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In this paper we give a short proof of the Random Ramsey Theorem of Rödl and Ruciński:

for any graph F which contains a cycle and r � 2, there exist constants c, C > 0 such that

Pr[Gn,p → (F)er ] =

{
1− o(1) p � Cn−1/m2(F),

o(1) p � cn−1/m2(F),

where

m2(F) = max
J⊆F,vJ�2

eJ − 1

vJ − 2
.

The proof of the 1-statement is based on the recent beautiful hypergraph container theorems

by Saxton and Thomason, and Balogh, Morris and Samotij. The proof of the 0-statement

is elementary.
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1. Introduction

For graphs G and F and a constant r ∈ N, we let

G→ (F)er

denote the property that every edge-colouring of G with r colours (we call this an r-

colouring) contains a copy of F with all edges having the same colour. Ramsey’s theorem

then implies that for all graphs F and r we have Kn → (F)er , for n large enough. At first

sight it is not immediately clear whether this follows from the density of Kn or its rich

structure. As it turns out, studying Ramsey properties of random graphs shows that the

latter is the case, as random graphs give examples of sparse graphs with the desired

Ramsey property.

The study of the Random Ramsey Theorem was initiated by �Luczak, Ruciński and

Voigt [7], who studied the Ramsey property of random graphs in the vertex-colouring

case and also established the threshold for the property Gn,p → (K3)e2. Thereupon, in a
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series of papers Rödl and Ruciński [9, 10, 11] determined the threshold of Gn,p → (F)er , in

full generality. Formally, their result reads as follows.

For every graph G, let V (G) and E(G) denote its vertex and edge sets, and vG and eG
their sizes. For every graph G we set d(G) = eG/vG and we let m(G) be the density of G,

defined by

m(G) = max
J⊆G

d(J).

Similarly, for every graph G on at least 3 vertices we set d2(G) = (eG − 1)/(vG − 2), and

we let m2(G) denote the so-called 2-density, defined by

m2(G) = max
J⊆G,vJ�3

d2(J).

If m2(G) = d2(G) then we say that a graph G is 2-balanced, and if in addition m2(G) > d2(J)

for every subgraph J ⊂ G with vJ � 3, we say that G is strictly 2-balanced.

Theorem 1.1 (Rödl and Ruciński [9, 10, 11]). Let r � 2 and let F be a fixed graph that

is not a forest of stars or, in the case r = 2, paths of length 3. Then there exist positive

constants c = c(F, r) and C = C(F, r) such that

lim
n→∞

Pr[Gn,p → (F)er] =

{
0 if p � cn−1/m2(F),

1 if p � Cn−1/m2(F).

For the exceptional case of a star with k edges, it is easily seen that the threshold

is determined by the appearance of a star with r(k − 1) + 1 edges. For the path P3 of

length 3 the 0-statement only holds for p� n−1/m2(P3) = n−1 since, for example, a C5 with

a pendant edge at every vertex has density one and cannot be 2-coloured without a

monochromatic P3.

Note that p = n−1/m2(F) is the density where we expect that every edge is contained

in roughly a constant number of copies of F . This observation can be used to provide

an intuitive understanding of the bounds of Theorem 1.1. If c is very small, then the

number of copies of F is w.h.p. (with high probability, i.e., with probability 1− o(1) if

n tends to infinity) small enough that they are so scattered that a colouring without a

monochromatic copy of F can be found. If, on the other hand, C is big, then these copies

w.h.p. overlap so heavily that every colouring has to induce at least one monochromatic

copy of F .

The aim of this paper is to give a short proof of Theorem 1.1.

2. Proof of the 1-statement

The proof of the 1-statement requires two tools. The first one is a well-known quantitative

strengthening of Ramsey’s theorem. We include its short proof for convenience of the

reader.

https://doi.org/10.1017/S0963548314000832 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000832


132 R. Nenadov and A. Steger

Theorem 2.1 (folklore). For every graph F and every constant r � 2 there exist constants

α > 0 and n0 such that, for all n � n0, every r-colouring of the edges of Kn contains at least

αnvF monochromatic copies of F .

Proof. From Ramsey’s theorem we know that there exists N := N(F, r) such that every

r-colouring of the edges of KN contains a monochromatic copy of F . Thus, in any r-

colouring of Kn every N-subset of the vertices contains at least one monochromatic copy

of F . As every copy of F is contained in at most
(
n−vF
N−vF

)
N-subsets, the theorem follows,

e.g., with α = 1/NvF .

We will need in particular the following easy consequence of Theorem 2.1.

