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Zeroes of Polynomials With Prime Inputs
and Schmidt’s h-invariant
Stanley Yao Xiao and Shuntaro Yamagishi

Abstract. In this paper we show that a polynomial equation admits inûnitely many prime-tuple
solutions, assuming only that the equation satisûes suitable local conditions and the polynomial is
suõciently non-degenerate algebraically. Our notion of algebraic non-degeneracy is related to the
h-invariant introduced by W. M. Schmidt. Our results prove a conjecture by B. Cook and Á. Magyar
for hypersurfaces of degree 3.

1 Introduction

Solving systems of integral polynomial equations in integers is among the oldest, per-
sistently interesting problems in number theory. It is understood, especially in the
context of the Hardy–Littlewood circle method, that systems tend to become easier
to solvewhen the number of variables involved increases. For instance, it is not known
whether the equation x2 + 1 = p, where x varies in the integers and p varies among
the primes, has inûnitely many solutions, but the corresponding 3-variable equation
x2 + y2 = p was solved by Fermat using elementary means over three centuries ago.
One can then ask whether it is possible to interpolate between these situations. hat
is, given a system of polynomial equations that is solvable in the integers, one can
ask whether the system remains solvable when some of the variables are restricted to
a thin subset of integers. One particular natural subset is the set of prime numbers.
Indeed, many interesting problems involving prime numbers may be phrased in such
a manner. For example, the existence of inûnitely many solutions to the equation
x − y = 2 with x , y restricted to primes is precisely the twin prime conjecture.
B. Cook and Á. Magyar broke new ground by applying the Hardy–Littlewood cir-

cle method to show, in great generality, that systems of polynomial equations in many
variables can be solved when all of the inputs are prime numbers [2]. he key hypoth-
esis they require is that the so-called Birch singular locus must be suõciently small.
For f = { f1 , . . . , frd} ⊆ Q[x1 , . . . , xn] a system of forms (homogeneous polynomials)
of degree d, we deûne the Birch singular locus V∗

f to be the aõne variety in An
C given

by

V∗
f = {x ∈ Cn

∶ rank (
∂ fr(x)
∂x j

) 1≤r≤rd
1≤ j≤n

< rd} ,

and let the Birch rank beB(f) = n − dimV∗
f .
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he Birch rank is an important invariant that arose in [1]. W. M. Schmidt intro-
duced a diòerent invariant, now called Schmidt’s h-invariant, for systems of polyno-
mials [4]. Cook andMagyar conjectured [2, p. 736] that their main theorem ought to
hold assuming the largeness of the h-invariant instead of the Birch rank (see (2.1)).

In this paper, we give a partial solution to the conjecture of Cook and Magyar.
We establish the conjecture for hypersurfaces with an additional assumption. How-
ever, our assumption is redundant for cubic polynomials; therefore, we establish the
conjecture unconditionally in this case. Given a form f ∈ Q[x1 , . . . , xn] of degree at
least 2, we deûne the h-invariant h( f ) of f to be the least positive integer h such that
f can be written identically as

(1.1) f = U1V1 + ⋅ ⋅ ⋅ +UhVh ,

where U i and Vi are forms in Q[x1 , . . . , xn] of degree at least 1 (1 ≤ i ≤ h). We then
deûne the quantity

h⋆( f ) = max(∣{U i ∶ degU i = 1}∣),

where the maximum is over all representations of the shape (1.1). In other words,
h⋆( f ) is the maximum number of linear forms involved in the representation of f
as a sum of h = h( f ) products of rational forms. Clearly, we have h⋆( f ) ≤ h( f ).
For a degree d polynomial b(x) ∈ Q[x1 , . . . , xn], we deûne h(b) = h( f ) and h⋆(b) =
h⋆( f ), where f (x) is the degree d portion of b(x). We note that any polynomial b(x)
of degree 2 or degree 3 satisûes

h(b) = h⋆(b).

We deûne the quantityMb(N) = ∑x∈[0,N]n∩Zn δb(x), where

δb(x) =
⎧⎪⎪
⎨
⎪⎪⎩

∏1≤i≤n log p i if x i = pt i
i , p i is prime, t i ∈ N (1 ≤ i ≤ n), b(x) = 0,

0 otherwise.

Let Λ be the von Mangoldt function, where Λ(x) is log p if x is a power of a prime
p and 0 otherwise. We use the notation e(x) to denote e2πix . We deûne

(1.2) T(b; α) = ∑
x∈[0,N]n∩Zn

Λ(x) e(α ⋅ b(x)),

where Λ(x) = Λ(x1) ⋅ ⋅ ⋅Λ(xn) for x = (x1 , . . . , xn) ∈ (Z≥0)
n . By the orthogonality

relation, we have

(1.3) Mb(N) = ∑
x∈[0,N]n∩Zn

δb(x) = ∫
1

0
T(b; α) dα.

We obtain the following theorem by estimating the integral in (1.3).

heorem 1.1 Let b(x) ∈ Z[x1 , . . . , xn] be a polynomial of degree d. hen there exists
a positive number Ad dependent only on d such that if h⋆(b) > Ad , then there exist
c > 0 and Cb such that

Mb(N) = CbNn−d
+ O(

Nn−d

(logN)c
) .
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In fact, we prove that Cb > 0, provided that the equation b(x) = 0 has a non-
singular solution in Z×p (the units of p-adic integers) for every prime p and the equa-
tion f (x) = 0, where f (x) is the degree d portion of b(x), has a non-singular real
zero in the interior ofB0 = [0, 1]n .

he following result is an immediate consequence of heorem 1.1, which replaces
the assumption of large Birch rank in [2, heorem 1] with large h-invariant for cubic
polynomials. Note it does not require much work to achieve this when deg f = 2,
because we knowB( f ) ≪ h( f ) ≪ B( f ).

Corollary 1.2 Let b(x) ∈ Z[x1 , . . . , xn] be a cubic polynomial. hen there exists a
positive number A3 such that if h(b) > A3, then there exist c > 0 and Cb such that

Mb(N) = CbNn−3
+ O(

Nn−3

(logN)c
) .

We establish heorem 1.1 in a similar manner to [2], but we shall make use of
the fact that the representation (1.1) has suõcient linear terms. We also modify the
method in [2] to better suit our purposes, so that it is in terms of the h-invariant
instead of the Birch rank.
Despite heorem 1.1 and Corollary 1.2 being our primary goals in this paper, it is

necessary for us to work over a system of polynomials at times. Indeed, our strategy is
to decompose a polynomial into a sumof elements in a suitable systemof polynomials,
and then use methods that apply to systems to deduce results of a single polynomial.

he organization of the rest of the paper is as follows. In Section 2, we prove some
basic properties of the h-invariant. A suõciently large h⋆(b) allows us to massage
our polynomial b(x) into something amenable to the circle method through a pro-
cess called regularization. We collect results related to the regularization process in
Section 3. In Section 4, we obtain results from [4] based on Weyl diòerencing in
terms of polynomials instead of forms, as in [4]. We chose to present the details in
Section 4 to make certain dependencies of the constants explicit, because it plays an
important role in our estimates. We then obtain the minor arc estimates in Section 5,
and the major arc estimates in Section 6.

2 Properties of the h-invariant

Let f = { f1 , . . . , frd} ⊆ Q[x1 , . . . , xn] be a system of forms of degree d > 1. We gen-
eralize the deûnition of h-invariant for a single form, and deûne the h-invariant of f
by

h(f) = min
µ∈Qrd /{0}

h(µ1 f1 + ⋅ ⋅ ⋅ + µrd frd ).

Given an invertible linear transformation T ∈ GLn(Q), let f ○ T = { f1 ○ T , . . . ,
frd ○ T}. It follows from the deûnition of the h-invariant that h(f) = h(f ○ T). Let
b = (b1 , . . . , brd ) ⊆ Q[x1 , . . . , xn] be a system of degree d polynomials. We let fr be
the degree d portion of br (1 ≤ r ≤ rd), and deûne

h(b) = h({ fr ∶ 1 ≤ r ≤ rd}).
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It is known that a large Birch rank implies a large h-invariant, since we have

(2.1) h(f) ≥ 21−dB(f)

by [4, Lemma 16.1, (10.3), (17.1)]; however, at the present time the authors do not know
whether there exists an inûnite family of varieties with bounded Birch rank but un-
bounded h-invariant.

We prove two basic lemmas regarding the properties of the h-invariant in this
section. Let f ∈ Q[x1 , . . . , xn] be a form of degree d. For 1 ≤ i ≤ n, let f ∣x i=0 =

f (x1 , . . . , x i−1 , 0, x i+1 , . . . , xn) ∈ Q[x1 , . . . , xn], which is either identically 0 or a form
of degree d. Let h( f ) = 0 if f is identically 0. We prove the following simple lemma.

Lemma 2.1 Let f ∈ Q[x1 , . . . , xn] be a form of degree d > 1. hen for any 1 ≤ i ≤ n,
we have h( f ) − 1 ≤ h( f ∣x i=0) ≤ h( f ).

Proof Without loss of generality, we consider the case i = 1. Let us write

(2.2) f (x1 , . . . , xn) = x1g(x1 , . . . , xn) + f (0, x2 , . . . , xn).

Clearly, g(x) is either identically 0 or a form of degree d − 1. Let h = h( f ) and
h′ = h( f ∣x1=0). By the deûnition of h-invariant, we canûnd rational formsU j′ ,Vj′ (1 ≤
j′ ≤ h′) of positive degree that satisfy

f (0, x2 , . . . , xn) = U1V1 + ⋅ ⋅ ⋅ +Uh′Vh′ .

Note if h′ = 0, we assume the right-hand side to be identically 0. By substituting the
above equation into (2.2), we obtain

f = x1g +U1V1 + ⋅ ⋅ ⋅ +Uh′Vh′ .

Because g(x) is either identically 0 or a form of degree d − 1, it follows that h ≤ 1+ h′.
For the other inequality, let u j , v j (1 ≤ j ≤ h) be rational forms of positive degree

that satisfy

(2.3) f = u1v1 + ⋅ ⋅ ⋅ + uhvh .

By substituting x1 = 0 into each form on both sides of the equation, it is clear that we
obtain h′ ≤ h. his completes the proof of the lemma. We add a remark that in the
special case when f satisûes f = x1v1 +u2v2 +⋅ ⋅ ⋅+uhvh , in other words when we have
u1 = x1 in (2.3), we easily obtain h′ = h − 1. ∎

he following is an immediate consequence of Lemma 2.1.

Lemma 2.2 Let f = { f1 , . . . , frd} ⊆ Q[x1 , . . . , xn] be a system of forms of degree
d > 1. Suppose h(f) > 1. hen for any 1 ≤ i ≤ n, we have

h(f) − 1 ≤ h(f ∣x i=0) ≤ h(f),

where f ∣x i=0 = { f1∣x i=0 , . . . , frd ∣x i=0}.

