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Abstract. Collisionless electron heating in a low-pressure weakly magnetized in-
ductively coupled plasma is considered by means of quasilinear theory. We use a
one-dimensional slab model of an inductively coupled plasma with a penetrating
radio frequency (RF) electric field given by an exponential function. Diffusion
coefficients in velocity space are obtained regarding the induced RF electric field
and induced polarization electric field (DC electric field). It is shown that the
induced polarization electric field has a significant contribution to the collisionless
electron heating. We consider the influence of the quasilinear collision integral on
the evolution of the symmetric part of the electron energy distribution function.

1. Introduction
Low-pressure inductively coupled plasmas (ICPs) are used in various fields of tech-
nology from material processing to fusion [1, 2]. In such plasmas, the electron–
neutral collision frequency ν is much smaller than the radio frequency (RF) fre-
quency ω and the electron mean free path l is comparable or larger than the
plasma dimensions. Under such conditions, the mechanism of electron heating is
collisionless (Landau damping) rather than the collisional Joule heating which is
dominant at high pressures. Collisionless electron heating is essential in sustain-
ing such plasmas and has attracted a great deal of experimental and theoretical
investigations [3–6].
The application of a weak and steady-state magnetic field on an inductively

coupled plasma can effect the plasma parameters [7–9], and it gives rise to a polar-
ization electric field (DC field) and an enhanced penetration of the electromagnetic
field (skin depth) in the plasma [10,11]. The skin depth increases for the k‖-spectrum
of the RF field, where k‖ is the parallel component of the wavevector k with respect
to the applied magnetic field B0. The induced polarization electric field (IPEF) and
the skin depth could effect plasma heating and should be taken into account in the
investigation.
In this paper, we focus our attention on the electron heating in a weakly mag-

netized low-pressure ICP such that ωc � ωp, where ωc is the electron cyclotron
frequency and ωp is the electron plasma frequency.We consider the electron velocity
diffusion coefficient using quasilinear theory. We consider two infinite parallel plane
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Figure 1. Schematic picture of a magnetized ICP in slab geometry.

walls located at x = 0 and x =L. The plasma is confined between the walls and we
assume that the plasma density and electromagnetic waves may only vary in the
x-direction, i.e. ∇z = ∇y = 0. A RF coil for generating an electromagnetic field is
assumed to exist to the left of the x = 0 boundary. We assume that a transverse
electromagnetic wave penetrates into the plasma and has the form E=Ey(x, t)ey
and B= Bz(x, t)ez, where E and B are related to each other via Maxwell equations.
The weak external DC magnetic field B0 is applied parallel to the walls in the
positive z-direction. Figure 1 illustrates a schematic picture of a simplified one-
dimensional magnetized ICP in slab geometry.
It has already been shown that the weak external DC magnetic field does not

change the penetration of the RF field into the one-dimensional magnetized plasma,
because of the mutual compensation of Pederson and Hall effects. However, the
polarization field will be generated and must be taken into account in the investig-
ation [10,11].
To facilitate further calculations, we do not solve the self-consistent equation

for the electric field E(x, t) and instead assume an exponential decaying spatial
dependence in the form of E(x, t)= E0 exp(−x/δ) exp[i(κx − ωt)]ey. In this form of
E(x, t), δ = (c2mevth/4πe2n0ω)1/3 is the collisionless expression of skin depth, E0 is
a real parameter, vth is electron thermal velocity and κ is the wave number, which in
the frequency range 100 KHz–10 MHz is much less than 1/δ [5,12]. In addition, we
neglect nonlinear effects (such as the nonlinear induced polarization field) related
to the induced RF magnetic field which have been discussed in [10,13].
This paper is organized as follows. In Sec. 2, we obtain a qualitative expression

for the IPEF in a magnetoactive ICP in slab geometry. In Sec. 3, we discuss the
quasilinear theory of collisionless electron heating in a magnetoactive plasma. In
this section, we derive the diffusion coefficient in velocity space for a boundless
magnetoactive plasma. In Sec. 4, we apply the results of Sec. 2 to a bounded mag-
netoactive ICP, and we compare the contribution of the IPEF to the collisionless
electron heating with that of the induced RF electric field. In Sec. 5, we consider
quasilinear collision integral influence on the evolution of the symmetric part of
the electron energy distribution function (EEDF). Finally, Sec. 6 gives a summary
and a discussion of our results.
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2. IPEF
In this section, we obtain a qualitative expression for the IPEF in a magnetoactive
ICP in slab geometry. The IPEF is closely related to the Hall effect. We consider
the linear electron equation:

∂V
∂t

= − e

m

[
E+

1
C
V× B

]
− νV, (1)

where ν is the electron–neutral collision frequency. The induced RF magnetic field
leads to the nonlinear polarization field in an ICP, therefore it is neglected in the
linear electron equation. One can solve (1) for V to obtain

Vx =
(

−ie

mω̂

)
Ex(x) − i(ωc/ω̂)Ey(x)

1 − (ωc/ω̂)2
, (2)

Vy =
(

−ie

mω̂

)
Ey(x) + i(ωc/ω̂)Ex(x)

1 − (ωc/ω̂)2
, (3)

where ω̂ = ω + iν and ωc = eB0/mc > 0 is the electron cyclotron frequency. Next,
making use of Maxwell equations, one obtains

∇(∇ ·E) − ∇2E= −4π

c2

∂J
∂t

, (4)

where the displacement current is neglected. This assumption is valid in a typical
ICP. It is easy to see that the x-component of the left-hand side of this equation
vanishes. Therefore, J can have only y-components. One can now find the polariz-
ation field from (2) by setting Jx = 0 and obtaining

Ex(x)= i
ωc
ω̂

Ey(x). (5)

This is a DC electric field which varies in space on the characteristic length scale of
the skin depth δ. By inserting (5) into (3), it is seen that Jy does not change in the
one-dimensional magnetized ICP. This means that the DC external magnetic field
does not change the skin depth.

3. Quasilinear theory of collisionless electron heating in a
magnetoactive plasma

We solve kinetic equation for electrons and obtain electron velocity diffusion coef-
ficient in a magnetized low pressure ICP. At first we consider a boundless plasma,
then we extend the model to a bounded ICP. The oscillatory motion of ions in the
presence of RF waves can be ignored due to their relatively small mobility. The
EEDF F (r, v, t) in an arbitrary electric field E(r, t) and magnetic field B(r, t) is

∂F (r, v, t)
∂t

+ v · ∇rF (r, v, t) − e

m

[
E+

v× B
c

]
· ∇vF (r, v, t)= S(F ), (6)

where S(F ) is the collision integral. In the low-pressure plasma, the electron heating
characteristic length scale δ becomes smaller than the electron MFP (Mean free
path) l; thus, one can decompose the electric field E(r, t) and magnetic field B(r, t)
into two parts:

E(r, t)= Ē(r, t) + Ẽ(r, t), B(r, t)= B̄(r, t) + B̃(r, t), (7)

where the characteristic length scale of Ẽ(r, t) and B̃(r, t) is the skin depth δ and
that of Ē and B̄ is electron collision MFP l. To estimate the numerical values
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of δ and l, a typical ICP of helium gas at a pressure of 1 mTorr is considered.
With ne = 1011 cm−3 and Te = 5 eV, one obtains δ = 3.16 cm and l = 50.0 cm [14].
We can also separate the distribution function F into two parts. The first part is
F0(r, v, t)= 〈F (r, v, t)〉l, averaged over the scale of the electron collision MFP l. The
second part is F̃ (r, v, t), which describes deviations of the EEDF F from the first
part with space scale smaller than MFP l, and F̃ � F ,

F (r, v, t)= F0(r, v, t) + F̃ (r, v, t). (8)

We can then separate (6) into slow- and fast-varying parts in the form of quasilinear
equations [15]:

∂F0

∂t
+ v · ∇rF0 − e

m

(
Ē+

v× B̄
c

)
· ∇vF0 − e

m

〈
Ẽ+

v× B̃
c

· ∇vF̃

〉
δ

=S(F0), (9)