Corollary 2.2. For every graph F and every r ∈ N, there exist constants n0 and δ, ε > 0

such that the following is true for all n � n0. For any E1, . . . , Er ⊆ E(Kn) such that for all

1 � i � r the set Ei contains at most εnv(F) copies of F , we have

|E(Kn) \ (E1 ∪ · · · ∪ Er)| � δn2.

Proof. Let α and n0 be as given by Theorem 2.1 for F and r + 1, and set ε = α/2r. Further,

let Er+1 := E(Kn) \ (E1 ∪ · · · ∪ Er) and consider the colouring Δ : E(Kn)→ [r + 1] given by

Δ(e) = min{i ∈ [r + 1] : e ∈ Ei}. By Theorem 2.1 there exist at least αnvF monochromatic

copies of F , of which, by assumption on the sets Ei, at least 1
2
α · nvF must be contained

in Er+1. As every edge is contained in at most 2eF · nvF−2 copies of F the claim of the

corollary follows, e.g., for δ = α/(4eF ).

The second tool we need is a consequence of the beautiful container theorems of Balogh,

Morris and Samotij [1] and Saxton and Thomason [12]. The following theorem is from

Saxton and Thomason, who obtain it for all graphs F . Balogh, Morris and Samotij obtain

a similar statement for all 2-balanced graphs F .

Definition. For a given set S and constants k ∈ N, s > 0, let Tk,s(S) be the family of

k-tuples of subsets defined as follows:

Tk,s(S) = {(S1, . . . , Sk) | Si ⊆ S for 1 � i � k and |
⋃k

i=1 Si| � s}.

Theorem 2.3 ([12], Theorem 1.3). For any graph F and ε > 0, there exist n0 and k > 0

such that the following is true. For every n � n0 there exist t = t(n), pairwise distinct tuples

T1, . . . , Tt ∈ Tk,kn2−1/m2(F) (E(Kn)) and sets C1, . . . , Ct ⊆ E(Kn), such that:

(a) each Ci contains at most εnvF copies of F ,

(b) for every F-free graph G on n vertices there exists 1 � i � t such that Ti ⊆ E(G) ⊆ Ci.

(Here Ti ⊆ E(G) means that all sets contained in Ti are subsets of E(G).)

Note that the main result in [12] is more general, as it provides a similar structure for

independent sets in uniform hypergraphs.
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With these two tools in hand the proof of the 1-statement of Theorem 1.1 is now easily

completed.

Proof of Theorem 1.1 (1-statement). Let ε and δ be as in Corollary 2.2, and let n0 and

k be as in Theorem 2.3 for F and ε, and assume that n � n0. If Gn,p � (F)er , then there

exists a colouring Δ : E(Gn,p)→ r such that for all 1 � j � r the set Ej := Δ−1(j) does

not contain a copy of F . By Theorem 2.3 we have that for every such Ej there exists

1 � ij � t(n) such that Tij ⊆ Ej ⊆ Cij and Cij contains at most εnvF copies of F . The trivial,

but nonetheless crucial observation is that Gn,p completely avoids E(Kn) \ (Ci1 ∪ · · · ∪ Cir ),

which by Corollary 2.2 has size at least δn2.

Therefore we can bound Pr[Gn,p � (F)er] by bounding the probability that there exist

tuples Ti1 , . . . , Tir that are contained in Gn,p such that

E0(Ti1 , . . . , Tir ) := E(Kn) \ (Ci1 ∪ · · · ∪ Cir )

is edge-disjoint from Gn,p. Thus

Pr[Gn,p � (F)er] �
∑
i1 ,...,ir

Pr[Ti1 , . . . , Tir ⊆ Gn,p ∧ Gn,p ∩ E0(Ti1 , . . . , Tir ) = ∅],

where i1, . . . , ir run over the choices given by Theorem 2.3. Note that the two events in the

above probability are independent and the probability can thus be bounded by

p

∣∣∣⋃ r
j=1 T

+
ij

∣∣∣ · (1− p)δn
2

,

where by T+
ij

we denote the union of the sets of the k-tuple Tij . The sum can be bounded

by first deciding on

s :=

∣∣∣∣
r⋃

j=1

T+
ij

∣∣∣∣ � r · kn2−1/m2(F),

then choosing s edges (
((n2)

s

)
choices), and finally deciding, for every edge, in which sets of

the k-tuples Tij it appears ((2rk)s choices). Together, this gives

Pr[Gn,p � (F)er] � (1− p)δn
2 ·

rkn2−1/m2(F)∑
s=0

((
n
2

)
s

)
(2rk)sps

� e−δn
2p ·

rkn2−1/m2(F)∑
s=0

(
e2rkn2p

2s

)s

.