Let f (x) ∈ Q[x1 , . . . , xn] be a form, and let h = h( f ) and 0 < M ≤ h. Suppose we
have

f = u1V1 + ⋅ ⋅ ⋅ + uMVM +UM+1VM+1 + ⋅ ⋅ ⋅ +UhVh ,
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where each u i is a linear rational form (1 ≤ i ≤ M), and each U i′ and Vj are rational
forms of positive degree (M + 1 ≤ i′ ≤ h, 1 ≤ j ≤ h). It can be easily veriûed that
the linear forms u1 , . . . , uM are linearly independent overQ. hen by considering the
reduced row echelon form of the matrix formed by the coeõcients of u1 , . . . , uM and
relabeling the variables if necessary, we can suppose without loss of generality that

(2.4) f = (x1 + ℓ1)v1 + ⋅ ⋅ ⋅ + (xM + ℓM)vM + uM+1vM+1 + ⋅ ⋅ ⋅ + uhvh ,

where each ℓ i is a linear form in Q[xM+1 , . . . , xn] (1 ≤ i ≤ M), and each u i′ and v j
are rational forms of positive degree (M + 1 ≤ i′ ≤ h, 1 ≤ j ≤ h). We then deûne
gM ∈ Q[x1 , . . . , xn] in the following manner,

(2.5) f (x1 , x2 , . . . , xn) = gM(x1 , . . . , xn) + f (−ℓ1 , . . . ,−ℓM , xM+1 , . . . , xn).

We note that there is no ambiguity for deûning the polynomial

f (−ℓ1 , . . . ,−ℓM , xM+1 , . . . , xn) ∈ Q[xM+1 , . . . , xn]

obtained by substitution, because each ℓ i ∈ Q[xM+1 , . . . , xn] (1 ≤ i ≤ M). It is also
clear that g(−ℓ1 , . . . ,−ℓM , xM+1 , . . . , xn) = 0.

Lemma 2.3 Let 1 ≤ M ≤ h. Suppose a degree d form f (x) ∈ Q[x1 , . . . , xn] satisûes
(2.4). Deûne gM(x) as in (2.5). hen we have

h(gM) ≥ M and h( f (−ℓ1 ,−ℓ2 , . . . ,−ℓM , xM+1 , . . . , xn)) = h −M .

Proof Since the linear forms (x1 − ℓ1), . . . , (xM − ℓM) are linearly independent over
Q, we can ûnd A ∈ GLn(Q) such that

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1 − ℓ1
⋮

xM − ℓM
xM+1
⋮

xn

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= A ○
⎛
⎜
⎝

x1
⋮

xn

⎞
⎟
⎠
.

Let f̃ (x) = f (A ○ x). We then have f̃ (A−1 ○ x) = f (x), and also that h( f̃ ) = h( f̃ ○
A−1) = h( f ) = h. Because f (x) satisûes (2.4), it follows that f̃ (x) satisûes f̃ = x1V1 +

⋅ ⋅ ⋅ + xMVM + UM+1VM+1 + ⋅ ⋅ ⋅ + UhVh , where each U i and Vj are rational forms of
positive degree (M + 1 ≤ i ≤ h, 1 ≤ j ≤ h).

Recall that each ℓ i is a linear form in Q[xM+1 , . . . , xn] (1 ≤ i ≤ M). Clearly, we
have

f̃ (0, . . . , 0, xM+1 , . . . , xn) = f (A ○ (0, . . . , 0, xM+1 , . . . , xn))

= f (−ℓ1 ,−ℓ2 , . . . ,−ℓM , xM+1 , . . . , xn).

hen we can deduce from Lemma 2.1 (see the remark at the end of the proof of
Lemma 2.1) that

h( f (−ℓ1 ,−ℓ2 , . . . ,−ℓM , xM+1 , . . . , xn)) = h( f̃ (0, . . . , 0, xM+1 , . . . , xn))

= h −M .
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It then follows easily from the fact that h( f ) = h, the deûnition of h-invariant, and
(2.5) that h(gM) ≥ M, for otherwise we obtain a contradiction. ∎

3 Regularization Lemmas

In this section, we collect results from [2, 4] related to regular systems (see Deûni-
tion 3.1) and the regularization process (Proposition 3.5), which played an important
role in [2] to obtain theminor arc estimate. hroughout this sectionwe use the follow-
ing notation. Let d , n > 1, and let f be a system of forms inQ[x1 , . . . , xn] of degree less
than or equal to d. We let f = (f(d) , . . . , f(1)), where f(i) is the subsystem of all forms
of degree i in f (1 ≤ i ≤ d). We label the elements of f(i) by f(i) = { f (i)1 , . . . , f (i)r i },
where r i = ∣f(i)∣, the number of elements in f(i).

We shall call a system of polynomials regular if it has at most the expected number
of integer solutions; we deûne this formally below.

Deûnition 3.1 Let d > 1. Let ψ = (ψ(d) , . . . ,ψ(1)) be a system of polynomials
in Q[x1 , . . . , xn], where ψ(i) is the subsystem of all polynomials of degree i in ψ (1 ≤
i ≤ d). We deûneVψ ,0(Z) to be the set of solutions inZn of the equations ψ(i)

j (x) = 0
(1 ≤ i ≤ d , 1 ≤ j ≤ ∣ψ(i)∣) that we denote by ψ(x) = 0. Let r i = ∣ψ(i)∣ (1 ≤ i ≤ d), and
let Dψ = ∑

d
i=1 ir i . We say the system ψ is regular if ∣Vψ ,0(Z) ∩ [−N ,N]n ∣ ≪ Nn−Dψ .

Similarly as above we also deûne Vψ ,0(R) to be the set of solutions in Rn of the
equations ψ(x) = 0.

he following is one of the main results of [4] that provides a suõcient condition
for a system of polynomials to be regular.

heorem 3.2 (Schmidt [4]) Let d > 1. Let ψ = (ψ(d) , . . . ,ψ(2)) be a system of ratio-
nal polynomials with notation as in Deûnition 3.1, and also let f(i) be the system of de-
gree i portion of the polynomials ψ(i) (2 ≤ i ≤ d). We let r i = ∣ψ(i)∣ = ∣f(i)∣ (2 ≤ i ≤ d),
and Rψ = ∑

d
i=2 r i . If we have

h(f(i)) ≥ d 24i
(i!)r iRψ (2 ≤ i ≤ d),

then the system ψ is regular.

Let

(3.1) ρd , i(t) = d 24i
(i!)t2 (2 ≤ i ≤ d),

so that for each 2 ≤ i ≤ d, we have that ρd , i(t) is an increasing function, and ρd , i(Rψ)

≥ d 24i(i!)r iRψ .
Note heorem 3.2 is regarding a system of polynomials that does not contain any

linear polynomials. We prove Corollary 3.3 for systems that contain linear forms as
well.

Corollary 3.3 ([2, Corollary 3]) Let d > 1. Let ψ = (ψ(d) , . . . ,ψ(1)) be a system
of rational polynomials with notation as in Deûnition 3.1. Suppose ψ(1) only contains
linear forms and that they are linearly independent overQ. We also let f(i) be the system
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of degree i portion of the polynomials ψ(i) (1 ≤ i ≤ d). We let r i = ∣ψ(i)∣ = ∣f(i)∣
(1 ≤ i ≤ d), and Rψ = ∑

d
i=1 r i . For each 2 ≤ i ≤ d, let ρd , i(⋅) be as in (3.1). If we have

h(f(i)) ≥ ρd , i(Rψ − r1) + r1 (2 ≤ i ≤ d),

then the system ψ is regular.

Proof We have ψ(1) = f(1) = { f (1)1 , . . . , f (1)r1 }. Let

f (1)i = a i1x1 + ⋅ ⋅ ⋅ + a inxn (1 ≤ i ≤ r1),

and denote the coeõcient matrix of these linear forms by

A = [a i j]1≤i≤r1
1≤ j≤n

.

Let e j be the j-th standard basis ofRn (1 ≤ j ≤ n). Since the linear forms f (1)1 , . . . , f (1)r1
are linearly independent over Q, we can ûnd an invertible linear transformation
T ∈ GLn(Q), where every entry of the matrix is in Z, such that ( f (1)i ○ T−1)(x) =

mn−i+1xn−i+1, where mn−i+1 ∈ Q/{0} (1 ≤ i ≤ r1). For simplicity, let us denote
x′ = (xn−r1+1 , . . . , xn). Let

Y = Vf(1) ,0(R) = {x ∈ Rn
∶ f(1)(x) = 0} = {x ∈ Rn

∶ A ○ x = 0} = Ker(A),

which is a subspace of codimension r1. Since T(Y) = Ker(A ○ T−1), it follows from
our choice of T ∈ GLn(Q) that T(Y) = Re1 + ⋅ ⋅ ⋅ +Ren−r1 . We also know there exist
c′ ,C′ > 0 such that

[−c′N , c′N]
n
⊆ T([−N ,N]

n
) ⊆ [−C′N ,C′N]

n .

Deûneψ′ = (ψ′(d) , . . . ,ψ′(1)) = ψ○T−1, and let f ′(i) be the system of degree i portion
of the polynomials ψ′(i) (1 ≤ i ≤ d). We then have f ′(i) = f(i) ○ T−1. We can also
verify that Vψ′ ,0(R) = T(Vψ ,0(R)). herefore, we obtain

T(Vψ ,0(R) ∩ [−N ,N]
n
) ⊆ Vψ′ ,0(R) ∩ [−C′N ,C′N]

n ,
and since every entry of the matrix T ∈ GLn(Q) is in Z, it follows that

(3.2) ∣Vψ ,0(Z) ∩ [−N ,N]
n ∣ ≤ ∣Vψ′ ,0(Z) ∩ [−C′N ,C′N]

n ∣ .

Let ψ′′ = (ψ′(d)∣x′=0 , . . . ,ψ′
(2)

∣x′=0). Since ψ′
(1)

= 0 is equivalent to x′ = 0, we have

(3.3) ∣Vψ′ ,0(Z) ∩ [−C′N ,C′N]
n ∣ = ∣Vψ′′ ,0(Z) ∩ [−C′N ,C′N]

n−r1 ∣ .

Since the degree i portion of ψ′(i)∣x′=0 is f ′(i)∣x′=0 for each 2 ≤ i ≤ d, we have by
Lemma 2.2 that

h(f ′(i)∣x′=0) ≥ h(f ′(i)) − r1 = h(f(i)) − r1 ≥ ρd , i(Rψ − r1).

hus, it follows by heorem 3.2 that

(3.4) ∣Vψ′′ ,0(Z) ∩ [−C′N ,C′N]
n−r1 ∣ ≪ N(n−r1)−∑d

i=2 ir i .

herefore, we obtain from (3.2), (3.3), and (3.4) that

∣Vψ ,0(Z)∩[−N ,N]
n ∣ ≪ Nn−∑d

i=1 ir i . ∎
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Given g = {g1 , . . . , grd} ⊆ Q[x1 , . . . , xn], a system of forms of degree d, and a
partition of variables x = (y, z), we let g be the system obtained by removing all the
forms of g that depend only on the z variables. Clearly, if we have the trivial partition
x = (y, z), where z = ∅, then g = g. For a form g(x) over Q, we deûne h(g; z)
to be the smallest number h0 such that g(x) can be expressed as g(x) = g(y, z) =

∑
h0
i=1 u iv i +w0(z), where u i , v i are rational forms of positive degree (1 ≤ i ≤ h0), and

w0(z) is a rational form only in the z variables. We also deûne h(g; z) to be

h(g; z) = min
λ∈Qrd /{0}

h(λ1g1 + ⋅ ⋅ ⋅ + λrd grd ; z).

