can be applied.
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(B4) Also, we sometimes move some vertices around to change some of the cluster sizes

a little to match in size those of the small pieces of H , and/or to make some of the

regular pairs super-regular.

For steps (B3) and (B4), the following trivial lemma is usually sufficient. If δ(Gn) >(
1− 1

r
+ ε
)
n (where n is large), then G contains a tiling with super-regular r-cliques with

only a constant number of left-over vertices. In the example, we have to make all cluster

sizes divisible by v(F), which can be achieved by discarding a constant number of vertices.

In the much harder cases of full-size H and with no slack in the degree conditions,

we need a structural lemma that guarantees a Hajnal–Szemerédi structure in the reduced

graph even under the weaker condition δ(Gn) >
(
1− 1

r

)
n unless Gn is very special. This

is not the topic of the present paper so we only give an illustration here for the case

r = 2 (for larger r it is too technical to spell out). A ‘special’ graph is an almost complete

bipartite graph plus some left-over vertices; more precisely, a graph G = (V , E), |V | = n,

such that V contains two disjoint subsets A and B with

(1) |A|, |B| > (1− ε)n/2
(2) deg(a, B) > (1− ε)|B| for all a ∈ A and the same for B.

For such special graphs, the theorems have to be proved directly.

(C) Assignment. An assignment is a map

ψ : V (H)→ {V1, . . . , Vk},
such that

|ψ−1(Vi)| 6 |Vi| for all i, and

{x, y} ∈ E(H)⇒ {ψ(x), ψ(y)} ∈ E(R)

In other words, we need to find an embedding ϕ : V (H)→ V (G) of H into the closure

Gc of G, where Gc is defined by replacing, for all i < j, the regular pair between Vi and

Vj by the complete bipartite graph between Vi and Vj .

(This is the step in which we formally assign the small pieces of H to those of G.) This

step is often just a simple problem about integers. In our example, we just assign vertices

of the colour classes of Kr(`) to corresponding clusters in some regular r-cliques of G.

(D) Making connections. That is, make the necessary connections between the (constant

number of) pieces of G. This step is often easy, but sometimes tricky or even very hard.

Blissfully, H in the Alon and Yuster example is disconnected, and this step is missing.

The example of embedding small powers of a Hamilton cycle is more typical. Here the

small pieces are obtained by chopping the base cycle into a constant number of intervals,

and there are a few edges going across these pieces. (See the remarks about band-width

above, especially in Conjecture 16.)

(E) Embedding individual pieces. In principle, the whole embedding procedure is about

finding an injection

ϕ : V (H)→ V (G)
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such that

ϕ(x) ∈ ψ(x) (ϕ is compatible with ψ)

{x, y} ∈ E(H)⇒ {ϕ(x), ϕ(y)} ∈ E(G) (embedding).

But we usually do it piece by piece, and this phase is about embedding the small parts

H̃i of H into the corresponding parts G̃i of G. This is typically the hardest part, and the

rest of the paper is only about embedding the small pieces H̃ into the small parts G̃.

5. The Blow-up Lemma

The classical papers using the Regularity Lemma have some unpleasant technical details

that seem to recur again and again. A close inspection of those proofs makes it possible

to distil the essence of those computations. Indeed, all the quoted packing theorems about

bounded degree H that did not involve ‘full-size packing’ (meaning |V (H)| = |V (G)|)
can be described as follows: first the Regularity Lemma is applied, then some kind of

matching theorem is used for the reduced graph (this is often Theorem 13), and then the

following simple lemma completes the proof.

Lemma 23 (Key Lemma). Given δ, ε > 0, a graph R, and a positive integer N, let us

construct a graph G by replacing every vertex of R by N vertices, and replacing the edges of

R with ε-regular pairs of density > δ+ε (possibly different pairs for different edges). Let H

be a subgraph of R(t) with h vertices and maximum degree ∆ > 0, and let ε0 = δ∆/(2 + ∆).

If ε 6 ε0 and t− 1 6 ε0N then H ⊂ G. In fact,

‖H → G‖ > (ε0N)h.

Remark. Note that |V (R)| hasn’t played any role here.

Using the fact that a large chunk of a regular pair is still regular (and changing ε0), it

is easy to replace the condition H ⊂ R(ε0N) with the assumptions that

(∗) H ⊂ R((1− ε0)N)

(∗∗) every component of H is smaller than ε0N.

Typically, R is a complete graph of fixed order (e.g. a triangle).

While this is not very deep, it makes proofs short and transparent (and hence it’s a

great educational tool). Let us illuminate this by describing the main structure of a few

classical proofs phrased in terms of the Key Lemma.

Example 1: Theorem 3.

(a) Apply the Regularity Lemma.

(b) Find a regular edge with a density greater than c.

(c) Apply the Key Lemma.

Remark. One can find much larger regular edges (about ne−1/c) than those provided by

the Regularity Lemma.
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Example 2: Theorem 4.

(a) Apply the Regularity Lemma.

(b) Two-colour the edges of the reduced graph R according to whether they represent

regular pairs of density less than or more than 1/2 (disregard the few irregular pairs).

Use classical Ramsey theory to find a monochromatic r-clique in R.

(c) Apply the Key Lemma.

Example 3: Theorem 8.

(a) Apply the Regularity Lemma.

(b) Apply Theorem 13 to find a covering with regular r-cliques.

(c) Apply the Key Lemma (the union of many disjoint copies of a fixed graph is a

bounded degree graph).

