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The first generation of stars had very different properties than later stellar generations,
as they formed from a ‘pristine’ gas that was completely free of heavy elements.
Normal star formation took place only after the first stars had polluted the surrounding
turbulent interstellar gas, increasing its local heavy-element mass concentration,
Z, beyond a ‘critical’ threshold value, Zc (10−8 . Zc . 10−5). Motivated by this
astrophysical problem, we investigate the fundamental physics of the pollution
of pristine fluid elements in statistically homogeneous and isotropic compressible
turbulence. Turbulence stretches the pollutants, produces concentration structures at
small scales, and brings the pollutants and the unpolluted flow in closer contact.
The pristine material is polluted when exposed to the pollutant sources or the fluid
elements polluted by previous mixing events. Our theoretical approach employs the
probability distribution function (p.d.f.) method for turbulent mixing, as the fraction
of pristine mass corresponds to the low tail of the density-weighted concentration
p.d.f. We adopt a number of p.d.f. closure models and derive evolution equations
for the pristine fraction from the models. To test and constrain the prediction of
theoretical models, we conduct numerical simulations for decaying passive scalars
in isothermal turbulent flows with Mach numbers of 0.9 and 6.2, and compute
the mass fraction, P(Zc, t), of the flow with Z 6 Zc. In the Mach 0.9 flow, the
evolution of P(Zc, t) is well-described by a continuous convolution model and goes
as Ṗ(Zc, t) = P(Zc, t) ln[P(Zc, t)]/τcon, if the mass fraction of the polluted flow is
larger than ≈0.1. If the initial pollutant fraction is smaller than ≈0.1, an early phase
exists during which the pristine fraction follows an equation derived from a nonlinear
integral model: Ṗ(Zc, t) = P(Zc, t)[P(Zc, t) − 1]/τint . The time scales τcon and τint are
measured from our simulations. When normalized to the flow dynamical time, the
decay of P(Zc, t) in the Mach 6.2 flow is slower than at Mach 0.9 because the time
scale for scalar variance decay is slightly larger and the low tail of the concentration
p.d.f. broadens with increasing Mach number. We show that P(Zc, t) in the Mach
6.2 flow can be well fitted using a formula from a generalized version of the self-
convolution model.
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460 L. Pan, E. Scannapieco and J. Scalo

1. Introduction
Big bang nucleosynthesis produced helium efficiently, but it was halted by the

expansion of the universe before it was able to make stable elements heavier than
lithium (Walker et al. 1991). On the other hand, even the most pristine stars observed
today (Cayrel et al. 2004; Frebel et al. 2008; Caffau et al. 2011) have substantial
mass fractions of heavier elements, indicating that they have been polluted with the
nucleosynthesis products of an as-yet-undetected first generation of stars. This early
stellar generation had an enormous impact on the evolution of later forming stars,
and such stars are likely to have been much more massive (Abel, Bryan & Norman
2000; Bromm, Coppi & Larson 2002) and much hotter (Schaerer 2002) than present-
day stars, due to the important role that heavy elements play in star formation and
evolution.

When and where this remarkable early stellar generation formed is a question of
fundamental astrophysical importance. On cosmological scales, the key issue is the
time it takes for heavy elements to propagate from one galaxy to another. As shown in
Scannapieco, Schneider & Ferrara (2003), the distances between these regions of early
star formation are so vast that the universe was divided into two regions: one in which
galaxies formed out of material that was already polluted with heavy elements and one
in which galaxies were formed from initially pristine material.

This second set of initially pristine galaxies is especially interesting, as the first
stars formed in these galaxies may be observable (Scannapieco et al. 2005; Jimenez
& Haiman 2006; Nagao et al. 2008). As star formation continued in these objects, the
interstellar gas became enriched with heavy elements released by the explosions of the
first stars. This self-enrichment process increased the abundance or mass fraction, Z,
of heavy elements, and finally led to a transition to normal star formation in regions
where Z exceeds a critical value, Zc. This critical value is expected to lie in the
range 10−8 . Zc . 10−5 (or 10−6–10−3 times the heavy-element abundance in the Sun),
depending on whether the cooling of the interstellar gas is dominated by dust grains
(Omukai et al. 2005) or by the fine structures of carbon and oxygen (Bromm & Loeb
2003).

In a given galaxy, the key quantity to characterize the transition to normal star
formation is the fraction, P(Zc, t), of the interstellar gas with Z below Zc as a function
of time. The temporal behaviour of this fraction depends not only on the rate at
which new sources of heavy elements are released to the interstellar gas, but, more
importantly, on the transport and mixing process of these elements in the galaxy
(Pan & Scalo 2007). For example, a high mixing efficiency would result in a rapid
decrease in P(Zc, t), and hence in a sharp transition as the average concentration of
heavy elements exceeds the threshold Zc. On the other hand, a low mixing efficiency
would lead to a gradual transition. The interstellar gas in these galaxies is expected
to be turbulent and highly compressible, and the turbulent motions are likely to be
supersonic (Greif et al. 2008; Wise, Turk & Abel 2008). Therefore, understanding
mixing in supersonic turbulence is crucial to answering the question of how the
pristine gas in early galaxies was polluted.

In the present paper, we do not intend to directly model the complicated mixing
process in a realistic galactic environment. Instead, we investigate the fundamental
physics of turbulent mixing in compressible flows using idealized analytical and
numerical tools. The primary goal is to understand the pollution of pristine material
in statistically homogeneous and isotropic turbulence. This underlying physics is
prerequisite for modelling the mixing of primordial gas in realistic interstellar
turbulence. In a future work, we will apply the results of the current study to build
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a subgrid model for large-scale simulations of the formation and evolution of early
galaxies. These simulations account for the complexities in the interstellar medium, but
cannot resolve the scales at which true mixing occurs. The subgrid model will provide
a crucial step toward predicting the transition from primordial to normal star formation
in the first generation of galaxies.

A systematic numerical study of passive scalar physics in supersonic turbulence has
been recently conducted by Pan & Scannapieco (2010, 2011), who simulated scalar
evolution in six compressible turbulent flows with Mach number ranging from 1 to 6.
In those papers, a detailed analysis of various statistical measures for the scalar field
was performed, including the scalar dissipation, the scalar probability distribution, the
power spectrum, the structure functions and intermittency. It was found that the classic
cascade picture for passive scalars in incompressible turbulence is generally valid
also for mixing in supersonic turbulent flows. The effect of compressible modes in
supersonic turbulence and their modifications to the classic picture for passive scalar
turbulence were examined by analysing the Mach number dependence of the scalar
statistics. The conclusions of those studies provide general theoretical guidelines for
understanding the mixing process in interstellar turbulence.

To explore how the pollutant-free mass is contaminated in turbulent flows, we
make use of the probability distribution method for turbulent mixing. The fraction
of unpolluted or slightly polluted flow mass corresponds to the far-left tail of the
probability distribution function (p.d.f.) of the concentration field, as Zc is typically
much smaller than the average value. This fraction can be evaluated by integrating
the concentration p.d.f. from zero to the threshold, Zc. We will generally refer to the
fraction P(Zc, t) as the pristine fraction. Note that our approach here is general, and is
not limited to mixing in early galaxies.

The p.d.f. equation for passive scalars cannot be solved exactly because of the
closure problem, and various closure approximations have been developed to model
the p.d.f. evolution. In this work, we consider several existing closure models and
derive equations for the fraction P(Zc, t) for each of them. The far-left p.d.f. tail
corresponds to high-order moments of the p.d.f., and thus it is quite uncertain whether
the closure models can capture the high-order statistics with sufficient accuracy. In
order to test the reliability of the adopted models and constrain their parameters, we
perform numerical simulations for turbulent mixing in a transonic flow and a highly
supersonic flow.

The structure of this paper is as follows. In § 2, we present the general p.d.f.
formulation for mixing in compressible turbulence. Section 3 gives a brief description
of several existing closure models for the diffusivity term in the p.d.f. equation. The
predictions of these models for the mass fraction of unpolluted or slightly polluted
flow are derived in § 4. We describe our numerical simulations in § 5, which are
used to test and constrain the theoretical models in § 6. Our main conclusions are
summarized in § 7.

2. The p.d.f. formulation for mixing in compressible flows
The p.d.f. formulation was first developed for the probability distribution of the

turbulent velocity field by Lundgren (1967) and Monin (1967), and for the p.d.f. of
the flow vorticity by Novikov (1967). The derivation of Monin (1967) was based on
the equation for characteristic functions of the velocity field, while Lundgren (1967)
started directly from the conservation laws of the flow. The two methods were later
extended to derive p.d.f. equations for scalar fields convected by a turbulent flow, such
as the flow temperature or enthalpy, and the concentration fields of passive or reactive
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462 L. Pan, E. Scannapieco and J. Scalo

species in the flow (Ievlev 1973; Dopazo & O’Brien 1974; Pope 1976; Obrien 1980;
Pope 1985; Kollmann 1990; Dopazo, Valino & Fueyo 1997). Recent discussions of
p.d.f. equations for passive or active scalar turbulence can be found in the monograph
by Fox (2003) and the thorough reviews by Veynante & Vervisch (2002) and Haworth
(2010).

In the Appendix, we derive the p.d.f. equation for a passive or active scalar in
compressible turbulence using the method of Lundgren (1967). The derivation is based
on the equation of the concentration field, C(x, t), for passive tracers advected in a
turbulent flow with density ρ(x, t) and velocity v(x, t):

∂C

∂t
+ v ·∇C = 1

ρ
∇ · (ρκ∇C)+ S(x, t), (2.1)

where the concentration field is defined as the ratio of the local tracer density to the
flow density. In the diffusion term, κ denotes the kinematic molecular diffusivity, and
the dynamic diffusivity, ρκ , is basically independent of ρ (i.e. κ ∝ ρ−1). The term
S(x, t) represents the sources of new pollutants.

Our derivation in the Appendix adopts a density-weighting scheme, which is
appropriate for passive scalar mixing in compressible flows (Pan & Scannapieco 2010).
We define a density-weighted concentration p.d.f., p(Z; x, t)≡ 〈ρ̃δ[Z − C(x, t)]〉, where
〈· · ·〉 denotes the ensemble average, the density-weighting factor ρ̃ ≡ ρ(x, t)/ρ̄ is
the ratio of the local flow density to the average density ρ̄, and Z is the sampling
variable. Using the advection–diffusion equation (2.1), and the continuity equation for
the evolution of the density-weighting factor, we obtain

∂p(Z; x, t)

∂t
+∇ ·

(
p
〈ρv|C = Z〉
〈ρ|C = Z〉

)
=− ∂

∂Z

(
p
〈∇ · (ρκ∇C)|C = Z〉
〈ρ|C = Z〉

)
− ∂

∂Z

(
p
〈ρS|C = Z〉
〈ρ|C = Z〉

)
, (2.2)

where 〈· · ·|C = Z〉 denotes the ensemble average under the condition that the
concentration field C(x, t) is equal to Z (see the Appendix). The equation is essentially
a Liouville equation for the conservation of the concentration probability. To our
knowledge, this equation for the scalar p.d.f. with density weighting has not been
derived before.

