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Outliers in terrain data are an obstacle to achieving accurate and robust solutions
of Underwater Terrain Relative Navigation (UTRN). If not handled properly, navigation
may be degraded or even divergent. To address the problem, this paper proposes a terrain-
matching algorithm based on the robust estimation theory. In contrast to the conventional
approach, the proposed algorithm can significantly reduce the interference of the outliers.
Experimental results confirm the good performance of the proposed method.
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1. INTRODUCTION. Accurate positioning of vehicles is essential for many
underwater applications. Terrain Relative Navigation (TRN) can provide a drift-free
accurate positioning result, which makes it a good compliment to INS for underwater
navigation.
TRN technology has been studied since the 1970s. Earlier methods such as

TERCOM (Golden, 1980) and SITAN (Hostetler and Andreas, 1983) measured the
host vehicle’s vertical distance from the bottom at single points along a track. As far as
UTRN is concerned, many variants have been successfully developed for underwater
vehicles, most of which have reported high accuracy by using a combination of
multi-beam bathymetric systems (MBS) and high-accuracy underwater terrain maps.
For example, the Bayesian method was applied to UTRN (Bergman et al., 1999;
Karlsson and Gustafsson, 2003, 2006; Fairfield et al., 2008; Meduna et al., 2008, 2010;
Anonsen, 2006, 2010; Donovan, 2012). On the other hand, Nygren and Jansson
(2004) proposed a method that measures seabed topography with a large number of
sonar beams over a large sea bottom area. By simultaneously using a large number
of measurements in one correlation process, the probability density function (PDF)

THE JOURNAL OF NAVIGATION (2014), 67, 569–578. © The Royal Institute of Navigation 2014
doi:10.1017/S0373463314000071

https://doi.org/10.1017/S0373463314000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000071


of the position exhibits Gaussian properties, and thus the Kalman filter (KF) can be
utilised for UTRN.
All of the above methods are based on the same prerequisite that the stochastic

model is accurate to some degree in UTRN. However, outliers arise naturally in
underwater terrain data, mainly in terrain measurements and the terrain model
(terrain map). The sources of outliers in terrain measurements include hardware
discontinuities, poor survey environment, shoals of fish and suspended objects in the
water, which could cause a measurement error of up to several metres. Meanwhile,
outliers in the terrain map occur from time to time. The possible sources of invalid
terrain map data include the presence of significant map errors due to poor data
collection. Moreover, even where the collected data is accurate, the terrain of the
seafloor could change subsequently, due to erosion/deposit, sediment gravity flow,
shifting sand dunes or even sunken boats. An example (Meduna, 2011) illustrated that
the terrain can change greatly over a period of six months, the maximum change
amounted to 10m in certain regions. In the presence of all these outliers, the standard
method may cause the solution to be heavily biased or even divergent. Therefore,
a robust method is needed to overcome these outliers in real-time.
Several methods have been proposed in the literature to deal with outliers in

UTRN. Gustafsson (2010) pointed out that outliers in observations could be handled
by dithering. Yet the degree of dithering is difficult to define to make an optimization
between the efficiency and the robustness. In Nygren and Jansson’s method (2004), the
influence of occasional outliers is mitigated by large numbers of measurements in a
single observation epoch, but when the proportion of outlier increases, the method
yields unreliable results. To detect outliers in measurements, Lin et al. (2008) proposed
an offline outlier identification procedure by wavelet analysis. However, in this
method it is difficult to choose the threshold value for outlier identification that can
balance the accuracy of identification and the rate of missing good observations.
Hence, a real-time algorithm for UTRN is needed that can attain high efficiency as
well as robustness.
This paper addresses outliers in UTRN. Enabling robust UTRN over the gross

errors can substantially increase its applicability. A robust terrain-matching algorithm
is developed to deal with outliers in a stochastic model.

