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Abstract

On a compact Lie group G of dimension n, we study the Bochner–Riesz mean S α
R( f ) of the Fourier

series for a function f . At the critical index α = (n − 1)/2, we obtain the convergence rate for S (n−1)/2
R ( f )

when f is a function in the block-Sobolev space. The main theorems extend some known results on the
m-torus Tm.
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1. Introduction

Let Tm be the m-dimensional torus and let [−1/2, 1/2)m be the fundamental cube of
Tm. For f ∈ L1(Tm),

f (x) ∼
∑
k∈Zm

f̂ (k) exp(2πi〈k, x〉)

denotes the (formal) Fourier series of f , where

f̂ (k) =

∫
Tm

f (x) exp(−2πi〈k, x〉) dx

is the kth Fourier coefficient of f , 〈k, x〉 is the inner product of vectors k = (k1, . . . , km)
and x = (x1, . . . , xm). For α ≥ 0 and R > 0, the Bochner–Riesz mean of order α of the
Fourier series of f in [3] is defined as

S α
R( f )(x) =

∑
|k|<R

(
1 −
|k|2

R2

)α
f̂ (k) exp(2πi〈k, x〉), R > 1.

The research was supported by National Natural Science Foundation of China (grant nos. 11671363,
11871436, 11871108, 11971295) and Natural Science Foundation of Shanghai (no. 19ZR1417600).
c© 2020 Australian Mathematical Publishing Association Inc.

176

https://doi.org/10.1017/S1446788719000430 Published online by Cambridge University Press

http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1446788719000430&domain=pdf
https://doi.org/10.1017/S1446788719000430


[2] Bochner–Riesz means on block-Sobolev spaces in compact Lie group 177

A fundamental subject of classical Fourier analysis is to study the convergence

lim
R→∞

S α
R( f )(x) = f (x) (1-1)

in various function (or distribution) spaces. In this paper, we shall concentrate on (1-1)
in the sense of almost everywhere (a.e.). We denote it as

lim
R→∞

S α
R( f )(x) = f (x), a.e.

or S α
R( f )(x)→ f (x), a.e. for simplicity of notation. The number α0 = (m − 1)/2 is

called the critical index of S α
R( f )(x), since S α

R( f )(x)→ f (x), a.e. for any f ∈ L1(Tm) if
α > α0, while there is an f ∈ L1(Tm) for which

lim sup
R→∞
|S α0

R ( f )(x)| =∞, a.e.

For the detail, the reader can see [16, Ch. 7]. Therefore, it raises an interesting problem
of looking for a suitable subspace of f ∈ L1(Tm) related to the a.e. convergence of
S α0

R ( f )(x). It is well known that the Hardy space H1 is a good substitute of L1 in
many situations. Surprisingly, Stein [14] found that there also exists an f ∈ H1(Tm) for
which lim supR→∞ |S

α0
R ( f )(x)| = ∞ holds almost everywhere. Following this project,

Fefferman [9] introduced a class of entropy J( f ) for an f ∈ L1(Tm) (for a set S ⊆
[0, 1/e], the entropy of S is defined by E(S ) = infS⊆∪Ik

∑
k |Ik|log1/|Ik|, where the

infimum is taken over all sequences of intervals Ik ⊆ [0, 1/e] which cover S . The
entropy, J( f ) of a function f , roughly speaking, is the integral of f with respect to the
set function E) and conjectured that

lim
R→∞

S α0
R ( f )(x) = f (x), a.e.

provided J( f ) < ∞. Motivated by Fefferman’s conjecture, Taibleson and Weiss [20]
further introduced the block space Bq(Tm) with 1 < q ≤ ∞, and Lu, Taibleson and
Weiss [12] then showed that limR→∞ S α0

R ( f )(x) = f (x), a.e. for any f ∈ Bq(Tm). The
theorem of Lu–Taibleson–Weiss improves Fefferman’s conjecture, since J( f ) <∞⇒
f ∈ Bq(Tm) (and more significantly (Bq)∗ = L∞), but it is not necessarily true vice versa.
Below, we shall introduce the definition of block space Bq(X) in a more general space
of homogeneous type.