The density-weighting scheme is preferred in our study for two reasons. First, rather
than the volume fraction, we are interested in the mass fraction of pristine gas in
early galaxies, which corresponds to the left tail of the density-weighted p.d.f. Second,
the advection term in the equation for the density-weighted p.d.f. takes the form
of a divergence, and thus conserves the global p.d.f. (i.e. the integral of the local
p.d.f., p(Z; x, t), over the flow domain). This provides a formal and rigorous proof for
the physical intuition that the turbulent velocity field itself does not homogenize the
distribution of pollutants. The advecting velocity transports, redistributes and deforms
the concentration field, but does not change the mass fraction of fluid elements with a
given concentration level. Furthermore, the advection term vanishes if the flow and the
concentration fluctuations are statistically homogeneous.

In contrast, if one derives an equation for the volume-weighted p.d.f. for a passive
scalar in compressible turbulence, the advection term would not be a divergence term.
The term reflects the effect of flow compressions and expansions, which can change
the volume fraction of fluid elements at a given concentration (Pan & Scannapieco
2010). This effect on the p.d.f. is clearly different from scalar homogenization, and
can be avoided by adopting a density-weighting factor. We thus argue that it is more
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appropriate to use the density-weighted p.d.f. equation for the study of mixing in
compressible turbulence.

Molecular diffusion is the only process that homogenizes, and the molecular
diffusivity term in the p.d.f. equation continuously reduces the p.d.f. width. This
term can be rewritten as

− ∂

∂Z

(
p
〈∇ · (ρκ∇C)|C = Z〉
〈ρ|C = Z〉

)
=−∇ ·

[
∂

∂Z

(
p
〈ρκ∇C|C = Z〉
〈ρ|C = Z〉

)]
− ∂2

∂Z2

(
p
〈ρκ (∇C)2 |C = Z〉
〈ρ|C = Z〉

)
, (2.3)

where both terms on the right-hand side depend on the ensemble average of the
concentration gradients conditioned on C(x, t)= Z. As it is a divergence term, the first
term in (2.3) conserves the global concentration p.d.f. The scalar homogenization is
achieved through the second term, which is essentially a diffusion term with a negative
coefficient in concentration space. This term keeps narrowing the concentration p.d.f.,
and the physics of turbulent mixing can be viewed as an anti-diffusion process in
concentration space.

Taking the second-order moment of the last term in (2.3) gives the scalar dissipation
rate, −2〈ρ̃κ (∇C)2〉. Using this rate, we define a mixing time scale,

τm ≡ 〈ρ̃δC2〉
2〈ρ̃κ (∇C)2〉 , (2.4)

where δC = C − 〈ρ̃C〉 is the fluctuating part of the concentration field. The time scale,
τm, corresponds to the scalar variance decay by mixing, and thus characterizes the
rate at which the diffusivity term reduces the p.d.f. width. Although the diffusivity
terms in (2.3) and (2.4) do not have an explicit dependence on the flow velocity,
the mixing time scale is determined primarily by the turbulent velocity field. This
is because the turbulent velocity produces progressively smaller structures and thus
strongly amplifies the scalar gradients, (∇C)2, in (2.3) and (2.4). By feeding molecular
diffusivity with large-gradient structures, turbulent motions greatly accelerate the scalar
dissipation/homogenization.

In the classic phenomenology for mixing in incompressible turbulence, the
generation of small-scale concentration structures is through a cascade process similar
to that of kinetic energy (Obukhov 1949; Corrsin 1951). The cascade is caused
by continuous turbulent stretching, and it starts from the scale where the pollutant
sources are injected into the flow, and proceeds to the diffusion scale where the
molecular diffusion efficiently homogenizes the scalar fluctuations. The diffusion scale
is essentially the scale where the action of molecular diffusivity becomes faster than
turbulent stretching. From this picture, the mixing time scale, τm, is determined by the
cascade time, which is essentially the eddy turnover time at the injection scale of the
scalar sources because the cascade becomes faster and faster with decreasing length
scale.

Pan & Scannapieco (2010) showed that the cascade picture also applies for mixing
in supersonic turbulence. They found that the mixing time scale, τm, was close to the
eddy turnover time at the pollutant injection scale in all their simulated flows with
Mach numbers in the range from 1 to 6. The existence of compressible modes in
supersonic flows causes only a slight Mach number dependence of the mixing time
scale, and the primary ‘mixer’ is the stretching by solenoidal modes even at very high
Mach numbers.
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Translating the physical discussion above to the mixing process of the unpolluted
fluid elements in a turbulent flow gives the following picture. The turbulent velocity
stretches the pollutants into smaller and smaller structures, and brings them into closer
contact with the unpolluted flow. When the separation between the pollutant structures
and the unpolluted fluid elements becomes close to or smaller than the diffusion scale,
molecular diffusivity efficiently mixes them, reducing the unpolluted mass fraction.
This suggests that the time scale for turbulent mixing to contaminate the unpolluted
mass is also of the order of the scalar cascade time scale.

The diffusivity term in the p.d.f. equation has to be approximately modelled because
of the closure problem (e.g. Dopazo & O’Brien 1974). Extensive efforts have been
made to develop closure models for this term, and we will use several existing models
in the current study, as described in § 3. The advection term also has a closure
problem, but modelling this term is not necessary if the flow and the scalar field are
statistically homogeneous. The last term in the p.d.f. equation (2.2) corresponds to
the effect of the pollutant sources. In reacting turbulent flows, the source term due to
chemical reactions has a closed form in the p.d.f. formulation (e.g. Pope 1976), and
this has led to the wide use of the p.d.f. method in studies of chemical reactions in
turbulent flows. In the present study, the pollutant source is merely an initial scalar
condition, and we do not discuss modelling the source term further (see Pan & Scalo
2007, for an example with a persistent source).

3. The p.d.f. modelling
3.1. General approach

We employ both theoretical and numerical tools in the present work. The p.d.f.
formulation in § 2 provides a general theoretical framework, and, to complete
the theoretical approach, we will consider several existing closure models for the
diffusivity term in (2.2). We will compare the predictions of these models for the
scalar p.d.f. evolution with that measured from numerical simulations. From our
simulation data, we compute the concentration p.d.f. as p(Z; t) = (1/V) ∫V ρ̃δ[Z −
C(x, t)] dx, where V is the total volume of the simulation box. This p.d.f. measures
the concentration fluctuations over the entire flow domain, and thus should be viewed
as a global p.d.f. As pointed out in § 2, the advection term conserves the global
density-weighted p.d.f., and thus need not be considered in our tests of the theoretical
models against simulations. The global p.d.f. is expected to be equal to the local
p.d.f., p(Z; x, t), defined in the ensemble context under the assumption of statistical
homogeneity.

In our simulations, we only evolve decaying scalars with the source term S(x, t) set
to be zero. Neglecting the advection and source terms, the p.d.f. equation becomes

∂p(Z; t)
∂t

=− ∂

∂Z

(
p
〈∇ · (ρκ∇C)|C = Z〉
〈ρ|C = Z〉

)
. (3.1)

The only term that contributes to the p.d.f. evolution in our simulations is the
diffusivity term, and modelling this term is the main task of the p.d.f. approach to
turbulent mixing. In incompressible turbulence, the flow density is constant, and (3.1)
reduces to

∂p(Z; t)
∂t

=− ∂

∂Z

(
p〈(κ∇2C)|C = Z〉) , (3.2)

which has been extensively studied and modelled.
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The second-order moment of equation (3.1) corresponds to the scalar variance
equation,

d〈δZ2〉
dt
=−〈δZ

2〉
τm

, (3.3)

where 〈δZ2〉 ≡ 〈ρ̃δC2〉 denotes the density-weighted variance, and we have used the
definition, (2.4), of the mixing time scale. In terms of the p.d.f., the variance is given
by 〈δZ2〉 = ∫ (Z − Z̄)

2
p(Z, t) dZ with Z̄ = ∫ Zp(Z; t) dZ being the mean concentration.

In general, τm may be a function of time. But if it is constant, the scalar variance
decreases exponentially, which is the case at the late evolution stage of a decaying
scalar (see § 6.3).

In analogy to the enrichment of pristine gas by the first generation of stars, the
initial condition of the decaying scalars in this study will be set to be bimodal:
consisting of pure pollutants (Z = 1) and completely unpolluted flow (Z = 0). This
corresponds to a double delta-function form for the initial concentration p.d.f.,

p(Z; 0)= P0δ(Z)+ P1δ(Z − 1), (3.4)

where P1 and P0 are the initial mass fractions of the pollutants and the unpolluted flow,
respectively, and we have P0 + P1 = 1 from the normalization of the p.d.f.

The rest of this section is devoted to modelling the diffusivity term in the p.d.f.
equation. A variety of closure models have been proposed for this term, and the
interested reader is referred to Dopazo et al. (1997) and Haworth (2010) for reviews.
Here we will consider three of the models proposed for the diffusivity closure: the
mapping closure model by Chen, Chen & Kraichnan (1989); the nonlinear integral
models by Curl (1963), Dopazo (1979) and Janicka, Kolbe & Kollmann (1979); and
the self-convolution models by Villermaux & Duplat (2003), Venaille & Sommeria
(2007) and Duplat & Villermaux (2008).

We point out that, in compressible turbulence, the diffusivity term has an explicit
dependence on the density field, or more precisely, on the joint statistics of the
density and the concentration fields. Therefore, an ideal p.d.f. model for mixing in
supersonic turbulence needs to account for the effect of density fluctuations on the
diffusivity term, and to predict the dependence of the concentration p.d.f. on the
flow compressibility. However, to our knowledge, this has not been considered in
existing models, which were usually tested against simulation results for mixing in
incompressible turbulence. We will compare the predictions of the closure models
mentioned above with our simulation data, and examine whether, by adjusting their
parameters, these models can be successfully applied to the contamination process of
pollutant-free mass in compressible turbulent flows at different Mach numbers. Future
studies are motivated to develop closure models that explicitly address the effects of
shocks and the Mach number dependence of the passive scalar p.d.f. in supersonic
turbulence.

