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This study performs global stability/receptivity analyses of hypersonic flows over a swept
blunt body with infinite span. For the first time, we obtain the characteristics of the
leading attachment-line mode to the variation of sweep angles from 20◦ to 70◦. The global
eigenfunctions exhibit the characteristics of the attachment-line instability at the leading
edge. At the same time, cross-flow (at small sweep angles) or second Mack mode (at larger
sweep angles) dominates further downstream. We establish an adjoint-based bi-orthogonal
eigenfunction system to address the receptivity problem of such flows to any external
forces and boundary perturbations. The receptivity analyses indicate that the global modes
are the most responsive to external forces and surface perturbations applied in the vicinity
of the attachment line, regardless of the sweep angles. It is also proven that the present
global extension of the bi-orthogonal eigenfunction system can be successfully applied to
complex hypersonic flows.
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1. Introduction

The studies of three-dimensional sweep boundary layers date back to years ago. Most
of them are based on local models: the attachment-line models and three-dimensional
cross-flow models. The sweep flow at the leading edge is often modelled by the sweep
Hiemenz configuration, and the most unstable mode is symmetric along the chordwise
direction perpendicular to the attachment line (Lin & Malik 1996; Theofilis 1998; Obrist
& Schmid 2003). Further downstream, because of the non-alignment in three-dimensional
inviscid streamlines and pressure gradients, an inflection point appears in the velocity
profile of the three-dimensional boundary layer which leads to cross-flow instability (Reed
& Saric 1989; Saric, Reed & White 2003). Two types of cross-flow instability have been
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identified: travelling and stationary modes. The stationary mode plays an important role
in the roughness-induced transition while travelling modes are related to external and
unsteady perturbations. The dominance of either type of mode depends on the specific
configurations and the disturbance environment.

The global stability analyses (GSA) around a swept parabolic body in hypersonic flows
were performed by Mack, Schmid & Sesterhenn (2008) and Mack & Schmid (2011).
They were able to uncover a global spectrum containing boundary-layer modes, acoustic
modes and wave-packet modes. For the first time, these authors not only addressed the
attachment-line instabilities, but also showed the connection of attachment-line modes
with cross-flow instability through GSA, though Bertolotti (1999) had furnished strong
evidence for such connection in local stability analysis. Recently, Meneghello, Schmid
& Huerre (2015) performed global stability, receptivity and sensitivity analyses for
incompressible flows around a Joukowski airfoil. They found that the global eigenfunction
was the most responsive to forces applied in the vicinity of the attachment line. However,
the analyses of such flows in the hypersonic region are quite limited.

The receptivity process describes the procedures of penetration of external perturbations
into the boundary layer and excitation of modes inside the boundary layer, which plays an
important role in the boundary-layer transition. Based on theoretical methods, such as
finite-Reynolds-number methods (Choudhari 1994) and triple-deck theory (Ruban 1984),
the bi-orthogonal eigenfunction system was found to be an effective tool for the local
receptivity analyses (Hill 1995; Fedorov & Khokhlov 2002; Tumin 2007). Recently, a
comprehensive review of this method is given by Tumin (2020). However, there exists
no application of this approach to complex hypersonic flows.

There are two objectives in the present work. Firstly, it is to understand the stability
features of hypersonic attachment-line instability over a large range of sweep angles.
Secondly, it is to highlight the receptivity behaviours in the vicinity of the leading edge
of a swept blunt body in hypersonic flows with the multi-dimensional bi-orthogonal
eigenfunction system. This paper is organized as follows. In § 2, the governing equations
are introduced and the bi-orthogonal eigenfunction system for the global stability system is
established for solving the receptivity problem. The results for global stability/receptivity
analysis are presented in § 3 and the conclusion is given in § 4.