2. THE PRINCIPLE OF UTRN. The UTRN can be modelled by the
following equation pair:

xt = xt−1 + ut + rt (1)
yt = h(xt) + et (2)

where the vehicle position state is represented as:

xt = [xNorth
t , xEastt ] (3)

In Equation (1), that models the state propagation, ut is the change in vehicle
state measured by INS, and rt*N(0,(σr)

2) is the process noise determined by the
inertial drift rate and distance travelled. The measurement update step is given by
Equation (2), where yt is the terrain measurement given by sonar, h(xt) is the terrain
depth corresponding to xt according to the terrain model h(·), and et*N(0,(σe)

2)
represents the noise of depth measurement. The noise et consists of two parts, which
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are the noise of measurement et
survey*N(0,(σsurvey)

2) and the noise of the map model,
et
map*N(0,(σmap)

2).
Assuming that the sonar measurement noise is uncorrelated with the map error

and errors between beams are independent, the probability of terrain measurement
yt, based on vehicle state xt, is given by:

L(yt|xt) = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2πσ2e)N

q exp − 1
2σ2e

XN
k=1

(ykt − hk(xt))2
 !

(4)

σ2e = σ2survey + σ2map (5)
where N is the number of terrain measurements.

3. ROBUST ESTIMATION THEORY. Robust estimation theory defines
outliers as the gross errors that cannot be described by a predefined distribution
F (Huber, 2011). The distribution of data contaminated by outliers is modelled by
G=(1− ε)F+ εH, whereH is the distribution function of the outlier and ε is the level of
the contamination. To access the robustness of a given estimator T(G), the breakdown
point (BP) ε* is used (Hampel et al., 2011). The breakdown point ε* is defined as
the largest fraction of contamination ε that an estimator can tolerate. The larger the
breakdown point, more robust the estimator. Meanwhile, to measure the local sen-
sitivity of an estimator T(G) to an arbitrary infinitesimal contamination Δr, the
influence function is given as:

IF (r,F ) = lim
ε�0

T((1− ε)F + εΔr) − T(F )
ε

(6)

In contrast to the robustness measurements with regard to breakdown point and
influence function, the asymptotically efficiency of an estimator T(G) is defined to
access its efficiency when no outliers occur in the data. A trade-off exists between the
breakdown point of an estimator and its asymptotic efficiency (Gandhi and Mili,
2010). For example, the sample median achieves the highest breakdown point of
0·5, but its statistical efficiency is only 64% at the Gaussian distribution. Therefore,
this robustness-efficiency trade-off needs to be suitably addressed when devising the
solution to an estimation problem. In this paper, an estimate method (Gervini
and Yohai, 2002) that can simultaneously attain both high BP and high efficiency
is applied.

4. ROBUST CORRELATION MATCHING. In UTRN, when the noise
is described as Equation (5), the MLE x̂ML(yt) is given as:

x̂ML(yt) = argmax
x

L(yt|xt) = argmin
x

XN
i=1

(yit − h(xt)i)2/σ2e (7)

It is obvious that in this situation, the MLE coincides with the Least Square
Estimation x̂LSE , which is acquired by minimizing the score function:

J(x) =
XN
i=1

(ri)2 (8)
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where ri=yt
i−h(xt)

i is the residual of the ith measurement. In the rest of this paper,
this kind of matching method is referred to as the ordinary matching method.
When outliers exist in the data, the matching result x̂LSE could be seriously biased.

Therefore, a robust correlation matching method is needed to handle the probable
outliers. In this paper, we use the robust and efficient weighted least square estimator
(REWLSE) (Gervini and Yohai, 2002) to deal with outliers in terrain data. The
method treats an observation as an outlier not only when its residual is greater than
a given threshold value, but also when its value is sufficiently larger than the
corresponding order statistic. By doing this, the method can achieve full efficiency at
the normal distribution and at the same time have a high BP.
In the robust matching algorithm, a least median square estimation (LMSE) is

executed firstly to provide an initial estimation x0. Different from LSE, LMSE
estimates the position based on the least median square (LMS) regulation:

x̂0 = argmin
x

med(ri)2 (9)

By applying Equation (9), LMSE has very high BP (up to 0·5) but poor efficiency,
which makes it a proper function for outlier diagnosis (Rousseeuw, 1984). At this
time, we could adjust the weight wi of each measurement yi. Before fixing the weights,
the threshold M is calculated by:

i0 = min{i : r(i) 5 η}, q = min
i5i0

i − 1
G(r(i))
� �

(10)

M = ⌊q⌋ (11)
where ·⌊ ⌋ denotes the integer part.
The strategy of adjusting weight wi is:

wi = 0
1

|ri|
σe

. 2 and r(i) . i0

else

8<
: (12)

Thus the recursive procedure of robust correlation matching is summarised as:

1. Utilise x0 to form the residuals ri0 = yi − h(x̂0)i, i = 1, · · · ,N, and define the
weights w̄i

0 based on Equation (12);
2. Update the estimation x̂ j+1 by x̂ j+1 = argmin

x

PN
i=1

[wi
j(yit − h(x)i)]2

� �
;

3. Update weights according Equation (12);
4. Iterate until convergence.

5. DEALING WITH MULTIMODALITY IN THE LMS
MATCHING RESULT. Obviously, in the robust correlation matching, the
influence of the outliers are expected to be approximately eliminated by firstly
employing the LMS matching. After that, the weight of each observation is adjusted
recursively to improve the performance of the correlation matching. However, a
problem could be raised by the similarity of the bathymetric terrain. More specifically,
the similarity of the terrain may lead to a multimodal phenomenon in the result of
the LMS matching, which means the second highest peak instead of the first highest
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in the PDF may be the closest to the true value. In fact, when the terrain is relatively
flat, the multimodality is inevitable. When this happens, the iteration based on the
highest peak leads to an error.
To address this problem, instead of updating the weights according the residuals of

the highest peak in the LMS matching result, we adjust the weights according to each
peak respectively in the first iteration, and trace every set of weights independently in
the subsequent iterations. Thus, at the end of the iterations, rather than one set of
weights, it will result in several different sets of weights, each set corresponding to a
peak in the result of the LMS matching. With these m sets of weights {wj

i, i=1,. . .,m;
j=1,. . .,N}, the final weights {wj

F, j=1,. . .,N} could be fixed by applying the Bayesian
equation.

wF
j =

Xm
i=1

p(i) · wi
j =

Xm
i=1

αi · pi(yt|xt) (13)

In Equation (13), p(i) is the probability of the ith peak of the LMS matching result
being the true position of xt, and αi is the normalised parameter associated with p(i).
By appling LSE principle, αi is given as:

αi = 1
Ri

� �2 Xm
i=1

1
Ri

� �2
,

(14)

where Ri is the residual value:

Ri =
XN
j=1

wi
j(yjt − h(xt)j)

h i2
(15)

The process of the robust matching algorithm can be illustrated by the flowchart
in Figure 1. Notice that since the strategy of weight adjustment is only 0 or 1 in every
step of iteration, weight adjustment corresponding to different peaks could lead to
the same results, because these peaks have similar terrain information. When this
happens, the tracing of these peaks can be merged, and the time consumed for the
tracing could be reduced significantly.

Figure 1. The process of robust correlation matching algorithm.
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6. FILTERING ALGORITHM. By the robust matching method, outliers
in the terrain data are removed. Thus, a filtering method can be used for recursive
estimation. In the model equations, the process Equation (1) is linear while the
measurement Equation (2) is nonlinear. There are several filtering methods that can
work with this case, such as PF and the mass point filter. In this paper, the Gauss sum
filter is utilised for recursively positioning, because its efficiency is relatively higher
in low-dimension cases (Runnalls et al., 2005). By representing the posterior PDF
of position x with a finite set of Gaussian distribution, the measurement update step is
executed by using Bayes’s theorem.

p(xt+1|yt+1) = L(yt+1|xt+1)p(xt|yt) (16)
where L(yt+1|xt+1) is the likelihood function of yt+1 with respect to xt+1. Given the
weights {wj

F, j=1,. . .,N} acquired by the robust matching, L(yt|xt) is calculated as:

L(yt|xt) = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2πσ2e)N

q exp − 1
2σ2e

XN
j=1

wF
j (yjt − hj(xt))2

 !
(17)

More details on Gauss sum filter can be found in Anderson and Moore (2012) and
Runnalls et al. (2005).

7. EXPERIMENTS AND ANALYSIS . In order to test the proposed
method mentioned above, experiments with simulated data and real terrain map data
were conducted.
In the simulations, the vehicle is assumed to be equipped with a multi-beam sonar

system with 121 beams to collect real-time terrain data during the navigation. The
background terrain information is provided by a priori seafloor maps, acquired by
a multi-beam bathymetric system in the South China Sea. The vehicle is supposed to
travel in a long track from A to B at 5 knots constant velocity, as shown in Figure 2,
The distance between neighbouring measurement epochs is set to be 50 m.
In the simulation, the sonar is assumed to have a measurement error of 1% (RMS)