Recall that p = Cn−1/m2(F). By choosing C sufficiently large (with respect to k), we may

assume that

rkn2−1/m2(F)∑
s=0

(
e2rkn2p

2s

)s

� n2 ·
(
e2rkC

2rk

)(rk/C)n2p

� eδn
2p/2

and thus Pr[Gn,p � (F)er] = o(1), as desired.
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We remark that the same approach, with Theorem 2.1 and Theorem 2.3 replaced with

the corresponding hypergraph versions, gives an alternative proof of the 1-statement for a

Random Ramsey Theorem for hypergraphs obtained by Friedgut, Rödl and Schacht [5]

and Conlon and Gowers [3].

3. Proof of the 0-statement

We need to show that w.h.p. the edges of a random graph Gn,p with p = cn−1/m2(F),

for sufficiently small 0 < c = c(F) < 1, can be coloured in such a way that we have no

monochromatic copy of F . If m2(F) = 1 we have p � cn−1 with c < 1. It is well known

that then every component of Gn,p is w.h.p. either a tree or a unicyclic graph (see [4]). One

easily checks that we can colour each such component without a monochromatic copy

of F whenever F is not a star and not a path of length 3 (or r � 3 in the latter). In the

following we thus assume that m2(F) > 1.

Observe that we may also assume without loss of generality that r = 2 and that F is

strictly 2-balanced. If not, replace F with a strictly 2-balanced subgraph F ′ ⊂ F which

satisfies m2(F ′) = m2(F). Clearly, if we find a 2-colouring of the edges of Gn,p without a

monochromatic copy of F ′, this 2-colouring will also contain no monochromatic copy

of F .

The expected number of copies of F on any given edge is bounded by

2eF · nvF−2 · peF−1 � 2eF · ceF−1.

That is, for c > 0 small enough we do not expect more than one copy. We now show why

this makes the colouring process easier.

Let e be an edge in Gn,p. Assume that Gn,p − e is 2-colourable without a monochromatic

copy of F . Consider any such colouring. If this colouring cannot be extended to e then

there has to exist both a red and a blue copy of F − ê (for some ê ∈ E(F) which might

be different in these two copies) such that e completes both of these copies to a copy of

F . Since these two copies of F − ê are in different colours, and thus edge-disjoint, we can

conclude that there exist at least two copies of F that intersect in e. In other words, a

necessary obstruction for extending a colouring from G− e to G is that e is contained in

at least two copies of F that only intersect in e.

To formalize this idea, call an edge e closed in G if it is contained in at least two copies

of F whose edge sets intersect exactly in e. (Note that we do allow the vertex sets of these

copies to intersect in more than two vertices.) Otherwise we call the edge open. With this

notion at hand we can now formulate the following algorithm for obtaining the desired

2-colouring of Gn,p:

Ĝ := Gn,p;

while there exists an open edge e in Ĝ do

Ĝ← Ĝ− e;

colour Ĝ;

add the removed edges in reverse order and colour them appropriately.

The critical point, of course, is the statement ‘colour Ĝ’. We need to show that this step

is indeed possible.

https://doi.org/10.1017/S0963548314000832 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000832


A Short Proof of the Random Ramsey Theorem 135

Figure 1. Edges of each cube represent a C4-component.

Observe that after termination of the while-loop the graph Ĝ has the following property:

every edge of Ĝ is closed. It is easy to see that Ĝ is actually the (unique) maximal subgraph

of Gn,p with the property that every edge is closed (within this subgraph). We call Ĝ the

F-core of Gn,p.

We now further refine Ĝ. Consider an auxiliary graph GF defined as follows: the set

of vertices corresponds to the set of copies of F in Ĝ and two vertices are connected

by an edge if and only if the corresponding copies of F have at least one edge in

common. Since every edge of Ĝ belongs to a copy of F , the connected components of

GF naturally partition the edges of Ĝ into equivalence classes. Observe that, by definition,

each equivalence class (an F-component for short) can be coloured separately in order to

find a valid colouring of the F-core. Note also that within Ĝ the F-components need not

necessarily form components: see Figure 1.

The core of our argument is the following lemma, which states that with high probability

every F-component in the F-core of Gn,p has constant size.

Lemma 3.1. Let F be a strictly 2-balanced graph with eF � 3. There exist constants c =

c(F) > 0 and L = L(F) > 0 such that if p � cn−1/m2(F) then w.h.p. every F-component of the

F-core of Gn,p has size at most L.