2. Theoretical framework

The stability analyses of hypersonic steady flows is performed around the front part
of a blunt body, as sketched in figure 1. In general, the compressible Navier–Stokes
equations for variable Q = (ρ, u, v, w, T), denoting the density, velocity components and
temperature, can be written as

Γ
∂Q
∂t

= R(Q), (2.1)

where Γ is the coefficient matrix between conservative and primitive variables. The
linearized Navier–Stokes equations (LNSE) around a stationary state Q, with R(Q) = 0,
can be represented by the combination of a linearized operator L = ∂R/∂Q and a
perturbation p = (ρ̂, û, v̂, ŵ, T̂) field. This process forms a homogeneous system as

Γ
∂p
∂t

− L p = 0. (2.2)

The solution of the above problem (2.2) is obtained with the method of Laplace transform.
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Figure 1. Outline of the computational domains of swept parabolic body (x = y2/2R). Here R represents the
radius of the leading edge. Three domains, bounded by the wall surface, bow shock and solid lines, which are
marked by R1, R2 and R3 from the smallest to the largest, are used for calculation of direct/adjoint eigenvalue
problems.

The Laplace transform p̂(σ ) of function p(t) in (2.2) is calculated from the following
integral

p̂(σ ) =
∫ ∞

0
p(t) e−σ t dt, (2.3)

with σ being a complex parameter and σ = −iω. From p̂(σ ), the original function p(t)
can be restored with the Bromwich integral:

p(t) = 1
2πi

∮ ∞+i∞

−∞−i∞
p̂(σ ) eσ t dσ = − 1

2π

∮ ∞+i∞

−∞−i∞
p̂(ω) e−iωt dω. (2.4)

The inversion integral (2.4) suggests that the solution of LNSE (2.2) can be represented as
the superposition of normal modes, which can be written as

p = p̂ e−iωt + c.c. (2.5)

where c.c. is the complex conjugate. Substitution of (2.5) into (2.2) leads to a standard
global stability problem (Theofilis 2011):

(−iωΓ − L ) p̂ = 0. (2.6)

The detailed expressions of these operators were given in the authors’ previous work (Xi,
Ren & Fu 2021).

On the wall surface and the bow shock, all perturbations except for the density are
set to zero ((û, v̂, ŵ, T̂) = 0). Along the chordwise direction, at the exits, high-order
extrapolations are applied for all perturbations. Because the operators are non-self-adjoint
and the eigenfunctions are not orthogonal, a complete solution of LNSE needs the help
of adjoint eigenfunctions. An inner-product for two arbitrary vectors a and b is defined as
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(a, b) = ∫∫
V a · bT dx dy, where the superscript T stands for the transpose and V represents

the integration region over x–y plane. Based on the inner-product, the adjoint problem of
(2.6) can be expressed as

(−iω†Γ † − L †)p̂† = 0, (2.7)

where the superscript † stands for the adjoint variables and operators. It should be noted
that boundary terms can be eliminated with proper boundary conditions in the integration
by parts. In addition, based on the definition of inner-product, the adjoint and the original
problems have the same eigenvalue spectrum.

A bi-orthogonal eigenfunction system {p̂a, p̂†
b} is now formed with the help of

eigenfunctions from the original problem p̂a and the adjoint problem p̂†
b. The direct and

adjoint equations lead to the following expression:(
(−iωaΓ − L ) p̂a, p̂†

b

)
=

(
(−iω†

bΓ
† − L †)p̂†

b, p̂a

)
= 0, (2.8)

where ωa stands for the eigenvalue of the original problem and ω
†
b stands for the eigenvalue

of the adjoint problem. Based on the definition of the adjoint problem, then(
(−iω†

bΓ
† − L †)p̂†

b, p̂a

)
=

(
p̂†

b, (−iω†
bΓ − L )p̂a

)
. (2.9)

With the above equations (2.8) and (2.9), the following relationship can be achieved:(
ω

†
b − ωa

) (
iΓ p̂a, p̂†

b

)
= 0. (2.10)

If ω
†
b = ωa and one can further define that(

iΓ p̂a, p̂†
b

)
= Ca

0, (2.11)

where Ca
0 represents a normalization constant for a specific mode a. If ω

†
b /=ωa, the

eigenfunctions are orthogonal to each other, so(
iΓ p̂a, p̂†

b

)
= 0. (2.12)

