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An isolated logarithmic layer
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To isolate the multiscale dynamics of the logarithmic layer of wall-bounded turbulent
flows, a novel numerical experiment is conducted in which the mean tangential Reynolds
stress is eliminated except in a subregion corresponding to the typical location of
the logarithmic layer in channels. Various statistical comparisons against channel flow
databases show that, despite some differences, this modified flow system reproduces the
kinematics and dynamics of natural logarithmic layers well, even in the absence of a
buffer and an outer zone. This supports the previous idea that the logarithmic layer has
its own autonomous dynamics. In particular, the results suggest that the mean velocity
gradient and the wall-parallel scale of the largest eddies are determined by the height
of the tallest momentum-transferring motions, which implies that the very large-scale
motions of wall-bounded flows are not an intrinsic part of the logarithmic-layer dynamics.
Using a similar set-up, an isolated layer with a constant total stress, which represents the
logarithmic layer without a driving force, is simulated and examined.

Key words: turbulent boundary layers, shear layer turbulence

1. Introduction

Owing to their abundance in scientific and engineering applications, wall-bounded flows
have been a key area in turbulence research. Initially, the focus centred on the near-wall
region owing to its direct relation to the generation of skin friction. Over the last couple
of decades, however, the focus has shifted towards the logarithmic layer, partly because
advancements in experimental technique and numerical computing have enabled access to
flow databases with a sufficiently resolved logarithmic layer. Yet, a more fundamental
reason for the interest in the logarithmic layer is that it is of great importance in the
large-scale applications of high-Reynolds-number wall-bounded turbulence (such as large
transportation devices). For instance, the amount of bulk turbulent kinetic energy (TKE)
production and dissipation within the logarithmic layer (Marusic, Mathis & Hutchins 2010;
Jiménez 2018) and the contributions to the skin friction from the flow structures residing
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in the logarithmic layer (de Giovanetti, Hwang & Choi 2016) both increase with increasing
Reynolds number.

One way of investigating the intrinsic dynamics of a particular subregion of the flow
is to isolate it from the rest of the flow. In wall-bounded turbulence, one of the prime
examples is the minimal flow unit of Jiménez & Moin (1991). They were able to isolate a
quasi-cyclic sequence of a single set of flow structures in the buffer layer by systematically
restricting the simulation domain, which shed light on its intrinsic dynamics. Flores &
Jiménez (2010) extended this approach to the logarithmic layer and identified a series of
restricted minimal domains in which turbulence characteristics are well-replicated up to a
wall-normal distance proportional to the spanwise domain size. They used them to study
the characteristics of a hierarchy of the minimal logarithmic layer structures without an
influence from the large-scale outer layer motions. Later, Hwang (2015) combined this
method with an overdamped large eddy simulation (LES) (use of an intentionally elevated
value of eddy viscosity to damp out the small-scale motions; see Hwang & Cossu 2010)
to isolate flow structures of a given step in the hierarchy. Based on this experiment, he
concluded that the flow structures at each hierarchy can sustain themselves. However,
there is still a question of whether overdamping simply filters out the small-scale motions
(without affecting the large-scale motions) or modifies the dynamics of the whole flow by
effectively reducing the Reynolds number (Feldmann & Avila 2018).

Whereas the previous examples attempt to isolate structures of certain sizes or
locations, the study of statistically stationary homogeneous shear turbulence (SSHST)
takes the different approach of isolating a particular element of the logarithmic layer,
namely the shear. Unlike experimental homogeneous shear flows, where the size of the
structures grows indefinitely, a statistically stationary state is achieved numerically by
using a limited spanwise flow domain (e.g. Pumir 1996; Sekimoto, Dong & Jiménez
2016). This flow setup lacks near-wall dynamics, and is hence suitable for investigating
the isolated effect of the mean shear on the flow dynamics. Dong et al. (2017)
conducted an extensive study of the coherent structures in SSHST, and concluded that
its structures are essentially symmetrised and unconstrained (by the wall) versions of the
structures in turbulent channels, which suggests that the shear is the main ingredient
of the coherent structure dynamics in the logarithmic layer. However, SSHST is still
not equivalent to the logarithmic layer because it cannot replicate the wall-normal
dependence of the characteristic length scale or the inhomogeneity along the wall-normal
direction.

In this regard, a closer reproduction of the logarithmic layer is the numerical experiment
by Mizuno & Jiménez (2013) where the buffer layer (as well as the wall itself) was
removed and substituted by an off-wall boundary condition. They introduced the scale
variation along the wall-normal direction by using a rescaled interior plane as the off-wall
boundary (without the rescaling, the resulting flow was very similar to SSHST). Their
numerical experiment reproduced many characteristics of the natural logarithmic layer,
albeit not perfectly. For example, a spurious ‘buffer layer’ formed near the off-wall
boundary owing to the formation of small-scale vortices caused by the incoherence
between the off-wall boundary and the adjacent flow. Alternatively, Lozano-Durán & Bae
(2019) achieved the same objective by using slip and permeable boundary conditions.
This experiment reproduces the outer layer dynamics of the no-slip channel well but only
does so above some adaptation height, which is of the order of the slip length applied for
the boundary conditions. In combination with that, Bae & Lozano-Durán (2019) used a
minimal spanwise domain to remove the large-scale outer layer structures to isolate the
logarithmic layer.
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An isolated logarithmic layer

All the aforementioned studies were successful at replicating or isolating certain features
of the logarithmic layer, but also had some drawbacks which made them incompatible
with the natural flow. In the previous attempts to isolate the logarithmic layer of turbulent
channel flows, there have been numerous strategies for removing the buffer layer dynamics.
However, to the best of the authors’ knowledge, the removal of the outer layer large-scale
structures has relied almost exclusively on the use of a minimal spanwise domain. In
this work, an alternative strategy is employed to remove the large-scale outer motions by
modifying the driving force of the flow. It has an advantage that the large-scale structures
are removed without artificially saturating their wall-parallel growth. This method is
somewhat similar to the method of Jiménez & Pinelli (1999) where they introduced an
explicit damping term in the evolution equations of the flow above the buffer layer to
remove the outer layer motions. The resulting flow had a laminar outer flow while the
undisturbed part of the flow displayed similar behaviour to the near-wall turbulence,
although some of the flow statistics were altered. However, in the present work, the
evolution equations of the flow are not modified except by the body force. Therefore,
this investigation aims to isolate the logarithmic layer of turbulent channel flows with a
minimal disturbance to its essential dynamics.

As in most of the examples just mentioned, the system that we analyse here is only an
approximation to the canonical logarithmic layer. As in those cases, it is best understood
as an example of the ‘thought experiments’ that have been a mainstay of physics for a
long time. The system is intended to represent the logarithmic layer in the same sense
that point masses are often used to represent planets. In all these cases, it is equally
important to recognise which features are retained by the approximation and which are
not. We show in the following that some properties that could be expected to depend on
the near-wall region (e.g.the self-similar hierarchy of attached eddies) are well-reproduced
by our approximation, even if that region is missing from our model. However, properties
linked to the outer flow are not well-reproduced, and this will be used to explain the
origin of some of the features observed in true logarithmic layers. It is also important
to emphasise that the logarithmic layer requires a theory that cannot simply be provided
by increasing the Reynolds number of the simulations. In intermediate asymptotic ranges,
such as the logarithmic layer or the inertial range of isotropic turbulence, the theory for
the self-similar regime requires being able to separate its dynamics from the details of its
interactions with the inner and outer limits (Barenblatt 1996). Nonetheless, those details
are often important in themselves. For example, the interaction of the logarithmic layer
with the near-wall layer is key to formulating correct boundary conditions for large-eddy
simulations (Jiménez & Moser 2000), whereas the interaction with the outer flow is
required to understand why and how properties such as the turbulence intensities depend
on the Reynolds number (Hutchins & Marusic 2007).