Let X be a space of homogeneous type in the sense of Coifman and Weiss [6] with
metric d and measure dν. Let 1 < q ≤ ∞. A measurable function b on X is called a
q-block if there exists a positive ρ for which b satisfies

(i) the support condition: supp(b) ⊂ B(x, ρ) = {y ∈ X, d(x, y) < ρ},
(ii) the size condition: ‖b‖Lq = (

∫
X |b|

q dν)1/q ≤ |B(x, ρ)|−1+1/q.

The block space Bq(X) is the function space that consists of all functions f of the
form

f =
∑

k

ckbk with N({ck}) <∞,
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where each bk is a q-block and

N({ck}) =
∑

k

|ck|

(
1 + log

(∑
j |c j|

|ck|

))
.

Obviously, Bq(Tm) can be regarded as a special case of Bq(X).
In parallel to the Bochner–Riesz mean on the torus Tm, the Bochner–Riesz mean

S̃ α
R( f ) on the Euclidean space Rm is defined by

S̃ α
R( f )(x) =

∫
|ξ|<R

(
1 −
|ξ|2

R2

)α
f̂ (ξ) exp(2πi〈ξ, x〉) dξ,

where f̂ denotes the Fourier transform of a function f .
Lu and Wang [13] introduced the smooth block space B̃γq(Rm) in order to study the

convergence rate of S̃ α
R( f )(x). For γ ≥ 0 and 1 < q ≤ ∞, a (q, γ)-block is a function b

supported on a cube Q satisfying ‖b‖Lq
γ(Rm) ≤ |Q|

1/q−1, where Lq
γ(Rm) denotes the Bessel

potential space
Lq
γ(Rm) = { f : J−γ( f ) ∈ Lq(Rm)}

and J−γ( f ) is the Bessel potential defined via the Fourier transform

Ĵ−γ( f )(ξ) = (1 + |ξ|2γ)1/2 f̂ (ξ).

The smooth block space B̃γq(Rm) is the function space that consists of all functions f
of the form

f =
∑

k

ckbk

satisfying N({ck}) <∞, where each bk is a (q, γ)-block.
In order to study the rate of almost everywhere convergence for the Bochner–Riesz

mean on smooth functions, Lu and Wang [13] introduced two maximal functions

Mα
γ ( f )(x) = sup

R>0
Rγ|S α

R( f )(x) − f (x)|

and
M̃α

γ ( f )(x) = sup
R>0

Rγ|S̃ α
R( f )(x) − f (x)|.

In [13], the authors obtained the following two theorems.

Theorem A. Let 0 ≤ γ ≤ 2, 1 < q <∞, and

α > (m − 1)|1/q − 1/2|.

Then
‖M̃α

γ ( f )‖Lq(Rm) � ‖ f ‖Lq
γ(Rm) for f ∈ Lq

γ(Rm)

and
‖Mα

γ ( f )‖Lq(Tm) � ‖ f ‖Lq
γ(Tm) for f ∈ Lq

γ(Tm).
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Theorem B. Let 1 < q ≤ ∞ and α0 = (m − 1)/2. If f ∈ B̃1
q(Rm), then

S̃ α0
R ( f )(x) − f (x) = o(R−1) a.e. as R→∞.

The authors in [13] gave the proof of Theorem A only for M̃α
γ ( f ) and made a

remark on the boundedness of Mα
γ ( f ), see Remark 1 in [13] or [11]. Note that

Theorem B only states the result on Rm for γ = 1. The general case 0 < γ ≤ 2 in Rm was
studied in our recent paper [7]. Also, following the proof in [7], one can easily obtain
analogous results of S α0

R ( f ) on the torus Tm. We notice that Tm is a special compact
Lie group and a compact Lie group G is essentially a torus if G is abelian. Thus, it is
interesting to study the Bochner–Riesz mean on a noncommutative compact Lie group
(see [2, 5, 21, 22]). As pointed out in the final remark of [5], to study the convergence
problem of the Bochner–Riesz mean on a compact Lie group, it suffices to make the
investigation on a compact semisimple Lie group. Therefore, the main aim of this
paper is, on a compact semisimple Lie group G, to study the Bochner–Riesz means of
the Fourier series. More specifically, on G we will use a quite different method from
[13] to establish an analogy of Theorem A, and extend Theorem B to any 0 < γ ≤ 2.
A noncommutative G has a quite different structure from the torus Tm so that we
must execute some nontrivial modifications in the estimates used on the torus. To this
end, we shall adopt some basic estimates on the Bochner–Riesz mean on G obtained
in [5].