If we have the trivial partition, then clearly we have h(g;∅) = h(g). We have the
following lemma.

Lemma 3.4 (Lemma 2, [2]) Let g = {g1 , . . . , grd} ⊆ Q[x1 , . . . , xn] be a system
of forms of degree d, and suppose we have a partition of variables x = (y, z). Let y′
be a distinct set of variables with the same number of variables as y. hen we have
h(g(y, z), g(y′ , z); z) = h(g; z).

Given a system of forms, which may not be regular, we want to obtain a regular
system in a controlled manner. he process in the following proposition is referred to
as the regularization of systems in [2], and it is a crucial component of their method.
Given a system of rational forms f, via the regularization process we obtain another
systemR(f) that is regular, the number of forms it contains is controlled, and its level
sets partition the level sets of f. We remark that condition (iii) of Proposition 3.5, with
a suitable choice ofF, together with Corollary 3.3 implies that the resulting system is
regular.

Proposition 3.5 (Propositions 1 and 1′ [2]) Let d > 1, and let F be any collection of
non-decreasing functions Fi ∶Z≥0 → Z≥0 (2 ≤ i ≤ d). For a collection of non-negative
integers r1 , . . . , rd , there exist constants

C1(r1 , . . . , rd ,F), . . . ,Cd(r1 , . . . , rd ,F)

such that the following holds.
Given a system of integral forms f = (f(d) , . . . , f(1)) ⊆ Z[x1 , . . . , xn], where each

f(i) is a system of r i forms of degree i (1 ≤ i ≤ d), and a partition of variables x = (y, z),
there exists a system of forms R(f) = (a(d) , . . . , a(1)) satisfying the following. Let r′i =
∣a(i)∣ (1 ≤ i ≤ d), and R′ = r′1 + ⋅ ⋅ ⋅ + r′d .
(i) Each form of the system f can be written as a rational polynomial expression in

the forms of the system R(f). In particular, the level sets of R(f) partition those
of f .

(ii) For each 1 ≤ i ≤ d, r′i is at most C i(r1 , . . . , rd ,F).
(iii) he subsystem (a(d) , . . . , a(2)) satisûes h(a(i)) ≥ Fi(R′) for each 2 ≤ i ≤ d.

Moreover, the linear forms of subsystem a(1) are linearly independent over Q.
(iv) Let a(i) be the system obtained by removing from a(i) all forms that depend only

on the z variables (2 ≤ i ≤ d). hen the subsystem (a(d) , . . . , a(2)) satisûes
h(a(i); z) ≥ Fi(R′) for each 2 ≤ i ≤ d.

Wewill be utilizing this proposition in Section 5 to obtain the minor arc estimate.
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4 Technical Estimates

In this section, we provide results from [4] related to Weyl diòerencing that are nec-
essary in obtaining estimates for the singular series in Section 6.1. he work here is
similar to that of [4], which is in terms of forms instead of polynomials as in this sec-
tion. It is stated in [4] with some explanation that similar results for polynomials also
follow, but the details are not shown. We chose to present the necessary details in
order to make explicit certain dependencies of the constants that are crucial in our
estimates. Let us denoteB1 = [−1, 1]n . We shall refer to B ⊆ Rn as a box, ifB is of
the form

B = I1 × ⋅ ⋅ ⋅ × In ,
where each I j is a closed or open or half open/closed interval (1 ≤ j ≤ n). Given a
function G(x), we deûne

Γd ,G(x1 , . . . , xd) =
1

∑
t1=0

⋅ ⋅ ⋅
1

∑
td=0

(−1)t1+⋅⋅⋅+td G(t1x1 + ⋅ ⋅ ⋅ + tdxd).

hen it follows [4, §11] that Γd ,G is symmetric in its d arguments, and that

Γd ,G(x1 , . . . , xd−1 , 0) = 0.

It is clear from the deûnition that Γd ,G + Γd ,G′ = Γd ,G+G′ . We also have that if G is a
form of degree j, where d > j > 0, then Γd ,G = 0 [4, Lemma 11.2].
For α ∈ R, let ∥α∥ denote the distance from α to the closest integer. Given α =

(α1 , . . . , αn) ∈ Rn , we let ∥α∥ = max1≤i≤n ∥α i∥.

Lemma 4.1 ([4, Lemma 13.1]) Suppose

G(x) = G(0)
+G(1)

(x) + ⋅ ⋅ ⋅ +G(d)
(x),

where G( j) is a form of degree j with real coeõcients (1 ≤ j ≤ d), and G(0) ∈ R. Let B
be a box with sides ≤ 1, let P > 1, and put

S′ = S′(G , P,B) = ∑
x∈PB∩Zn

e(G(x)).

Let e1 , . . . , en be the standard basis vectors of Rn . hen for any ε > 0, we have

∣S′∣2
d−1

≪ P(2d−1−d)n+ε
∑(

n
∏
i=1

min(P, ∥Γd ,G(d)(x1 , . . . , xd−1 , ei)∥−1
)) ,

where the sum is over (d−1)-tuples of integer points x1 , . . . , xd−1 in PB1, and the implicit
constant in≪ depends only on n, d , and ε.

Lemma 4.2 ([4, Lemma 14.2]) Make all the assumptions of Lemma 4.1. Suppose
further that ∣S′∣ ≥ Pn−Q , where Q > 0. Let 0 < η ≤ 1. hen the number N(η) of integral
(d − 1)-tuples x1 , . . . , xd−1 ∈ PηB1 with

∥Γd ,G(d)(x1 , . . . , xd−1 , ei)∥ < P−d+(d−1)η
(i = 1, . . . , n)

satisûes N(η) ≫ Pn(d−1)η−2d−1Q−ε , where the implicit constant in ≫ depends only on
n, d , η, and ε.
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Let ψ = {ψ1 , . . . ,ψrd} be a system of rational polynomials of degree d. Let f =
{ f1 , . . . , frd} be the systemof forms, where f i is the degree d portion ofψ i (1 ≤ i ≤ rd).
For the rest of this section, we assume f to be a system of integral forms. We deûne
the following exponential sum associated with ψ andB,

(4.1) S(α) = S(ψ,B; α) = ∑
x∈PB∩Zn

e(α ⋅ ψ(x)).

Let e1 , . . . , en be the standard basis vectors of Cn . We deûneMd = Md(f) to be
the set of (d − 1)-tuples (x1 , . . . , xd−1) ∈ (Cn)d−1 for which the matrix

[m i j] = [Γd , f j(x1 , . . . , xd−1 , ei)] (1 ≤ j ≤ rd , 1 ≤ i ≤ n)

has rank strictly less than rd . For R > 0, we let zR(Md) be the number of integer
points (x1 , . . . , xd−1) on Md such that

max
1≤i≤d−1

max
1≤ j≤n

∣x i j ∣ ≤ R,

where xi = (x i1 , . . . , x in) (1 ≤ i ≤ d − 1).
Let P > 1, Q > 0, and ε > 0 be given, and suppose that d > 1. We then have the

following.

Lemma 4.3 ([4, Lemma 15.1]) Given a boxBwith sides ≤ 1, deûne the sum S(α) as-
sociated withψ andB as in (4.1). Given 0 < η ≤ 1, one of the following three alternatives
must hold.
(i) ∣S(α)∣ ≤ Pn−Q .
(ii) here exists n0 ∈ N such that n0 ≪ Prd(d−1)η and ∥n0α∥ ≪ P−d+rd(d−1)η .
(iii) zR(Md) ≫ R(d−1)n−2d−1(Q/η)−ε holds with R = Pη .
All implicit constants depend at most on n, d , rd , η, ε, and f .

Proof Take α ∈ Rrd . Let α ⋅ ψ(x) = G(0) + G(1)(x) + ⋅ ⋅ ⋅ + G(d)(x), where G( j) is
a form of degree j (1 ≤ j ≤ d), and G(0) ∈ R. Suppose (i) fails. hen we may apply
Lemma 4.2. he number N(η) of integral (d − 1)-tuples x1 , . . . , xd−1 in PηB1 with

(4.2) ∥Γd ,G(d)(x1 , . . . , xd−1 , ei)∥ < P−d+(d−1)η
(1 ≤ i ≤ n)

satisûes N(η) ≫ Rn(d−1)−2d−1(Q/η)−ε , where R = Pη and the implicit constant in ≫

depends only on n, d , η, and ε.
Recall that ψ = {ψ1 , . . . ,ψrd}. Given x1 , . . . , xd−1 as above, we form the matrix

[m i j]x1 , . . . ,xd−1 = [Γd ,ψ j(x1 , . . . , xd−1 , ei)] (1 ≤ i ≤ n, 1 ≤ j ≤ rd).

Recall that f j is the degree d portion of ψ j (1 ≤ j ≤ rd) and f = { f1 , . . . , frd}. Since
each ψ j is of degree d, it follows that Γd ,ψ j = Γd , f j (1 ≤ j ≤ rd). It is also clear that
G(d)(x) = α ⋅ f(x). Now if this matrix [m i j]x1 , . . . ,xd−1 has rank less than rd for each of
the (d − 1)-tuples counted by N(η), then by the deûnition of zR(Md) we have that

zR(Md) ≥ N(η) ≫ Rn(d−1)−2d−1(Q/η)−ε ,

where again the implicit constant in≫ depends only on n, d , η, and ε. hus we have
(iii) in this case. Hence, we may suppose that at least one of these matrices, which we
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denote by [m i j], has rank rd . Without loss of generality, suppose the submatrix M0,
formed by taking the ûrst rd columns of [m i j], has rank rd . Let n0 = det(M0).

It follows from the deûnition of Γd , f j that every monomial occurring in
Γd , f j(x1 , . . . , xd) has some component of xi as a factor for each 1 ≤ i ≤ d [4, Proof of
Lemma 11.2]. Also, the maximum absolute value of all coeõcients of Γd , f j is bounded
by a constant dependent only on d and the coeõcients of f j [4, Lemma 11.3]. here-
fore, by the construction of [m i j] we have m i j ≪ Rd−1 , and hence n0 ≪ Rrd(d−1) =

Prd(d−1)η , where the implicit constants in≪ depend only on rd and f .
We have Γd ,G(d) = ∑

rd
j=1 Γd ,α j f j = ∑

rd
j=1 α jΓd , f j . Hence, from (4.2) we can write

∑
rd
j=1 α jm i j = c i + β i (1 ≤ i ≤ n), where the c i are integers and the β i are real numbers

bounded by the right-hand side of (4.2). Let u1 , . . . , urd be the solution of the system
of linear equations

(4.3)
rd
∑
j=1

u jm i j = n0c i (1 ≤ i ≤ rd).

hen

(4.4)
rd
∑
j=1

(n0α j − u j)m i j = n0β i (1 ≤ i ≤ rd).