Relations (2.11) and (2.12) form a bi-orthogonality condition in a two/three-dimensional
domain. An inverse Laplace transform (2.4) is adopted for the return to physical space.
Also, generally, the solution of linear Navier–Stokes equations can be expanded in a
combination of continuous and discrete modes as

p(t) =
∑

m

Cd
mp̂m e−iωmt

︸ ︷︷ ︸
Discrete modes

+
∑

n

∮
Cc

n(k)p̂n(k) e−iωn(k)t dk

︸ ︷︷ ︸
Continuous modes

, (2.13)

where m and n represent the indices of discrete modes and continuous branches,
respectively; k stands for the integration parameter along continuous branches, Cd

m and
Cc

n represent the amplitude of those discrete modes and branches, respectively. With
relationships (2.6)–(2.13), for a specific discrete mode m, then

Cd
m e−iωmt =

(
iΓ pm, p̂†

m

)
/Cm

0 . (2.14)

A generic external force f , representing the source term in the flow field, together
with the external disturbances g standing for any surface/free-stream perturbations, can
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be added to system (2.2). The amplitudes of these additional perturbations are assumed to
be small hence the whole system can still be described by the linear approximation. Thus,
the inhomogeneous system can be expressed as

Γ
∂p
∂t

− L p = f ,

At solid wall/far-field: p = g.

⎫⎬
⎭ (2.15)

Similar to the previous process, a normal-modes assumption is adopted with respect to the
force terms and boundary conditions:

f̂ =
∫ ∞

0
f eiωt dt, ĝ =

∫ ∞

0
g eiωt dt. (2.16)

The relative system in phase space can also be written as

(−iωΓ − L ) p̂ = f̂ , (2.17)

with the inhomogeneous boundary conditions p̂ = ĝ on boundary lines.
Considering a dot product between an adjoint eigenvector p̂† and (2.17) for any discrete

mode m, with integration over the whole domain, we have(
p̂†, (−iωmΓ − L ) p̂m

)
= (p̂†, f̂ ). (2.18)

Based on (2.7), the following adjoint homogeneous equation can be obtained:(
p̂m,

(
−iω†Γ † − L †

)
p̂†

)
=

(
p̂†, (−iωΓ − L ) p̂m

)
= 0. (2.19)

Substituting (2.19) into (2.18), the following relationship is then derived for a specific
discrete mode m:

i (ω − ωm)
(
Γ p̂m, p̂†

)
=

(
f̂ , p̂†

)
− B.C. (2.20)

Here B.C. represents concomitant boundary terms due to the inhomogeneous boundary
conditions determined by using Green formulas (detailed expression is given in
Appendix A). With (2.4), (2.14) and (2.20), the following integral equation is derived for
the physical perturbation pm:

(
iΓ pm, p̂†

)
= − 1

2π

∮ ∞+i∞

−∞−i∞

(
iΓ p̂m, p̂†

)
e−iωt dω

= − 1
2π

∮ ∞+i∞

−∞−i∞

(
f̂ , p̂†

)
− B.C.

(ω − ωm)
e−iωt dω. (2.21)

By closing the Bromwich integral (2.21) in the complex ω-plane, the integral is obtained
as the residue value at the point ω = ωm:

− 1
2π

∮ ∞+i∞

−∞−i∞

(
f̂ , p̂†

)
− B.C.

(ω − ωm)
e−iωt dω = −i

[(
f̂ , p̂†

)
− B.C.

]
e−iωmt. (2.22)

The amplitude Cd
m for a specific discrete mode m can be recovered as∣∣∣Cd

m

∣∣∣ =
∣∣∣−i

[(
f̂ , p̂†

m

)
− B.C.

]
/Cm

0

∣∣∣ . (2.23)

For the fact that Cm
0 is a constant for a specific discrete mode, the adjoint field represents

a scaled Green’s function for the receptivity problem. In fact, formula (2.23) is consistent
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Λ (◦) δ∗ (m) Re∞ Res Ms β

P1 35.0 2.0150 × 10−4 2826.27 937.33 1.5081 0.1079
P2 40.0 2.0746 × 10−4 2909.82 1075.44 1.7948 0.1111
P3 45.0 2.1492 × 10−4 3014.45 1213.22 2.1188 0.1151
P4 50.0 2.2429 × 10−4 3145.92 1348.36 2.4922 0.1201
P5 55.0 2.3617 × 10−4 3312.54 1476.33 2.9313 0.1265
P6 60.0 2.5145 × 10−4 3526.78 1588.28 3.4585 0.1347
P7 65.0 2.7151 × 10−4 3808.15 1666.99 4.1039 0.1454
P8 70.0 2.9868 × 10−4 4189.29 1679.10 4.9055 0.1600

Table 1. Flow parameters of eight cases in the present study.

with those obtained from incompressible flows (Giannetti & Luchini 2007). It can thus be
considered as a general form for both incompressible and compressible flow systems.