3.2. The mapping closure model
We first discuss the mapping closure model developed by Chen et al. (1989) for
mixing in incompressible turbulence. We give a brief introduction to the model,
and a detailed derivation can be found in e.g. Pope (1991). The model is based
on a surrogate field, φ(x, t), obtained from the mapping of a Gaussian reference
field θ(x, t),

φ(x, t)= X[θ(x, t), t], (3.5)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

14
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.143


466 L. Pan, E. Scannapieco and J. Scalo

where X is an ordinary, non-stochastic function. The Gaussian field, θ(x, t), is
assumed to be statistically homogeneous and have zero mean and unit variance,
i.e. the probability of finding θ(x, t) equal to a given value η is given by
g(η) ≡ (1/√2π) exp(−η2/2) (see Girimaji 1992 for a generalized version of the
mapping closure where the reference field p.d.f. is time-evolving and not limited
to Gaussian). The main idea of the model is to pursue a mapping function, X(η, t),
with which the p.d.f. of the surrogate field obeys exactly the same equation (i.e. (3.2))
as the actual field, C(x, t). This is indeed achieved if the mapping function evolves as

∂X(η, t)

∂t
= κ

λ2
θ(t)

(
∂2X(η, t)

∂η2
− η∂X(η, t)

∂η

)
, (3.6)

where λθ(t) = 〈(∇θ)2〉−1/2, and λ2
θ(t)/κ is a time scale that controls the rate at which

the mapping function and hence the p.d.f. evolve. The time scale is unspecified in
the original model, and can be calibrated by a comparison of the variance decay in
the model with simulation results (see He & Zhang 2004 for a theoretical evaluation
of this time scale using a two-point closure strategy). The evolution equation for
the mapping function was derived in the incompressible limit, and thus the model
is intended for mixing in incompressible turbulence only. By a comparison with our
simulation data, we will examine whether the mapping closure model may also give
acceptable predictions for mixing in compressible turbulence.

With the desired mapping function, one can approximate the p.d.f. of the actual
field by that of the surrogate field. Using (3.6), the p.d.f. of the surrogate field can be
converted from the Gaussian p.d.f. of the reference field. The conversion gives

p(Z; t)= g(η)

(
∂X(η, t)

∂η

)−1

, (3.7)

where η is the solution of X(η, t)= Z.
The linear equation for the mapping function, (3.6), can be solved analytically,

given the initial condition X(η, 0) (Pope 1991). For a double-delta initial p.d.f., the
initial mapping is a Heaviside step function X(η, 0) = H(η − η0), where η0 satisfies∫ η0
−∞ g(η) dη = P0. With this initial condition, X(η, t) is solved by

X(η, t)= G

(
η

Σ(t)
− η0 (Σ (t)

2+1)
1/2

Σ(t)

)
, (3.8)

where Σ (t)2 = exp[∫ t
0 κ/λ

2
θ(t
′) dt′] − 1, and G(η) ≡ ∫ η−∞ g(η′) dη′ is the cumulative

function of the Gaussian function. Combining (3.7) and (3.8) gives the predicted p.d.f.
evolution by the mapping closure model.

3.3. The nonlinear integral models
In this subsection, we consider a class of closure models that use an integral form to
approximate the diffusivity term in the p.d.f. equation. This type of models originates
from the equation introduced by Curl (1963),

∂p(Z; t)
∂t

= γ (t)
{[∫ 1

0
dZ1p(Z1; t)

∫ 1

0
dZ2p(Z2; t)δ

(
Z − Z1 + Z2

2

)]
− p(Z; t)

}
, (3.9)

where γ (t) is the turbulent stretching rate. A physical interpretation of this equation is
as follows (e.g. Dopazo 1979). The turbulent velocity field stretches the concentration
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field and produces structures at small scales. As shown by various studies, these
structures are primarily in the form of two-dimensional sheets (e.g. Pan & Scannapieco
2011 and references therein). The scalar sheets are brought closer to each other
over time by the turbulent velocity. When the typical width and separation of the
sheets decrease to the diffusion scale, molecular diffusivity can operate efficiently and
homogenize. The time scale for this process is γ (t)−1, which is expected to be of the
order of the scalar cascade time scale or the mixing time scale τm. Two scalar sheets
of different concentrations brought to close contact are assumed to mix perfectly,
resulting in a concentration value equal to their average prior to the mixing event (see
the delta function in (3.9)). The last term in (3.9) corresponds to the ‘destruction’ of
the previous p.d.f. by the mixing event.

One problem of Curl’s model for turbulent mixing is that, if the initial concentration
p.d.f. consists of two delta functions (see (3.4)), the predicted p.d.f. shows unphysical
spikes in between the initial delta functions. To avoid this problem, Dopazo (1979) and
Janicka et al. (1979) independently generalized Curl’s model by replacing the delta
function in (3.9) by a smooth function J(Z;Z1,Z2),

∂p(Z; t)
∂t

= γ (t)
{[∫ 1

0
p(Z1; t)

∫ 1

0
p(Z2; t)J(Z;Z1,Z2) dZ1 dZ2

]
− p(Z; t)

}
, (3.10)

where J(Z;Z1,Z2) represents the effect of mixing between two nearby scalar sheets
with concentration values of Z1 and Z2. The function J(Z;Z1,Z2) is zero for
Z outside the range (Z1,Z2) (or (Z2,Z1) if Z1 > Z2), and its normalization is∫ Z2

Z1
J(Z;Z1,Z2) dZ = 1. A simple assumption for J(Z;Z1,Z2) is that it is uniform

between Z1 and Z2, leading to

∂p(Z; t)
∂t

= γ (t)
{[∫ Z

0
p(Z1; t)

∫ 1

Z

2
Z2 − Z1

p(Z2; t) dZ1 dZ2

]
− p(Z; t)

}
, (3.11)

where J(Z;Z1,Z2) was set to 1/|Z2 − Z1| (Dopazo 1979; Janicka et al. 1979).
The parameter γ (t) as a function of time can be fixed by comparing the variance

equation of these models with the simulation data. The derivation of the variance
equation can be found in Janicka et al. (1979) or Valino & Dopazo (1990).
For Curl’s model and the model with uniform J(Z;Z1,Z2), the variance decays
∝ exp[−(1/2) ∫ t

0 γ (t
′) dt′] and ∝ exp[−(1/3) ∫ t

0 γ (t
′) dt′], respectively. If the variance

decreases exponentially with a constant time scale τm, γ (t) is constant and equal to
2/τm and 3/τm, respectively, for the two models.

Pope (1982) pointed out a weakness of this class of models: the normalized
high-order moments, 〈δZm〉/〈δZ2〉m/2, do not converge with time for m > 4 (see also
Valino & Dopazo 1990). This suggests that the predicted p.d.f. by these models has
excessively fat tails at late times (Kollmann 1990).

3.4. The self-convolution models

The last type of models we consider are those based on the self-convolution of the
scalar p.d.f., which can be viewed as extensions of the model by Curl (1963) in
Laplace space. A review of the development of these models can found in Duplat &
Villermaux (2008).

The Laplace transform p̂(ζ ; t) of the scalar p.d.f. is defined as p̂(ζ ; t) =∫∞
0 p(Z; t) exp(−Zζ ) dZ. Using the convolution theorem, the Laplace transform of (3.9)
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gives

∂ p̂(ζ ; t)
∂t

= γ [p̂ (ζ/2; t)2−p̂(ζ ; t)] . (3.12)

A similar equation in Fourier space was used by Pumir, Shraiman & Siggia
(1991). This equation shows that turbulent mixing is essentially treated as a
self-convolution process in Curl’s model. We rewrite (3.12) in a difference form
p̂(ζ ; t + δt) = εp̂ (ζ/2; t)2+(1 − ε)p̂(ζ ; t) where ε = γ δt with δt an infinitesimal time
step. The difference equation can be interpreted as follows: during a time step δt,
mixing occurs only in an infinitesimal fraction, ε, of the flow, and in this part of the
flow the scalar p.d.f. undergoes a complete convolution. The convolution process in
(3.12) appears to be ‘discrete’.

Following Venaille & Sommeria (2007), we derive a continuous version of
Curl’s model. We assume that, in each time step δt, the p.d.f. convolution occurs
everywhere in the flow, but the number of convolutions is taken to be infinitesimal
and equal to ε (Duplat & Villermaux 2008). This assumption can be written as
p̂(ζ ; t + δt) = p̂ (ζ/(1+ ε); t)(1+ε). Using the Taylor expansion p̂ (ζ/(1+ ε); t)(1+ε) '
p̂(ζ ; t)+ ε[p̂(ζ ; t) ln(p̂(ζ ; t))− ζ∂ p̂(ζ ; t)/∂ζ ] and taking the limit δt→ 0, we obtain

∂ p̂(ζ ; t)
∂t

= γ
[

p̂ ln(p̂)− ζ ∂ p̂

∂ζ

]
, (3.13)

which represents the model of Venaille & Sommeria (2007). We will refer to this
model as the continuous convolution model. In this model, the variance decays
∝ exp(− ∫ t

0 γ (t
′) dt′). Venaille & Sommeria (2007) showed that the p.d.f. predicted

by (3.13) evolves toward Gaussian in the long-time limit (in contrast to the integral
models in § 3.3). A comparison of this model with experimental data is given in
Venaille & Sommeria (2008). We note that, if the initial p.d.f. is two delta functions,
the continuous self-convolution model is not applicable for the p.d.f. evolution right
from the beginning (Venaille & Sommeria 2007). We thus cannot compare the model
prediction for p(Z; t) with our simulation results at the early evolution stage. The
model will only be used to study the evolution of the unpolluted mass fraction.