∂F̃

∂t
+ v · ∇rF̃ − e

m

(
Ē+

v× B̄
c

)
· ∇vF̃ − e

m

(
Ẽ+

v× B̃
c

· ∇vF0

)
= S(F̃ ), (10)

where the last term in the left-hand side of (9) is the nonlinear wave particle
interaction term which is averaged over the plasma heating characteristic length
scale of δ. It expresses collisionless plasma heating in the quasilinear theory.
The equation for the oscillating part of the electron distribution function F̃ can

be written as

∂F̃

∂t
+ v · ∇rF̃ − e

mc
v× B0 · ∇vF̃ =

e

m

(
Ẽ+

v× B̃
c

)
· ∇vF0 − νF̃ , (11)

where ν is the electron–neutral collision frequency, and the collision integral S(F̃ )
was approximated by −νF̃ . The solution of (11) can be found using the integral
along the unperturbed orbit of electrons [16,17],

F̃ (x, v, t)=
e

m

∫ t

−∞

[
Ẽ(x′, t′) +

v× B̃(x′, t′)
c

]
· ∇v′F0 exp[−ν(t − t′)] dt′, (12)

where Ẽ(x′, t′) is the sum of the induced RF electric field Ẽy(x′, t′) and generated
polarization field Ẽx(x′), x′ =x − (v⊥/ωc){sin φ − sin[φ − ωc(t − t′)]} is the electron
trajectory in the wave and in the presence of a static external magnetic field B0,
and v⊥ is the perpendicular component of the electron velocity with respect to B0.
In order to evaluate (12), it is convenient to use the Fourier transform of the electric
fields Ẽ(x′)=

∫ +∞
−∞ E(k) exp(ikx′) dk, one can then obtain

F̃ (x, v, t) =
e

m

∫ ∞

−∞
dk

∞∑
n,n′=−∞

×
{

Ey(k)Jn′(ξ)J ′
n(ξ)

ω̂ − nωc
exp(−iωt) +

inJn′(ξ)Jn(ξ)Ex(k)
ξ(iν − nωc)

}

× ∂F0

∂v⊥
exp[i(n − n′)φ] exp(ikx), (13)

where ξ = kv⊥/ωc, Jn(ξ) is the nth order of the Bessel function, J ′
n(ξ) is a derivative

of Jn(ξ) with respect to ξ, and Ey(k) and Ex(k) are the Fourier components of the
induced RF electric field and the IPEF, respectively.
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We now obtain the quasilinear collision integral and diffusion coefficient. In the
low-pressure ICP, the RF frequency ω is larger than the inelastic electron collision
frequency which permits us to assume that F0 does not depend on time. By the
temporal averaging of (9) over the wave period T , we get

v · ∇rF0 = S(F0) + SQL(F0), (14)

where

SQL =
e

m

〈(
Ẽ+ v× B̃

c

)
· ∇vF̃

〉
δ,T

, (15)

is the quasilinear collision integral, and the brackets denote averaging over the
wave period T and space scale δ, such that δ � l. Making the averages, it gives

SQL =
e

2m
δ(x − x0)Re

{
∇v ·

[(
Ẽ

∗
(k) + v× B̃

∗
(k)
c

)
F̃

]}
, (16)

where the delta function indicates the localization of collisionless electron heating
in the range x ≈ x0. Averaging (16) over the gyroangle φ in velocity space and
using (13), one can arrange the quasilinear collision integral in the form

SQL = δ(x − x0)
1
v⊥

∂

∂v⊥
v⊥

(
D⊥⊥

∂F0

∂v⊥

)
, (17)

with diffusion coefficient

D⊥⊥ = π

(
e

m

)2 ∞∑
n= −∞

∫ ∞

−∞
dk

(
d

Ey
n + dEx

n

)
, (18)

with the terms

dEx
n =

ν|Ex(k)|2n2J2
n(ξ)

ξ2
(
n2ω2

c + ν2
) , (19)

d
Ey
n =

ν|Ey(k)|2J ′2
n (ξ)

(ω − nωc)2 + ν2
, (20)

where (19) and (20) express diffusion coefficient components related to the IPEF
Ex(x) and the induced RF electric field Ey(x), respectively. In Fig. 2 the variation
of dEx

1 and d
Ey

1 are shown as functions of ξ = kv⊥/ωc. d
Ex
1 and d

Ey

1 represent electron
heating in collisionless power absorption. Although the collision frequency is small
(ν � ω), collisions are necessary for collisionless power dissipation. As can be seen
from (19) and (20), if ν → 0, collisionless heating also tends to zero.