The organisation of this paper is the following. § 2 outlines the details of the numerical
experiments and § 3 assesses the quality of the isolated logarithmic layer. Finally, the major
findings of this paper are discussed in § 4 with the conclusions presented in § 5.

2. Numerical experiment

For this investigation, turbulent flow between two parallel plates, separated by the distance
2h, was simulated at a nominal Reτ = hUτ /ν = 2000, where ν is the kinematic viscosity
of the fluid and Uτ is the friction velocity. Periodic boundary conditions were used
along the wall-parallel directions and no-slip and impermeable boundary conditions
were applied at both walls. Throughout the paper, the streamwise, wall-normal and
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spanwise coordinates are denoted by x, y and z, respectively, and the corresponding
velocity components by U, V and W. The y-dependent ensemble-averaged quantities are
represented by an overline, whereas lowercase velocity variables indicate fluctuations with
respect to this average (e.g. U = Ū + u). A ‘+’ superscript indicates normalisation by
the viscous scale ν/Uτ for length and by Uτ for velocity. The domain length in x and z
are Lx = 2πh and Lz = πh, respectively, to make sure that the entire flow domain is not
minimal in the wall-parallel directions (Flores & Jiménez 2010). The flow was simulated
via LES with a static Smagorinsky sub-grid scale (SGS) model (Smargorinsky 1963). The
Smagorinsky constant was chosen to be Cs = 0.1, and the statistics of the LES compared
well with a direct numerical simulation (DNS) database at the same Reynolds number.
The computational algorithm and the numerical code were taken from those employed
in Vela-Martín et al. (2019), but adapted for LES. The code solves the wall-normal
vorticity and the Laplacian of v formulation of the Navier–Stokes equations (Kim,
Moin & Moser 1987). Along the wall-parallel directions, the equations were projected
onto Fourier basis functions along a uniform mesh. A non-uniform mesh was used in
the wall-normal direction to account for the inhomogeneity in that direction, and the
wall-normal gradients were computed by using seven-point compact finite differences with
spectral-like resolution (Lele 1992). For temporal integration, a low-storage semi-implicit
third-order Runge–Kutta scheme was used (Spalart, Moser & Rogers 1991).

Because the purpose of the current experiment is to isolate the dynamics of the
logarithmic layer, it has to adequately resolve the energy-containing motions in that region.
For this purpose, a DNS database of channel flow at the comparable Reτ (Hoyas & Jiménez
2006, hereafter referred to as HJ06) was examined as a benchmark, and it was found that
more than 95 % of the total turbulent kinetic energy, k = (u2 + v2 + w2)/2 was contained
within motions whose streamwise and spanwise wavelengths were larger than 74 viscous
length units for y+ > 100. Therefore, the nominal grid spacings in x and z were chosen
to be Δx+ = Δz+ � 37, after de-aliasing. In the wall-normal direction, the grid was
defined by a hyperbolic tangent stretch function such that the nth grid location is given
by yn/h = tanh[3(n − 1)/511 − 3/2]/ tanh(3/2) + 1 for n = 1, 2, . . . , 512, between the
lower wall at y = 0 and the upper wall at y = 2h. The parameters of the simulations are
summarised in table 1. Here, Reτ for LW, LWc and LN are given based on Uτ from the
extrapolated total shear stress at the wall to highlight the agreement of the total stress
profile within the linear-stress layer. However, it does not carry the usual meaning of
the ‘Reynolds number’ for the canonical channel flows because the scale separation and
the wall-normal gradient of the total shear stress become independent parameters for our
isolated layers (for the canonical channel flows, they are both related by Reτ ).

To validate this numerical methodology, the base LES (case LB) was first conducted
and compared against HJ06. For this case, a van Driest damping function of the form
D( y+) = [1 − exp(−y+/26)]2 was used on the Smagorinsky eddy viscosity to enforce the
zero SGS stress conditions at the wall. Figure 1 shows the profiles of the mean streamwise
velocity Ū and of the second-order velocity statistics of LB. The primed velocity variables
indicate the root-mean-square (RMS) value. A good agreement was observed between
the statistics of LB and HJ06. Although not shown here for brevity, the one-dimensional
velocity spectra also showed a good agreement. Throughout the paper, further statistical
comparisons will be made where appropriate to demonstrate that our LES code reproduces
well the logarithmic layer of turbulent channel flows.

Several methods were tested to isolate the logarithmic layer by removing the turbulent
fluctuations outside it. The initial strategy was to employ an elevated value of Cs outside
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An isolated logarithmic layer

Case Type Reτ Lx/h Lz/h Δx+ Δz+ Δy+ tUτ /h Line style

LB LES 2002 2π π 37.0 37.0 2.36–13.0 24.2
LW LES 1998 2π π 36.9 36.9 2.35–13.0 27.0
LN LES 2000 2π π 36.9 36.9 2.36–13.0 30.1
LWc LES ∞ 2π π 36.9 36.9 1.57–8.65 29.5
HJ06 DNS 2003 8π 3π Hoyas & Jiménez (2006)

Table 1. Simulation parameters for the numerical experiments and for the reference DNS database. Here, Δ

represents the grid spacing in each direction. The grid spacings in the wall-parallel directions are calculated
after dropping 1/3 of the high-wavenumber modes for de-aliasing. The LES cases include the base case (LB),
the main experiment with a wider logarithmic layer (LW), the supplementary experiment with a narrower
logarithmic layer (LN) and the experiment with a constant stress profile (LWc). For LW, LWc and LN, Uτ is
computed by extrapolating the total shear stress to the wall. For LWc, h is the wall-normal simulation domain.
The next-to-last column shows the total time over which the statistics are gathered, in terms of the large-eddy
turnover time (h/Uτ ).
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Figure 1. (a) Mean streamwise velocity: solid line, LB; dashed line, HJ06. (b) Second-order velocity statistics:
�, u′+; �, v′+; ◦, w′+; �, uv+; solid lines with closed symbols, LB; dashed lines with open symbols,
HJ06.

the logarithmic layer (i.e. overdamped LES; see Hwang & Cossu 2010) and its effect on
the flow was investigated by varying the value of Cs in the usual buffer layer (y+ < 70).
However, with increasing Cs near the wall, it was observed that the spectral signature of the
near-wall cycle gradually moved outwards instead of being eliminated at a fixed location
(see the Appendix).

Hence, instead of damping previously created turbulent fluctuations, an alternative
approach is sought where the necessity of ‘active’ turbulent fluctuations is eliminated
outside the logarithmic layer. This is achieved by setting a prescribed total mean shear
stress (sum of viscous, Reynolds and SGS stresses) profile which drops to zero outside
the nominal logarithmic layer. In practice, this is done by imposing a modified profile of
the body force. This method is found to be effective at eliminating the buffer layer, and
was chosen as our preferred method for isolating the logarithmic layer. The method of
modifying the stress profile also means that the elimination of the outer layer dynamics
can be achieved without relying on the restricted flow domain and hence allows us to
investigate its effects on the large-scale structures, which is not possible in the case
of the minimal logarithmic layer experiments where the large-scale structures are, by
construction, truncated. In fact, the idea is not new. For example, Tuerke & Jiménez (2013)
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Figure 2. Profiles of the mean shear stress. The lines are as indicated in table 1, except for the dashed-dotted
line, τ̄+

xy = 1 − y/h (LW, LWc and LN are presented by red, green and blue colours, respectively). The
linear-stress layer for LW and LWc is indicated by the grey shaded area and that for LN is indicated by the
vertical dotted lines.

simulated turbulent channel flows with a prescribed mean velocity profile to study its
effects on the dynamics of energy containing eddies, and Borrell (2015) applied an extra
body force to model the effects of roughness near the wall. It is also known that a modified
body force can lead to laminarisation of the flow at transitional Reynolds numbers (He,
He & Seddighi 2016; Kühnen et al. 2018). Russo & Luchini (2016) investigated the linear
response of the mean streamwise velocity of turbulent channel flows to a body force, albeit
at low Reynolds number. However, to the best of our knowledge, this method has not been
used for the purpose of isolating a particular subregion of the flow.