By applying Cramer’s rule to (4.3), it follows that the u j are integers. Also, by applying
Cramer’s rule to (4.4), we obtain that

∥n0α j∥ ≤ ∣n0α j − u j ∣ ≪ R(d−1)(rd−1)P−d+(d−1)η
= P−d+(d−1)rd η ,

where the implicit constant in≪ depends only on rd and f . his completes the proof
of Lemma 4.3 ∎

We deûne gd(f) to be the largest real number such that

(4.5) zP(Md) ≪ Pn(d−1)−gd(f)+ε

holds for each ε > 0. It was proved [4, Corollary, p. 280] that

(4.6) h(f) < d!
(log 2)d

( gd(f) + (d − 1)rd(rd − 1)) .

Let γd = 2d−1(d−1)rd
gd(f)

when gd(f) > 0. We let γd = +∞ if gd(f) = 0. We also deûne

γ′d =
2d−1

gd(f)
=

γd
(d − 1)rd

.

Corollary 4.4 ([4, p. 276, Corollary]) Given a box B with sides ≤ 1, we deûne the
sum S(α) associated with ψ andB as in (4.1). Suppose ε′ > 0 is suõciently small and
Q > 0 satisûes Qγ′d < 1. hen one of the following alternatives must hold.
(i) ∣S(α)∣ ≤ Pn−Q .
(ii) here exists n0 ∈ N such that n0 ≪ PQγd+ε′ and ∥n0α∥ ≪ P−d+Qγd+ε′ , where the

implicit constants in≪ depend only on n, d , rd , ε′ ,Q , and f .
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Note that the fact that the implicit constant depends on f , but not on other lower
order terms of ψ, is an important feature that we make use of in Section 6.1.

Proof Since Qγ′d < 1, we can choose ε1 > 0 suõciently small so that η = Qγ′d + ε1
satisûes 0 < η ≤ 1. Also, with this choice of η, we have

2d−1Q
η

=
2d−1Q

Qγ′d + ε1
=

gd(f)
1 + ε1gd(f)/(2d−1Q)

< gd(f).

hen choose ε0 > 0 such that 2d−1Q/η + ε0 < gd(f). By the deûnition of gd(f) we
have zR(Md) ≪ Rn(d−1)−2d−1Q/η−ε0 . hus, in this case we see that statement (iii)
in Lemma 4.3 cannot occur with 0 < ε < ε0. Also the equation η = Qγ′d + ε1 implies
rd(d−1)η = Qγd+rd(d−1)ε1 .herefore, fromLemma4.3 (applying it with 0 < ε < ε0)
we obtain our result with ε′ = rd(d − 1)ε1. ∎

For the rest of this section, we assume ψ to be a system of integral polynomials of
degree d. When the polynomials ψ in question are over Z, we consider the following.

Hypothesis (⋆) LetB be a box inRn . For any ∆ > 0, there exists P1 = P1(f , Ω, ∆,B)

such that for P > P1, each α ∈ Trd satisûes at least one of the following two alternatives.
(i) ∣S(α)∣ ≤ Pn−∆Ω .
(ii) here exists q = q(α) ∈ N such that q ≤ P∆ and ∥qα∥ ≤ P−d+∆ .

We will say that the restricted Hypothesis (⋆) holds if the above condition holds
for each ∆ in 0 < ∆ ≤ 1.

he important thing to note here is that the lower bound for P in Hypothesis (⋆)
only depends on f , and not on ψ. In other words, only the highest degree portion of
the polynomials ψ play a role in this estimate.

Proposition 4.5 ([4, Proposition II0]) Given a boxB with sides ≤ 1,Hypothesis (⋆)
is true for any Ω in

(4.7) 0 < Ω <
gd(f)

2d−1(d − 1)rd
.

Proof It follows from (4.7) that Ωγd < 1. We set Q = ∆Ω, and let ε > 0 be suõciently
small so that Qγd + ε < ∆. First, we suppose ∆ ≤ (d − 1)rd . In this case, it follows that
Qγ′d < 1. hus it follows from Corollary 4.4 that there exists P0 = P0(f , Ω, ∆) such
that whenever P > P0, one of the following must hold.
(i) ∣S(α)∣ ≤ Pn−∆Ω .
(ii) here exists q ∈ N such that q ≤ P∆ and ∥qα∥ ≤ P−d+∆ .
On the other hand, if ∆ > (d−1)rd , then case (ii) is always true by Dirichlet’s theorem
on Diophantine approximation. ∎

For each q ∈ N, we denote Uq as the group of units in Z/qZ. Given m ∈ Urd
q , we

deûne

E(q−1m) = E(ψ, q; q−1m) = q−n
∑

x (mod q)
e(q−1 m ⋅ ψ(x)).
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Lemma 4.6 ([4, Lemma 7.1]) SupposeΩ satisûes (4.7). hen for 0 < Q < Ω, we have

(4.8) ∣E(q−1m)∣ ≪ q−Q ,

where the implicit constant in≪ depends only on f , Q, and Ω.

Again the fact that the implicit constant depends on f , but not on other lower order
terms of ψ, becomes crucial when we apply this lemma in Section 6.1.

Proof Since E(q−1m) = q−nS(α) with α = q−1m, P = q, andB = [0, 1)rd , and with
our choice of Ω we know that Hypothesis (⋆) is satisûed by Proposition 4.5. hus we
apply it with ∆ = Q/Ω < 1. Let q be suõciently large, and suppose we are in case
(ii) of Hypothesis (⋆). hen we know there exists q0 ≤ q∆ < q (when q /= 1) with
∥q0q−1m∥ ≤ q−d+∆ < q−1. Since (m, q) = 1, this is not possible. herefore, we must
have case (i) of Hypothesis (⋆), which is precisely the inequality (4.8). ∎

5 Hardy–Littlewood Circle Method: Minor Arcs

For each q ∈ N, recall that we let Uq be the group of units in Z/qZ. When q = 1,
we let U1 = {0}. Let us denote T = R/Z. For a given value of C > 0 and an integer
1 ≤ q ≤ (logN)C , we deûne themajor arc

Mm ,q(C) = {α ∈ T ∶ ∥α −m/q∥ ≤ N−d
(logN)

C}

for each m ∈ Uq . Recall that ∥β∥ is the distance from β ∈ R to the nearest integer,
which induces a metric on T via d(α, β) = ∥α − β∥. hese arcs are disjoint for N
suõciently large, and we deûne

M(C) = ⋃
q≤(log N)C

⋃
m∈Uq

Mm ,q(C).

We then deûne theminor arcs to bem(C) = T/M(C).
We obtain the following bound on the minor arcs in this section.

Proposition 5.1 Let b(x) ∈ Z[x1 , . . . , xn] be a polynomial of degree d. Let T(b; α)
be deûned as in (1.2). hen there exists a positive number Ad dependent only on d such
that the following holds. Suppose b(x) satisûes h⋆( fb) > Ad . hen, given any c > 0,
there exists C > 0 such that

∫
m(C)

T(b; α) dα ≪
Nn−d

(logN)c
.

he proposition is achieved by splitting the exponential sum T(b; α) over certain
level sets based on a decomposition of the polynomial b(x). hus before we get into
the proof of Proposition 5.1, we ûrst establish this decomposition in six steps, where
the resulting decomposition is given in (5.12). For simplicity, we let f (x) be the degree
d portion of b(x) for the remainder of the paper. We let h = h( f ), and let 0 < M <

h⋆( f ) ≤ h be chosen later.
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Step 1: Decomposition of the variables As explained in the paragraph before
(2.4), by relabeling the variables if necessary, we have

f = (x1 + ℓ1)v′1 + ⋅ ⋅ ⋅ + (xM + ℓM)v′M + u′M+1v
′
M+1 + ⋅ ⋅ ⋅ + u′hv

′
h ,

where each ℓ i is a linear form in Q[xM+1 , . . . , xn] (1 ≤ i ≤ M), and each u′i′ and
v′j are rational forms of positive degree (M + 1 ≤ i′ ≤ h, 1 ≤ j ≤ h). We can then
ûnd a monomial x i1x i2 ⋅ ⋅ ⋅ x id , where M < i1 ≤ i2 ≤ ⋅ ⋅ ⋅ ≤ id , of f with a non-zero
coeõcient. his is the case, for otherwise it means that every monomial of f is di-
visible by one of x1 , . . . , xM , and consequently that h = h( f ) ≤ M, which is a con-
tradiction. We denote the distinct variables of {x i1 , x i2 , . . . , x id} ⊆ {xM+1 , . . . , xn}

by {w1 , . . . ,wK}, and let w = (w1 , . . . ,wK). Clearly, we have K ≤ d. We selected
these K variables for the purpose of applying Weyl diòerencing later. We also label
y = (x1 , . . . , xM) = (y1 , . . . , yM) for notational convenience, let z = {xM+1 , . . . , xn}/w,
and let z = (z1 , . . . , zn−M−K). We note that each ℓ i is a rational linear form only in the
w and the z variables (1 ≤ i ≤ h).

Step 2: Decomposition of f (x) We deûne gM with respect to f as in (2.5). By
Lemma 2.3, we have

f (x) = f (w, y, z) = gM(w, y, z) + f (w, (−ℓ1 , . . . ,−ℓM), z),

where

(5.1) h(gM(w, y, z)) ≥ M and h( f (w, (−ℓ1 , . . . ,−ℓM), z)) = h −M .

We then have

(5.2) f (0, y, z) = gM(0, y, z) + f (0, (−ℓ1∣w=0 , . . . ,−ℓM ∣w=0), z).