As pointed out by Duplat & Villermaux (2008), a more general extension of Curl’s
model is

∂ p̂(ζ ; t)
∂t

= γ n

[
p̂

(
ζ

1+ 1/n
; t
)(1+1/n)

− p̂(ζ ; t)
]
. (3.14)

Curl’s original model (equation (3.12)) and the model of Venaille & Sommeria (2007)
(equation (3.13)) are special cases of (3.14) with n = 1 and n→∞, respectively. The
parameter n can be a function of time in general. The assumption behind (3.14) is
that a fraction, nε, of the flow experiences mixing/convolution events during a time
step δt, and the number of convolutions in this fraction of the flow is 1/n. For (3.14),
the variance decay is ∝ exp(− ∫ t

0 γ (t
′)n/(n + 1) dt′). We will refer to (3.14) as the

generalized convolution model.
We finally consider the model by Villermaux & Duplat (2003), which was motivated

by a turbulent mixing picture with three related processes: the generation of pollutant
sheets by turbulent stretching; the diffusion of the pollutant sheets by molecular
diffusivity; and the merging of the diffused sheets. The merging of the sheets
corresponds to a self-convolution process. The model is represented by (Duplat &
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Villermaux 2008)

∂ p̂(ζ ; t)
∂t

=−γ ζ ∂ p̂

∂ζ
+ nγ

[
p̂ (ζ ; t)(1+1/n)−p̂(ζ ; t)] ,

∂n(t)

∂t
= γ n,

 (3.15)

where n increases with time and the first equation can be viewed as the expansion
of (3.14) at large n. Note that (3.13) and (3.15) approach the same limit as
t→∞. Villermaux & Duplat (2003) showed that (3.15) has an asymptotic solution
p̂(ζ ; t) = (1+ 〈Z〉ζ/n)−n at large t, which corresponds to a gamma distribution for the
scalar p.d.f. (Duplat & Villermaux 2008),

p(Z; t)= nn

0(n)〈Z〉n Zn−1 exp
(
− nZ

〈Z〉
)
, (3.16)

where 0(n) is the gamma function. The gamma distribution is valid only at late times
with n & 1, and cannot be applied to study the pristine mass fraction at the early
evolution stage when the fraction is significant. Therefore, we do not use the model for
the pristine mass fraction, but will check whether the scalar p.d.f. in our simulations
approaches a gamma distribution at late times.

We point out a fundamental difference between the mapping closure model
discussed in § 3.2 and the models presented here and in § 3.3. The mapping closure is
established by a direct approximation of the exact, but unclosed, form of the diffusivity
term. On the other hand, the nonlinear integral models and the convolution models do
not start from the diffusivity term in the p.d.f. equation; instead they are largely based
on a physical picture of the mixing process.

4. Mass fraction of unpolluted or slightly polluted flow
As mentioned in the Introduction, we are interested in the mass fraction, P(Zc, t), of

the flow with concentration smaller than a tiny threshold, Zc, which can be calculated
from the concentration p.d.f. as

P(Zc, t)=
∫ Zc

0
p(Z′; t) dZ′. (4.1)

The fraction corresponds to the far-left tail of the p.d.f. since the threshold Zc of
interest is typically much smaller than the average concentration. Taking the limit
Zc → 0 in (4.1), we obtain the fraction P(t) of exactly pollutant-free mass, i.e.
P(t) = limZc→0

∫ Zc
0 p(Z′; t) dZ′. This fraction is zero unless p(Z; t) has a delta-function

component, δ(Z), at Z = 0. In this section, we derive equations for P(Zc, t) and P(t)
from the closure models discussed in § 3.

An interesting observation of the action of molecular diffusivity is that it tends
to decrease the exactly pollutant-free fraction, P(t), to zero instantaneously. For
illustration, we consider a simple situation with a point source diffusing in a static
uniform medium. The concentration field obeys the diffusion equation, whose solution
is given by a Gaussian function. From this solution, it is clear that, no matter how
small the molecular diffusivity, κ , is, the concentration field at a finite time (t > 0)
becomes non-zero at any finite distance (r <∞) from the initial source, suggesting
that all the pollutant-free mass is removed from the system instantaneously.

This acausal behaviour of molecular diffusivity originates from the Laplacian
operator in the diffusion equation, which implicitly assumes that the random walk
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of some tracer molecules can bring them to an infinite distance during any small (but
macroscopic) time interval. This is clearly unrealistic. The thermal motions of tracer
molecules must have a finite maximum speed, max(vth), and thus none of them can
reach an infinite distance instantaneously. If the size of the system in question is L,
there could be exactly pollutant-free mass surviving for a finite time ∼L/max(vth).
However, this time is expected to be very small since max(vth) is likely to be much
larger than the sound speed. Therefore, the reduction of exactly pollutant-free fraction,
P(t), by molecular diffusion may be considered as being essentially instantaneous.

For our astrophysical applications, we need the fraction, P(Zc, t), of the flow with Z
below a finite critical value, Zc, rather than the exactly pristine fraction. Obviously, it
takes finite time for molecular diffusivity to enrich all the fluid elements in the system
up to a finite threshold, Zc. In fact, during a short time interval, the degree of pollution
by molecular diffusivity alone is negligible even at small distances from the pollutant
source, and the entire system is practically unpolluted. Therefore, the observation of
the rapid/immediate erasure of exactly pristine gas by molecular diffusivity is not
directly relevant to the astrophysical problem of primordial star formation.

Because κ is usually tiny in practical environments, such as in the interstellar media
of galaxies, enriching all the fluid elements to a concentration level of, say, &10−8,
by the molecular diffusivity alone is very slow (see discussions in Pan & Scalo
2007). The presence of a turbulent velocity field greatly accelerates the mixing process,
making the reduction of P(Zc, t) much faster. We find that the time scale for the
reduction of P(Zc, t) with a small Zc is basically determined by the rate at which the
turbulent stretching produces small-scale structures and is essentially independent of κ .

4.1. The mapping closure model
We calculate the fraction P(Zc, t) predicted by the mapping closure model. From (3.7),
it is straightforward to find that

P(Zc, t)=
∫ ηc(t)

−∞
g(η) dη = G(ηc(t)), (4.2)

where the upper limit ηc(t) satisfies X(ηc(t); t) = Zc. For a given value of Zc, the limit
ηc(t) changes with time as the mapping function evolves, and for our initial bimodal
p.d.f. with two delta functions, ηc(t) can be computed using (3.8).

From that equation, we see that Zc = 0 corresponds to ηc→−∞ at all times after
t = 0. Therefore, the mapping closure model predicts that P(t) is zero at any time t >
0, or that the fraction of exactly pollutant-free mass deceases to zero instantaneously.
This is consistent with our discussion above that the molecular diffusivity alone tends
to immediately remove fluid elements with exactly zero concentration. The mapping
closure model inherits this particular property of molecular diffusion, because the
effect of diffusivity as a Laplacian term is treated directly. The model destroys the
initial delta function at Z = 0 instantaneously. However, this does not suggest that
p(0; t) becomes finite immediately. At the early evolution stage, p(Z; t) does have an
infinite peak at Z = 0, but the peak is less singular than a delta function (δ(Z)) in the
sense that

∫ Z
0 p(Z′; t) dZ′→ 0 in the limit Z→ 0.

4.2. The nonlinear integral models
Unlike the mapping closure model, the nonlinear integral models preserve the
singularities at Z = 0 and Z = 1. More specifically, the amplitudes of the delta
functions at Z = 0 and Z = 1 decrease with time, but they are never completely
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destroyed, such that exactly pollutant-free mass can survive in these models, and P(t)
remains finite at any finite time. This is inconsistent with our earlier observation that
the molecular diffusivity tends to reduce P(t) to zero immediately. The reason is that
the effect of molecular diffusivity is not incorporated directly in these models; instead
it is included implicitly through the function J(Z;Z1,Z2). Despite the inconsistency,
we find that the integral models are useful for understanding the pollution of fluid
elements with very low (but non-zero) concentration by turbulent mixing. Below we
derive an equation for the fraction, P(t), of exactly pollutant-free mass from these
models.

We consider the general model represented by (3.10). Integrating this equation in the
range [0,Z] and taking the limit Z→ 0, we have

dP(t)

dt
= γ (t)

(∫ 1

0
dZ1 p(Z1; t)

∫ 1

0
dZ2p(Z2; t) lim

Z→0

∫ Z

0
dZ′ J(Z′;Z1,Z2)− P(t)

)
. (4.3)

The last integral in the triple-integral term in the limit Z → 0 can be written

as
∫ 0+

0 J(Z′;Z1,Z2) dZ′ where 0+ represents the upper integral limit approaching
zero from the positive vicinity. We first note that this integral is zero if both Z1

and Z2 are positive because J(0;Z1,Z2) = 0 for Z1 > 0 and Z2 > 0 (see § 3.3).
We next assume that J(Z;Z1,Z2) at Z = Z1 and Z = Z2 is non-singular or less

singular than a delta function for Z1 6= Z2 (meaning that
∫ Z+1

Z1
J(Z;Z1,Z2) dZ = 0

and
∫ Z2

Z−2
dJ(Z;Z1,Z2) dZ = 0, where Z1 < Z2 is assumed without loss of generality).

This assumption is clearly satisfied for Curl’s model and the model with uniform
J(Z;Z1,Z2) (equation (3.11)). With this assumption, it is straightforward to see that∫ 0+

0 J(Z′;Z1,Z2) dZ′ is finite only if both Z1 = 0 and Z2 = 0. In that case, we

have
∫ 0+

0 dZ′J(Z′; 0, 0) = 1 from the normalization of J(Z;Z1,Z2). This observation
suggests that the contribution to the triple integral in (4.3) comes only from Z1 and
Z2 values in an infinitesimal range around zero. With such infinitesimal ranges of Z1

and Z2, the first two of the three integrals contribute factors of
∫ 0+

0 p(Z1; t) dZ1 and∫ 0+
0 p(Z2; t) dZ2, respectively. As both these factors are equal to P(t), we have the

following equation for P(t):

dP(t)

dt
=−P(1− P)

τint
, (4.4)

where τint ≡ γ (t)−1 is used for the convenience of notation. If the mixing time scale
τm is constant, the variance decay requirement gives τint = τm/2 or τm/3 for Curl’s
model and the model with uniform J(Z;Z1,Z2), respectively (see § 3.3).

Equation (4.4) gives an interesting physical picture of mixing of the unpolluted mass
in turbulent flows: the pristine fraction is reduced when turbulent stretching brings the
pollutant-free fluid elements (with a fraction of P(t)), and the rest of the flow (with
a fraction of 1 − P(t)) which has been polluted by sources or previous mixing events,
close enough for molecular diffusivity to homogenize (Pan & Scalo 2007).

Equation (4.4) has a simple analytic solution,

P(t)= P0

P0 + (1− P0) exp
(

t

τint

) , (4.5)
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where P0 is the initial fraction of unpolluted mass, and we have assumed τint is
constant with time. Although it is derived for the fraction of exactly pollutant-free
mass, we will show in § 5 that, in certain physical regimes, this equation can be used
to fit our numerical results for P(Zc, t) with a finite threshold Zc.