4. Diffusion coefficients in a bounded magnetoactive ICP in slab
geometry

To use (19) and (20) in a bounded magnetoactive ICP, it is necessary to set the
boundary conditions for electromagnetic waves and EEDF F̃ on the plasma sur-
faces. It can be assumed that charged particles undergo mirror reflection from the
plasma surfaces. This implies that (11) can be extended in the complete x range
(−∞ < x < +∞) if the following relations are taken into account:

F̃ (vx, vy, vz, x < 0)= F̃ (−vx, vy, vz, x > 0), (21)
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Figure 2. Variation of dEx
1 (full curve) and d

Ey

1 (dashed curve) in arbitrary units as a
function of ξ = kv⊥/ωc.

for EEDF F̃ and

Ey(x < 0)= Ey(x > 0), Ex(x < 0)= −Ex(x > 0), (22)

By(x < 0)= −By(x > 0), (23)

for electromagnetic waves on x = 0. The problem now is reducing to a boundless
plasma. We now use the Fourier transform of a periodically continued electric field
with period L as

Ey(k)=
1
L

∫ L

0

Ey(x) cos(kx) dx, (24)

and

Ex(k)=
1
L

∫ L

0

Ex(x) sin(kx) dx, (25)

where k =nπ/L, Ey(x)= E0 exp(−x/δ) cos(κx) and Ex(x) = (−ωcωE0)/(ω2 + ν2)
exp(−x/δ) sin(κx). Figures 3 and 4 show the profile of the normalized RF electric
field and the IPEF as a function of x/δ, respectively.
To demonstrate the polarization field effect on the electron heating, we consider

the ratio of dEx
n to d

Ey
n in the limit ν � ω < ωc. To illustrate the numerical values of

collision frequency, electron cyclotron frequency, electron plasma frequency and
electron gyroradius in an ICP, let us assume that B0 = 10 G, ne = 1011 cm−3,
Te = 5 eV and ω/2π = 13.56 MHz. One then obtains ν = 2 × 106 s−1, ωc = 1.76 ×
108 s−1, ωp = 1.79 × 1010 s−1 and rc = 0.85 cm [14]. Since Jn(ξ)/J ′

n(ξ) ≈ 1 and
|Ex(k)|2/|Ey(k)|2 ≈ (ωc/ω)2, one obtains

dEx
n

d
Ey
n

≈




(
Lωc
πrcω

)2

n �= 0,

(
Lωc
πrcν

)2

n = 0,

(26)

where rc = v⊥/ωc is the electron gyroradius and L is gap length of the plasma.
Hence, the gap length L does not exceed the energy relaxation length λε, i.e.
rc < L < λε, and one gets dEx

n /d
Ey
n � 1. For ν � ω < ωc, it can be concluded that
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Figure 3. Evolution of the normalized RF electric field εy =Ey(x)/E0 as a function of x/δ
for δ =3.16 cm and κ=0.01 cm−1.
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Figure 4. Evolution of the normalized polarization electric field εx =Ex(x)/E0 as a
function of x/δ for δ =3.16 cm, κ=0.01 cm−1, ω/2π =13.56 MHz, ωc =1.76 × 108 s−1 and
ν =2 × 106 s−1.

the IPEF has a significant contribution to the plasma heating in a one-dimensional
magnetized ICP. Thus, the application of a weak steady-state magnetic field
(ωc � ωp) on an ICP which leads to a DC electric field (polarization field) also
introduces additional collisionless electron heating. The corresponding diffusion
coefficient is larger than that of the penetrating RF electric field in the investigated
model.