Two numerical experiments were performed with different prescribed mean stress
profiles, as shown below and in figure 2,

τ̄xy = U2
τ

4
(1 − y/h) (1 + tanh[βl( y/h − yl/h)]) (1 − tanh[βu( y/h − yu/h)]). (2.1)

This equation is defined for 0 ≤ y ≤ h, but the prescribed stress profile was extended to
the opposite side of the channel using symmetry. The parameters yl and βl control the
location and width of the region where the stress profile decays from its natural value to
zero between the nominal logarithmic layer and the wall. Likewise, yu and βu control the
location and width of the region where the stress profile decays smoothly to zero above the
nominal logarithmic layer. The parameters for the stress profiles for the main experiment
with an isolated logarithmic layer (case LW) and for the supplementary experiment with
a narrower log layer (case LN) are given in table 2. The values of yl, βl, yu and βu are set
empirically.

In addition to the cases of LW and LN, another experiment was performed in which the
prescribed stress profile was constant within the isolated layer. This intended to mimic the
total stress profile in the logarithmic layer as the streamwise pressure gradient vanished.
For this experiment, referred to as LWc, the prescribed stress profile is

τ̄xy = U2
τ

4
(1 + tanh[βl( y/h − yl/h)]) (1 − tanh[βu( y/h − yu/h)]), (2.2)

which only differed from (2.1) by the missing (1 − y/h) factor. The parameters yl, βl, yu
and βu were kept as in LW to study the effect of changing the stress profile independently
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Body force Linear layer

Case Equation yl/h βl yu/h βu ybot/h ytop/h δa/h

LW (2.1) 0.025 120 0.35 20 0.045 0.235 0.449
LWc (2.2) 0.025 120 0.35 20 0.045 0.235 0.466
LN (2.1) 0.025 120 0.15 60 0.045 0.11 0.188

Table 2. Parameters for the prescribed stress profiles. The linear-stress layer is the region where the deviation
from the natural stress profile (τ̄+

xy = 1 − y/h for LW and LN, and τ̄+
xy = 1 for LWc) is below 1 %. Here δa

represents the height of the active stress region where τ̄+
xy > 0.01.

from other factors. In conventional channel flows, the channel centreline provides a natural
symmetry plane for the total stress profile (i.e. τ̄xy = 0). This does not apply to LWc,
where the extrapolated location of zero mean shear stress would be infinitely far from the
wall. Therefore, the upper wall of LWc was replaced by a free-slip impermeable boundary
at y = h (∂u/∂y = ∂w/∂y = 0 and v = 0). Although physically not required, fine grid
spacing is needed near the free-slip wall to numerically enforce the boundary conditions
(in particular, to numerically resolve exponential functions with large exponents for high
wavenumbers). Hence, a different wall-normal grid was used for LWc, such that the nth
grid location is given by yn/h = tanh[3(n − 1)/383 − 3/2]/(2 tanh(3/2)) + 1/2 for n =
1, 2, . . . , 384 for 0 ≤ yn ≤ h. This grid was designed such that the wall-normal spacing
was kept similar to that used for LB, LW and LN within the domain of interest (0.05 �
y/h � 0.2). It should be noted that h simply means the wall-normal domain size for LWc,
not the channel half height.

We defined the ‘linear-stress’, or ‘active’, layer to be the region in which the prescribed
shear-stress profile deviates by less than 1 % from the natural stress profile in channels with
an unmodified body force (i.e. τ̄+

xy = 1 − y/h for LW and LN, and τ̄+
xy = 1 for LWc). While

eddies within this layer could be expected to be ‘most natural’, taller eddies have to exist
up to the level at which some tangential stress must be carried by the flow. We therefore
also introduced a length scale, δa, intended to be indicative of the height of the largest
momentum-transferring eddies, defined as the point at which τ̄+

xy = 0.01 (approximately
1 % of the wall shear stress in the natural channel). The limits ybot < y < ytop of the
linear layer and δa of the active layer are given in table 2. Note that although ytop and δa
are related, they are independent parameters, whose ratio can be changed by modifying
the stress profile. Both will be used below to scale different quantities, but, because
ytop/δa ≈ 0.5–0.6 in all our experiments, it is impossible to say which of the two, if any,
was the most physically relevant scale. However, it follows from the definition of δa that
we can tentatively assign δa = h in unmodified channels.

Within the linear-stress layer, the flow experiences a body force equivalent to that
generated by the mean pressure gradient in a canonical channel, and most of the stress
is carried by the Reynolds stress. For example, the flow in LN and LW has to produce the
same mean momentum flux as in a natural channel at Reτ = 2000, and could therefore
be expected to have the same dynamics as the logarithmic layer in such a channel. For
LWc, no driving body force is present in the linear region, and the flow is maintained by
the localised body forces applied above and below the linear-stress layer. For the actual
numerical computation, the stress profile was enforced by replacing the mean pressure
gradient in the mean streamwise momentum equation with −dτ̄xy/dy. No van Driest
damping was used, because the buffer layer was outside the domain of validity of the
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Figure 3. Instantaneous fields of u for: (a,c,e) LB; (b,d, f ) LW. The wall-parallel planes in (e, f ) are at
y/h = 0.15. The colours range from u = −4Uτ (dark blue) to 4Uτ (dark red).

experiments, and there was no need to reproduce its behaviour. Figure 2 shows the actual
stress profiles for LW, LWc and LN, which followed the prescribed profiles well. For all
the numerical experiments in which the wall shear stress was intentionally modified, the
effective Uτ was estimated by extrapolating the stress in the linear-stress layer to the wall.
This was the velocity scale used for normalisation in table 1.

As a preliminary result and a qualitative comparison, instantaneous snapshots of the
field of u for LB and LW are shown in figure 3. They demonstrate that the turbulent
fluctuations in the centre of the channel were eliminated in LW. This was also true in the
buffer layer, although they were too small to be observed visually. Within the isolated layer,
the turbulent structures were qualitatively similar in both cases, although it is noteworthy
that streaks whose streamwise length was comparable to the streamwise domain were
observed in LB but not in LW. This difference will be further investigated by the spectral
analysis in § 3.2.