The only use of the Key Lemma is to make classical proofs more compact. However, if

we could get rid of the strong restrictions (∗) and (∗∗), we would have a strong new tool

at hand. We describe this tool – the Blow-up Lemma – later, but first here is the proof of

the Key Lemma.

Proof. We prove the following more general estimate.

If t− 1 6 (δ∆ − ∆ε)N then ‖H → G‖ > [(δ∆ − ∆ε)N − (t− 1)
]h
. (5.1)

We embed the vertices v1, . . . , vh of H into G by picking them one by one. For each vj not

yet picked, we keep track of an ever-shrinking set Cij that vj is confined to, and we only

make a final choice for the location of vj at time j. At time 0, C0j is the full N-set that

vj is a priori restricted to in the natural way. Hence |C0j | = N for all j. The algorithm at

time i > 1 consists of two steps.

Step 1: picking vi. We pick a vertex vi ∈ Ci−1,i such that

degG(vi, Ci−1,j) > δ|Ci−1,j | for all j > i, {vi, vj} ∈ E(H). (5.2)

Step 2: updating the Cjs. We set, for each j > i,

Cij =

{
Ci−1,j ∩N(vi) if {vi, vj} ∈ E(H),

Ci−1,j otherwise.

For i < j, let dij = #{` ∈ [i] : {v`, vj} ∈ E(H)}.

Fact. If dij > 0 then |Cij | > δdijN. (If dij = 0 then |Cij | = N.)

Thus, for all i < j, |Cij | > δ∆N > εN, and hence, when choosing the exact location of

vi, all but at most ∆εN vertices of Ci−1,i satisfy (5.2). At most t − 1 of them have been

used up before (and this is the pessimistic step here!) and consequently, we have at least

|Ci−1,i| − ∆εN − (t− 1) > (δ∆ − ∆ε)N − (t− 1)

free choices for vi, proving the claim.
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The interesting (and hard) problems don’t have the above-mentioned two properties:

(∗) small components of H

(∗∗) slack: |V (H)| < (1− ε)|V (G)|.
The following strengthening is a powerful general tool for embedding bounded degree

graphs (and often trees, too).

Lemma 24 (Blow-up Lemma: short form). Given δ, ε > 0, a graph R, and a positive

integer N, let us construct a graph G by replacing every vertex of R by N vertices, and

replacing the edges of R with (ε, δ)-super-regular pairs. Let H be a subgraph of R(N) with

maximum degree ∆ > 0. If ε 6 ε0(δ,∆) then H ⊂ G.

Lemma 25 (Blow-up Lemma: full form [18, 19]). Given a graph R of order r and positive

parameters δ,∆, there exists a positive ε = ε(δ,∆, r) such that the following holds. Let

n1, n2, . . . , nr be arbitrary positive integers and let us replace the vertices v1, v2, . . . , vr of R

with pairwise disjoint sets V1, V2, . . . , Vr of sizes n1, n2, . . . , nr (blowing up). We construct two

graphs on the same vertex set V = ∪Vi. The first graph R is obtained by replacing each

edge {vi, vj} of R with the complete bipartite graph between the corresponding vertex sets

Vi and Vj . A sparser graph G is constructed by replacing each edge {vi, vj} with an (ε, δ)-

super-regular pair between Vi and Vj . If a graph H with ∆(H) 6 ∆ is embeddable into R

then it is already embeddable into G.

In short, regular pairs behave like complete bipartite graphs from the point of view of

bounded degree subgraphs.

Example: the Hajnal–Szemerédi set-up. Let R = Kr and G a regular r-clique: that is,

let the vertex set of G consist of r disjoint sets of size (arbitrary) N each, with (ε, δ)-

super-regular connections between any two (where ε 6 ε0(r, δ)). Then G contains N

vertex-disjoint Krs. (Note that arbitrarily small (but fixed) densities δ are sufficient: we

don’t need large degrees as in Theorem 13.)

The Blow-up Lemma is not easy to prove. It can be proved by using a probabilistic

version of the greedy algorithm used above for proving the Key Lemma, but the execution

is technically complicated. For a full proof see [18]; for an algorithmic version see [19].

Remark. When using the Blow-up Lemma, we usually need the following strengthened

version. Given c > 0, there are positive numbers ε = ε(δ,∆, r, c) and α = α(δ,∆, r, c), such

that the Blow-up Lemma in the equal-size case (all |Vi| are the same) remains true if, for

every i, there are certain vertices x to be embedded into Vi whose images are a priori

restricted to certain sets Cx ⊂ Vi provided that

(i) each Cx within a Vi is of size at least c|Vi|
(ii) the number of such restrictions within a Vi is not more than α|Vi|.

Remark. The condition that H is of bounded degree can be relaxed to p-arrangeability.
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Some classical full-size embedding results easily follow from the Blow-up Lemma. Here

are some recent results using (certain preliminary versions of) the Blow-up Lemma:

• a proof of Bollobás’s conjecture (Conjecture 12) appears in [16] (actually, the bounded

degree condition can be changed to degrees at most cn/ log n)

• a proof of an approximate version of Seymour’s conjecture (Conjecture 11) appears in

[17] (that of Pósa was proved earlier, in 1994, by Fan and Kierstead).

Here are some even more recent results using the Blow-up Lemma (all by Komlós, Sárközy

and Szemerédi):

• a proof of Pósa’s conjecture (for large n)

• a proof of Seymour’s conjecture (for fixed r and large n)

• a proof of Alon and Yuster’s conjecture (Conjecture 15).

We hope to get an approximate version of Conjecture 14 (Bollobás and Eldridge) and

Conjecture 16 (Bollobás and Komlós).
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