This paper is organized as follows. In Section 2 we shall introduce some necessary
notations and definitions and state our main theorems. The proofs of theorems will be
presented in Section 3. In this paper, we use the notation A � B to mean that there is
a positive constant C independent of all essential variables such that A ≤ CB. We also
use the notation A ' B if A � B and B � A.

2. Notations, definitions and main theorems

Let G denote an n-dimensional connected, simply connected, compact semisimple
Lie group with Lie algebra g and let Tm denote an m-dimensional maximal torus of G
with Lie algebra t. Let 4 = 4(gC, tC) be a system of positive roots for (gC, tC), so that
card(4) = (n − m)/2, and let δ = (

∑
a∈4 a)/2.

Let | · | be the norm of g induced by the negative of the Killing form B on gC, the
complexification of g. Notice that | · | induces a bi-invariant metric d on G. Since B|tC×tC
is nondegenerate, for any given λ ∈ (tC)∗ = HomC(tC,C), there is a unique ξλ in tC such
that λ(ξ) = B(ξ, ξλ) for each ξ ∈ tC. We shall identify elements in (tC)∗ with elements
in tC by means of this canonical isomorphism. Let 〈· , ·〉 and ‖ · ‖ be the inner product
and norm transferred from t to HomC(t, iR) by means of this canonical isomorphism.

Let Γ = {ξ ∈ t, exp ξ = e}, where e is the identity in G. The weight lattice P is defined
by

P = {λ ∈ t : 〈λ, k〉 ∈ 2πZ for any k ∈ Γ}

with dominant weights defined by

Λ = {λ ∈ P, 〈λ, a〉 ≥ 0 for any a ∈ 4}.
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With this, Λ provides a full set of parameters for the equivalence classes of unitary
irreducible representations of G: for λ ∈ Λ, the representation Uλ has dimension

dλ =
∏
a∈4

〈λ + δ, a〉
〈δ, a〉

,

and its associated character is

χλ(exp ξ) =

∑
w∈W ε(w) exp(i〈w(λ + δ), ξ〉)

D(exp(ξ))
, ξ ∈ t

where W is the Weyl group, which acts on Tm and t, ε(w) is the signature of w ∈ W,
and

D(exp(ξ)) =
∑
w∈W

ε(w) exp(i〈w(δ), ξ〉) = (2i)(n−m)/2
∏
a∈4

sin
(
〈a, ξ〉

2

)
(2-1)

is the Weyl denominator. Since |D(exp ξ)| is Γ-periodic and W-invariant, we have
|D(x)| = |D(exp ξ)| if exp ξ ∈ Tm is conjugate to x ∈ G (we shall denote x ∼ exp ξ).
By the Peter–Weyl theorem, any function f ∈ L1(G) has the formal Fourier series
expansion

f (x) ∼
∑
λ∈Λ

dλ χλ ∗ f (x).

Let Q be a fixed fundamental domain for the exponential map up to conjugacy: any
element y ∈ G is conjugate to exactly one element in exp(Q) and 0 ∈ Q.

On G, the Bochner–Riesz mean of the Fourier series is defined by (see [5,
Theorem 1])

S α
R( f )(x) =

∑
λ∈Λ

(
1 −
‖λ + δ‖2

R2

)α
+

dλ χλ ∗ f (x), R > 1,

where
‖λ + δ‖2 = 〈λ + δ, λ + δ〉, α > −1.

We can write S α
R( f ) as a convolution operator

S α
R( f )(x) = BαR ∗ f (x),

and define the associated maximal operator S α
∗ by

S α
∗ ( f )(x) = sup

R>0
|S α

R( f )(x)|,

where the kernel

BαR(x) =
∑
λ∈Λ

(
1 −
‖λ + δ‖2

R2

)α
+

dλχλ(x)

is a central kernel, that is BαR(x) = BαR(exp ξ) for any x, which is conjugate to the element
exp ξ in a fixed maximal torus of G. The Bochner–Riesz mean on G has many similar
behaviors to its counterpart on the torus Tm. The number α0 = (n − 1)/2 is the critical
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index of S α
R. When α > (n − 1)/2, Clerc [5] proved that S α

R( f )(x) converges to f (x)
almost everywhere for any f ∈ L1(G) as R→ ∞, while Chen and Fan [4] recently
showed that there exists an f ∈ L1(G) for which

lim sup
R→∞
|S (n−1)/2

R ( f )(x)| =∞, a.e.