Let fM(z) = f (0, (−ℓ1∣w=0 , . . . ,−ℓM ∣w=0), z). Consequently, we obtain from Lemma
2.1 and (5.1) that

h(gM(0, y, z)) ≥ M − K ≥ M − d ,(5.3)
h( fM(z)) ≥ h −M − K ≥ h −M − d .(5.4)

Step 3: Decomposition of b(x) with respect to w, y, and z Let bM(z) =

b(0, (−ℓ1∣w=0 , . . . ,−ℓM ∣w=0), z). It is clear that the degree d portion of the polyno-
mial b(0, y, 0) is gM(0, y, 0). Let

b(0, y, z) − bM(z) =
d−1

∑
j=1

∑
1≤t1≤⋅⋅⋅≤t j≤M

(

d− j

∑
k=0

Ψ(k)
t1 , . . . ,t j(z)) yt1 ⋅ ⋅ ⋅ yt j(5.5)

+ (
d

∑
k=1

Ψ(k)
∅ (z)) + gM(0, y, 0),
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where Ψ(k)
t1 , . . . ,t j(z) and Ψ(k)

∅ (z) are forms of degree k. With these notations, we have
the following decomposition,

b(w, y, z) = b(w, 0, 0)(5.6)

+
d−1

∑
j=1

∑
1≤i1≤⋅⋅⋅≤i j≤K

(

d− j

∑
k=1

Φ(k)
i1 , . . . , i j(y, z))w i1 ⋅ ⋅ ⋅w i j

+
d−1

∑
j=1

∑
1≤t1≤⋅⋅⋅≤t j≤M

(

d− j

∑
k=0

Ψ(k)
t1 , . . . ,t j(z)) yt1 ⋅ ⋅ ⋅ yt j

+ (
d

∑
k=1

Ψ(k)
∅ (z)) + gM(0, y, 0) + bM(z) − b(0, 0, 0),

which we describe below. We note that Φ(k)
i1 , . . . , i j(y, z) are forms of degree k. he above

decomposition establishes the following. he term

b(w, 0, 0) +
d−1

∑
j=1

∑
1≤i1≤⋅⋅⋅≤i j≤K

(

d− j

∑
k=1

Φ(k)
i1 , . . . , i j(y, z))w i1 ⋅ ⋅ ⋅w i j

consists of all the monomials of b(x) that involve any variables of w. Consequently,
we have

b(0, y, z) =
d−1

∑
j=1

∑
1≤t1≤⋅⋅⋅≤t j≤M

(

d− j

∑
k=0

Ψ(k)
t1 , . . . ,t j(z)) yt1 ⋅ ⋅ ⋅ yt j

+ (
d

∑
k=1

Ψ(k)
∅ (z)) + gM(0, y, 0) + bM(z),

and the degree d portion of b(0, y, z) is f (0, y, z). Clearly, the degree d portion of
bM(z) is fM(z) = f (0, (−ℓ1∣w=0 , . . . ,−ℓM ∣w=0), z). It then follows from (5.2) and (5.5)
that the degree d portion of

d−1

∑
j=1

∑
1≤t1≤⋅⋅⋅≤t j≤M

(

d− j

∑
k=0

Ψ(k)
t1 , . . . ,t j(z)) yt1 ⋅ ⋅ ⋅ yt j + (

d

∑
k=1

Ψ(k)
∅ (z)) + gM(0, y, 0)

is

gM(0, y, z) =
d−1

∑
j=1

∑
1≤t1≤⋅⋅⋅≤t j≤M

Ψ(d− j)
t1 , . . . ,t j(z) yt1 ⋅ ⋅ ⋅ yt j +Ψ(d)

∅ (z) + gM(0, y, 0).

We also know from (5.2) that gM(0, (−ℓ1∣w=0 , . . . ,−ℓM ∣w=0), z) = 0, and consequently,

Ψ(d)
∅ (z) = (−

d−1

∑
j=1

∑
1≤t1≤⋅⋅⋅≤t j≤M

Ψ(d− j)
t1 , . . . ,t j(z) yt1 ⋅ ⋅ ⋅ yt j) ∣

y i=−ℓ i ∣w=0 (1≤i≤M)

− gM(0, (−ℓ1∣w=0 , . . . ,−ℓM ∣w=0), 0).

In other words, Ψ(d)
∅ (z) can be expressed as a rational polynomial in the forms

{Ψ(d− j)
t1 , . . . ,t j(z) ∶ 1 ≤ j ≤ d − 1, 1 ≤ t1 ≤ ⋅ ⋅ ⋅ ≤ t j ≤ M}∪{ ℓ i ∣w=0 ∶ 1 ≤ i ≤ M} .
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Step 4: Regularization of systems Φ and Ψ We let

Φ = {Φ(k)
i1 , . . . , i j ∶ 1 ≤ j ≤ d − 1, 1 ≤ i1 ≤ ⋅ ⋅ ⋅ ≤ i j ≤ K , 1 ≤ k ≤ d − j} .

Note every polynomial of Φ has degree strictly less than d, and involves only the y
and the z variables. Clearly, we have ∣Φ∣ ≤ d2Kd ≤ dd+2. We apply Proposition 3.5
to the system Φ with respect to the functions F = {F2 , . . . ,Fd−1}, where Fi(t) =

ρd , i(2+2t)+2t for 2 ≤ i ≤ d− 1, and obtainR(Φ) = (a(d−1) , . . . , a(1)). For each form
a(s)i ∈ a(s) (1 ≤ s ≤ d − 1, 1 ≤ i ≤ ∣a(s)∣), we write

(5.7) a(s)i (y, z) =
s

∑
k=0

∑
1≤i1≤⋅⋅⋅≤ik≤M

Ψ̃(s−k)
s∶i∶i1 , . . . , ik(z)y i1 ⋅ ⋅ ⋅ y ik ,

where each Ψ̃(s−k)
s∶i∶i1 , . . . , ik(z) is a form of degree s − k. hus each form a(s)i introduces at

most (s+ 1)M s ≤ dMd forms in z. Also, for each 1 ≤ i ≤ d − 1, we deûne a(i) to be the
system obtained by removing from a(i) all forms that depend only on the z variables.
Let R(Φ) = (a(d−1) , . . . , a(1)), R2 = ∑

d−1
i=1 ∣a(i)∣, and D2 = ∑

d−1
i=1 i ∣a(i)∣. By relabeling

if necessary, we denote the elements of a(s) by a(s) = {a(s)i ∶ 1 ≤ i ≤ ∣a(s)∣} for each
1 ≤ s ≤ d − 1.

Let

Ψ = {Ψ(k)
t1 , . . . ,t j(z) ∶ 1 ≤ j ≤ d − 1, 1 ≤ t1 ≤ ⋅ ⋅ ⋅ ≤ t j ≤ M , 0 ≤ k ≤ d − j}

∪ {Ψ(k)
∅ (z) ∶ 1 ≤ k < d} ∪ {ℓ i ∣w=0 ∶ 1 ≤ i ≤ M}

∪ {Ψ̃(s−k)
s∶i∶i1 , . . . , ik(z) ∶1 ≤ s ≤ d − 1, 1 ≤ i ≤ ∣a(s)∣,

1 ≤ k ≤ s, 1 ≤ i1 ≤ ⋅ ⋅ ⋅ ≤ ik ≤ M}.

In other words, Ψ is the collection of ℓ i ∣w=0, and all Ψ(k)
t1 , . . . ,t j(z), Ψ̃

(s−k)
s∶i∶i1 , . . . , ik(z), and

Ψ(k)
∅ (z), except Ψ(d)

∅ (z). In particular, every polynomial of Ψ has degree strictly
less than d. We can see that ∣Ψ∣ ≤ d2Md + d + M + ∣R(Φ)∣dMd . We let R(Ψ) be
a regularization of Ψ with respect to the functions F = {F2 , . . . ,Fd−1}, where again
Fi(t) = ρd , i(2 + 2t) + 2t for 2 ≤ i ≤ d − 1. Let R(Ψ) = (v(d−1) , . . . , v(1)), R1 =

∑
d−1
i=1 ∣v(i)∣, and D1 = ∑

d−1
i=1 i ∣v(i)∣.

LetR(i)(Φ), Φ(i), andR(i)(Ψ) denote the degree i forms ofR(Φ), Φ, andR(Ψ),
respectively. FromProposition 3.5, we know that each ∣R(i)(Φ)∣ = ∣a(i)∣ (1 ≤ i ≤ d−1),
and consequently R2, is bounded by some constant dependent only onF and ∣Φ(d−1)∣,
. . . , ∣Φ(1)∣. hus we see that R2 is bounded by a constant dependent only on d. We set
M = ρd ,d(2+2R2)+2R2+d, and note that M is bounded by a constant dependent only
on d. By Proposition 3.5 again, we have that each ∣R(i)(Ψ)∣ = ∣v(i)∣ (1 ≤ i ≤ d − 1),
and consequently R1, is bounded by some constant dependent only on d, F, M, and
∣Φ(d−1)∣, . . . , ∣Φ(1)∣. hus R1 is bounded by a constant dependent only on d as well.

We deûne

(5.8) Ad = max{2ρd ,d(2 + 2R1) + 4R1 + 2d , 2ρd ,d(2 + 2R2) + 4R2 + 2d ,

5 ⋅ 2d−1 ⋅ (d − 1) ⋅ d!
(log 2)d

+ 5d} ,
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and suppose h⋆( f ) ≥ Ad . We note that the third term inside the maximum function
above is not required in this section, but this lower bound on Ad becomes necessary
in Section 6. With this choice of Ad , we have from (5.3) and (5.4) that

h( fM(z)) ≥ h −M − d ≥ ρd ,d(2 + 2R1) + 2R1 ,(5.9)
h(gM(0, y, z)) ≥ M − d ≥ ρd ,d(2 + 2R2) + 2R2 .(5.10)

Step 5: Definition of the level sets Z(H) and Y(G;H) For each H ∈ ZR1 , we
deûne the following set

Z(H) = {z ∈ [0,N]
n−M−K

∩Zn−M−K
∶ R(Ψ)(z) = H} .

By Proposition 3.5, we know that each of the polynomials Ψ(k)
t1 , . . . ,t j(z) and Ψ(k)

∅ (z) in

(5.6) can be expressed as a rational polynomial in the forms ofR(Ψ). Let Ψ(k)
t1 , . . . ,t j(z) =

ĉ(k)t1 , . . . ,t j(R(Ψ)) and Ψ(k)
∅ (z) = ĉ(k)∅ (R(Ψ)), where ĉ(k)t1 , . . . ,t j and ĉ

(k)
∅ are rational poly-

nomials in R1 variables. herefore, for any z0 ∈ Z(H), we have Ψ(k)
t1 , . . . ,t j(z0) =

ĉ(k)t1 , . . . ,t j(H) and Ψ(k)
∅ (z0) = ĉ(k)∅ (H).

Since each of the forms Ψ̃(s−k)
s∶i∶i1 , . . . , ik(z) in (5.7) can be expressed as a rational poly-

nomial in the forms of R(Ψ), let

Ψ̃(s−k)
s∶i∶i1 , . . . , ik(z) = c̃

(s−k)
s∶i∶i1 , . . . , ik(R(Ψ)),

where each c̃(s−k)
s∶i∶i1 , . . . , ik is a rational polynomial inR1 variables. herefore, for each a(s)i ∈

R(Φ) = (a(d−1) , . . . , a(1)), where 1 ≤ s ≤ d − 1 and 1 ≤ i ≤ ∣a(s)∣, we can write

a(s)i (y, z) =
s

∑
k=0

∑
1≤i1≤⋅⋅⋅≤ik≤M

c̃(s−k)
s∶i∶i1 , . . . , ik(R(Ψ))y i1 ⋅ ⋅ ⋅ y ik .