We will prove Lemma 3.1 in the next subsection. Before doing so, we show how it can

be used to complete the proof of Theorem 1.1. For that we also need the following result

of Rödl and Ruciński [9], which states that graphs with small enough density do not have

the Ramsey property. We include its short proof in the Appendix.

Theorem 3.2 ([9]). Let G and F be two graphs. If m(G) � m2(F) and m2(F) > 1 then G �

(F)e2.

With these results in hand, the proof of the 0-statement of Theorem 1.1 is straightfor-

ward.
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Proof of Theorem 1.1 (0-statement). Recall that we may assume without loss of

generality that F is strictly 2-balanced and that m2(F) > 1. Choose c = c(F) and L = L(F)

according to Lemma 3.1. Then Gn,p has w.h.p. the property that every F-component of

the F-core of Gn,p has size at most L.

Observe that there exist only constantly many different graphs on at most L vertices.

Let G be one such graph, and choose G′ ⊆ G such that m(G) = eG′/vG′ . Then the expected

number of copies of G′ in Gn,p is bounded by nvG′peG′ . Observe that for p = cn−1/m2(F)

we have nvG′peG′ = o(1) whenever m(G) = eG′/vG′ > m2(F). It thus follows from Markov’s

inequality that for p � cn−1/m2(F) w.h.p. there is no copy of G′, and hence no copy of G in

Gn,p. Therefore, w.h.p. every subgraph G of Gn,p of size |V (G)| � L satisfies m(G) � m2(F).

Combining both properties we obtain that with high probability all F-components

G of Gn,p satisfy m(G) � m2(F) and Theorem 3.2 thus implies that there exists a 2-

colouring of G without a monochromatic copy of F . The union of these edge colourings

of all F-components therefore yields the desired colouring of the F-core of Gn,p. Finally,

as explained above, this colouring can be extended to a colouring of Gn,p without a

monochromatic copy of F .

3.1. Proof of Lemma 3.1

We start by collecting some properties of strictly 2-balanced graphs.

Lemma 3.3. If F is strictly 2-balanced, then F is 2-connected.

Proof. Clearly, F is connected. As then (eF − 2)/(vF − 3) � (eF − 1)/(vF − 2), we deduce

that F cannot contain a vertex of degree 1. Assume there exists v ∈ V (F) that is a cut

vertex. Then there exist subgraphs F1 and F2 that both contain at least three vertices

such that F1 ∪ F2 = F and V (F1) ∩ V (F2) = {v}. As F is strictly 2-balanced we get (using

a/b < x and c/d < x implies (a + c)/(b + d) < x)

eF − 2 = (eF1
− 1) + (eF2

− 1) < m2(F) · (vF1
− 2 + vF2

− 2) = m2(F) · (vF − 3).

Since m2(F) = (eF − 1)/(vF − 2), as F is balanced, this contradicts the inequality from

above.

Lemma 3.4. Let F be strictly 2-balanced and let G be an arbitrary graph. Construct a

graph Ĝ by attaching F to an edge e of G. Then Ĝ has the property that if F̂ is a copy of

F in Ĝ that contains a least one vertex from F − e, then F̂ = F .

Proof. Assuming the opposite, let F̂ be a copy of F which violates the claim and set

Fg = F̂[V (G)] and Ff = F̂[V (F)]. The fact that F̂ violates the claim implies that F̂ contains

at least one vertex from F − e and at least one from G− e. Since every strictly 2-balanced

graph is, by Lemma 3.3, 2-connected, it follows that both vertices of e belong to V (F̂),

thus vF = vFg
+ vFf

− 2 and vFg
, vFf

� 3.
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F

G
F̂

e

Figure 2. Situation of Lemma 9: copy F is attached to G at edge e; copy F̂ intersects the interior of both

F and G.

If e /∈ F̂ , we add edge e to Ff . Then eF = eFg
+ eFf

− 1 regardless of whether e ∈ F̂ . As

Fg and Ff are strict subgraphs of F , we have

eFg
− 1

vFg
− 2

< m2(F) and
eFf
− 1

vFf
− 2

< m2(F)

since F is strictly 2-balanced. This, however, yields a contradiction, as

m2(F) =
eF − 1

vF − 2
=

eFg
− 1 + eFf

− 1

vFg
− 2 + vFf

− 2
< m2(F).

In order to prove Lemma 3.1 we define a process that generates F-components iteratively

starting from a single copy of F . Our proof simplifies similar approaches from [6] and [8].