3. Assessment of the isolated logarithmic layer

3.1. One-point statistics
In this section, we examine whether the flow in an isolated linear-stress layer can replicate
the characteristics of the natural logarithmic layer by comparing the statistics of the
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Figure 4. (a) Mean streamwise velocity (shifted by 15Uτ for LW, LWc and LN). (b) Mixing length. For LW,
LWc and LN, only the linear shear stress region is shown. The lines are as indicated in table 1 (LB, LW, LWc
and LN are presented by black, red, green and blue colours, respectively). The linear-stress layer for LW and
LWc is indicated by the grey shaded area and that for LN is indicated by vertical dotted lines.

truncated cases, LN and LW, with those of the full channel LB. In addition to that, we
examine the effects of changing the stress profile by comparing case LW with LWc, which
is intended to represent the limiting case of the channel flow without the driving force.
Figure 4(a) shows the profiles of the mean streamwise velocity. Note that because the walls
were outside the domain of validity of the three isolated cases, the no-slip condition did
not provide an absolute velocity reference, and a Galilean offset of the profile is required in
general (Mizuno & Jiménez 2013). In fact, it is clear from the figure that the mean velocity
of the truncated layers vanished below y+ ≈ 60 (and actually became slightly negative).
Much of the effect of the no-slip condition was taken over by the dragging effect of the
body force, and the profiles for LW, LWc and LN needed to be shifted by 15Uτ to be
comparable to the canonical logarithmic layer. The agreement of the mean velocity after
this shift was fair within the active layer, but the velocity gradient became steeper as the
linear-stress layer became narrower. This is further examined in figure 4(b), which tested
the mixing length, lm = Uτ /S, where S = dŪ/dy. For a logarithmic mean velocity, l+m( y+)

is a linear function whose slope is the Kármán constant, but the mixing-length profile of
LW, LWc and LN is not linear, even within the active layer. By comparing wall-bounded
flows with different geometries (with the exception of Ekman layers), Johnstone, Coleman
& Spalart (2010) and Luchini (2017) found that in the logarithmic and outer layers, the
negative streamwise pressure gradient induces a positive shift in the mean streamwise
velocity, and vice versa. In our experiments, the mean streamwise velocity of LWc was
higher than that of LW, which seems to be contradictory to the previous results. However,
a direct comparison was not possible here because a positive shift in the Ū profile of LWc
with respect to LW was caused by the difference in the wall-normal profile of the body
force, rather than by the geometry or pressure gradient. Although the total integrated force
must sum to zero in both LW and LWc, the magnitudes of integrated positive and negative
forces (i.e. the difference between the minimum and maximum τ̄xy) were approximately
5 % larger in LWc, which resulted in a greater amount of mean shear and the positive shift
in Ū.

The difference in the mean velocity was further investigated by comparing the mean
shear profiles of the four LES cases. Figure 5(a) shows that they collapsed poorly
when S was normalised by Uτ and h. However, in our experiments, h did not convey
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Figure 5. Mean shear profile scaled by (a) the channel half height; (b) the width of active stress layer. The
lines are as indicated in table 1 (LB, LW, LWc and LN are presented by black, red, green and blue colours,
respectively). The linear-stress layer for LW and LWc is indicated by the grey shaded area and that for LN is
indicated by vertical dotted lines.

the usual meaning of an outer length scale, because the eddies of height h were
purposely suppressed. Instead, we propose that the alternative length scale, δa, was
more relevant to the physics of the flow, because it represents the height of the tallest
momentum-transferring eddies. Figure 5(b) shows that the profiles collapsed well within
the linear-stress layer when both S and y were normalised with δa, at least up to y � 0.4δa.
It was particularly interesting that the profile of the mean shear scaled with δa even when
the profile of total shear stress (which also represents the driving force) changed within the
active layer, such as between LW and LWc. This suggests that the value of shear within
the logarithmic layer is associated with, or possibly decided by, the size of the largest
active eddies in the flow, and that this size is controlled by δa. Moreover, the fact that the
profiles agree within the active layer, when properly scaled, suggests that the truncated
flows contain a self-similar eddy hierarchy, as in the natural logarithmic layer, although
the range of sizes within the hierarchy may differ.

Figure 6 compares the Reynolds stress profiles of the four LES cases. All the stresses
decayed for y � 2δa, and figure 6(d) shows that the shear stress agreed well within the
active layer for LB, LW and LN, as expected from the design of the experiment. An
important observation was the absence of a buffer-layer u′ peak in LW, LWc and LN,
which suggests that the buffer-layer dynamics had been suppressed. There were some
residual velocity fluctuations below the linear-stress layer, but they were not involved in
the net momentum transfer or in TKE production, because they only carried a negligible
fraction of the tangential Reynolds stress (i.e. they were inactive, see figure 6d). The shape
of the u′ profiles within the linear-stress layer was similar for LB, LW and LN, but their
amplitude decreased as the width of the active layer decreased. The same decreasing trend
was observed for w′ when comparing LW and LN, and we will argue below that both trends
resulted from the attenuation of the large-scale fluctuations by the restricted height of the
active layer. Here, the effects of changing the height of the active layer was solely attributed
to the change in the scale separation within the eddy hierarchy, because LB, LW and LN
shared the same mean shear stress within the linear-stress layer. In contrast, the value of
v′ was slightly higher for LW and LN than for LB. The exact reason for this is not clear,
but the most likely explanation was that an elevated v′ is required to compensate for the
missing tangential Reynolds stress that used to be contributed by the large-scale u-eddies
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Figure 6. Profiles of (a) u′+, (b) v′+, (c) w′+ and (d) −uv+. The lines are as indicated in table 1 (LB, LW,
LWc and LN are presented by black, red, green and blue colours, respectively). The linear-stress layer for LW
and LWc is indicated by the grey shaded area and that for LN is indicated by vertical dotted lines.

that would otherwise have originated above the active region (see figure 3). In the outer
part of the flow, where y ∼ O(δa), the profiles of the truncated simulations collapsed well
when y was scaled with δa (not shown), which indicated that they had similar outer layer
dynamics.

The RMS velocity fluctuations in LWc were stronger than in LW. This was expected,
because previous investigations of channel flows with altered stress profiles (Tuerke &
Jiménez 2013; Lozano-Durán & Bae 2019) have concluded that the magnitude of the
fluctuations within the logarithmic layer scales with the local value of tangential Reynolds
stress, and because the primary role of turbulent fluctuations in the logarithmic layer is
to carry the tangential Reynolds stress required for the transfer of momentum. To check
this, the RMS velocity profiles are shown in figure 7 scaled with the local velocity scale
u∗ = (−uv)1/2. Figure 7(d) confirms that it is indeed true that most of the mean shear
stress was carried by −uv within the linear-stress layer, as in the logarithmic layer of
natural flows. The profiles of LW and LWc now agreed well, but the consistent decrease
with decreasing δa remained, especially for u′/u∗. Note that figure 7 includes profiles from
the DNS channel by del Álamo et al. (2004), whose h+ = 934 is comparable to the δ+

a of
LW and LWc. The three flows agreed reasonably well.

We therefore turned our attention to the effect of δ+
a , and plotted in figure 8 the average

value over 100 < y+ < 200 of the TKEs of the three velocity components as functions
of δ+