On the other hand, being inspired by [12], Zaloznik [22] proved that S (n−1)/2
R ( f )(x)

converges to f (x) almost everywhere as R→∞ whenever f ∈ Bq(G). Based on these
observations, the main aim of this paper is to study the convergence of S α

R( f )(x) from
the view of approximation theory. Precisely, we shall investigate the relation between
the smoothness imposed on blocks and the rate of almost everywhere convergence of
the Bochner–Riesz means on compact Lie groups.

Let γ ∈ R. The fractional derivative I−γ of order γ is defined by the formal Fourier
series expansion

I−γ( f )(x) ∼
∑
λ∈Λ

‖λ + δ‖γdλχλ ∗ f (x), x ∈ G.

For a function space X, the space Iγ(X) is the space of all functions f satisfying
I−γ( f ) ∈ X. That is, f ∈ Iγ(X) if and only if I−γ( f ) ∈ X. The space Iγ(X) is called
the Sobolev space of order γ based on X (see [18, 19]). In this paper, we are mainly
concerned with spaces X = Lq(G) and X = Bq(G). We denote Iγ(Lq(G)) by L̇q

γ(G)
and Iγ(Bq(G)) by Bγq(G). The aim of the paper is to study the rate of speed for
BδR ∗ f (x) − f (x)→ 0, a.e. as R→∞ when f belongs to the spaces L̇q

γ(G) or Bγq(G).
Define the maximal function

Mα
γ ( f )(x) = sup

R>0
Rγ|BδR ∗ f (x) − f (x)|.

The following two theorems are the main results in the paper.

Theorem 2.1. Suppose that 0 ≤ γ ≤ 2, 1 < q <∞ and

α > (n − 1)|1/q − 1/2|.

If f ∈ L̇q
γ(G), then

‖Mα
γ ( f )‖Lq(G) � ‖ f ‖L̇q

γ(G).

Theorem 2.2. Let 1 < q ≤ ∞ and α0 = (n − 1)/2. If f ∈ Bγq(G) for 0 ≤ γ < 2, then

S α0
R ( f )(x) − f (x) = o(R−γ) a.e. as R→∞.

If f ∈ B2
q(G), then

S α0
R ( f )(x) − f (x) = O(R−2) a.e. as R→∞.

As a corollary of Theorem 2.1, we have the following result.
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Corollary 2.3. Let 1 < q <∞ and

α > (n − 1)|1/q − 1/2|.

If f ∈ L̇q
γ(G) for 0 ≤ γ < 2, then

S α
R( f )(x) − f (x) = o(R−γ) a.e. as R→∞.

If f ∈ L̇q
2(G), then

S α
R( f )(x) − f (x) = O(R−2) a.e. as R→∞.

Also, the saturation of S α
R is 2.

3. Proof of main theorems

Note that for f ∈ C∞(G), the function BαR ∗ f (x) − f (x) has the Fourier series

BαR ∗ f (x) − f (x) ∼
∑
λ∈Λ

((
1 −
‖λ + δ‖2

R2

)α
+

− 1
)
dλχλ ∗ f (x), R > 1.

We can view that BαR ∗ f (x) − f (x) = (S α
R − Id) f (x), where Id is the identity

operator. This says that (S δ
R − Id) is a convolution operator with the symbol m((λ +

δ)/R), where
m(λ + δ) = (1 − ‖λ + δ‖2)α+ − 1, λ ∈ Λ.

We decompose m as a sum of three subsymbols centralizing at 0, 1 and near ∞,
respectively. To this end, let Φ0,Φ1 and Φ∞ be three C∞(Rm) radial nonnegative-
valued functions satisfying

(i) Φ0(ξ) ≡ 1 on the set {ξ : |ξ| ≤ 1/4}, supp(Φ0) ⊂ {ξ : |ξ| ≤ 1/2},
(ii) Φ1(ξ) ≡ 1 on the set {ξ : 1/2 ≤ |ξ| ≤ 3/2}, supp(Φ1) ⊂ {ξ : 1/4 ≤ |ξ| ≤ 2},
(iii) Φ∞(ξ) ≡ 1 on the set {ξ : |ξ| ≥ 2}, supp(Φ∞) ⊂ {ξ : |ξ| ≥ 3/2},
(iv) Φ0(ξ) + Φ1(ξ) + Φ∞(ξ) ≡ 1.