Let G′ be an F-component of the F-core of Gn,p. Then G′ can be generated by starting

with an arbitrary copy of F in G′ and repeatedly attaching copies of F to the graph

constructed so far.

Let F0 be a copy of F in G′,

�← 0; Ĝ← F0;

while Ĝ �= G′ do

�← � + 1;

if Ĝ contains an open edge then

let �′ < � be the smallest index such that

F�′ contains an open edge;

let e be any open edge in F�′ ;

let F� be a copy of F in G′ that contains e but is

not contained in Ĝ;

else

let F� be a copy of F in G′ that is not contained

in Ĝ and intersects Ĝ in at least one edge;

Ĝ← Ĝ ∪ F�;

In order to finally apply a first moment argument we first collect some properties of

this process. Consider a copy F� for � � 1. We distinguish two cases.
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(a) F� intersects Ĝ :=
⋃

i<� Fi in exactly two vertices (which, by definition of the algorithm,

have to form an edge), i.e., F� intersects Ĝ in exactly one edge. We call this a regular

copy.

(b) F� intersects Ĝ in some subgraph J with vJ � 3. We call this a degenerate copy.

In the following we denote the union of the copies F0, . . . , F� as the situation at time �.

For 0 � i � � we say that the copy Fi is fully open at time � if Fi is a regular copy (or

i = 0) and no vertex of V (Fi) \ (
⋃

i′<i V (Fi′ )) is touched by any of the copies Fi+1, . . . , F�.

Note that F0 is fully open only at time 0. Also note that, by Lemma 3.4, every fully open

copy at time � � 1 contains exactly eF − 1 open edges.

For the analysis of the algorithm it is important to keep track of fully open copies. For

doing so we introduce the following definition. For � � 1 let

κ(�) = |{0 � i < � | Fi fully open at time �− 1 but not at time �}|.

Clearly, a regular copy can ‘destroy’ at most one fully open copy (as it intersects Ĝ in

exactly one edge). Thus κ(�) � 1 if F� is a regular copy. A degenerate copy, on the other

hand, intersects one Fi in an edge and may destroy up to vF − 2 additional fully open

copies. Thus, κ(�) � vF − 1 if F� is a degenerate copy.

Claim 3.5. For any sequence Fi, . . . , Fi+eF−2 of consecutive regular copies such that κ(i) = 1

we have κ(i + 1) = · · · = κ(i + eF − 2) = 0.

Proof. As Fi is a regular copy we know that Fi intersects some copy Fi′ , i′ < i, in

exactly one edge. As κ(i) = 1 we know that Fi′ was fully open at time i− 1. Thus at

time i− 1 the copy Fi′ had eF − 1 open edges (resp. eF , if i′ = 0) and the intersection of

Fi with Fi′ is one of these open edges. At time i + 1 the copy Fi′ thus still has at least

eF − 2 open edges, and since it was chosen by the process at step i, it will be chosen

again in every consecutive step as long as it has an open edge. It easily follows from

Lemma 3.4 that every regular copy closes at most one open edge, thus each of the copies

Fi+1, . . . , Fi+eF−2 intersects Fi′ in exactly one open edge, which implies κ(i + 1) = · · · = κ(i +

eF − 2) = 0.

Next we estimate the number of fully open copies at time � as a function of the number

of regular and degenerate copies. Let us denote with reg(�) and deg(�) the number of

copies Fi, 1 � i � �, which are regular or degenerate, respectively. Furthermore, we let

fo(�) denote the number of fully open copies at time �.

Claim 3.6. For every � � 1, assuming the process does not stop before adding the �th copy,

we have

fo(�) � reg(�)(1− 1/(eF − 1))− deg(�) · vF .
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Proof. Let ϕ(�) := reg(�)(1− 1/(eF − 1))− deg(�) · vF denote the right-hand side. We

use induction to prove the following slightly stronger statement:

fo(�) �
{
ϕ(�) if F� is a regular copy,

ϕ(�) + 1 if F� is a degenerate copy,

for all � � 1. One easily checks that this claim holds for � = 1: if F1 is a regular copy then

fo(1) = 1 > 1− 1/(eF − 1), otherwise fo(1) = 0 > −vF + 1. Now consider some � � 2. If

F� is a degenerate copy then κ(�) � vF − 1 and so fo(�) = fo(�− 1)− κ(�) � fo(�− 1)−
vF + 1. The claim thus easily follows from reg(�) = reg(�− 1) and deg(�) = deg(�− 1) + 1.

Otherwise, assume that F� is a regular copy, and let

�′ := max{1 � �′ < � | κ(�′) > 0 or F�′ is a degenerate copy}.