Consequently, we can deûne the following polynomial for each 1 ≤ s ≤ d − 1 and
1 ≤ i ≤ ∣a(s)∣,

(5.11) a(s)i (y, Z(H)) =
s

∑
k=0

∑
1≤i1≤⋅⋅⋅≤ik≤M

c̃(s−k)
s∶i∶i1 , . . . , ik(H)y i1 ⋅ ⋅ ⋅ y ik ,

so that given any z0 ∈ Z(H), we have a(s)i (y, z0) = a(s)i (y, Z(H)). We also deûne

R(Φ)(y, Z(H)) = { a(s)i (y, Z(H)) ∶ 1 ≤ s ≤ d − 1, 1 ≤ i ≤ ∣a(s)∣} ,

which consists of R2 polynomials with possible repetitions. For each G ∈ ZR2 , we let
Y(G;H) = {y ∈ [0,N]M ∩ZM ∶ R(Φ)(y, Z(H)) = G} .

Step 6: Decomposition of b(w, y, z) when (y, z) ∈ Y(G;H) × Z(H) Recall that
Φ is the collection of all Φ(k)

i1 , . . . , i j(y, z) in (5.6), and that each Φ(k)
i1 , . . . , i j(y, z) can be

expressed as a rational polynomial in the forms of R(Φ). hus, it follows from this
fact and (5.11) that each Φ(k)

i1 , . . . , i j(y, z) is constant on (y, z) ∈ Y(G;H) × Z(H), and

we denote this constant value by c(k)i1 , . . . , i j(G,H). herefore, for any choice of z ∈ Z(H)
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and y ∈ Y(G;H), the polynomial b(x) takes the following shape

b(w, y, z) = b(w, 0, 0) +
d−1

∑
j=1

∑
1≤i1≤⋅⋅⋅≤i j≤K

(

d− j

∑
k=1
c(k)i1 , . . . , i j(G,H))w i1 ⋅ ⋅ ⋅w i j

+
d−1

∑
j=1

∑
1≤t1≤⋅⋅⋅≤t j≤M

(

d− j

∑
k=0
ĉ(k)t1 , . . . ,t j(H)) yt1 ⋅ ⋅ ⋅ yt j

+ (
d

∑
k=1
ĉ(k)∅ (H)) + gM(0, y, 0) + bM(z) − b(0, 0, 0).

We label

C0(w,G,H) = b(w, 0, 0) +
d−1

∑
j=1

∑
1≤i1≤⋅⋅⋅≤i j≤K

(

d− j

∑
k=1
c(k)i1 , . . . , i j(G,H))w i1 ⋅ ⋅ ⋅w i j ,

C1(y,H) =
d−1

∑
j=1

∑
1≤t1≤⋅⋅⋅≤t j≤M

(

d− j

∑
k=0
ĉ(k)t1 , . . . ,t j(H)) yt1 ⋅ ⋅ ⋅ yt j

+ (
d

∑
k=1
ĉ(k)∅ (H)) + gM(0, y, 0),

so that for z ∈ Z(H) and y ∈ Y(G;H), we have

(5.12) b(w, y, z) = C0(w,G,H) + C1(y,H) + bM(z) − b(0, 0, 0).

5.1 Proof of Proposition 5.1

We are now in position to prove Proposition 5.1.

Proof Using the notations above we deûne the following three exponential sums,

S0(α,G,H) = ∑
w∈[0,N]K∩ZK

Λ(w) e(α ⋅ C0(w,G,H)),

S1(α,G,H) = ∑
y∈Y(G;H)

Λ(y) e(α ⋅ C1(y,H)),

S2(α,H) = ∑
z∈Z(H)

Λ(z) e(α ⋅ bM(z) − α ⋅ b(0, 0, 0)).

Let L1(N) = {H ∈ ZR1 ∶ Z(H) /= ∅}, and for each H ∈ L1(N), let L2(N ;H) =

{G ∈ ZR2 ∶ Y(G,H) /= ∅}. It then follows that

(5.13) ∣L1(N)∣ ≪ ND1 and ∣L2(N ;H)∣ ≪ ND2 ,

where the implicit constant in the second inequality is independent of H. In order
to prove the ûrst inequality, let C0 be the largest absolute value of all coeõcients of
the polynomials in R(Ψ). Also let M0 be the largest number of monomials with
non-zero coeõcients in any of the polynomials in R(Ψ). hen we have ∣L1(N)∣ ≤

(2C0 ⋅M0)
R1 ⋅ (N + 1)D1 . To see the second inequality, we let C′0 be the largest abso-

lute value of all coeõcients of the polynomials a(s)i (y, z) in R(Φ), and let M′
0 be the

largest number of monomials with non-zero coeõcients in any of these polynomials.
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henwe see that the number of values taken by a(s)i (y, z) as (y, z) varies in [0,N]n−K

is ≤ (2C′0 ⋅M′
0) ⋅ (N + 1)s . herefore, we have

L2(N ;H) = {G ∈ ZR2 ∶ Y(G,H) /= ∅}

= {G ∈ ZR2 ∶ ∃y ∈ [0,N]
M
∩ZM ,R(Φ)(y, Z(H)) = G}

⊆ {G ∈ ZR2 ∶ ∃(y, z) ∈ [0,N]
n−K

∩Zn−K ,R(Φ)(y, z) = G},

and the cardinality of the last set is ≤ (2C′0 ⋅M′
0)

R2 ⋅ (N + 1)D2 .
By the Cauchy–Schwarz inequality and (5.13), we obtain

(5.14)

∣ ∫
m(C)

T(b; α) dα∣
2
≤ ∣ ∑

H∈L1(N)

∑
G∈L2(N ;H)

∫
m(C)

∑
w∈[0,N]

K
∩ZK

z∈Z(H)

y∈Y(G;H)

Λ(w)Λ(y)Λ(z)

× e(α ⋅ (C0(w,G,H) + C1(y,H) + bM(z) − b(0, 0, 0))) dα∣
2

≪ ND1+D2 ∑
H∈L1(N)

∑
G∈L2(N ;H)

∣∫
m(C)

S0(α,G,H)S1(α,G,H)S2(α,H) dα∣
2

≪ ND1+D2
⎛

⎝
sup

H∈L1(N)

G∈L2(N ;H)

sup
α∈m(C)

∣S0(α,G,H)∣
2⎞

⎠

× ∑
H∈L1(N)

∑
G∈L2(N ;H)

∥S1(⋅,G,H)∥
2
2 ∥S2(⋅,H)∥

2
2 ,

where ∥ ⋅ ∥2 denotes the L2-norm on [0, 1]. By the orthogonality relation, it follows
that

∥S1(⋅,G,H)∥
2
2 ∥S2(⋅,H)∥

2
2 ≤ (logN)

2n−2KN1(G;H)N2(H),

where

N1(G;H) = ∣{(y, y′) ∈ Y(G;H) × Y(G;H) ∶ C1(y,H) = C1(y′ ,H)} ∣ ,

N2(H) = ∣{(z, z′) ∈ Z(H) × Z(H) ∶ bM(z) = bM(z′)} ∣ .

With these notations, we can further bound (5.14) as follows

(5.15) ∣ ∫
m(C)

T(b; α) dα∣
2

≪ (logN)
2n−2KND1+D2

⎛

⎝
sup

H∈L1(N)

G∈L2(N ;H)

sup
α∈m(C)

∣S0(α,G,H)∣
2⎞

⎠
W,

where

W = ∑
H∈L1(N)

∑
G∈L2(N ;H)

N1(G;H)N2(H).
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We can express W as the number of solutions y, y′ ∈ [0,N]M ∩ ZM and z, z′ ∈

[0,N]n−M−K ∩Zn−M−K of the system

(5.16)

R(Ψ)(z) = R(Ψ)(z′) = H,

R(Φ)(y, Z(H)) = R(Φ)(y′ , Z(H)) = G,
C1(y,H) = C1(y′ ,H),

bM(z) = bM(z′),

for any H ∈ L1(N) and G ∈ L2(N ;H). We know that the system

R(Φ)(y, Z(H))

is identical to R(Φ)(y, z0) for any choice of z0 ∈ Z(H) and any y ∈ [0,N]M ∩ ZM .
Similarly, we know that the polynomial C1(y,H) is identical to

b(0, y, z0) − bM(z0)

for any choice of z0 ∈ Z(H). herefore, since R(Ψ)(z) = H implies that z ∈ Z(H),
we can rearrange the system (5.16) and deduce that W is the number of solutions
y, y′ ∈ [0,N]M ∩ZM and z, z′ ∈ [0,N]n−M−K ∩Zn−M−K of the following system:

(5.17)

R(Ψ)(z) = R(Ψ)(z′),

R(Φ)(y, z) = R(Φ)(y′ , z),
b(0, y, z) − bM(z) = b(0, y′ , z) − bM(z),

bM(z) = bM(z′).

Our result follows from the following two claims.

Claim 1 Given any c > 0, there exists C > 0 such that the following bound holds,

sup
H∈L1(N)

G∈L2(N ;H)

sup
α∈m(C)

∣S0(α,G,H)∣ ≪
NK

(logN)c
.

Claim 2 We have the following bound on W,

W≪ N2n−2K−2d−D1−D2 .

By substituting the bounds from the above two claims into (5.15), we obtain that
for any c > 0 there exists C > 0 such that

∫
m(C)

T(b; α) dα ≪
Nn−d

(logN)c
,

and this completes the proof of our proposition. ∎

herefore, we only need to establish Claims 1 and 2. Claim 1 is obtained via Weyl
diòerencing. Since the set up for our Claim 1 is the same as that of [2], we omit the
proof of Claim 1 and refer the reader to [2, p. 725].
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Proof of Claim 2 We now present the proof of Claim 2. From (5.17), we can write

W = ∑
z∈[0,N]n−M−K∩Zn−M−K

T1(z) ⋅ T2(z),

where T1(z) is the number of solutions y, y′ ∈ [0,N]M ∩ZM to the system

b(0, y, z) = b(0, y′ , z),

R(Φ)(y, z) = R(Φ)(y′ , z),

and T2(z) is the number of solutions z′ ∈ [0,N]n−M−K ∩Zn−M−K to the system

bM(z) = bM(z′),
R(Ψ)(z) = R(Ψ)(z′).

Deûne Wi = ∑z Ti(z)2 (i = 1, 2) so that we have W2 ≤ W1W2 by the Cauchy–
Schwarz inequality. We ûrst estimateW1, which we can deduce to be the number of
solutions y, y′ , u, u′ ∈ [0,N]M ∩ ZM and z ∈ [0,N]n−M−K ∩ Zn−M−K satisfying the
equations

(5.18)

b(0, y, z) − b(0, y′ , z) = 0,

b(0, u, z) − b(0, u′ , z) = 0,

R(Φ)(y, z) −R(Φ)(y′ , z) = 0,

R(Φ)(u, z) −R(Φ)(u′ , z) = 0.