3. Global stability and receptivity of the leading-edge region

The test model is a two-dimensional parabolic body swept with a sweep angle Λ. The
model geometry and computational domain are shown in figure 1. The free-stream
Reynolds number Re∞, the sweep Reynolds number Res, the free-stream Mach number
M∞, the sweep Mach number Ms and the recovery temperature Tr are defined as

Re∞ = |V ∞|δ∗

ν∞
, Res = W∞δ∗

νr
, M∞ = |V ∞|

c∞
= 8.15, Ms = W∞

cs
,

Tr = T∞ + σ(T0 − T∞), where σ = 1 − (1 − ξw) sin2 Λ.

⎫⎪⎬
⎪⎭ (3.1)

Here, ξw is a constant for specific free-stream conditions (M∞ and Λ) and determined
based on the study of Reshotko & Beckwith (1958); R = 0.1 m represents the radius of the
leading edge; V ∞ stands for the free-stream velocity vectors with U∞, V∞ and W∞ along
x, y and z direction, respectively. Here T∞ of 50.93 K and T0 stand for the free-stream
and stagnation temperature, respectively. The parameters c∞ and cs are the speeds of
sound before and after the leading shock, νr represents the kinematic viscosity at Tr. The
viscosity length scale δ∗ is defined as δ∗ = √

νrR/2U2, where U2 represents chordwise
velocity behind the shock. The Prandtl number Pr of 0.71 and the specific heat ratio γ of
1.4 are set following the ideal gas assumption of air. Table 1 lists the parameters of the
chosen cases. Here, Ms is used to define the supersonic and hypersonic configurations as
mentioned below, and Tw = Tr is the surface temperature, which is used for all cases. The
spanwise wavenumber β = 2πδ∗/λ∗z is adopted corresponding to the physical wavelength
λ∗z of 11.7 mm.

Firstly, a high-order shock fitting method (Zhong 1998) is employed to obtain the
basic flow fields over the largest domain R3 as shown in figure 1. In the shock fitting
method, the shock is modelled as a boundary of the computational domain; smooth fields
can be achieved for the adjoint calculation without considering shock discontinuities
(Giles & Pierce 2001). For all cases, 1201 grid points are used along the wall surface
and 201 grid points in the wall-normal direction (at least 51 points are clustered inside
the boundary layer). Compared with the previous DNS study (Mack et al. 2008) with
255 × 128 grids, the basic flows are adequately resolved in the present grid resolution.
A matrix-based high-order global stability analysis is then performed to solve the direct
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and adjoint problems. A Krylov–Shur method (Stewart 2002a,b), based on PETSc (http://
www.mcs.anl.gov/petsc) and SLEPc (http://slepc.upv.es) with shift-and-invert spectral
transformation is adopted to recover a eigenvalue window (20–50) of interest. Sparse linear
algebra packages, MUMPS (http://mumps.enseeiht.fr) and SuperLU (https://github.com/
xiaoyeli/superlu_dist) are applied to undertake the inverse of the matrix during the spectral
transformations. A complete review of multi-dimensional and global stability analysis
techniques is given in Theofilis (2011). More details of the validations/verifications for
the present solvers can be found in Xi et al. (2021). A standard sixth-order finite difference
scheme is used to discretize both directions. Equally spaced grid points are adopted along
the wall surface and the following equation is used to cluster grids at the wall:

h = Hs
a(1 + η)

b − η
, a = ηh

1 − 2ηh
, b = 1 + 2a. (3.2a–c)

Here, η is the uniform grid in computational domain [−1, 1], Hs stands for the distance
between the shock and the wall, h represents the wall-normal grid in the physical
domain and ηh, set to 0.025, is a location parameter for clustering control. To achieve a
grid-independent solution, the number of discretization points is checked for convergence.
A large number of grid points up to 5401 × 401 are employed to identify the structure of
direct and adjoint eigenfunctions with a minimum of 20 points per wavelength in each
direction for different sizes of computational domains.