Note that �′ is well defined, as κ(1) = 1. Note also that the fact that F� is regular together

with the definition of �′ implies that

ϕ(�) = ϕ(�′) + (�− �′)(1− 1/(eF − 1)). (3.1)

In addition, we deduce from κ(i) = 0 for �′ < i < � that all steps �′ < i < � add a fully

open copy. We thus have

fo(�) = fo(�
′) + (1− κ(�)) + (�− �′ − 1) = fo(�

′) + �− �′ − κ(�). (3.2)

If F�′ is a degenerate copy, then the induction assumption implies fo(�
′) � ϕ(�′) + 1. As F�

is a regular copy and thus κ(�) � 1, together with (3.1) this implies fo(�) � ϕ(�′) + �− �′ �
ϕ(�), as claimed. Finally, assume that F�′ is a regular copy. If κ(�) = 0, then it follows

from (3.2) and the induction assumption that fo(�) � ϕ(�′) + �− �′ and the claim follows

as in the previous case. Otherwise we have κ(�) = 1 and Claim 3.5 thus implies that

� � �′ + (eF − 1). Therefore

fo(�)
(3.2)
= fo(�

′) + �− �′ − 1 � fo(�
′) + (�− �′)(1− 1/(eF − 1)) � ϕ(�),

where the last inequality again follows from (3.1) and the induction assumption.

With these preparations in hand, we can finish our argument. Observe first that for

every subgraph J � F with vJ � 3 we have

eF − 1

vF − 2
= m2(F) >

eJ − 1

vJ − 2
and thus

eF − eJ

vF − vJ
=

(eF − 1)− (eJ − 1)

(vF − 2)− (vJ − 2)
> m2(F).

We may thus choose an α > 0 so that

(vF − vJ)− eF − eJ

m2(F)
< −α for all J � F with vJ � 3. (3.3)

With some foresight, let ξ be such that ξ · α > vF + 1 and finally choose L such that

(L− ξ)(1− 1/(eF − 1))− ξ · vF > 0. (3.4)

If fo(�) > 0 for some � � 1, then F� cannot be the last copy in the process because

there exist edges which are still open. Furthermore, from Claim 3.6 and (3.4), we have
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that after adding L copies, out of which at most ξ were degenerate, there is still at least

one fully open copy remaining at time L.

In a first moment calculation we have to multiply the number of choices for F� with the

probability that the chosen copy of F is in Gn,p. For a regular copy where F� is attached

to an open edge, we get that this term is bounded by

2e2
F · nvF−2 · peF−1 � 2e2

F · c <
1

2
, (3.5)

for 0 < c < 1/(4e2
F ). Here the term 2e2

F bounds the number of choices of the open edge

in F�′ (at most eF choices) times the number of choices for the edge in F� that is merged

with this open edges (eF choices) times 2 for the orientation. For a regular copy F� that

is attached to a closed edge, we also have to replace the first factor eF by, say, � · eF ,

as the edge e to which the new copy F� is attached can be any of the previously added

edges. From the above, we know that after step L regular copies are always attached to

an open edge, as long as the number of degenerate copies is at most ξ. That is, in a first

moment argument we may bound the factor attributed to a regular step at time � L by

L/2 � L and after time L by 2−1. Similarly, we can bound the case that the copy F� is a

degenerate copy by ∑
J�F,vJ�3

(� · vF )vJ · nvF−vJ · peF−eJ
(3.3)
< (� · vF · 2eF )vF · n−α, (3.6)

with room to spare.

We now do a union bound. For that we choose �0 = (vF + 1) log2 n + ξ + L. Consider

first all sequences of length �′ � �0 with the property that F�′ is the ξth degenerate copy.

Then the expected number of subgraphs in Gn,p that can be built by such a sequence is at

most ∑
�′��0

(
�′−1
ξ−1

)
nvF · [(�0vF2eF )vF · n−α]ξ · LL · 2−(�′−L−ξ) � nvF · o(n) · n−α·ξ = o(1),

by choice of ξ. Here the binomial coefficient corresponds to the choices (in time) when

the first ξ − 1 degenerate steps occurred. The term nvF bounds the choice of the copy F0.

The next factor bounds the choices of degenerate steps, the last two factors bound those

of the regular steps: as explained above, regular copies contribute a term of at most L if

they occur before step L and a factor 1/2 if they occur after step L.