Write µ = λ + δ. For 0 ≤ γ ≤ 2, we decompose

(1 − ‖µ‖2)α+ − 1
‖µ‖γ

=
((1 − ‖µ‖2)α+ − 1)Φ0(‖µ‖)

‖µ‖γ

+
Φ1(‖µ‖)(1 − ‖µ‖2)α+

‖µ‖γ
−

Φ1(‖µ‖) + Φ∞(‖µ‖)
‖µ‖γ

,

where if s = 0, then we define the value of ((1 − s2)α − 1)s−γ as the limit

lim
s→0+

(1 − s2)α − 1
sγ

.

For simplicity, we write Ψ∞ = −Φ1 −Φ∞. Then Ψ∞ is a C∞ function supported on the
set {ξ : |ξ| ≥ 1/4} and Ψ∞(ξ) ≡ 1 on the set {ξ : |ξ| ≥ 1/2}. Now we write the Fourier
series of Rγ(BδR ∗ f − f ) as

Tα
R,0(g) + Tα

R,1(g) + Tα
R,∞(g),
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where g = I−γ( f ) and

Tα
R,0(g) =

∑
λ∈Λ

((1 − ‖µ‖2/R2)α+ − 1)Φ0(‖µ‖/R)
(‖µ‖/R)γ

dλχλ ∗ g,

Tα
R,1(g) =

∑
λ∈Λ

Φ1(‖µ‖/R)(1 − ‖µ‖2/R2)α+
(‖µ‖/R)γ

dλχλ ∗ g,

Tα
R,∞(g) =

∑
λ∈Λ

Ψ∞(‖µ‖/R)
(‖µ‖/R)γ

dλχλ ∗ g.

We denote, for j = 0, 1,∞,
Tα
∗, j(g) = sup

R>0
|Tα

R, j(g)|.

Proof of Theorem 2.1. The result for γ = 0 is known in [5]. Thus we only need to
show the theorem for the case 0 < γ ≤ 2. To prove Theorem 2.1, it suffices to show
that under the condition of Theorem 2.1,

‖Tα
∗, j(g)‖Lq(G) ≤ C‖g‖Lq(G), j = 0, 1,∞,

where C is a constant independent of g.
Firstly, we bring the following two lemmas.

Lemma 3.1 [5, Theorem 1]. Suppose that ϕ is a function on [0,∞) satisfying |ϕ(r)| �
r−n−ε for any ε > 0. Let

φ(s) = 2π
∫ ∞

0
ϕ(r)V(m−2)/2(rs)rm−1 dr,

where and in what follows Vγ(t) = Jγ(t)/tγ and Jγ(t) is the Bessel function of order γ.
Assume that for any `, 0 ≤ ` ≤ k = (n − m)/2, φ satisfies the following condition:∣∣∣∣∣(1

s
d
ds

)`
φ(s)

∣∣∣∣∣ � s−`−m−ε.

Then

ϕR(exp ξ) =
∑
λ∈Λ

ϕ
(
‖λ + δ‖

R

)
dλχλ(exp ξ)

=
C

D(exp(ξ))
Rn

∑
η∈Γ

(∏
a∈4

〈a, ξ + η〉
)((1

s
d
ds

)k
φ
)
(R|ξ + η|).