The spectrum of the attachment-line modes for CASE P2 is shown in figure 2(a).
The branches of attachment-line modes are marked by black filled dots. Similar to the
incompressible cases (Lin & Malik 1996; Meneghello et al. 2015), symmetric (S1, S2, . . .)
and antisymmetric (A1, . . .) modes alternate from the most unstable to the most stable. The
leading symmetric mode S1 has the highest growth rate. All the attachment-line modes are
travelling in the spanwise direction at a nearly constant phase speed around 0.5. For the
high-sweep Mach number case (CASE P8), however, as shown in figure 2(b), only one
symmetric discrete mode is obtained that is marked with S. Based on the recent study
(Xi et al. 2021), for large sweep Mach numbers, the attachment-line mode is inviscid in
nature, while for lower sweep Mach numbers, the attachment-line instability exhibits the
behaviours of viscous Tollmien–Schlichting waves.

The leading attachment-line modes are calculated through three different domains (see
figure 1). For all domains, the same leading eigenvalues and consistent eigenfunctions are
obtained as shown in figure 3. It indicates that the characteristics of attachment-line modes
are not much affected by the computation domain size. From figure 3(a), the behaviour of
the surface-density perturbations, which are normalized with the values at the attachment
line, are of great difference in the downstream region s/R > 1 for these two cases. Based
on eigenfunctions in figure 3(b,c), it is seen that the downstream perturbations in CASE
P2 are of the cross-flow type while those in CASE P8 are of the second Mack-mode type,
as highlighted more clearly in figure 4(e) (CASE P2) and figure 4( f ) (CASE P8).

Figure 4(a,b) display the structures of direct and adjoint eigenvectors obtained from
the largest R3 domain for the leading eigenvalues of CASES P2 and P8, respectively.
The structures are visualized with the iso-surfaces of the real part of the direct spanwise
velocity ŵ and the adjoint spanwise velocity ŵ†. For both cases, red/blue colours stand
for positive/negative values (±10−6) for direct eigenfunctions and blue/white colours
represent positive/negative values (±10−3) for adjoint eigenfunctions. Figure 4(a,b)
display the typical features for the direct global eigenfunctions exhibitting attachment-line
instability near the leading edge, while either cross-flow instability (CASE P2) or second
Mack mode (CASE P8) dominate downstream flows. For smaller Ms (CASE P2), from
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Figure 2. The calculated spectra around the leading attachment-line modes for CASE P2 (a) and CASE P8
(b) on R2 domain. The black, filled dots stand for discrete modes of the attachment-line type and the grey open
circles represent eigenvalues from the continuous spectrum or pseudo-spectrum.
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ω̂

ûτ
ω̂

ûτ

P8P2

Small domain (R1)    0.035724347 + 0.00011250136i   0.12482622 + 0.00015009545i
Mid-sized domain (R2) 0.035724347 + 0.00011250149i   0.12482623 + 0.00015009213i

Large domain (R3)    0.035724347 + 0.00011250156i   0.12482622 + 0.00015009117i

Figure 3. (a) Dependences of the density perturbations along wall surfaces on different computational domain
sizes (R1, R2 and R3 shown in figure 1) for CASES P2 and P8. The leading direct eigenvalues for over different
domains are shown in the table. The digits different from the small-domain values are underlined. The two
eigenfunctions at m1 and m2 in panel (a) are shown in panels (b,c). Here, ûτ and h∗ stand for chordwise
velocity perturbation and dimensional distance away from wall surface, |ρ̂| stands for the norm of density
perturbations, and s represents the distance away from the attachment line along the surface. The location of
critical layer cr = Ū and the sonic lines cr = Ū + a (where Ū represents the spanwise velocity along z direction
and a stands for the speed of sound) are indicated by horizontal dash-dotted blue and black lines, respectively.