So we know that, within the first �0 copies, we have at most ξ degenerate ones. By

the choice of L and (3.4), this implies fo(�
′) > 0 for every L � �′ � �0. Therefore, the

sequence that generates G′ either has length less than L (which is fine) or length at least

�0, as otherwise the sequence would contain an open edge. It thus suffices to consider all

sequences of length �0. The expected number of subgraphs in Gn,p that can be built by

such a sequence is at most∑
k<ξ

(
�0

k

)
nvF · [(�0vF2eF )vF · n−α]k · LL · 2−(�0−L−k) � nvF · o(n) · n−(vF+1) = o(1),

by choice of �0. This concludes the proof of Lemma 3.1 and thus also the proof of the

0-statement.
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Appendix

For convenience of the reader we provide in this Appendix the proof of the deterministic

statement (Theorem 3.2) that was used in the proof of the 0-statement. Our proof

essentially follows the approach in [9].

Using standard notation, we let

ar(G) = max
J⊆G,vJ�2

eJ

vJ − 1

denote the arboricity of the graph G. One easily checks that all graphs G satisfy

m(G) � ar(G) � m(G) +
1

2
. (A.1)

Let δ(G) denote the minimum degree in G, i.e., δ(G) := minv∈V (G) deg(v). Furthermore, let

δmax(G) := maxG′⊆G δ(G′) be the maximum minimum degree in all subgraphs of G.

The following lemma gives various conditions under which G � (F)e2.

Lemma A.1. Let G and F be graphs such that at least one of the following properties is

satisfied:

(i) ar(G) � 2 · �ar(F)− ε� for some ε > 0,

(ii) m(G) � 2 · �m(F)− ε� for some ε > 0,

(iii) δmax(G) � 2(δ(F)− 1),

(iv) m(G) < δmax(F) and χ(F) � 3.

Then G � (F)e2.

Proof. Assume first that (i) holds. Nash-Williams’ Arboricity Theorem (see [2] for a short

and self-contained proof) states that for every graph G = (V , E) there exists a partition

of the edges into �ar(G)� parts, E = E1 ∪ · · · ∪ E�ar(G)�, such that all Ei are forests. If we

thus colour the edges in the first �ar(F)− ε� of these sets red and the remaining edges

blue, then the red and blue subgraphs have arboricity at most �ar(F)− ε� < ar(F) and

thus cannot contain a copy of F .

In case of (ii) we proceed similarly. We replace Nash-Williams’ theorem by the following

statement: for every graph G = (V , E) there exists a partition of the edges into �m(G)�
parts, E = E1 ∪ · · · ∪ E�m(G)�, such that all components in Ei contain at most one cycle.

(This follows easily from Hall’s theorem applied to a bipartite graph with �m(G)� copies

of every vertex in one set and one copy of every edge in the other set.) As before, we

now colour the edges in the first �m(F)− ε� of these sets red and the remaining edges

blue. Then subgraphs have maximum density at most �m(F)− ε� < m(F) and thus cannot

contain a copy of F .

Now assume that (iii) holds. Construct a sequence v1, v2, . . . , vvG of the vertices in G

as follows: let vi be a vertex of minimum degree in G− {v1, . . . , vi−1}. Then every vertex
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vi has degree at most δmax(G) into G[{vi+1, . . . , vvG}], the graph induced by the vertices ‘to

the right’. Colour the vertices of G ‘backwards’, i.e., starting with vvG (which is coloured

arbitrarily). As every vertex vi has degree at most δmax(G) � 2(δ(F)− 1) into the part that

is already coloured, we can colour δ(F)− 1 of these edges blue and the remaining ones

red. Clearly, the coloured part can then not contain a monochromatic copy of F that

contains vi. By repeating this procedure for every vertex vi, we obtain a colouring without

a monochromatic F .

Finally, assume that (iv) holds. Without loss of generality, we can further assume that

F is connected. Otherwise, taking a connected component F ′ ⊂ F with δmax(F ′) = δmax(F)

and χ(F ′) = χ(F), every colouring of G without a monochromatic copy of F ′ is also a

colouring without a monochromatic copy of F .

The idea now is to show that there exists a vertex-colouring of G without a mono-

chromatic copy of F . Observe that this implies that there also exists an edge-colouring of

G without a monochromatic copy of F . Indeed, assume there exists a 2-colouring of the

vertices, that is, a partition V = X ∪ Y such that neither G[X] nor G[Y ] contains a copy

of F . Then we colour all edges in G[X] and G[Y ] with red and all edges in E(X,Y ) with

blue without inducing a monochromatic copy of F (as F is connected and not bipartite).