4.3. The self-convolution models
The self-convolution models introduced in § 3.4 also preserve the initial singularities
at Z = 0 and Z = 1, since they are essentially extensions of Curl’s model. Again we
derive the equations for the fraction, P(t), of exactly pollutant-free mass from the
convolution models, which will be used later to understand the mass fraction of nearly
pristine, but Z 6= 0, flow. We first decompose the concentration p.d.f. as

p(Z; t)= P(t)δ(Z)+ pe(Z; t), (4.6)

where pe(Z; t) denotes the concentration p.d.f. in the enriched/polluted part of the flow,
and it satisfies limZ→0

∫ Z
0 pe(Z′; t) dZ′ = 0. The Laplace transform of (4.6) gives

p̂(ζ ; t)= P(t)+ p̂e(ζ ; t), (4.7)

where p̂e(ζ ; t) is the Laplace transform of pe(Z; t). In the limit ζ →+∞, p̂e(ζ ; t)
approaches zero because limZ→0

∫ Z
0 p′e(Z

′; t) dZ′ = 0.
Inserting (4.7) into (3.13) for the model of Venaille & Sommeria (2007), and taking

the limit ζ →+∞, we find

dP(t)

dt
= P ln(P)

τcon
, (4.8)

where τcon ≡ γ −1, and we used the fact that p̂e(ζ ; t)→ 0 and ζ∂ζ p̂e(ζ ; t)→ 0 as ζ
approaches infinity. If τcon is constant, the equation is solved by

P(t)= Pexp(t/τcon)
0 , (4.9)

which can also be obtained from the solution for p̂(ζ ; t) given in Venaille & Sommeria
(2007). We will show that (4.9) provides a useful fitting function for our simulation
data for P(Zc, t) with finite Zc in a transonic flow.

Similarly, we can derive an equation for the pristine fraction from the generalized
version, (3.14), of the self-convolution models,

dP

dt
=− n

τcon
P(1− P1/n). (4.10)

Assuming both n and τcon are constant with time, the solution of the equation is

P(t)= P0[
P1/n

0 + (1− P1/n
0 ) exp (t/τcon)

]n . (4.11)

For n = 1, the equation reduces to (4.5) for the nonlinear integral models, and in the
limit of n→∞, it approaches (4.9) for the continuous convolution model. We will use
(4.11) to fit our simulation results for scalars in a highly supersonic flow, taking τcon
and n as fitting parameters.

5. Numerical simulations
To test the theoretical models and fix their parameters, we carried out numerical

simulations for mixing in hydrodynamic turbulent flows using the FLASH code
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(version 3.2), a multidimensional hydrodynamic code (Fryxell et al. 2000) that
solves the Riemann problem on a Cartesian grid using a directionally-split piecewise-
parabolic method (PPM) solver (Colella & Woodward 1984; Colella & Glaz 1985;
Fryxell, Müller & Arnett 1989). We evolved the hydrodynamic equations,

∂ρ

∂t
+∇ · (ρv)= 0,

∂v
∂t
+ v ·∇v=−∇p

ρ
+ f ,

 (5.1)

on a 5123 grid for a domain of unit size with periodic boundary conditions. We
adopted an isothermal equation of state, p = ρCs, with a constant sound speed, Cs.
The isothermal equation of state is commonly used to imitate the nearly constant
temperature in some interstellar environments, and is a convenient assumption to
investigate the effects of compressibility in interstellar turbulence. Our code does
not explicitly incorporate a viscosity term, and the kinetic energy is dissipated by
numerical diffusion. A large-scale solenoidal external force, f , was applied to drive
and maintain the turbulent flows. This driving force was taken to be a Gaussian
stochastic vector with an exponential temporal correlation function. We generated
f in Fourier space and included all independent modes with wavenumbers in the
range from 2π to 6π. Each independent mode was given the same amount of power.
We defined a forcing length scale as Lf ≡

∫
(2π/k)Pf (k) dk/

∫
Pf (k) dk, with Pf (k)

being the power spectrum of the driving force, and found that Lf was equal to 0.46
box sizes for our driving scheme.

We adjusted the amplitude of the driving force to obtain a transonic flow with r.m.s.
Mach number M = 0.9 and a supersonic flow with M = 6.2. We refer to the two flows
as flow A and flow B. The r.m.s. Mach number was defined as the density-weighted
r.m.s. velocity, vrms, divided by the sound speed, Cs, and was computed from the
temporal average after the flow reached a statistical steady state. We defined a flow
dynamical time scale as τdyn ≡ Lf /vrms. The simulation setup for the turbulent flows is
the same as that in Pan & Scannapieco (2010), to which we refer the interested reader
for details.

To study mixing, we solved the advection equation for a number of decaying
scalars, which were added to the flow once the turbulence had become fully developed
and statistically stationary. The initial concentration field of the decaying scalars was
bimodal, consisting of pure pollutants and completely unpolluted flow. The initial
pollutant region was chosen to be a single cube located exactly at the centre of the
simulation box. Within this cube, we set the concentration field, C, to be unity, i.e. the
flow material there was taken to be pure pollutants, and outside the cube we set C = 0,
i.e. the flow there was completely pollutant free. This initial condition was chosen for
its simplicity, and it suffices for the purpose of illustrating the general problem and
testing the theoretical models.

An important parameter for the initial condition is the pollutant fraction, P1, i.e. the
ratio of the pollutant mass to the total mass in the simulation box. Clearly, the fraction
fixes the initial pristine fraction, P0 = 1 − P1. We considered three scalars in each of
our flows and set the initial pollutant fraction to be P1 = 0.5, 0.1 and 0.01, respectively.
In the M = 0.9 flow, we name the three scalars with P1 = 0.5, 0.1, and 0.01 as A1,
A2 and A3, respectively. The corresponding cases in the M = 6.2 flow are named B1,
B2 and B3. The exact values for P1 were achieved by tuning the size of the pollutant
regions. Smaller values of P1 would also be of interest for mixing of heavy elements

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

14
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.143


474 L. Pan, E. Scannapieco and J. Scalo

y

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

y

0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0 0

–2.0

–4.0

–6.0

–8.0

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(a) (b)

0.2

0.4

0.6

0.8

1.0(c) (d)

x x

0

–2.0

–4.0

–6.0

–8.0

FIGURE 1. The concentration field (in logarithmic scale) of scalar A2 on a slice of the
simulation grid at snapshots with t = 0.12τdyn (a), 0.5τdyn (b), 0.9τdyn (c) and 1.5τdyn (d). The
scalar is advected in the M = 0.9 flow. The size of the initial pollutant cube is 0.47 box
sizes. The colour table ranges from 10−8 to 1, with the white colour representing regions with
concentration Z 6 10−8.

in the interstellar media of early galaxies. However, for P1 � 0.01, the size of the
pollutant region becomes smaller than the integral scale of our simulated flows. This
gives rise to complications in the evolution of the unpolluted (or slightly polluted)
fraction. Smaller initial pollutant fractions will be investigated in a follow-up study.

Similar to the case of kinetic energy dissipation, the scalar dissipation (or
homogenization) is also through numerical diffusion in our simulations. The diffusion
scale is thus close to the resolution scale. To examine whether our results depend
on the amplitude of numerical diffusion, we performed the same runs at a lower
resolution, 2563, and conducted a convergence study. We found that the time scale for
the evolution of P(Zc, t) with Zc ∼ 10−8 had already converged at the resolution 5123.

6. Results
6.1. The concentration field

In figure 1, we plot the evolution of the concentration field of scalar A2 in
our simulated flow with M = 0.9. The four panels correspond to the log of the
concentration field on a slice (z = 0.5) of the simulation grid at four snapshots with
t = 0.12τdyn, 0.5τdyn, 0.9τdyn and 1.5τdyn, respectively. The colour table is in logarithmic
scale and the lower limit was chosen to be 10−8, so that the part of the flow with
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FIGURE 2. Same as figure 1, but for scalar B2 in the M = 6.2 flow. The four snapshots, (a),
(b), (c) and (d), correspond to t = 0.11τdyn, 0.65τdyn, 1.1τdyn and 1.7τdyn, respectively. The size
of the initial pollutant cube is also 0.47 box sizes, and the initial pollutant fraction is 0.1.

concentration below a small threshold, Zc, is visible in the figure. The size of initial
pollutant at the centre of the box was set to be 0.47 in units of the box size, such that
the initial pollutant fraction is 0.1. With time, the turbulent flow transports and spreads
out the pollutants, exposing them to more and more pristine fluid elements. Turbulent
stretching by vortices and shear continuously produces concentration structures at
smaller and smaller scales. Pristine fluid elements are contaminated when encountering
a pollutant/polluted structure within a distance smaller than the diffusion scale. At
t = 1.5τdyn, almost the entire flow is polluted, and the mass fraction of the flow with
Z 6 10−8 becomes negligibly small. Cliff structures typical of passive scalar fields
advected in incompressible turbulence are clearly observed in (c) and (d).

Figure 2 shows the concentration field of scalar B2 in our M = 6.2 flow. At the
four snapshots selected here, the density-weighted concentration variances are close
to those for scalar A2 at the corresponding snapshots in figure 1. It appears that, at
similar variances, the unpolluted volume in the M = 6.2 flow is significantly larger
than in the M = 0.9 case. The existence of strong compressions and expansions in
a highly supersonic flow gives rise to a very different geometry for the scalar field.
Most of the volume in a highly compressible flow is occupied by expanding events,
and the flow expansion tends to produce more coherent scalar structures, as a passive
scalar follows the expansion. Therefore, scalar B2 appears to be smoother than A2
in figure 1. The edge-like structures in figure 2 are produced by the compression of
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FIGURE 3. Evolution of p.d.f.s of scalars A2 (a) and B2 (b) in the M = 0.9 and M = 6.2 flow
simulations, respectively. The initial pollutant fraction, P1, for the two scalars is 0.1. Lines are
the predicted p.d.f.s from the mapping closure model with the same values of variance as in
the simulations.

velocity shocks, which amplifies the scalar gradient across the shocks. Although the
visual impression of figure 2 is dominated by the effect of compressible modes, it is
actually the solenoidal modes that contain the majority of kinetic energy in the flow
and provide the primary contribution to the scalar cascade even at high Mach numbers
(Pan & Scannapieco 2010). The interested reader is referred to Pan & Scannapieco
(2010, 2011) for detailed discussions of scalar structures as a function of the flow
Mach number and the relative role of solenoidal and potential modes for mixing in
supersonic turbulence.

6.2. The p.d.f. evolution

Figure 3 plots the p.d.f.s of scalars A2 (a) and B2 (b) as a function of time. The two
scalars were evolved in our simulated flows with M = 0.9 and M = 6.2, respectively.
The initial pollutant fraction, P1, is 0.1 for the two scalars, meaning that the amplitude
of the initial spike at Z = 0 is 9 times higher than that at Z = 1. Turbulent mixing
reduces the heights of the two spikes, and gradually fills the concentration space in
between. Eventually a central peak forms around the average concentration, and then
the p.d.f. narrows down toward the peak.