a for the different DNS databases and LES experiments. The averaging range was
chosen to be within the active or logarithmic layer in all the datasets included, and we set
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Figure 7. Profiles of (a) u′, (b) v′, (c) w′ and (d) −uv normalised by (a–c) u∗ = (−uv)1/2 and (d) τ̄xy. The
lines are as indicated in table 1 (LB, LW, LWc and LN are presented by black, red, green and blue colours,
respectively). In (a–c), solid lines with triangles are the Reτ = 934 channel by del Álamo et al. (2004). The
linear-stress layer for LW and LWc is indicated by the grey shaded area and that for LN is indicated by vertical
dotted lines. The vertical scale is kept as in figure 6 to facilitate comparison.
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Figure 8. TKE of each velocity component normalised by the local uv averaged over 100 < y+ < 200: �,
u2/−uv; �, v2/−uv; ◦, w2/−uv. Open symbols connected with solid lines represent DNS databases at Reτ =
547 (del Álamo & Jiménez 2003), 934 (del Álamo et al. 2004), 2004 (HJ06), 4179 (Lozano-Durán & Jiménez
2014) and 5181 (Lee & Moser 2015). Solid symbols represent LES experiments LB (black), LW (red), LWc
(green) and LN (blue).
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δa = h for the DNS databases. In all cases, the TKEs were normalised with the local uv.
For the DNS databases, u2 and w2 displayed a log-linear trend with respect to h+, whereas
v2 stayed roughly constant. This was consistent with the predictions from the attached
eddy hypothesis (Perry & Abell 1977; Perry & Chong 1982), in which the main effect
of increasing h+ was considered to be to extend the range of scales of the self-similar
attached eddy hierarchy. The results from the LES experiments (solid symbols) agreed
well with the trend of the DNS databases, except for a slight w2 excess for LW and LWc,
which arose from the mild hump in their w′ profile within the linear-stress layer (figure 7c).
In addition to reinforcing the importance of δa as a parameter, this agreement supported
the equivalence of δa and h in natural channels, which suggests that the active part of the
largest Townsend-type self-similar attached eddies reaches the channel centreline, even
though they are obscured in that region by the presence of wake structures (see also del
Álamo et al. 2006; Lozano-Durán, Flores & Jiménez 2012). Another implication of this
result is that the level of TKE in the logarithmic layer is almost exclusively determined by
the scale separation among the self-similar momentum-transferring eddies, whereas the
Reynolds shear stress provides the velocity scale. Therefore, for the isolated layers, δa acts
as a control parameter that determines the scale separation as well as the mean shear as
a function of y/δa (figure 5b), and δa is an independent parameter from the shear stress
gradient, unlike natural channel flows. This is made especially clear by the agreement
between LW, LWc and del Álamo et al. (2004) despite having different mean Reynolds
shear stress gradients and driving forces. Such comparisons are not possible in natural
channel flows because the scale separation within the self-similar attached eddies and the
mean stress gradient both depend on the Reynolds number.

3.2. Spectra
To examine the distribution of turbulent kinetic energy at different scales, one-dimensional
premultiplied spectra are plotted in figure 9. All the spectra were suppressed outside the
linear-stress layer, but the most notable observation was the elimination of the near-wall
spectral peak in the spectrum of u for LW and LN, which is especially clear in figure 9(b)
and proved that our numerical experiment effectively removed the dynamics of the buffer
layer. Another important difference was the attenuation, within the linear-stress layer of
LW and LN, of the spectrum of u at very large λx and λz. The motions in this range
of wavelengths are commonly referred to as the very large-scale motions (VLSMs) of
the logarithmic layer (e.g. Jiménez 1998; Kim & Adrian 1999) and some attention has
been dedicated to them, because they carry a substantial fraction of the TKE and of the
Reynolds stresses (Balakumar & Adrian 2007). However, the present result suggests that
the VLSMs are not part of the intrinsic dynamics of the logarithmic layer, but of the
region above it, which has been suppressed by the body force in LN and LW. This idea
is consistent with the concepts of ‘inertial waves’ in Jiménez (2018) or of ‘global modes’
in del Álamo & Jiménez (2003), introduced to describe the energetic motions of u at very
large wavelengths which occupy the majority of the channel half width. Kwon (2016) tried
a different way of eliminating the outer layer contributions to the velocity fluctuations from
the perspective of the quiescent core. He observed that, upon the removal of the velocity
fluctuations associated with the quiescent core, most of the energy of u in the VLSM range
disappears.

The damping of the long and wide wavelengths in LN and LW is made explicit
in figure 10, which shows the difference between their spectra and the full LES case.
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Figure 9. One-dimensional pre-multiplied spectral density of (a,b) u2, (c,d) v2, (e, f ) w2 and (g,h) −uv along
the (a,c,e,g) streamwise and (b,d, f,h) spanwise directions. The grey shaded contours are for HJ06, solid
contours are for LW and dashed contours are for LN. Contour lines are drawn at multiples of 0.1U2

τ except
for (a) 0.2; (b) 0.4; (g) 0.05. The horizontal dashed-dotted lines are y/h = 0.045, 0.11 and 0.235, and mark the
boundaries of the linear-stress layer for LW and LN.
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Figure 10. Difference between the one-dimensional pre-multiplied spectral density of (a,b) u2, (c,d) w2 and
(e, f ) −uv along the (a,c,e) streamwise and (b,d, f ) spanwise directions. The grey shaded contours are LB-LW
and line contours are for LB-LN. In (a) the contours are separated by 0.1U2

τ , in (b) the contours are separated
by 0.2U2

τ and in (c–f ) the contours are separated by 0.05U2
τ . The horizontal lines are the limits for the two

linear-stress layers.

The restricted layers exhibited an energy deficit with respect to LB, and this was restricted
to the large scales. Moreover, the length of the region in which LN fell below LB (e.g.
λ+x ≈ 3500 at the 0.1U2

τ level of kxφuu in figure 10a) was approximately twice as short than
for LW, proportionally to their respective δa. The width of the spanwise defect followed a
similar trend but the peak was located at λz ≈ h in both cases, which is consistent with the
known width of the VLSM (Jiménez 2018). Note that there are no plots for φvv in figure 10.
This velocity component had no VLSM and the corresponding plots were almost empty.

All these studies converged to the conclusion that the VLSMs do not belong to the
self-similar wall-attached eddy hierarchy intrinsic to the logarithmic layer. This is not to
say that they have no influence on its dynamics, but suggests that the origin and dynamics
of the VLSMs are associated with the outer layer rather than with the logarithmic layer.
A similar attenuation of the large scales was observed for w and, to a lesser degree, for
uv, but not for v, consistent with Townsend’s (1976) idea that the u and w fluctuations are
attached, in the sense that they are created far from the wall and extend downwards to fill
the space underneath, while the v fluctuations are local in y. This is also clear from the
triangular spectral ‘skirts’ in figures 9(a,b) and 9(e, f ). The lack of skirts in figures 9(c,d)
and 9(g,h) shows that these roots are ‘inactive’ with respect to the tangential stress. It is
interesting to observe the dependence of the large-scale energy attenuation on the thickness
of the linear-stress layer, which is demonstrated by the greater attenuation in LN compared

916 A35-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

17
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.177


Y. Kwon and J. Jiménez

λx/lm

λz/lm

λz/lm

100 101 102 100 101 102

100 101 102 100 101 102

100

101

102

100

101

102

100

101

102

100

101

102

λx/lm

(b)(a)

(c) (d )

Figure 11. Contour plots of (a) kxkzφuu, (b) kxkzφvv , (c) kxkzφww and (d) −kxkzφuv against λx/lm and λz/lm,
scaled by the mixing length at each height. The solid greyscale contours are for LW and computed at y/h �
0.1, 0.15 and 0.2 (from light grey to black). The dashed colour contours are for LB and computed at y/h �
0.1 (blue), 0.15 (red) and 0.2 (green). Contour levels are drawn at (a) [0.1 0.3]U2

τ , (b,d) [0.03 0.1]U2
τ and

(c) [0.05 0.15]U2
τ .

with LW. This supports the idea that restricting the wall-normal dimension over which
turbulent fluctuations can develop also limits their growth in the wall-parallel directions.
Long structures at a given y are the skirts of structures farther up, and truncating the top
of the spectral triangle also truncates the long wavelengths. Therefore, the structures in
the linear-stress layer are ‘minimal’ in the wall-normal direction, and the upper bound
of the linear-stress layer acts as a ‘ceiling’ that limits the growth of the structures in the
wall-parallel directions as well. This also explains the decreasing trend of u′ and w′ with
decreasing δa shown in figure 8.