5. Symmetric distribution function F0
In this section we consider the effect of the quasilinear collision integral on the
slowly varying EEDF F0 using quasilinear theory. It is assumed that the EEDF F
is essentially isotropic, which requires that ν � ν∗, where ν∗ is the inelastic collision
frequency. In this case, the EEDF F can be expanded into spherical harmonics
(Lorentz approximation) and terms beyond first order may be neglected,

F (r, v, t)= F0(r, v, t) +
v
v

· F1(r, v, t), (27)
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Figure 5. Normalized electron energy distribution function F0(x, v) as a function of x at a
magnetic field of 10 G.

where F0 is the symmetric part of the EEDF F and the second term on the right-
hand side of (27) is the anisotropy part, with F1 � F0. One can obtain an equation
for symmetric part of the EEDF F as follows [18]:

− v2ν

3
(
ν2 + ω2

c

)∇2
⊥F0 − v2

3ν
∇2

‖F0 = SQL(F0) + S∗
0, (28)

where ∇‖ and ∇⊥ are parallel and perpendicular components of gradient with
respect to B0, S∗

0 is the inelastic collision integral, and SQL(F0) is defined by (17).
For the case of the infinite dimension of two parallel plasma walls as indicated in
Sec. 1, one can suppose that only perpendicular gradients survive (28), and ∇2

⊥ can
be replaced by ∂2/∂x2. Therefore, (28) with an assumption of S∗

0 = −ν∗F0 becomes

v2ν

3
(
ν2 + ω2

c

) ∂2F0

∂x2
− ν∗F0 = −SQL(F0). (29)

Next, integration of (29) over the interval x =x0 − ε to x =x0 + ε, taking into
account the plasma heating symmetry with respect to the position x0, gives

2
3

v2ν

ν2 + ω2
c

∂F0

∂x

∣∣∣∣
x=x0+ε

= −SQL(F0), (30)

where ε is very small. The above equation can be used as the boundary condition
for

v2ν

3
(
ν2 + ω2

c

) ∂2F0

∂x2
− ν∗F0 = 0. (31)

Using the boundary condition (30) for a planar slab plasma, the EEDF F0 can be
written as

F0(v, x)= F0(v)
cosh((x − L/2)/λε)

cosh(L/2λε)
, (32)

where λε =
√

v2ν/3(ν2 + ω2
c )ν∗ is the energy relaxation length. In Fig. 5 the vari-

ation of F0(v, x)/F0(v) as a function of x at a magnetic field of 10 G is shown.
It is seen that the energy relaxation length decreases due to the applied external
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magnetic field. Thus, the theory is valid for a weak magnetic field. The kinetic
equation for the EEDF F0 can be deduced from (30) taking x0 = 0 and ε → 0,

F0(v)=
−1

2ν∗λε
SQL(F0) coth

(
L

2λε

)
. (33)

The effect of the nonlinear wave–particle interaction term is included in this kinetic
equation via the quasilinear collision integral SQL(F0). Although the collisionless
electron heating takes place at the boundaries, inelastic collisions transfer the
heating into the bulk plasma since λε � L. In this region, one can get the following
continuity equation

ν∗F0 +
SQL
L

= 0, (34)

which indicates that the collisionless electron heating is balanced by electron in-
elastic collisions. Furthermore, the isotropic EEDF F0 is spatially homogeneous in
this limit.

6. Summary and conclusions
We have investigated collisionless electron heating in a low-pressure weakly mag-
netized ICP via quasilinear theory. We have used a one-dimensional slab model of
magnetized ICP with a prescribed penetrating electric field profile given by the
exponential function. An expression for the induced polarization electric field due
to the Hall effect was obtained qualitatively. The diffusion coefficients in velocity
space were investigated in a bounded magnetized ICP. In the simplified model
of magnetized ICP, It was shown that the IPEF leads to the additional electron
heating which has a significant contribution to the collisionless electron heating
compared with that of the induced RF electric field. The kinetic equation of the
isotropic part of EEDF F has been obtained regarding the quasilinear collision
integral.
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