the attachment-line plane, marked a1 in figure 4(a) and shown in figure 4(c), to the
downstream plane, marked a2 in figure 4(a) and shown in figure 4(e), perturbations evolve
away from wall surfaces forming cross-flow vortices aligned with external streamlines,
as also reported by Mack et al. (2008) and Meneghello et al. (2015). For larger Ms
(CASE P8), despite the similar mode structure at the attachment-line plane, marked b1
in figure 4(b) and shown in figure 4(d), the perturbations at the downstream plane, marked
b2 in figure 4(b) and shown in figure 4( f ), exhibit the behaviour of the second Mack
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Figure 4. (a,b) show the direct/adjoint eigenfunctions of the discrete modes for CASE P2 and CASE P8,
respectively. (c,d) show the contours of spanwise velocity ŵ of direct eigenfunctions at the attachment-line
planes. (e, f ) show the contours of chordwise velocity ûτ of direct eigenfunctions at the further downstream
planes. (g,h) show the contours of spanwise velocity ŵ† of adjoint eigenfunctions at the attachment-line planes.
z∗ represents the dimensional spanwise location. S∗ represents the distance away from the attachment line along
the surface, and the positive/negative values distinguish the upper ( y > 0) and lower part ( y < 0) of the field.

mode instability with perturbations mainly located below the sonic line. In contrast to the
feature that the perturbations of direct mode cover a large area, the adjoint mode appears
only in the vicinity of the attachment line as shown in figure 4(a,b,g,h). Figure 4(g,h) show
the contours of adjoint spanwise velocity ŵ† for CASE P2 and P8 at the attachment-line
planes, respectively. The basic structures of adjoint fields for both cases are similar and the
bulk of adjoint fields moves away from the wall surface for large sweep Mach numbers.
Moreover, based on the theoretical receptivity analysis on external force f , this region
is the most responsive to this discrete global mode. In other words, even though the
direct global mode covers a large region further away from the attachment line, it is still
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Figure 5. (a) Dependence of the growth rates on sweep Mach numbers. (b) Dependence of the frequency on
sweep angle Λ. The marked red points represent CASES P1–P8.

possible to control/excite the mode by introducing forces at a relatively small region close
to the attachment line. This finding is consistent with those from incompressible flows by
Meneghello et al. (2015), indicating that the leading-edge control might be effective to the
hypersonic flows over swept blunt bodies.

The characteristics of the leading attachment-line mode on sweep angles and the relative
sweep Mach numbers are shown in figure 5. As the sweep angle varies from 20◦ to 70◦, the
growth rate of the leading attachment-line mode shows a rising and then declining trend,
reaching the locally highest point around 40◦. When the sweep angle further increases,
the growth rate of the leading attachment-line mode exhibits the features of monotonous
increase and becomes positive again at large sweep Mach numbers. Moreover, this finding
is consistent with two facts: the first is that the plane stagnation flow is known to be linearly
stable for three-dimensional perturbations, as can be seen as the limit of zero sweep angle
for the present cases; the other is that the attachment-line instability is found to become
unstable for large sweep angles (Gaillard, Benard & Alziary de Roquefort 1999).

Based on (2.23), the amplitudes of the modes excited by various boundary perturbations
are mainly determined by the concomitant boundary term (B.C.). From the expression in
Appendix A, it is clearly shown that the receptivity is evaluated from the gradients of
adjoint variables and physical perturbations on the boundary. Moreover, this procedure
permits the extraction of the receptivity amplitude pertaining to any discrete modes for
any type of boundary perturbations at any location. Taking the surface perturbations in
CASES P2 and P8, for instance, two types of surface perturbation (detailed expressions
can be found in Appendix B) are calculated, as shown in figure 6. It demonstrates that the
strong receptive regions of the leading attachment-line modes to surface perturbations are
in the vicinity of attachment line and the surface perturbations at the exact attachment
line are the most effective. Also, the surface vibrations are found to be a little more
effective than suction/blowing, because of the higher excited amplitudes. Moreover, as
the delta-function form perturbations are used and the basis for representation of LNSE
cover the whole domain, the distributed surface perturbations receptivity analyses can be
easily performed by integrations along the finite length. Further, as the present framework
is from the basis of LNSE, the receptivity problem for the excitation of discrete modes of
free-stream disturbances with surface inhomogeneities can be also taken into account.