The lines in figure 3 are the prediction of the mapping closure model. At each
time, the predicted p.d.f. has the same value of variance as that from the simulation
(data points). This is equivalent to properly choosing the time scale λ2

θ(t)/κ in (3.6) so
that the variance evolution from the model matches the simulation result. The model
prediction is in good agreement with the data at the central part and the right (high-Z)
tail of the scalar p.d.f. However, the mapping closure considerably underestimates the
left p.d.f. tail at intermediate to late times. A detailed discussion of the discrepancy
between the prediction of the Gaussian mapping closure and simulation results at
late times is given in Girimaji (1992). The weakness of the mapping closure is also
discussed by Duplat & Villermaux (2008). It appears that, for scalar A2, the agreement
between the mapping closure and the simulation data becomes better in the long-time
limit.
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FIGURE 4. Evolution of the p.d.f. of scalar A2 in the M = 0.9 flow. Lines are predictions
of two models: (a) the nonlinear integral model with uniform J(Z;Z1,Z2) (equation (3.11));
(b) gamma distributions as predicted by the model of Villermaux & Duplat (2003).

In figure 3(b) for scalar B2 in the M = 6.2 flow, we see that at early times
there is also an acceptable agreement between the mapping closure prediction and
the simulation results. At later times, the discrepancy at the left tails between the
model and the data is larger than the M = 0.9 case. This is because the p.d.f. tails
broaden with increasing Mach number, as previously found in the simulations of Pan
& Scannapieco (2010). The origin of this effect was argued to be related to the
increasing degree of intermittency of the velocity field as the Mach number increases.

The mass fraction of unpolluted or slightly polluted flow with Z . 10−8–10−5

corresponds to the far left tail of the p.d.f. with Z well below the minimum value
shown in figure 3. Therefore, figure 3 does not contain direct information for the
part of the p.d.f. of our primary interest. Nevertheless, the left p.d.f. tails shown in
figure 3 imply that the mapping closure model is likely to significantly underestimate
the unpolluted fraction at intermediate to late times especially for scalar B2. The
expectation is confirmed in § 6.4.

In figure 4(a), we compare the prediction of the nonlinear integral model with
uniform J(Z;Z1,Z1) to the simulation data for scalar A2 in the M = 0.9 flow. The
performance of this model for the p.d.f. evolution is poor. At very early times, the
predicted p.d.f. appears to be flat in between the initial spikes, reflecting a ‘memory’
of the uniform function J(Z;Z1,Z1). As mentioned earlier, a problem of the nonlinear
integral models is that they predict excessively fat tails in the long-time limit. This is
seen in figure 4(a), which shows that at large t the model significantly overestimates
the left tails. We find that at late times the nonlinear integral model also overestimates
the p.d.f. tails for scalars in the M = 6.2 flow (not shown). Although the nonlinear
integral models do not give good predictions for the p.d.f. evolution, we find that they
provide useful fits to the pristine fraction in certain physical regimes (see § 6.4).

In figure 4(b), we fit the p.d.f. of scalar A2 in the M = 0.9 flow with the gamma
distribution, (3.16), predicted by the model of Villermaux & Duplat (2003). For each
line, the value of n is chosen such that the variance of the gamma distribution is
equal to that from the simulation. The scalar p.d.f. at t . τdyn does not have a gamma
distribution shape, and is not shown in this figure. At the four selected times in
the figure, however, the gamma distributions fit the simulation data quite well. The
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agreement is significantly better than the mapping closure for t between 1.8τdyn and
2.6τdyn (corresponding to 1.1 6 n 6 4). We find that n(t) increases exponentially with
time, corresponding to the exponential decay of the scalar variance at late times (see
§ 6.3), as the variance of the gamma distribution, (3.16), goes like 〈Z〉2/n. This is in
contrast to the experimental result, n(t) ∝ t5/2, found by Villermaux & Duplat (2003).
The reason for the difference is that our simulated flows are maintained at a steady
state by a driving force and are statistically homogeneous, while the experiments by
Villermaux & Duplat (2003) are for decaying flows dominated by a mean shear. An
exponential decay is also found in a sustained flow by Villermaux, Stroock & Stone
(2008).

We point out that the continuous convolution model of Venaille & Sommeria (2007)
predicts that, if the scalar p.d.f. is given by a gamma distribution at a given time,
then the p.d.f. will remain a gamma distribution at all subsequent times. Therefore, if
one starts to use the continuous convolution model at a time when the scalar p.d.f.
has evolved to a gamma distribution, its prediction for later times would be the same
as the model of Villermaux & Duplat (2003). However, unlike Villermaux & Duplat
(2003), the model of Venaille & Sommeria (2007) does not predict that the gamma
distribution is an attractive solution that the scalar p.d.f. always reaches at the late
evolution stage.

For scalar A2 in the M = 0.9 flow, the model of Villermaux & Duplat (2003)
starts to apply at t = 1τdyn–2τdyn. At this time, the pristine mass fraction has already
decreased to very small values, and thus the model is not suitable for studying the
pristine fraction. We also tried to fit gamma distributions to the scalar p.d.f.s in the
M = 6.2 flow, and found they underestimate the left tails, which are broader than the
M = 0.9 case.

In summary, we found that in the M = 0.9 flow the mapping closure gives
acceptable fits to the scalar p.d.f. at early times, but significantly underestimates
the left p.d.f. tails at late times. Starting from '1.8τdyn, the scalar p.d.f. is better
fitted by a gamma distribution, which is predicted by the model of Villermaux &
Duplat (2003). Since all the models we considered were originally developed to study
mixing in incompressible turbulence, they were not expected to perform well in highly
compressible flows. In the M = 6.2 flow, the left p.d.f. tail is broader, and no models
were found to give satisfactory predictions for the scalar p.d.f. at late times.

6.3. The variance decay
In figure 5, we show the evolution of the density-weighted concentration variance for
scalars A2 and B2 in the M = 0.9 and M = 6.2 flows, respectively. In figure 5(a),
the time is normalized to the flow dynamical time τdyn, while in figure 5(b) it is
normalized to the acoustic time τac defined as Lf /Cs, the time for the sound wave
to cross the driving scale of the flow, Lf . From the definition, we have τac = Mτdyn.
Therefore, the variance decay curves shift to the right by a factor of 1.1 for scalars A2
and to the left by a factor of 6.2 for B2, when the normalization time scale is switched
from τdyn to τac. From figure 5, it is clear that the flow dynamical time is a more
relevant time scale for the scalar variance decay in supersonic isothermal turbulent
flows.

As seen in figure 5(a), at early times the variance decreases slowly, corresponding to
the initial development of scalar structures toward small scales. In this transient period,
the parameter γ (t) in the models presented in §§ 3.3 and 3.4 would be time-dependent
if the model is required to match the scalar variance decay. At t & 0.5τdyn, the variance
decays exponentially, and γ (t) would be constant. When normalized to the dynamical
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FIGURE 5. Evolution of the density-weighted concentration variance for scalars A2 and B2
in M = 0.9 and M = 6.2 flows, respectively. The variance is normalized to its initial value.
(a) Time normalized to the flow dynamical time scale. (b) Time normalized to the acoustic
time scale.

time scale, the variance decay of scalar A2 is slightly faster than B2, and the decay
time scale is measured to be τm = 0.61τdyn and 0.73τdyn, for A2 and B2, respectively.
These results are consistent with Pan & Scannapieco (2010), who found that the
variance decay time scale in units of the flow dynamical time scale has a weak
dependence on the flow Mach number, increasing by .20 % as M goes from 1 to 6.
This slight increase is due to the fact that compressible modes are less efficient at
enhancing the mixing rate than solenoidal modes (Pan & Scannapieco 2010).

We also measured τm for the other four scalars included in our simulations, and
found that, in each flow, the mixing time scales of the three scalars are close to each
other. The time scale for the third scalar (i.e. A3 or B3) is slightly smaller than the
other two. On average, the mixing time scale is τm ' 0.6τdyn for the three scalars in the
M = 0.9 flow. In the M = 6.2 flow, the average mixing time scale is '0.7τdyn.

6.4. The fraction P(Zc, t)
Next we computed the mass fraction, P(Zc, t), of fluid elements with Z smaller than
different thresholds, Zc, from the simulation data. We found that the flow with exactly
zero concentration (i.e. the special case with Zc = 0) is erased rapidly by numerical
diffusion. This is because in each time step the unpolluted computation cells adjacent
to those with non-zero Z obtain a finite (but tiny) concentration value due to numerical
diffusion. Therefore, after a small number of time steps, no exactly pollutant-free cells
were left in the simulation box. However, in such a short time, the degree of pollution
in most cells due to numerical diffusion is extremely small, and the concentration
level in these cells was much smaller than any threshold of practical interest. The
rapid pollution of completely pristine mass by numerical diffusion in the simulations
is similar to the effect of molecular diffusivity, which tends to reduce P(t) to zero
instantaneously, although the numerical diffusion probably has a different form and a
much larger amplitude than the realistic molecular diffusivity.

The threshold of interest for astrophysical applications is Zc & 10−8. For this finite
threshold, the time scale at which P(Zc, t) decreases is significant, and is of the
order of the flow dynamical time. A comparison of the same simulation runs at two
resolutions, 2563 and 5123, shows that the time scale for P(Zc, t) with Zc ∼ 10−8 is
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FIGURE 6. Mass fraction of fluid elements with Z 6 10−8 for scalars A1 and A2 in the
M = 0.9 flow. Dashed lines correspond to the prediction of the mapping closure model. Solid
lines are the best fits using the continuous convolution model with τcon = 0.35τdyn and 0.37τdyn
for A1 and A2, respectively. The dotted lines are fits by (4.5) from the nonlinear integral
models.

independent of the amplitude of numerical diffusion. These suggest that the reduction
rate of P(Zc, t) with Zc & 10−8 is mainly determined by the large-scale properties of
the flow. The behaviour of P(Zc, t) as a function of time is similar for different values
of Zc, given that Zc is much smaller than the average concentration. The evolution
time scale of P(Zc, t) only has a weak logarithmic dependence on Zc. Below we only
present results for Zc = 10−8. Similar results are found for Zc in the range from 10−8

to 10−5.