We consider the h-invariant of the system of forms on the le�-hand side of (5.18),
and show that it is a regular system. he ûrst two equations of (5.18) are the degree d
polynomials of the system, and we let hd be the h-invariant of these two polynomials.
Suppose for some λ, µ ∈ Q, not both 0, we have

λ ⋅ ( f (0, y, z) − f (0, y′ , z)) + µ ⋅ ( f (0, u, z) − f (0, u′ , z)) =
hd
∑
j=1

U j ⋅ Vj ,

where U j = U j(y, y′ , u, u′ , z) and Vj = Vj(y, y′ , u, u′ , z) are rational forms of pos-
itive degree (1 ≤ j ≤ hd). Without loss of generality, suppose λ /= 0. Let ℓ =

(−ℓ1∣w=0 , . . . ,−ℓM ∣w=0). If we set u = u′ = y′ = ℓ, then the above equation becomes

gM(0, y, z) = f (0, y, z) − fM(z) = 1
λ

hd
∑
j=1

U j(y, ℓ, ℓ, ℓ, z) ⋅ Vj(y, ℓ, ℓ, ℓ, z).

herefore, we obtain from (5.10),

hd ≥ h(gM(0, y, z)) ≥ ρd ,d(2 + 2R2) + 2R2 ≥ ρd ,d(2 + 2R2 − 2∣a(1)∣) + 2∣a(1)∣.

For each 1 ≤ i ≤ d − 1, denote by

R(Φ)
(i)

(y, z) −R(Φ)
(i)

(y′ , z) = { a(i)j (y, z) − a(i)j (y′ , z) ∶ 1 ≤ j ≤ ∣a(i)∣} ,

the system of degree i polynomials of R(Φ)(y, z) −R(Φ)(y′ , z). We also deûne

R(Φ)
(i)

(u, z) −R(Φ)
(i)

(u′ , z)
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in a similar manner. We apply Lemma 3.4 to estimate the h-invariant of the degree i
forms of the system (5.18) for each 2 ≤ i ≤ d − 1,

h(R(Φ)
(i)

(y, z) −R(Φ)
(i)

(y′ , z),R(Φ)
(i)

(u, z) −R(Φ)
(i)

(u′ , z))

≥ h(R(Φ)
(i)

(y, z) −R(Φ)
(i)

(y′ , z),R(Φ)
(i)

(u, z) −R(Φ)
(i)

(u′ , z); z)

= h(R(Φ)
(i)

(y, z) −R(Φ)
(i)

(y′ , z); z)

≥ h(R(Φ)
(i)

(y, z),R(Φ)
(i)

(y′ , z); z)

≥ h(R(Φ)
(i)

(y, z); z)
≥ ρd , i(2 + 2R2) + 2R2

≥ ρd , i(2 + 2R2 − 2∣a(1)∣) + 2∣a(1)∣.

We also need to show that the linear forms of the system (5.18) are linearly indepen-
dent over Q. Recall that the linear forms of R(Φ)(1)(y, z) are linearly independent
over Q and do not include any linear forms that depend only on the z variables, and
similarly for R(Φ)(1)(y′ , z), R(Φ)(1)(u, z), and R(Φ)(1)(u′ , z). We leave it as an
exercise for the reader to verify that the linear forms of

R(Φ)
(1)

(y, z) −R(Φ)
(1)

(y′ , z) ⋃ R(Φ)
(1)

(u, z) −R(Φ)
(1)

(u′ , z)

are linearly independent over Q.
herefore, it follows from Corollary 3.3 that W1 ≪ Nn+3M−K−(2d+2D2).
We now estimate W2, which we can deduce to be the number of solutions z, z′,

z′′ ∈ [0,N]n−M−K ∩Zn−M−K satisfying the equations

(5.19)

bM(z) − bM(z′) = 0,

bM(z) − bM(z′′) = 0,

R(Ψ)(z) −R(Ψ)(z′) = 0,
R(Ψ)(z) −R(Ψ)(z′′) = 0.

We consider the h-invariant of the system of forms on the le�-hand side of (5.19),
and show that it is a regular system. he ûrst two equations of (5.19) are the degree d
polynomials of the system, and we let hd be the h-invariant of these two polynomials.
Suppose for some λ, µ ∈ Q, not both 0, we have

λ ⋅ ( fM(z) − fM(z′)) + µ ⋅ ( fM(z) − fM(z′′)) =
hd
∑
j=1

U j ⋅ Vj ,

where U j = U j(z, z′ , z′′) and Vj = Vj(z, z′ , z′′) are rational forms of positive degree
(1 ≤ j ≤ hd). We consider two cases, (λ+µ) /= 0 and (λ+µ) = 0. Suppose (λ+µ) /= 0.
If we set z′ = z′′ = 0, then the above equation becomes

(λ + µ) ⋅ fM(z) =
hd
∑
j=1

U j(z, 0, 0) ⋅ Vj(z, 0, 0).
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hus we obtain hd ≥ h( fM(z)). On the other hand, suppose (λ + µ) = 0. hen the
above equation (5.1) simpliûes to

fM(z′) − fM(z′′) = −1
λ

hd
∑
j=1

U j ⋅ Vj .

From this equation, we substitute z′′ = 0 to obtain hd ≥ h( fM(z′)). herefore, in
either case we obtain from (5.9) that

hd ≥ h( fM(z)) ≥ ρd ,d(2 + 2R1) + 2R1 ≥ ρd ,d(2 + 2R1 − 2∣v(1)∣) + 2∣v(1)∣.

Recall that we deûnedR(Ψ) = (v(d−1) , . . . , v(1)), where v(i) = R(i)(Ψ) are the degree
i forms of R(Ψ) (1 ≤ i ≤ d − 1). Take 2 ≤ i ≤ d − 1. Let m i = ∣v(i)∣, and we label the
forms of v(i) to be v(i)1 , . . . , v(i)m i . Let h i be the h-invariant of the degree i forms of the
system (5.19). hen for some λ, µ ∈ Qm i , not both 0, we have

(5.20)
m i

∑
j=1

λ j ⋅ (v(i)j (z) − v(i)j (z′)) +
m i

∑
j=1

µ j ⋅ (v(i)j (z) − v(i)j (z′′)) =
h i

∑
t=1

Ut ⋅ Vt ,

whereUt =Ut(z, z′ , z′′) andVt =Vt(z, z′ , z′′) are forms of positive degree (1≤ t ≤ h i).
We consider two cases, (λ + µ) /= 0 and (λ + µ) = 0.

Suppose (λ+ µ) /= 0. In this case, we set z′ = z′′ = 0, and equation (5.20) simpliûes
to

m i

∑
j=1

(λ j + µ j) ⋅ v(i)j (z) =
h i

∑
t=1

Ut(z, 0, 0) ⋅ Vt(z, 0, 0).

herefore, it follows that

h i ≥ h(v(i)) ≥ ρd , i(2 + 2R1) + 2R1 ≥ ρd , i(2 + 2R1 − 2∣v(i)∣) + 2∣v(1)∣.

On the other hand, suppose (λ + µ) = 0. hen equation (5.20) simpliûes to
m i

∑
j=1
−λ j ⋅ (v(i)j (z′) − v(i)j (z′′)) =

h i

∑
t=1

Ut ⋅ Vt .

From this equation, we substitute z′′ = 0 to obtain

h i ≥ h(v(i)) ≥ ρd , i(2 + 2R1) + 2R1 ≥ ρd , i(2 + 2R1 − 2∣v(i)∣) + 2∣v(1)∣.

We also need to show that the linear forms of the system (5.19),

(5.21) {v(1)(z) − v(1)(z′)} ∪ {v(1)(z) − v(1)(z′′)} ,

are linearly independent over Q. Recall that the linear forms of v(1)(z) are linearly
independent over Q. he linear independence over Q of the system of linear forms
(5.21) follows from this fact, and we leave the veriûcation as an exercise for the reader.

herefore, we obtain by Corollary 3.3 thatW2 ≪ N3(n−M−K)−(2d+2D1). Combining
the bounds for W1 andW2 together, we obtain

W ≤W
1/2
1 W

1/2
2 ≪ N2n−2K−(2d+D1+D2) ,

which proves Claim 2. ∎
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6 Hardy–Littlewood Circle Method: Major Arcs

Recall that f (x) is the degree d portion of the degree d polynomial b(x) ∈

Z[x1 , . . . , xn]. In this section we assume that f (x) satisûes h( f ) > Ad , where Ad
is deûned in (5.8). We deûne gd( f ) as in (4.5) with f = { f } and rd = 1. It then follows
from (4.6) that Ad < h( f ) ≤ (log 2)−d ⋅ d! ⋅ gd( f ). From this bound and our choice
of Ad in (5.8), we have

2d−1

gd( f )
<

d!2d−1

(log 2)dAd
<

d!2d−1

(log 2)d(Ad − 5d)
≤

1
5(d − 1)

.

We take Ω to be

4 < Ω < 5 ≤
(Ad − 5d) ⋅ (log 2)d

2d−1(d − 1)d!
≤

gd( f )
2d−1(d − 1)

.

herefore, with this choice of Ω, we have that b(x) satisûes Hypothesis (⋆) with B0
by Proposition 4.5. We then choose Q to satisfy 0 < Q < Ω and

(6.1) Q ⋅
2d−1

gd( f )
< 1.

In particular, we can choose Q to satisfy Q > 4. We ûx these values of Ω and Q
throughout this section. We note that with these choices of Ω and Q we have

(6.2) 0 < Ω ≤
(Ad − dQ) ⋅ (log 2)d

2d−1(d − 1)d!
.

he work of this section is based on [2] and is similar to their treatment of the major
arcs. However, we needed to tailor their argument to be in terms of the h-invariant
instead of the Birch rank.

We deûne the sums

(6.3)

S̃m ,q = ∑
k∈Un

q

e(b(k) ⋅m/q),

B(q) = ∑
m∈Uq

1
ϕ(q)n S̃m ,q ,

S(N) = ∑
q≤(log N)C

B(q),

where ϕ is Euler’s totient function. Recall that we have B0 = [0, 1]n . We have the
following estimate on the major arcs, which is a consequence of [2, (6.1) and Lemma
6], and we leave the details to the reader. We remark that although it is assumed
in [2, Lemma 6] that C is suõciently large, it in fact follows from their proof that
assuming C > 0 is suõcient.

Lemma 6.1 ([2, Lemma 6]) Let c > 0, C > 0, q ≤ (logN)C , and m ∈ Uq . hen we
have

∫
Mm ,q(C)

T(b; α) dα =
1

ϕ(q)n S̃m ,q J0 + O(
Nn−d

(logN)c
) ,
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where

J0 = ∫
∣τ∣≤N−d(log N)C

∫
u∈NB0

e(τb(u))du dτ.

Note that J0 is independent ofm and q. We now simplify the expression for J0. Let
I(η) = ∫B0

e(η f (ξ))dξ. For any ε > 0, the inner integral of J0 can be expressed as

∫
u∈NB0

e(τb(u))du = ∫
u∈NB0

e(τ f (u))du + O(Nn−1+ε
)

= Nn
∫

ξ∈B0
e(Ndτ f (ξ))dξ + O(Nn−1+ε

)

= Nn
⋅ I(Ndτ) + O(Nn−1+ε

),

where we used the change of variable u = N ξ to obtain the second equality above.
We deûne J(L) = ∫∣η∣≤L I(η) dη. hen we can simplify J0 as

J0 = Nn−d
⋅ J((logN)

C
) + O(Nn−d−1+ε

(logN)
C
).