Figure 11 presents two-dimensional velocity spectra at three wall-normal locations to
examine the self-similarity of the velocity fluctuations in the isolated linear-stress layer,
which is the defining characteristic of natural logarithmic layers. For brevity, only LW
and LB are compared in the figure, but LN and LWc displayed a similar collapse. The
wavelengths were scaled with the local mixing length, which was shown by Mizuno &
Jiménez (2011) to collapse the velocity spectra in DNS channels better than the distance
from the wall. More recently, Lozano-Durán & Bae (2019) proposed a similar length scale,
also based on the mean shear but using the local velocity scale −uv

1/2 instead of Uτ , but
the difference between the two scales is small for the range of wall-normal locations in
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figure 11, and we have kept the traditional definition. The energetic cores of the spectra
of LW at different wall-normal locations showed an excellent collapse, which supported
the conclusion that the mixing length is the correct length scale for the energy-containing
eddies in the logarithmic layer, even when the profile of the mixing length is not linear.
If the typical velocity scale within the logarithmic layer is given by Uτ , this implies that
the time scale of the energy-containing eddies is dictated by the local mean shear rather
than by a local eddy turnover based on the distance from the wall and Uτ . The core of
the spectra of LW also agreed well with LB. The lack of collapse at the large-scale ends
of kxkzφuu and kxkzφww was already discussed in figure 9, and corresponds to the inactive
structures, which scale with h or with δa. In particular, note the damping of the spectrum
of LW in the upper-right corner of figure 11(a,d).

Figure 12 examines the effect of changing the stress profile in layers of similar thickness
by comparing the cases LW and LWc. The one-dimensional spectra were normalised with
u∗, which was shown in the previous section to be the correct scale for the intensities, and
shown only within the linear-stress layer. They collapsed well, showing that the spectral
distribution of the fluctuations, and not only their TKE, was independent of the existence
of a pressure gradient.

To complement the observations on the trend of the large-scale energy attenuation,
figure 13 compares two-dimensional energy spectra at y/h � 0.1, scaled with u∗. The
spectra for the full LES (LB) agreed well with HJ06, again demonstrating the adequacy
of the current LES simulations for the study of the logarithmic layer. There was some
accumulation of energy at the scales close to the grid resolution of LES, owing to the
slightly insufficient dissipation by the SGS model, but this effect did not extend to the
energy-containing region. The spectra for LW and LWc agreed well, which reinforced the
conclusions from the one-dimensional data. The comparison between LB, LW and LN
clearly showed the removal of large-scale energy as the width of the linear-stress layer
decreased, especially for u and w. This also explained the previously observed decreasing
trend of the u′ and w′ profiles with decreasing δ+

a , discussed in figure 6.
However, there was a TKE excess in the spectra of all the restricted-layer experiments

with respect to LB and HJ06, at the intermediate scales, which can be observed in
figures 11 and 13. The wavelengths of the excess energy in the LW scale, with the mixing
length above y/h = 0.075 ( y+ = 150), were centred around (λx, λz) � (15lm, 10lm) for v

and w, and around (λx, λz) � (30lm, 10lm) for u. This energy excess also produced some
extra Reynolds shear stress, which appeared as an upper ‘horn’ in figure 13(d). This extra
Reynolds shear stress was needed to compensate for the attenuated Reynolds shear stress
at the large scales. The same energy excess also appeared in LN, where it was stronger
because it had to compensate for an even larger attenuation. Except for these localised
effects, the agreement in the other regions of the two-dimensional spectra was very good.

There was also an energy excess in the wide modes of v in LN, which can be observed
in figure 13(b), and which also appeared in LW near the lower limit of the linear-stress
layer (not shown). Because its wavelengths were wide and relatively short, it was tempting
to attribute this extra energy to a spanwise instability of the shear layer that formed
underneath the linear-stress region (see the peak at y+ ≈ 70 in figure 5). The extra
energy in the near-wall region is also visible in figure 9(a,b) as a ‘stem’ at λ+x ≈ 700
and λ+z ≈ 2000–3000, hanging below the spectrum of LW into the near-wall damped
layer. It can also be shown that the spectrum of u at y+ = 20, although weak overall,
contained very wide structures with λ+x ≈ 700. Note that these wavelengths were much
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Figure 12. One-dimensional pre-multiplied spectral density of (a,b) u2, (c,d) v2, (e, f ) w2 and (g,h) −uv

along the (a,c,e,g) streamwise and (b,d, f,h) spanwise directions. The grey shaded contours are for HJ06, solid
contours are for LW and dashed contours are for LWc. Contour lines are drawn at multiples of 0.1u∗2 except
for (a) 0.2; (b) 0.4; (g) 0.05. The horizontal dashed-dotted lines indicate y = 0.045h and 0.235h, which mark
the boundaries of linear-stress layers.
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Figure 13. Contour plots of (a) kxkzφuu, (b) kxkzφvv , (c) kxkzφww and (d) −kxkzφuv at y � 0.1h plotted against
λx/lm and λz/lm. The shaded contours are HJ06. The line contours are LES experiments as indicated in table 1
(LB, LW, LWc and LN are presented by black, red, green and blue colours, respectively). Contour levels are
drawn at (a) [0.1 0.3]u∗2, (b,d) [0.03 0.1]u∗2 and (c) [0.05 0.15]u∗2. The black dashed diagonal lines represent
λx = λz.

wider in the spanwise direction than any residual near-wall peak that might have not
been fully damped by the forcing. Jiménez et al. (2001) showed that any profile with an
approximate inflexion point near the wall developed a Kelvin–Helmholtz like instability as
soon as any amount of wall transpiration was allowed. García-Mayoral & Jiménez (2011)
showed that, in ribbed surfaces modelled by a layer of retarding body forces, this effect
results in transverse unstable rolls. This instability, like Kelvin–Helmholtz’s, is essentially
inviscid and depends only on the mean u profile and on the v velocity that separates the
inflection point from the impermeable wall. Its typical wavelengths are of the order of 5
to 10 times the thickness of the drag layer, which in the present case of (λ+x ≈ 450–900)

would not be too far from the observed values. In the case of the ribbed surface mentioned
above, the effect of the instability is mostly confined to the damped layer. However, in
our cases, there was another shear layer above the linear-stress layer, so there could be a
resonance between two shear layer instabilities located below and above the linear-stress
layer, which may act as a seeding mechanism for the energy excess within the isolated
layer. To confirm this possibility is beyond the scope of the present paper, but the direct
influence of the possible instabilities does not seem to be significant, and the characteristics
of the energy-containing eddies are well-reproduced.

3.3. Dynamic indicators of the flow
Examination of velocity statistics reveals that our numerical experiment was able to
replicate key kinematic properties of the natural logarithmic layer. To further assess the
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resemblance of the linear-stress layer to the natural logarithmic layer, we also examined
and compared some of the dynamic characteristics of the flow. First, we examined the ratio
between the production and dissipation of TKE, because it is widely known that these two
quantities are approximately in balance in the logarithmic layer. For LES channel flows,
the balance of the mean TKE of the filtered velocity fields is given by

Dk
Dt

= P + ε + Πp + Πt + Πv + Πr, (3.1)

where the terms on the right-hand side represent production, dissipation, pressure
transport, turbulent transport, viscous diffusion and diffusion by residual stress, respectively.
They are defined as

P = −Suv, (3.2)

ε = −τv : E + τ r : E, (3.3)

Πp = −∂vp
∂y

, (3.4)

Πt = −∂vk
∂y

, (3.5)

Πv = ∇ · u · τv, (3.6)

Πr = −∇ · u · τ r, (3.7)

where u is the fluctuating velocity vector (u, v, w), p is the kinematic pressure, E is the
strain rate tensor of the filtered velocity fields, τv = 2νE is the viscous stress tensor and
τ r = −2νrE is the residual stress tensor, where νr is the LES eddy viscosity given by the
SGS model.