Lemma 3.2 [16, page 155]. Suppose that f is a radial function in L1(Rm), m ≥ 2; thus,
f (x) = f0(|x|) for a.e. x ∈ Rm. Then

f̂ (ξ) = (2π)m/2
∫ ∞

0
f0(s)sm−1V(m−2)/2(2πs|ξ|) ds.
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Let ϕ be the function in Lemma 3.1. Since

φ(s) = 2π
∫ ∞

0
ϕ(r)V(m−2)/2(rs)rm−1 dr,

using the formula (see [15, page 338])

d
dt

( Jγ(t)
tγ

)
= −

Jγ+1(t)
tγ

,

then (1
s

d
ds

)`
φ(s) = (−1)`(2π)

∫ ∞

0
ϕ(r)V(m−2)/2+`(rs)rm−1+2` dr

= (−1)`(2π)1−(m+2`)/2ϕ̂(`)((2π)−1s),

where ϕ̂(`)(s) is the Fourier transform of ϕ(r) in Rm+2` at r = |y| for y ∈ Rm+2`.
Therefore, combining Lemmas 3.1 and 3.2, we obtain the following handy lemma

that will be used in our estimates.

Lemma 3.3. Suppose that ϕ is a function on [0,∞) satisfying |ϕ(r)| � r−n−ε and |ϕ̂(`)(s)|
� s−`−m−ε for any `, 0 ≤ ` ≤ k = (n − m)/2, where ε > 0 and ϕ̂(`)(s) is the Fourier
transform of ϕ(r) in Rm+2` at r = |y| for y ∈ Rm+2`. Then

ϕR(exp ξ) =
∑
λ∈Λ

ϕ
(
‖λ + δ‖

R

)
dλχλ(exp ξ)

=
C

D(exp(ξ))
Rn

∑
η∈Γ

(∏
a∈4

〈a, ξ + η〉
)
̂ϕ((n−m)/2)((2π)−1R|ξ + η|).

Note that |4| = (n − m)/2, Γ ⊂ Zm and n − |4| = (n + m)/2 > m. By Lemma 3.3, it is
easy to see that if ϕ is a radial Schwartz function on Rm,∣∣∣∣∣Rn

∑
η∈Γ\{0}

(∏
a∈4

〈a, ξ + η〉
)((1

s
d
ds

)k
φ
)
(R|ξ + η|)

∣∣∣∣∣
�

∑
η∈Γ\{0}

∏
a∈4|〈a, ξ + η〉|

|η|n
�

∑
η∈Γ\{0}

1
|η|n−|4|

= O(1),

uniformly for R > 0 and ξ ∈ Q. It yields that

ϕR(exp ξ) =
C

D(exp(ξ))
Rn

∏
a∈4

〈a, ξ〉ϕ̂( n−m
2 )((2π)−1R|ξ|) + O

( 1
|D(exp(ξ))|

)
uniformly for R > 0 and ξ ∈ Q. According to the definition of Weyl denominator
D(exp(ξ)), it is easy to see that ∏

a∈4〈a, ξ〉
D(exp(ξ))

= O(1)
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uniformly for ξ ∈ Q. Hence we know that

||ϕR| ∗ f (x)| =
∫

G
||ϕR(z)| f (xz−1)| dz

�

∫
G
|=R(z)|| f (xz−1)| dz +

1
|D|
∗ | f |(x),

where =R(z) is a central kernel satisfying

|=R(z)| � Rn| ̂ϕ((n−m)/2)((2π)−1R|ξ|)|, z ∼ exp ξ.

Now since ̂ϕ((n−m)/2) is a Schwartz function and |ξ| ' d(z, e) when |ξ| ≤ σ0 for a fixed
positive σ0, by a standard estimate,

sup
R>0
||ϕR| ∗ f (x)| � M( f )(x) +

1
|D|
∗ | f |(x),

where M( f ) is the Hardy–Littlewood maximal function of f . For more details we refer
the reader to [1]. This observation gives the following estimate for Tα

∗,1.

Proposition 3.4. Let 1 < q <∞ and α > (n − 1)|1/q − 1/2|. For any γ ≥ 0,

‖Tα
∗,1(g)‖Lq(G) ≤ C‖g‖Lq(G).

Proof. Using the Hardy–Littlewood maximal function and the known result for
Bochner–Riesz means (see [1, 5]),

‖Tα
∗,1(g)‖Lq(G) � ‖M(S α

∗ (g)‖Lq(G) +

∥∥∥∥∥ 1
|D|
∗ (S α

∗ (g))
∥∥∥∥∥

Lq(G)
� ‖g‖Lq(G).

Let dx (respectively dt) be the normalized Haar measure on G (respectively Tm).
For any central function f on G, by the Weyl integration formula,∫

G
f (x) dx =

1
|W |

∫
Tm

f (t)|D(t)|2 dt.