As mentioned by Tumin (2020), the eigenfunction expansion methods for the two- and
three-dimensional problems are the natural extensions of the widely used local cases.
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Figure 6. Amplitudes of the leading attachment-line modes excited at different location s/R for surface
vibration and suction/blowing. All the eigenfunctions are normalized so that the density components on the
wall surface are equal to one at the attachment line.

The analysis of discrete modes is similar for both local and global cases and can be
easily performed. However, problems become more complicated with the continuous
spectra since the mathematical properties of ordinary and partial differential operators are
very different. Although uncertainties associated with the continuous spectra for global
cases still exist, the bi-orthogonal eigenfunction system is still a powerful tool for solving
global receptivity problems of discrete modes for complex high-speed boundary layers.

4. Conclusions

Global instabilities and receptivities around the leading edge of a swept blunt body are
studied in the hypersonic-flow region. The characteristics of the leading attachment-line
mode under the variation of sweep angles from 20◦ to 70◦ are obtained for the first time. As
the sweep angle increases, the growth rates of the leading attachment-line modes exhibit
a rising then declining trend and then rising again in which the modes also show the
transformation from the features of the cross-flow instability to the second Mack-mode
instability further downstream. Moreover, a general bi-orthogonal eigenfunction system
for the hypersonic global stability system is established to address receptivity problems to
any external forces and boundary perturbations. The receptivity analyses indicate that the
leading attachment-line mode is the most responsive to external disturbances in the vicinity
of the leading edge, in the hypersonic region. Furthermore, it illustrates that the present
framework can be easily applied to both local and non-local linear stability/receptivity
analyses for real geometry.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.217.
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Appendix A. Concomitant boundary terms

The concomitant boundary terms are determined by using Green formulas. Details for
derivation of these terms can be found in supplementary material available at https://doi.
org/10.1017/jfm.2021.217. Taking the detailed explicit forms of the operators L , the B.C.

term can be expressed as

B.C. = −
∫

Γ

ρ†ρûbc dy +
∫

Γ

ρ†ρv̂bc dx

−
∫

Γ

(
4μ

3Re
∂u†

∂x
ûbc + μ

Re
∂v†

∂x
v̂bc + μ

Re
∂w†

∂x
ŵbc + μ

RePr
∂T†

∂x
T̂bc

)
dy

+
∫

Γ

(
μ

Re
∂u†

∂y
ûbc + 4μ

3Re
∂v†

∂y
v̂bc + μ

Re
∂w†

∂y
ŵbc + μ

RePr
∂T†

∂y
T̂bc

)
dx

− 1
2

∫
Γ

[
μ

3Re
∂v†

∂y
ûbc + μ

3Re
∂u†

∂y
v̂bc

]
dy + 1

2

∫
Γ

[
μ

3Re
∂v†

∂x
ûbc + μ

3Re
∂u†

∂x
v̂bc

]
dx,

(A1)

where the superscript † and subscript bc represent the adjoint variables and variables at the
boundary line Γ . The direction of the boundary line Γ is defined to ensure the computation
domain is always on the left.

Appendix B. Boundary conditions for surface perturbations

The boundary conditions for perturbations can be expressed as

(
ûbc, v̂bc, ŵbc, T̂bc

)T = H(x, y)
(

û′
bc, v̂

′
bc, ŵ′

bc, T̂ ′
bc

)T
, (B1)

where H(x, y) is the shape function of perturbations and is chosen as the Dirac delta
function

H(x, y) = δ(Ss − Sl) (B2)

in the present study. Here, Ss stands for the surface distance away from the attachment
line, and Sl represents a specific location along the surface, where the perturbations are
embedded. When a surface is subject to small vibrations, the boundary conditions with
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the frequency ωr can be specified as

û′
bc = − ∂u

∂n
+ iωrnx, v̂′

bc = −∂v

∂n
+ iωrny, ŵ′

bc = −∂w
∂n

, T̂ ′
bc = −∂T

∂n
, (B3a–d)

where n = (
nx, ny

)
stands for the surface normal direction. In the circumstance of

wall-normal blowing/suction, the boundary conditions are given by

û′
bc = iωrnx, v̂′

bc = iωrny, ŵ′
bc = 0, T̂ ′

bc = 0. (B4a–d)
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