Another key parameter for characterising the dynamics of shear flow is the Corrsin
parameter, which is defined as the ratio between the dissipative time scale of eddies (2k/ε)
and the time scale of the mean shear (1/S). Therefore, it represents the relative importance
of shear to the dynamics of turbulent eddies. For example, 2kS/ε � 1 means that the
structures live long enough to experience the effects of the shear. Figure 14 shows the
plots of the production/dissipation ratio and the Corrsin parameter for all the LES cases
and for HJ06. The two full channels, LB and HJ06, showed some discrepancies below
y+ � 100, but agreed reasonably well above that level, which demonstrated the adequacy
of our LES scheme for studying the logarithmic layer. For these two flows, P/ε � 1 over a
wide range of wall-normal locations corresponding to the conventional logarithmic layer.
The two isolated layers LW and LWc have a narrower region in which the deviation of
the P/ε profile with respect to LB remains less than 5 %, located in 200 � y+ � 390
(0.1 � y/h � 0.195). However, the P/ε ratio never reaches unity in LN, presumably
because the linear-stress layer is too narrow to fully recover the TKE balance. In the middle
of the linear-stress layer, the Corrsin parameter in figure 14(b) agrees well among all of
the LES cases and HJ06, and stays approximately constant at 2kS/ε ≈ 8. This agreement
suggests that similar dynamic processes take place in all these flows. These observations
demonstrate that our numerical experiments are able to produce a region whose dynamic
characteristics are similar to those of the natural logarithmic layer.

However, the profiles of P/ε and of the Corrsin parameter for LW have peaks at
y+ � 70 and y+ � 570 in figure 14, which are just outside of the linear-stress layer.
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Figure 14. (a) Ratio between production and dissipation. (b) Corrsin parameter. The lines are as indicated
in table 1 (LB, LW, LWc and LN are presented by black, red, green and blue colours, respectively). The
linear-stress layer for LW and LWc is indicated by the grey shaded area and that for LN is indicated by vertical
dotted lines.
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Figure 15. Profiles of production and dissipation. Lines on the positive and negatives sides represent the
production and dissipation, respectively: (a) premultiplied by y and (b) premultiplied by lm. The lines are
as indicated in table 1 (LB, LW, LWc and LN are presented by black, red, green and blue colours, respectively).
The linear-stress layer for LW and LWc is indicated by the grey shaded area and that for LN is indicated by
vertical dotted lines. In (b), profiles for LW and LWc are plotted only near the vicinity of the linear-stress layer
(70 < y+ < 600).

This could potentially be worrying because the excess P/ε in these regions may influence
the dynamics of the linear-stress layer. To investigate this possibility, figure 15 compares
the actual production and dissipation profiles. When P and ε were premultiplied by y
in figure 15(a) to highlight the logarithmic and outer regions, they did not agree well,
even within the linear-stress layer. However, we saw in the previous section that the
correct length scale for this region was the mixing length, and when the production was
premultiplied by lm in figure 15(b), LW, LN and LB agreed excellently, while LWc did
not. This was essentially automatic, because l+mP+ = −uv+, which was set by the body
force, and whose profile was only different for LWc. The behaviour of l+mε+ was more
interesting. The agreement between LB and LW near y+ � 280 was consistent with the
collapse of l+mP+ and of P/ε in this region, but it is clear from figure 15(b) that the peaks
of P/ε near the edge of the linear layer were caused by a reduced level of dissipation, not
by an increased level of production. The balance of the two quantities was never reached
for LN, because its linear-stress layer was too narrow (the scale separation between the two
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Figure 16. Profiles of the wall-normal TKE flux. The lines are as indicated in table 1 (LB, LW, LWc and LN
are presented by black, red, green and blue colours, respectively). The linear-stress layer for LW and LWc is
indicated by the grey shaded area and that for LN is indicated by vertical dotted lines.

edges was only a factor of two). Tuerke & Jiménez (2013) investigated a turbulent channel
flow with a sharp change in the mean shear, and found that the production adapts to the
change in the shear almost immediately, while the dissipation does so more gradually, in
agreement with the behaviour near the edges of the linear-stress layer in figure 15(b). They
attributed this phenomenon to the temporal delay between the production and dissipation
mechanisms.

To further inspect this behaviour, the wall-normal flux of the mean TKE was considered.
The transport terms in (3.1) are in the form of a flux divergence, and the wall-normal flux
of the mean TKE, Θ , can be computed as

Θ( y) =
∫ y

0

(
Πp(ξ) + Πt(ξ) + Πv(ξ) + Πr(ξ)

)
dξ. (3.8)

As per (3.1), regions with positive dΘ/dy (i.e. positive transport) indicate net energy
sinks, ε > P, which draw energy from other wall-normal locations and vice versa. Also,
because (3.8) vanishes at the wall, a positive Θ indicates a net TKE flux towards the wall
at that wall-normal location. Figure 16 shows Θ for the LES cases and HJ06 (Hoyas &
Jiménez 2008). LW, LWc and LN agreed well below the linear-stress layer but LN did
not exhibit a plateau region because it never recovered the local TKE balance. LW, LWc,
LB and HJ06 exhibited a mild plateau region within the linear-stress or logarithmic layer
but they only approximately agreed in the upper half of the linear-stress layer. The slope
of Θ in the logarithmic and linear-stress layers was negative, because P/ε was slightly
greater than unity there (at least up to Reτ = 5200; see Bernardini, Pirozzoli & Orlandi
2014; Lee & Moser 2015). Otherwise, Θ had a positive slope at y+ < 55 and y+ > 645 for
LW, which indicated that the flow acted as an energy sink outside of the linear-stress layer,
except in the vicinity of the layer edges. In full channels, like LB and HJ06, the buffer layer
(5 < y+ < 40) acted as a strong energy source owing to the intense production activities.
However, the removal of the buffer layer in LW turned this region into a net energy sink,
whose energy deficit was balanced by an energy flux coming from the linear-stress layer.
The region above y+ � 645 also acted as a net energy sink and drew energy from the
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linear-stress layer. In LW and LWc, Θ crossed zero at y+ � 125, which meant that the
TKE was transported towards the wall at y+ < 125 and towards the centre at y+ > 125.
On average, some of the TKE produced in the linear-stress layer was transported away
from the layer instead of being dissipated within it. This is different from the behaviour
of natural logarithmic layers and explains the reduced level of dissipation near the edge
of the linear-stress layer. For 200 < y+ < 400, the slope of Θ in LW approached that
of LB and HJ06, while the actual magnitude of TKE flux was smaller because there
was less upward TKE flux coming from below. This region coincided with the location
where a good agreement was observed for P/ε and the Corrsin parameter between LW,
LWc and LB. Overall, the shear production mechanism of the logarithmic layer was
well-reproduced in the linear-stress layer, although there were some differences in how the
TKE was transported and dissipated near the layer edges. Therefore, the current numerical
experiment is an adequate reproduction of the natural logarithmic layer as far as the energy
producing and energy containing motions are concerned.

4. Discussion

To isolate the logarithmic layer of wall-bounded turbulent flows, we have presented a
series of numerical experiments in which a body force is used to impose a prescribed
total stress profile. The resulting flow has an ‘active’ layer in which the total stress follows
a linear trend, as in natural channels, but the stress is made to decay to zero elsewhere.
As a result, the turbulent fluctuations are effectively eliminated outside the active layer,
especially those carrying the tangential Reynolds stress. Various statistical comparisons
demonstrate the kinematic and dynamic equivalence between the isolated active layer and
the natural logarithmic layer, and the experiments allow us to assess separately the effects
of the range of scales of the self-similar eddies (using cases LB, LW and LN), and of the
profile of the shear stress within the active layer (using LW and LWc). These effects cannot
be separated in natural channel flows because both are controlled by the Reynolds number.
We show that the scale range of the self-similar eddies is related to the thickness, δa, of
the active layer, which controls the size of the largest momentum-transferring eddies. This
thickness determines the mean shear below y = 0.4δa and the largest wall-parallel scales
of the flow. However, the primary effect of the average shear stress within the linear-stress
layer is to act as a scale for the velocity fluctuations, while the slope of the shear stress
profile, which is equivalent in natural channels to the mean streamwise pressure gradient,
does not significantly affect the dynamics.