With this and (2-1), one can easily obtain 1/|D| ∈ L1(G). It follows from Young’s
inequality that ∥∥∥∥∥ 1

|D|
∗ (S α

∗ (g))
∥∥∥∥∥

Lq(G)
� ‖S α

∗ (g)‖Lq(G). �

To estimate Tα
∗,0, we recall that

Tα
R,0(g) = ψR ∗ g,

where

ψR(exp(ξ)) =
∑
λ∈Λ

((1 − ‖µ‖2/R2)α+ − 1)Φ0(‖µ‖/R)
(‖µ‖/R)γ

dλχλ(exp(ξ)).

For
ψ(y) = |y|−γ((1 − |y|2)α+ − 1)Φ0(y),
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we in [7, Lemma 2.2] proved that for any `,

0 ≤ ` ≤ k = (n − m)/2, |ψ̂(`)(s)| � (1 + |s|)−m−2`−2+γ

if γ < 2 and |ψ̂(`)(s)| � (1 + |s|)−m−2`−1 if γ = 2. Thus, ψ(y) satisfies all conditions in
Lemma 3.3 when γ ≤ 2. Following the same argument used in Proposition 3.4, we
have the following.

Proposition 3.5. Let 1 < q <∞. For any 0 ≤ γ ≤ 2,

‖Tα
∗,0(g)‖Lq(G) ≤ C‖g‖Lq(G).

Finally, we turn to estimate Tα
∗,∞(g). Recall that

Tα
R,∞(g) = ωR ∗ g,

where

ωR(exp(ξ)) =
∑
λ∈Λ

Ψ∞(‖µ‖/R)
(‖µ‖/R)γ

dλχλ(exp(ξ)).

Since we cannot use Lemma 3.3 directly on ωR, we choose a C∞ function Z(t) on the
interval (0,∞) with support in the interval [1, 2] and

∞∑
k=−∞

Zk(t) = 1

for all t ∈ (0,∞), where Zk(t) = Z(t/2k). By the support condition, we may write

ωR(exp(ξ)) =
∑
λ∈Λ

∞∑
k=−1

Ψ∞(‖µ‖/R)Zk(‖µ‖/R)
(‖µ‖/R)γ

dλχλ(exp(ξ)).

Note that the function Ψ∞(|y|)Zk(|y|)/|y|γ is a radial Schwartz function if k = −1. When
k ≥ 0,Ψ∞(|y|) ≡ 1 on the support of Zk(|y|). Hence, we may write

ωR(exp(ξ)) =

∞∑
k=0

(∑
λ∈Λ

Zk(‖µ‖/R)
(‖µ‖/R)γ

dλχλ(exp(ξ))
)

+ ΩR(exp(ξ)),

where
ΩR(exp(ξ)) =

∑
λ∈Λ

Ω(‖µ‖/R)dλχλ(exp(ξ))

and Ω is a radial Schwartz function. Denote

ωR,k(exp(ξ)) =
∑
λ∈Λ

Zk(‖µ‖/R)
(‖µ‖/R)γ

dλχλ(exp(ξ)).

We notice that
ωR,k(exp(ξ)) = 2−kγω2kR,0(exp(ξ)).
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For t > 0, since Z(t)/tγ is a Schwartz function, by Lemma 3.3 and the same proof of
Proposition 3.4,∥∥∥∥∥sup

R>0
|ωR,k ∗ g|

∥∥∥∥∥
Lq(G)

≤ 2−kγ
∥∥∥∥∥sup

R>0
|ωR,0 ∗ g|

∥∥∥∥∥
Lq(G)

� 2−kγ‖g‖Lq(G)

and ∥∥∥∥∥sup
R>0
|ΩR ∗ g|

∥∥∥∥∥
Lq(G)

� ‖g‖Lq(G).

By the Minkowski inequality and recalling that we assume γ > 0, we conclude that

‖Tα
∗,∞(g)‖Lq(G) ≤

∞∑
k=0

∥∥∥∥∥sup
R>0
|ωR,k ∗ g|

∥∥∥∥∥
Lq(G)

+

∥∥∥∥∥sup
R>0
|ΩR ∗ g|

∥∥∥∥∥
Lq(G)

� ‖g‖Lq(G).