6.4.1. The M = 0.9 flow
In figure 6, we plot the mass fraction of fluid elements with Z 6 10−8 as a function

of time for scalars A1 and A2 in the M = 0.9 flow. The initial pollutant fraction,
P1, is 0.5 and 0.1 for the two scalars, respectively. The data points are results from
the simulations. The dashed lines correspond to the prediction of the mapping closure
model. For this model, the fraction, P(Zc, t), at a given time is calculated from the
predicted p.d.f. with the same scalar variance as that in the simulation. In figure 6,
we see that the mapping closure model is in good agreement with the data points
for scalar A1. However, the model prediction is well below the data points for scalar
A2. This was expected from figure 3(a), which shows that the mapping closure model
underestimates the left p.d.f. tail of scalar A2 at intermediate to late times. We
found that the model also underestimates P(Zc, t) for scalar A3, which had an initial
pollutant fraction of 0.01, and the discrepancy is even larger than the case of A2.

The solid lines in figure 6 are from the continuous convolution model of Venaille
& Sommeria (2007), i.e. (4.9), and they match the data points quite well. The time
scales τcon used in the fits are 0.35τdyn and 0.37τdyn, respectively, for scalars A1
and A2. As discussed in § 4.3, (4.9) was originally derived for the fraction, P(t), of
exactly pollutant-free mass. The good agreement between (4.9) and the simulation data
shows that the model actually provides an excellent fitting function for the fraction,
P(Zc, t), with a finite (but small) threshold Zc. It also suggests that the continuous
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FIGURE 7. Mass fraction of fluid elements with Z 6 10−8 for scalar A3 in the M = 0.9 flow.
The dashed line corresponds to the nonlinear integral model with τint = 0.24τdyn. The solid
line is the best fit obtained by combining the nonlinear integral model for the early phase and
the continuous convolution model for the later phase. The time scales used in the two phases
are τint = 0.24τdyn and τcon = 0.36τdyn, respectively. The inset shows the same data points and
lines, but with the vertical coordinate on a linear scale.

convolution process is a good physical description for the erasure of unpolluted (or
slightly polluted) flow by turbulent mixing, if the initial pollutant fraction, P1, is larger
than ∼0.1.

The dotted lines in figure 6 shows the fits using (4.5) from the nonlinear integral
model. The time scale τint was chosen to be 0.28τdyn and 0.3τdyn for scalars A1 and A2,
respectively. This model predicts an exponential decrease at late times which is much
slower than found in the simulation. The overestimate is because the model produces
excessively broad p.d.f. tails in the long time limit (see figure 4a).

Figure 7 shows the evolution of P(10−8, t) for scalar A3, whose initial pollutant
fraction P1 = 0.01. The inset plots the same data points and model fits, but the y-axis
is on a linear scale. Unlike the case of scalars A1 and A2, the data points for scalar
A3 cannot be well fitted by the continuous convolution model with a single time scale
right from the beginning. In fact, P(10−8, t) exhibits different behaviours at early and
late times.

The early phase can be well fitted by (4.5) from the nonlinear integral model with
τint = 0.24τdyn. This is shown as a dashed line in figure 7, and from the inset we
see that the line matches the simulation data over an extended time range before
P(10−8, t) decreases to '0.3. The time scale τint used here corresponds to ∼0.4τm

since the variance decay time scale τm for scalar A3 is ∼0.6τdyn. This is in between
1/2τm and 1/3τm, the expected values of τint for Curl’s model and the model with
uniform J(Z;Z1,Z2), respectively (see § 4.2). The dashed line starts to significantly
overestimate the simulation results when P(10−8, t) becomes smaller than ∼0.3. Again,
this is because the nonlinear integral models significantly overpredict the p.d.f. tails at
late times.

We find that the late-time behaviour of P(10−8, t) can be well described by the
continuous convolution model. In fact, this model starts to give a satisfactory fit quite
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early, just after P(10−8, t) becomes smaller than ∼0.8. The best-fit value of the time
scale τcon is 0.36τdyn, which is almost the same as the values used to fit the data for
scalars A1 and A2. This, together with the results for scalars A1 and A2, suggests
that the continuous convolution model applies if the mass fraction of pollutants or
the polluted flow is larger than 0.1–0.2. We point out that there is an extended range
of P(10−8, t) (from 0.3 to 0.8) where both the nonlinear integral model and the
continuous convolution model can match the data well.

We give a physical speculation for why the early phase of scalar A3 is better
fitted by the nonlinear integral model than the continuous convolution model. For
this scalar, the amount of pollutants or polluted mass is small at early times. The
limited availability of pollution sources leads to a relatively low frequency of contact
between the polluted and unpolluted flow. As a consequence, the pollution process
would involve fewer convolutions at this stage, and thus may be better captured by the
nonlinear integral model, which can be roughly viewed as a discrete self-convolution
model in Laplace space. The simulation results presented above suggest that the
mixing events between the unpolluted and the polluted fluid elements become frequent
enough to trigger the continuous convolution process, when the polluted fraction is
larger than 0.1–0.2.

The solid line in figure 7 is obtained by combining the best fits for the early and
late phases using the nonlinear integral model and the continuous convolution model,
respectively. Clearly, this line is in excellent agreement with the simulation results. We
connected the two phases at time, t0.5, when P(10−8, t) = 0.5, i.e. the second phase
is fitted by 0.5exp[(t−t0.5)/τcon]. As mentioned earlier, the best-fit time scales for the two
phases are τint = 0.24τdyn and τcon = 0.36τdyn, respectively. The choice of connecting
the two phases at P(10−8, t) = 0.5 is somewhat arbitrary. In fact, combining the two
models at any time with P(10−8, t) between '0.8 and ' 0.3 yields satisfactory results.

The time scales, τint and τcon, were set to be constant in all our fits to the simulation
results for P(Zc, t). These time scales can be a function of time in general. In fact,
from the consideration of the scalar variance decay, these time scales would be time-
dependent at early times when the variance decay is slower than exponential, and
then become constant at t & 0.5τdyn when the exponential decay starts (see § 6.3). The
reason why assuming constant time scales applies perfectly for the evolution of the
pristine mass fraction, but not for the scalar variance decay at all times is probably
that the pollution of pristine flow is physically simpler. A fast variance decay relies
on the full development of scalar structures toward the diffusion scale, and that is why
the decay is slow at early times as the cascade is just starting. On the other hand, the
pollution of pristine mass does not need to wait for the scalar structures to be fully
developed at small scales: the pollution occurs whenever the unpolluted fluid elements
are brought into contact with the pollutants or the polluted flow. This happens as soon
as the pollutants are released into the flow. This is perhaps why using constant time
scales, τint and τcon, from the very beginning could give successful fits to the evolution
of P(Zc, t).

6.4.2. The M = 6.2 flow
Figure 8 shows our results for scalars B1, B2 and B3 with initial pollution fractions

of 0.5, 0.1, and 0.01, respectively, in the M = 6.2 flow. We find that the mapping
closure model significantly underestimates P(10−8, t) for all the three scalars, and the
discrepancy is much larger than the case of the M = 0.9 flow. In figure 8, we attempt
to fit the simulation data for scalars B1 and B2 with the continuous convolution model
(equation (4.9)) of Venaille & Sommeria (2007), as in the M = 0.9 case. The time
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FIGURE 8. Mass fraction of fluid elements with Z 6 10−8 for scalars B1, B2 and B3 in
the M = 6.2 flow. The solid lines for B1 and B2 correspond to the fits by the continuous
convolution model (equation (4.9)) with τcon = 0.46τdyn for both cases. The line for B3
combines the nonlinear integral model with τint = 0.30τdyn for the early phase and the
continuous convolution model with τcon = 0.51τdyn for the later phase.

scale, τcon, used in the fitting lines is 0.46τdyn for both B1 and B2. Again the fitting
curve for scalar B3 consists of two phases that connect at P(Zc, t) = 0.5. The early
phase is fitted by the nonlinear integral model with τint = 0.3τdyn, and the later phase
uses the continuous convolution model with τcon = 0.51τdyn. The parameter choice here
gives priority to satisfactorily matching the data points at early times.

All the time scales chosen in figure 8 are larger than the corresponding values used
for scalars in the M = 0.9 flow. This is caused by two effects. First, as mentioned
earlier, when normalized to the flow dynamical time, the variance decay time scale
in the M = 6.2 flow is slightly larger than in the M = 0.9 case. Second, as shown in
figure 3, the left tail of the scalar p.d.f. broadens with increasing Mach number of
the advecting flow. This means that, with the same concentration variance, the scalar
p.d.f. in the M = 6.2 flow contains a larger probability at low concentration levels.
Both effects tend to result in a slower decrease of P(Zc, t) in the flow with higher
M. The second effect appears to be stronger than the first one, and it also explains
why the same models that match the results well in the M = 0.9 flow significantly
underestimate P(Zc, t) in the M = 6.2 flow at late times (see figure 8). The fitting
quality of the lines in figure 8 is good at early times when P(Zc, t) & 0.1, and
generally acceptable before P(Zc, t) decreases to 0.01. Below that, however, significant
discrepancy appears.

We find that the simulation results for B1 and B2 in the M = 6.2 flow can be
better fitted by (4.11) from the generalized self-convolution model (see (3.14) in § 3.4;
Duplat & Villermaux 2008). The parameter n in this equation controls the shape of
the fitting curve. Figure 9 shows our results using this equation to fit the simulation
data. The data points here are the same as in figure 8. Equation (4.11) with n = 4.6
can fit the simulation data well for scalars B1 and B2 at all times and for scalar B3 in
the late phase. For B1 and B2, the best-fit time scale τcon is, respectively, 0.40τdyn and
0.41τdyn. For the early phase of scalar B3, we used the same nonlinear integral model
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FIGURE 9. Mass fraction of fluid elements with Z 6 10−8 for scalars B1, B2 and B3 in the
M = 6.2 flow. The data points are the same as in figure 8. Equation (4.11) with n = 4.6 is
used to match the simulation data. The time scale, τcon, in the equation is set to 0.40τdyn and
0.41τdyn for scalars B1 and B2, respectively. The line for B3 is a combination of the nonlinear
integral model with τint = 0.30τdyn for the early phase and (4.11) with τcon = 0.42τdyn and
n= 4.6 for the later phase.

as in figure 8 with τint = 0.3τdyn. The late phase is fitted by (4.11) with τcon = 0.42τdyn
and n = 4.6. We combined the two phases at P(Zc, t) = 0.5. A comparison of figure 8
and figure 9 shows that, with (4.11) from the generalized convolution model, the fitting
quality is significantly improved.