of the measured distance, and the noise level of the background-map depth error is set
to be 0·2 m (RMS). Meanwhile, the INS is assumed to have a drift rate of 1% of the
horizontal distance travelled. In the terrain correlation matching, batch processing is
performed with five consecutive swaths of terrain measurements, and a search area of
±50 metres in each direction is used.
We first investigated the performance of the robust matching algorithm when there

were no outliers in terrain data. Figure 3 shows typical matching errors of the ordinary
method and the robust matching method. The ordinary method is based on the
principle described in Equation (11), while the robust matching method is based on the
algorithm described in Section 4. As can be seen, both methods yield estimates with
accuracy within 10 metres. Obviously, when there are no outliers in measurements, the
robust matching method provides a similar result to the ordinary method.
Secondly, we investigated the performance of the robust matching method when

outliers occurred in real-time terrain measurements. In the simulation, a contami-
nation of 5% is artificially added to measurements, where the amplitude of outliers is
set at 1 m. With the different type of measurements, the matching results are presented
in Figure 4. It is obvious that the ordinary matching method is badly disturbed,
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the positioning errors grew to 20–30 metres. The robust matching method evidently
performs better by providing a steady positioning result. This result strongly advocates
the use of the robust matching algorithm in UTRN.
When we change the type of outlier by adding gross errors in the terrain map,

similar results show that the ordinary matching method is sensitive to outliers in
the map. Figure 5 presents matching results using a terrain map with 5% outliers
randomly added in the searching area. It can be seen that the ordinary method is still
disturbed by the outliers, but in a reduced degree when compared to Figure 4. There
are two reasons for this phenomenon. Firstly, the randomness of the outlier
distribution decreases the probability of outliers occurring in the data h(x), which is
the background terrain data corresponding to the true position. Secondly, for outliers

Figure 3. Comparison of results between different methods when no outliers exist.

Figure 2. The track of the vehicle and underwater background map.
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occurring in h(x), the matching algorithm will recognise the position x̃ as the true
position when the background terrain data of x̃ is not only without outliers but also
has similar measurements. Such position x̃ is often placed in the neighbourhood of the
true position x. As a result, the bias in the matching result is relatively smaller. For the
robust matching, the horizontal error of the matching result is not sensitive to outliers
in the terrain map, as is shown in Figure 5.
To compare the influence of outliers on the matching method, the matching results

in different situations are displayed in Table 1. This shows that the matching results

Figure 4. Comparison of results between two methods with outliers in terrain measurements.

Figure 5. Comparison of results with outliers in terrain model.
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of robust matching are close to the ordinary method when there are no outliers. The
outlier’s influence is obvious in the ordinary method but it is well reduced in the
proposed robust matching algorithm. The average time consumption of the two
matching methods are also provided. It is clear that the robust matching method on
average consumes more time than the ordinary method. This is foreseeable given
that the robust matching algorithm has to trace all the peaks in the PDF of the LMS
matching result. In addition, it can be seen that there is not much difference in
the average time consumption between the matching results with or without outliers.
This coincides with the fact that the LMS matching is very robust against outliers.
Finally, an investigation into the performance of the robust matching algorithm in

the high contamination case, simulated with a higher fraction of contamination, was
carried out. The results are shown in Figure 6, which are mean errors from 20 Monte
Carlo runs. It can be seen from this figure that the positioning error increases generally
with the contamination rate. However, the robust matching algorithm can provide a
reasonable positioning result with up to 40% of the contamination rate, which proves
the robustness of the proposed matching method.

8. CONCLUDING REMARKS. Outliers in the terrain data worsen the
UTRN solution. To address this problem, a robust matching algorithm is proposed in

Table 1. Positioning results of different situations.

Outliers
Matching
Method Max/m Min/m Mean/m STD/±m

Average Time
Consuming/s

No outliers Ordinary 5·16 0·05 1·09 0·82 0·78
Robust 8·25 0·15 1·03 0·67 1·86

In terrain
measurements

Ordinary 35·02 3·32 20·05 5·16 0·79
Robust 7·79 0·12 1·17 0·74 1·97

In background
terrain map

Ordinary 17·61 5·64 1·82 1·51 0·78
Robust 4·89 0·03 1·16 0·78 1·93

Figure 6. Horizontal error of the robust matching algorithm when the fraction of contamination
increases.
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this paper. By applying this method, the contamination in terrain data can be handled.
Experimental results have demonstrated that the proposed method can obtain more
accurate and more robust navigation solutions in the presence of outliers.
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