Since we have Ω > 2 and Hypothesis (⋆), and in particular the restricted Hypothesis
(⋆), it follows by [4, Lemma 8.1] that

(6.4) I(η) ≪ min(1, ∣η∣−2
).

As stated in [4, §3], it follows from (6.4) that µ(∞) = ∫R I(η) dη exists. Furthermore,
we have ∣µ(∞) − J(L)∣ ≪ L−1. We also have µ(∞) > 0 if the equation f (x) = 0 has a
non-singular real solution in the interior ofB0 = [0, 1]n [2, p. 704].

herefore, we obtain the following estimate as a consequence of the deûnition of
the major arcs and Lemma 6.1.

Lemma 6.2 Suppose h( f ) > Ad , where we deûne Ad as in (5.8). hen, given any
c > 0, there exists C > 0 such that we have

∫
M(C)

T(b; α) dα =S(N)µ(∞)Nn−d
+ O(S(N)

Nn−d

(logN)C
+

Nn−d

(logN)c
) .

6.1 Singular Series

We obtain the following estimate on the exponential sum S̃m ,q deûned in (6.3).

Lemma 6.3 Suppose h( f ) > Ad , where we deûne Ad as in (5.8). Let p be a prime
and let q = pt , t ∈ N. For m ∈ Uq , we have the following bounds

S̃m ,q ≪

⎧⎪⎪
⎨
⎪⎪⎩

qn−Q if t ≤ d ,
pQqn−Q if t > d ,

where the implicit constants are independent of p.
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Proof We consider the two cases t ≤ d and t > d separately. We apply the inclusion-
exclusion principle to bound S̃m ,q when q = pt and t ≤ d. hen

(6.5) S̃m ,q = ∑
k∈(Z/qZ)n

n
∏
i=1

( 1 − ∑
u i∈Z/pt−1Z

1k i=pu i) e(b(k) ⋅m/q)

= ∑
I⊆{1,2,. . . ,n}

(−1)∣I∣ ∑
u∈(Z/pt−1Z)∣I∣

∑
k∈(Z/qZ)n

FI(k;u)e(b(k) ⋅m/q),

where 1k i=pu i denotes a characteristic function and FI(k;u) = ∏i∈I 1k i=pu i for u ∈

(Z/pt−1Z)∣I∣. In other words, FI(k;u) is the characteristic function of the set HI ,u =

{k ∈ (Z/qZ)n ∶ k i = pu i (i ∈ I)}. We now bound the summand in the ûnal expres-
sion of (6.5) by further considering two cases, ∣I∣ ≥ tQ and ∣I∣ < tQ. In the ûrst case
∣I∣ ≥ tQ, we use the following trivial estimate

∣ ∑
u∈(Z/pt−1Z)∣I∣

∑
k∈(Z/qZ)n

FI(k;u)e(b(k) ⋅m/q)∣ ≤ p(t−1)∣I∣
(pt

)
n−∣I∣

= qn−∣I∣/t
≤ qn−Q .

On the other hand, suppose ∣I∣ < tQ. Let gb(x) be the polynomial obtained by
substituting x i = pu i (i ∈ I) to b(x). hus gb(x) is a polynomial in n−∣I∣ variables. We
can also easily deduce that the degree d portion of gb(x), which we denote by fgb , is
obtained by substituting x i = 0 (i ∈ I) to the degree d portion of b(x). Hence, we have
fgb = f ∣x i=0 (i∈I). Consequently, by Lemma 2.1 we obtain that h( fgb) ≥ h( f ) − ∣I∣ >
h( f ) − dQ > Ad − dQ. By our choice of Q and Ω, and from (4.6) and (6.2), we have

0 < Q < Ω <
h( fgb) ⋅ (log 2)d

2d−1(d − 1)d!
≤

gd( fgb)
2d−1(d − 1)

.

herefore, with these notations we have by Lemma 4.6 that

∑
k∈(Z/qZ)n

FI(k;u)e(b(k) ⋅m/q) = ∑
s∈(Z/qZ)n−∣I∣

e(gb(s) ⋅m/q)

= qn−∣I∣E(gb , q;m/q) ≪ qn−∣I∣−Q .

hus, we obtain

∑
u∈(Z/pt−1Z)∣I∣

∑
k∈(Z/qZ)n

FI(k;u)e(b(k) ⋅m/q) ≪ (pt−1
)
∣I∣qn−∣I∣−Q

≤ qn−Q .

Consequently, combining the two cases ∣I∣ ≥ tQ and ∣I∣ < tQ, we obtain S̃m ,q ≪ qn−Q

when t ≤ d.
We now consider the case q = pt when t > d. By the deûnition of S̃m ,q , we have

S̃m ,q = ∑
k′∈Un

p

∑
s∈(Z/pt−1Z)n

e(b(k′ + ps) ⋅m/q)(6.6)

= ∑
k′∈Un

p

∑
s∈[0,pt−1)n

e(b(k′ + ps) ⋅m/q).

For each ûxed k′ ∈ Un
p , we have b(k′ + ps) = pd f (s) + χp ,k′(s), where χp ,k′(x) is

a polynomial of degree at most d − 1 and its coeõcients depend on p and k′. We
apply Corollary 4.4 with rd = 1, ψ(x) = f (x) + 1

pd χp ,k′(x), α = m/pt−d ,B = [0, 1)n ,
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and P = pt−1. Let ε′ > 0 be suõciently small. Recall from (6.1) that our choice of
Q > 0 satisûes

Q ⋅
2d−1

gd( f )
< 1.

Let γd and γ′d be as in the paragraph before Corollary 4.4 with f = { f } and rd = 1.
Suppose the alternative (ii) of Corollary 4.4 holds. hen we know there exists n0 ∈ N
such that n0 ≪ (pt−1 − 1)Qγd+ε′ and

(6.7) ∥n0(m/pt−d
)∥ ≪ (pt−1

− 1)−d+Qγd+ε′ ≤ (
1
2
pt−1

)
−d+Qγd+ε′

.

However, this is not possible once pt is suõciently large with respect to n, d , ε′ ,Q,
and f , for the following reason. First note that n0 cannot be divisible by pt−d for pt

suõciently large because Qγd + ε′ < Qγ′d < 1. Since n0 ∈ N is not divisible by pt−d

and (m, p) = 1, we have

∥n0(m/pt−d
)∥ ≥

1
pt−d ,

which contradicts (6.7) for pt suõciently large. hus by Corollary 4.4, we can bound
the inner sum of (6.6) by

∑
s∈[0,pt−1)n

e(( f (s) + 1
pd
χp ,k′(s)) ⋅m/pt−d

) ≪ (pt−1
)
n−Q ,

where the implicit constant depends at most on n, d , ε′ ,Q, and f . herefore, we can
bound (6.6) as follows

S̃m ,q ≤ ∑
k′∈Un

p

∣ ∑
s∈[0,pt−1)n

e(( f (s) + 1
pd
χp ,k′(s)) ⋅m/pt−d

) ∣

≪ pn
(pt−1

)
n−Q

= pQqn−Q . ∎

For each prime p, we deûne µ(p) = 1 + ∑∞
t=1 B(pt), which converges absolutely

provided that h( f ) > Ad , as we see in the following lemma. As stated in [2], by
following the outline of L. K. Hua [3, Chapter VII, §2, Lemma 8.1] one can show that
B(q) is a multiplicative function of q. herefore, we consider the following identity

(6.8) S(∞) ∶= lim
N→∞

S(N) = ∏
p prime

µ(p).

Lemma 6.4 here exists δ1 > 0 such that for each prime p, we have µ(p) = 1 +
O(p−1−δ1), where the implicit constant is independent of p. Furthermore, we have
∣S(N) −S(∞)∣ ≪ (logN)−Cδ2 for some δ2 > 0.

herefore, the limit in (6.8) exists, and the product in (6.8) converges. We leave
the details that these two quantities are equal to the reader.

Proof Recall that our choice of Q satisûes Q > 4. Let ε0 > 0 be suõciently small
such that Q̃ = Q − ε0 > 4 ≥ 2d/(d − 1). We substitute Q = Q̃ + ε0 into the bounds in
Lemma 6.3. It is then clear that we can assume that the implicit constant in Lemma 6.3
is 1 for p suõciently large with the cost of using Q̃ in place of Q. For any t ∈ N, we
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know that ϕ(pt) = pt(1 − 1/p) ≥ 1
2 p

t . herefore, by considering the two cases as in
Lemma 6.3, we obtain

∣µ(p) − 1∣ ≪ ∑
1≤t≤d

pt p−nt pnt−tQ̃
+∑

t>d
pt p−nt pQ̃+nt−tQ̃

≪ p1−Q̃
+ pQ̃ p−(d+1)(Q̃−1)

≪ p−1−δ1 ,

for some δ1 > 0. We note that the implicit constants in≪ are independent of p here.
Let q = pt1

1 ⋅ ⋅ ⋅ ptv
v be the prime factorization of q ∈ N. Without loss of generality,

suppose we have t j ≤ d (1 ≤ j ≤ v0) and t j > d (v0 < j ≤ v). By the multiplicativity of
B(q), it also follows from Lemma 6.3 that

B(q) = B(pt1
1 ) ⋅ ⋅ ⋅B(p

tv
v ) ≪ q1−Q̃

⋅ (
v
∏

j=v0+1
pQ̃

j ) ≤ q1−Q̃
⋅ qQ̃/d

≤ q−1−δ2 ,

for some δ2 > 0. We note that the implicit constant in ≪ is independent of q here,
because the implicit constant in Lemma 6.3 is 1 for p suõciently large, as mentioned
above. herefore, we obtain

∣S(N) −S(∞)∣ ≤ ∑
q>(log N)C

∣B(q)∣ ≪ ∑
q>(log N)C

q−1−δ2 ≪ (logN)
−Cδ2 . ∎

Let νt(p) denote the number of solutions x ∈ (Upt)n to the congruence

b(x) ≡ 0 (mod pt
).

It can be deduced that

1 +
t

∑
j=1
B(p j

) =
1

ϕ(pt)n ∑
k∈(Upt )

n
∑

m∈Z/ptZ
e(b(k) ⋅m/pt

) =
pt

ϕ(pt)n νt(p).

herefore, provided h(b) > Ad , we obtain

µ(p) = lim
t→∞

ptνt(p)
ϕ(pt)n .

At this point we refer the reader to [2, p. 704, 736] to conclude that µ(p) > 0 if
the equation b(x) = 0 has a non-singular solution in Z×p , the units of p-adic in-
tegers. It then follows from Lemma 6.4 that if the equation b(x) = 0 has a non-
singular solution in Z×p for every prime p, then ∏p prime µ(p) > 0. Finally, we let
Cb = µ(∞)∏p prime µ(p), and heorem 1.1 follows as a consequence of Lemmas 6.2
and 6.4 and Proposition 5.1.
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