We point out that (4.11) is used simply as a fitting function. The generalized
convolution model (§ 3.4) behind this equation does not address the effects of shocks
and compressibility on the p.d.f. of passive scalars in supersonic turbulence. There is
thus no physical reason why it provides successful fits to the pristine mass fraction in
the M = 6.2 flow. A physical closure model is motivated to successfully explain and
match the evolution of P(Zc, t) in highly supersonic turbulence.

7. Conclusions
Motivated by the process of primordial star formation in the first generation of

galaxies, we investigated the general problem of how the unpolluted flow material in
compressible turbulence is contaminated by mixing. We approached this problem using
both theoretical modelling and numerical simulations. The theoretical approach is
based on the probability distribution method for turbulent mixing, since the fraction of
the unpolluted or slightly polluted mass corresponds to the left tail of the concentration
p.d.f. We first derived an equation for the concentration p.d.f. with density weighting,
where the advection term exactly conserves the global p.d.f. We then considered
several existing closure models for the diffusivity term in the p.d.f. equation, including
the mapping closure model (Chen et al. 1989), the nonlinear integral models (Curl
1963; Dopazo 1979; Janicka et al. 1979) and the self-convolution models (Venaille
& Sommeria 2007; Duplat & Villermaux 2008), and derived the predictions of these
models for the exactly unpolluted fraction, P(t), or for the fraction, P(Zc, t), of the
flow with Z below a small threshold, Zc.
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To test and constrain the model predictions, we carried out numerical simulations
evolving decaying scalars in two isothermal turbulent flows with r.m.s. Mach numbers
of 0.9 and 6.2. Three passive scalars were included in each flow, and their initial
pollutant fractions, P1 were set to be 0.5, 0.1 and 0.01, respectively. We found that the
mapping closure model gives satisfactory predictions for the central part and the high-
Z tails of the scalar p.d.f., but underestimates the low-Z tail at large times, especially
for scalars with small initial pollutant fraction. The left p.d.f. tails become broader
with increasing flow Mach number, and thus the discrepancy between the mapping
closure prediction and the simulation results is larger at Mach 6.2. We showed that, in
the M = 0.9 flow, the scalar p.d.f. is well fitted by gamma distributions at late times,
as predicted by Villermaux & Duplat (2003). All the closure models adopted in our
study were originally developed for mixing in incompressible turbulence, and they do
not provide successful predictions for the scalar p.d.f. in the highly supersonic flow.

Our simulation results for P(Zc, t) in the Mach 0.9 flow can be well fitted by
using (4.5) and (4.9) from the nonlinear integral model and the continuous convolution
model of Venaille & Sommeria (2007), respectively. Although these two equations
were originally derived for the fraction of exactly pollutant-free mass, they provide
useful fitting functions for P(Zc, t) with a small finite threshold, Zc. We showed that,
for the two scalars with P1 > 0.1, the evolution of P(Zc, t) follows the equation
Ṗ(Zc, t) = P(Zc, t) ln[P(Zc, t)]/τcon from the continuous convolution model. On the
other hand, for the scalar with P1 = 0.01, P(Zc, t) shows different behaviours at
early and late times. In the early phase, the evolution of P(Zc, t) is consistent with the
equation Ṗ(Zc, t) = −P(Zc, t)[1 − P(Zc, t)]/τint from the nonlinear integral model, and
the later phase is well fitted by the continuous convolution model. A satisfactory fit
to the entire behaviour of P(Zc, t) was obtained by connecting the two phases. The
continuous convolution model starts to apply once the polluted mass fraction is larger
than 0.1–0.2.

When normalized to the flow dynamical time (τdyn), the decay of P(Zc, t) is slower
in the M = 6.2 flow for two reasons. First, the mixing time scale in units of τdyn is
∼20 % larger than in the M = 0.9 flow. Second, at the same variance, the left tail
of the scalar p.d.f. is broader at higher Mach numbers. Owing to the second effect,
the shape of the P(Zc, t) curve as a function of time changes as the Mach number
increases. We find that a generalized version of the self-convolution model (§§ 3.4
and 4.3, see Duplat & Villermaux 2008) provides a good fitting function, (4.11), to
the evolution of P(Zc, t) in highly supersonic turbulence. With n = 4.6, this equation
matches our simulation data well for the two scalars with P1 > 0.1. Like the case of
the M = 0.9 flow, we obtained a good fit to the simulation result for the scalar with
P1 = 0.01 by combining different behaviours at early and late times. At early times,
we used (4.5) from the nonlinear integral model, while the later phase was fitted by
(4.11) with n = 4.6. We point out that, although it provides a good fitting function to
the pristine mass fraction, the generalized convolution model does not have a physical
connection to how the flow compressibility affects turbulent mixing in supersonic
flows. Physical p.d.f. closure models are motivated to directly incorporate the effects
of shocks or the flow compressibility on mixing in supersonic turbulence.

The fitting functions obtained this study can be used to develop a subgrid model for
large-scale simulations for mixing of heavy elements in the interstellar media of early
galaxies. Such a subgrid model would provide an important step toward predicting the
fraction of pristine gas in the first generation of galaxies. In order to apply our results
with higher accuracy, we will carry out a systematic numerical study in a future work
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covering a broader range of parameters including varying initial scalar conditions and
turbulent Mach numbers.
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Appendix. The p.d.f. equation
In this appendix, we derive the equation for the concentration p.d.f. in compressible

flows using the technique developed by Lundgren (1967). Similar derivations for
the scalar p.d.f. equation can be found in e.g. Pope (1976), Obrien (1980), Dopazo
et al. (1997) and Pope (2000). Unlike these previous derivations, we adopt a
density-weighting scheme, which is needed for passive scalar mixing in compressible
turbulence.

Our derivation makes use of a statistical ensemble consisting of many independent
realizations. We start with the definition of the fine-grained p.d.f. in a single
realization. Because in a specific realization the concentration field is single-valued
at given position (x) and time (t), the fine-grained p.d.f. is a delta function

q′(Z; x, t)= δ[Z − C(x, t)], (A 1)

where Z is the sampling variable. Considering the existence of significant density
fluctuations in supersonic flows, we define a fine-grained p.d.f. with density weighting

p′(Z; x, t)= ρ̃(x, t)δ[Z − C(x, t)], (A 2)

where the density-weighting factor ρ̃ is the ratio of the local flow density ρ(x, t) to the
average density ρ̄. These two fine-grained p.d.f.s are functions of Z, x and t, and their
dependence on space and time is though C(x, t) and ρ(x, t).

We calculate the time-derivatives of q′(Z; x, t) and p′(Z; x, t). Since q′(Z; x, t)
depends on t only through the quantity Z − C(x, t), we have

∂q′(Z; x, t)

∂t
=−∂C(x, t)

∂t

∂q′(Z; x, t)

∂Z
. (A 3)

Using (A 2) and (A 3), we obtain the time-derivative of p′(Z; x, t),

∂p′(Z; x, t)

∂t
= ∂ρ̃
∂t

q′(Z; x, t)− ρ̃ ∂C(x, t)

∂t

∂q′(Z; x, t)

∂Z
. (A 4)

Similarly, we can derive an equation for ∇ · (p′v),

∇ · (p′v)= [∇ · (ρ̃v)] q′(Z; x, t)− ρ̃v ·∇C(x, t)
∂q′(Z; x, t)

∂Z
. (A 5)
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We add (A 4) and (A 5). From the continuity equation for ρ̃(x, t), the first terms on
the right-hand sides of (A 4) and (A 5) add up to zero. Using the advection–diffusion
equation (2.1) of C(x, t) for the sum of the last terms in these two equations,
we have

∂p′(Z; x, t)

∂t
+∇ · (p′(Z; x, t)v)=− ∂

∂Z

[
p′(Z; x, t)

(
1
ρ
∇ · (ρκ∇C)+ S

)]
, (A 6)

where we used the fact that, except p′(Z; x, t) or q′(Z; x, t), all the quantities in the
right-hand-side term are independent of Z. Equation (A 6) is essentially a Liouville
equation. In analogy to the kinetic theory, the concentration here corresponds to the
particle momentum, and the equation dC/dt = (1/ρ)∇ ·(ρκ∇C)+ S corresponds to the
particle equation of motion.

We now consider the coarse-grained p.d.f., defined as the ensemble average
of the fine-grained p.d.f.s over independent realizations. The coarse-grained p.d.f.s
with volume- and density-weighting are, respectively, q(Z; x, t) = 〈q′(Z; x, t)〉 and
p(Z; x, t) = 〈p′(Z; x, t)〉, where 〈· · ·〉 denotes the ensemble average. The average is
over different values of the concentration, C(x, t), the flow velocity and density, v(x, t)
and ρ(x, t), and the scalar source, S(x, t), in different realizations. From (A 6), it
immediately follows that

∂p(Z; x, t)

∂t
+∇ · 〈p′(Z; x, t)v〉 = − ∂

∂Z

〈
p′(Z; x, t)

(
1
ρ
∇ · (ρκ∇C)+ S

)〉
. (A 7)

The ensemble-average terms in (A 7) can be expressed in more convenient forms.
For any stochastic quantity B(x, t), we have the following relation (see e.g. Pope
2000):

〈q′(Z; x, t)B(x, t)〉 = q(Z; x, t)〈B(x, t)|C(x, t)= Z〉, (A 8)

where 〈B(x, t)|C(x, t) = Z〉 denotes the ensemble average of B(x, t) conditioned on
C(x, t) = Z. The conditional mean appears here because the factor q′(Z; x, t) selects
only the realizations where C(x, t) is equal to Z. Using (A 8), we have

〈p′(Z; x, t)B(x, t)〉 = p(Z; x, t)
〈ρB|C(x, t)= Z〉
〈ρ|C(x, t)= Z〉 , (A 9)

where we used p(Z; x, t)= q(Z; x, t)〈ρ̃|C(x, t)= Z〉.
With (A 7) and (A 9), we arrive at the final equation for the coarse-grained p.d.f.

with density weighting,

∂p(Z; x, t)

∂t
+∇ ·

(
p
〈ρv|C = Z〉
〈ρ|C = Z〉

)
=− ∂

∂Z

(
p
〈∇ · (ρκ∇C)|C = Z〉
〈ρ|C = Z〉

)
− ∂

∂Z

(
p
〈ρS|C = Z〉
〈ρ|C = Z〉

)
, (A 10)

where we replaced the condition C(x, t)= Z by C = Z for simplicity of notation. Note
that the advection term is in a divergence form, which is the motivation for the use of
a density-weighting scheme in our derivation. A detailed physical discussion of all the
terms in this equation is given in the text.
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