So we need to find the vertex-colouring. The following argument is from [7]. Let F ′ ⊆ F

such that δ(F ′) = δmax(F). We need to show that for every graph G with m(G) < δ(F ′)

we find a vertex-colouring of G without a monochromatic F ′. Assume this is not true.

Then there exists a minimal counterexample G0. As G0 is minimal, we know that for every

vertex v ∈ V (G0) the graph G0 − v does have a vertex-colouring without a monochromatic

F ′. Clearly, if deg(v) < 2δ(F ′) then such a colouring can be extended to v. So we know

that in G0 every vertex has degree at least 2δ(F ′), that is,

m(G0) �
∑
v

deg(v)/(2vG0
) � δ(F ′) = δmax(F),

a contradiction.

Let G′ be a subgraph of G with minimum degree δmax(G). Then

|E(G′)| � 1

2
|V (G′)| · δmax(G)

and we thus see that

2m(G) � δmax(G). (A.2)

We use this observation to show that graphs with density at most 2 can be coloured

without a monochromatic triangle.

Lemma A.2. Let G be a graph such that m(G) � 2. Then G � (K3)e2.

Proof. We proceed as in the previous proof. We construct a sequence v1, v2, . . . , by

choosing vi as a vertex of minimum degree in G− {v1, . . . , vi−1}, with the additional

condition that the neighbourhood of vi in G− {v1, . . . , vi−1} is not a K4. If we do not find

a vertex that satisfies this property then we stop. As δmax(G) � 2m(G) � 4 we will always
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find a vertex with degree at most four. Also note that if the minimum degree is four,

then the graph is 4-regular. That is, the above process can only stop if every vertex has

degree 4 and has the property that its neighbourhood induces a K4. In other words, if

we cannot find a vertex vi, then G′ := G− {v1, . . . , vi−1} is a union of vertex-disjoint K5.

Since there exists a 2-colouring of a K5 without a monochromatic triangle, we can thus

2-colour G′ without a monochromatic triangle. Now we proceed again as in the previous

proof and colour the remaining vertices in reverse order. By construction, vertex vi has

degree at most 4 into G[{vi, . . . , vvG}], and the neighbourhood of vi in G[{vi, . . . , vvG}] is

not a K4. Simple case checking shows that for any colouring of the neighbourhood of vi
without a monochromatic triangle, there is always an extension of the colouring to the

edges incident to vi, so that no monochromatic triangle is generated.

Proof of Theorem 3.2. Observe that for vF = 3 the only graph with m2(F) > 1 is the

triangle, for which the claim of the theorem holds according to Lemma A.2. In the

remainder of the proof we thus assume vF � 4. Observe that we may also assume without

loss of generality that F is strictly 2-balanced.

The assumption that F is strictly 2-balanced implies that

m2(F) =
eF − 1

vF − 2
>

eF − δ(F)− 1

vF − 3
,

from which we deduce m2(F) < δ(F) � δmax(F). Thus if χ(F) � 3, then F satisfies property

(iv) of Lemma A.1, which implies G � (F)e2. Therefore, in the following, we assume that

F is bipartite. Then eF � 1
4
v2
F implies that

m2(F) � m(F) +
1

2
with equality if and only if eF =

1

4
v2
F .

If m2(F) = k + x for some k ∈ N and 1
2

� x < 1 we thus have m(F) > k whenever x > 1
2

or

eF < 1
4
v2
F . In this case we have m(G) � k + 1 � 2k = 2�m(F)− ε� and F satisfies property

(ii) of Lemma A.1, which concludes the proof of the theorem in this case. So we may

assume that x = 1
2

and eF = 1
4
v2
F . Then, vF = 2� for some � ∈ N, and thus m2(F) =

(�2 − 1)/(2�− 2) = 1
2
(� + 1). That is, k = 1

2
� and so ar(F) = eF/(vF − 1) > 1

4
vF = k. By

(A.1) we also have

ar(G) � m(G) +
1

2
� m2(F) +

1

2
= k + 1.

Thus ar(G) � k + 1 � 2k � 2�ar(F)− ε� and F satisfies property (i) of Lemma A.1, which

concludes the proof of the theorem for this case.

Finally, if m2(F) = k + x for some k ∈ N and 0 � x < 0.5, then (A.2) implies that

δmax(G) � 2m(G) � 2m2(F)

and thus δmax(G) � 2k, as δmax(G) is integral. On the other hand, we have already shown

that the assumption that F is strictly 2-balanced implies that m2(F) < δ(F). The fact that

δ(F) is integral thus implies δ(F) � k + 1, and F satisfies property (iii) of Lemma A.1,

which concludes the proof of the theorem for this case.
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