The characteristics of the energy-containing eddies are investigated using their energy
spectra. Within the linear-stress layer, our experiments agree with natural channel flows
when the wavelengths are scaled with the mixing length of the mean streamwise velocity
profile. This agreement includes the spectrum at different wall-normal locations, even if
the mixing length profile is not strictly linear in y. This suggests that the linear dependence
of the length scale in natural channels is not a necessary condition for self-similarity,
and that the length scale of the self-similar eddies in the logarithmic layer is associated
with the local value of mean shear, not with the absolute distance from the wall, in line
with the conclusions of Mizuno & Jiménez (2011) and Lozano-Durán & Bae (2019).
The implication is that the distance from the wall relative to the size of the largest
active eddies determines the mean shear (figure 5), and the mean shear, together with the
mean momentum flux (roughly U2

τ in the logarithmic layer), determines the scale of the
self-similar eddies in the logarithmic layer, rather than the absolute distance from the wall.
In this regard, although the absolute distance from the wall does not provide a scale for the
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self-similar active eddies, the isolated layer is not truly independent of the wall because
the value of the mean shear depends on y/δa. Another noteworthy difference between our
numerical experiments and the natural channel is the attenuation in the former of the TKE
of the very large-scale motions, which suggests that these motions are not an intrinsic part
of the dynamics of the logarithmic layer.

By comparing experiments having linear-stress layers of different thickness, we
confirm that the upper boundary of the layer acts like a ‘ceiling’ for the structures,
and that inhibiting the wall-normal growth of turbulent structures also limits their
wall-parallel scales. This attenuation of the large-scale energy also explains the observed
decrease of u′ and w′ as δa decreases, or equivalently, as the scale separation within the
self-similar eddy hierarchy gets narrower. The wavelengths of the vertical energetic ridge
in the spectrum of u in figures 9(a) and 9(b) are approximately λx ≈ 3δa and λz ≈ 1.5δa.
It is interesting to compare this result with the aspect ratio of the vortex clusters (3:1:1.5
in x, y and z, in del Álamo et al. 2006), and of the sweep-ejection pairs (4:1:1.5 in x, y
and z, in Lozano-Durán et al. 2012), although it is not immediately clear how δa should be
related to the wall-normal dimension of those threshold-based structures.

We finally compare the dynamic properties of the linear-stress layer with those of the
natural logarithmic layer. There is a central region within the active layer in which the
production and dissipation of the TKE match those of the natural logarithmic layer. The
dissipation decays towards both ends of the active layer because the TKE is transported
away from it to compensate for the TKE deficit caused outside the active layer by the
elimination of the buffer and outer layer dynamics, instead of being dissipated in place.
However, the TKE production or, equivalently, the mean shear, compares well with the
natural logarithmic layer throughout the linear-stress layer when scaled with the mixing
length. The Corrsin parameter is approximately constant 2kS/ε = 8, both in the active
layer and in the logarithmic layer, which supports the conclusion that the dynamics of the
eddies are dominated by the effect of the mean shear in both cases and provides a rationale
for the use of the mixing length as a length scale for the structures.

5. Conclusions

In conclusion, we demonstrate that the linear- and constant-stress layer of the present
experiments successfully reproduces the essential dynamics of the natural logarithmic
layer, even in the absence of a buffer and of an outer layer. Although there are some
differences between the two flows, such as a nonlinear mixing-length profile and the details
of the TKE transport and dissipation, the essential dynamics of the energy-producing and
energy-containing motions in the natural logarithmic layer are well-reproduced. Hence,
the isolated system introduced here should be useful to identify other intrinsic features of
the logarithmic layer as well as the features that are not intrinsic to the logarithmic layer
such as very large-scale structures. In the present paper, we use the isolated system to
support the previous idea that the logarithmic layer has its own autonomous dynamics,
which depend only weakly on inputs from other parts of the flow. This is not to say
that the other parts of the flow do not have an influence on the logarithmic layer. In
particular, we show that the dimensions of the longest structures depend on the flow above.
Moreover, the size of self-similar logarithmic layer eddies is related to the height of the
largest momentum-transferring eddies in the flow through the agency of the mean shear
and momentum flux. However, the sustenance of the logarithmic layer does not depend on
the other parts of the flow. The key problem in simulating an isolated logarithmic layer
is how to limit the tendency of the size of the turbulent structures to grow indefinitely
as a result of the shear. To achieve this objective, most of the previous attempts (Flores
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Figure 17. The profiles of Cs for Cs,w = 0.1 (dotted), 0.2 (dashed), 0.4 (dash-dotted) and 0.8 (solid). The
vertical line is at y+ = 70.

& Jiménez 2010; Hwang 2015; Bae & Lozano-Durán 2019) have taken a ‘minimal box’
approach, which controls the wall-normal eddy size by limiting the spanwise domain
dimension. However, the use of a minimal box inherently causes a significant portion of the
TKE to remain outside the range of resolvable scales, and their aggregate dynamics are
projected onto the streamwise- or spanwise-uniform modes. Instead, the present system
represents the opposite approach of creating a non-uniform shear profile by directly
limiting the wall-normal eddy size, which can accommodate the full-scale dynamics of
the energy-containing eddies in the logarithmic layer.
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Appendix. Effects of overdamping on the near-wall turbulence

As a preliminary trial, overdamping was applied in the buffer layer to test its effectiveness
in suppressing the near-wall turbulence. Note that, because it was a test case, the
simulation was conducted at a reduced spatial domain (Lx/h = π and Lz/h = π/2) and
spatial resolution (Δx+ = Δz+ � 74) compared with LB. All other simulation parameters
were identical to LB. The overdamping was applied below y+ = 70 and its degree was
controlled by a parameter Cs,w, which represented the value of Cs at the wall. The gradient
of Cs with respect to y was set to be zero at the wall, and Cs = 0.1 above y+ = 70. For
0 < y+ ≤ 70, a cubic polynomial was fitted such that Cs was continuous and differentiable
at y+ = 70. No van Driest damping was applied close to the wall. The profiles of Cs for
Cs,w = 0.1, 0.2, 0.4 and 0.8 are shown in figure 17.

As the most illustrative measure, the spanwise pre-multiplied spectra of u for different
values of Cs,w are shown in figure 18. Overdamping was effective at suppressing velocity
fluctuations below y+ = 70. However, with increasing Cs,w, the spectral signature of the
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Figure 18. Spanwise pre-multiplied spectra of u for different values of Cs,w. The black (filled with greyscale
colours in between) and red solid contours represent HJ06 and the overdamped experiments, respectively. The
contour lines are drawn at multiples of 0.3U2

τ . The horizontal dashed lines indicate y+ = 70.

near-wall cycle simply moved away from the wall and to the wider wavelengths instead
of being eliminated at a fixed location. For the higher Cs,w (especially for 0.8), the
spectral signature even protruded into the non-overdamped region. This is in-line with
the observation by Feldmann & Avila (2018), where the peak location of turbulent kinetic
energy progressively moved outwards in the outer-scaled coordinates with increasing Cs,
which they interpreted as an effective reduction of the Reynolds number.

This problem does not exist when the buffer layer is suppressed by a modified body
force. Figure 9(b) shows that the spectral signature of the near-wall cycle was eliminated
without leaving a residual in the cases of LW and LN. Therefore, a modification of the
body force is chosen as the preferred method for suppressing the buffer layer turbulence.
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