The proof of Theorem 2.1 is completed. �

The proof of Corollary 2.3 follows a standard argument, we omit the details. To
show the rate O(R−2) is sharp, we consider a ‘polynomial’ P, which means

P(x) =
∑
λ∈ΛN

dλχλ ∗ P(x),

where ΛN = {λ ∈ Λ : ‖λ + δ‖ < N} for some fixed integer N. Clearly, P ∈ C∞(G). Now,
if R is sufficiently large (for instance R > 2N), with the help of Taylor’s formula

(1 − t)α − 1 = −αt + O(t2) as t→ 0,

then

R2(S α
R(P)(x) − P(x)) = R2

∑
λ∈ΛN

(
−
α‖λ + δ‖2

R2 dλχλ ∗ P(x) + O
((
‖λ + δ‖2

R2

)2))
= C∆P(x) + O(R−2),

where ∆ is the Laplacian on G. Hence we can always find a function P ∈ C∞(G) such
that it fails to have

lim
R→∞

R2(S α
R(P)(x) − P(x)) = 0 a.e. x ∈ G.

Proof of Theorem 2.2. For f ∈ Bγq(G), we need to show that for any ε > 0,∣∣∣∣∣{x ∈ G : lim sup
R→∞
|Rγ(S (n−1)/2

R f (x) − f (x))| > ε
}∣∣∣∣∣ = 0.

As in the proof of Theorem 2.1,∣∣∣∣∣{x ∈ G : lim sup
R→∞
|Rγ(S (n−1)/2

R f (x) − f (x))| > ε
}∣∣∣∣∣

=

∣∣∣∣∣{x ∈ G : lim sup
R→∞
|(T (n−1)/2

R,0 + T (n−1)/2
R,1 + T (n−1)/2

R,∞ )(g)(x)| > ε
}∣∣∣∣∣,
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where g = I−γ( f ) ∈ Bq(G). So we have the block decomposition

g(x) =

∞∑
k=1

ckbk(x),

where each bk is a q-block and N({ck}) <∞. Let ε > 0, and choose a sufficiently large
N = N(ε) such that

∞∑
k=N+1

|ck|

(
1 + log

∑
j |c j|

|ck|

)
< ε2.

Rewrite g as

g(x) =

∞∑
k=1

ckbk(x) =

N∑
k=1

ckbk(x) +

∞∑
k=N+1

ckbk(x) = g1(x) + g2(x).

For any fixed N, it is easy to check that g1 is an Lq function. Hence for any fixed β > 0,
Corollary 2.3 implies∣∣∣∣∣{x ∈ G : lim sup

R→∞
|(T (n−1)/2

R,0 + T (n−1)/2
R,1 + T (n−1)/2

R,∞ )(g1)(x)| > β/2
}∣∣∣∣∣ = 0.

If we can prove there is a constant C independent of any q-block b such that∣∣∣∣∣{x ∈ G : sup
R>0
|(T (n−1)/2

R,0 + T (n−1)/2
R,1 + T (n−1)/2

R,∞ )(b)(x)| > β/2
}∣∣∣∣∣ ≤ C/β

then for any ε > 0, by the Stein–Weiss formula [17]∣∣∣∣∣{x ∈ G : lim sup
R→∞
|(T (n−1)/2

R,0 + T (n−1)/2
R,1 + T (n−1)/2

R,∞ )(g2)(x)| > ε/2
}∣∣∣∣∣

� ε−1
∞∑

k=N+1

|ck|

(
1 + log

∑
j |c j|

|ck|

)
< ε.

Thus it remains to show that for any β > 0, the following the weak type inequality∣∣∣∣∣{x ∈ G : sup
R>0
|T (n−1)/2

R, j (b)(x)| > β
}∣∣∣∣∣ ≤ C/β for j = 0, 1,∞,

holds for any q-block b.
Without loss of generality, assume that b is supported in a ball B centered at I, the

identity of G. Let |B| be the volume of B. If β > 1/|B|, by Theorem 2.1,∣∣∣∣∣{x ∈ G : sup
R>0
|(T (n−1)/2

R,0 + T (n−1)/2
R,1 + T (n−1)/2

R,∞ )(b)(x)| >
β

2

}∣∣∣∣∣ � (
‖b‖Lq(G)

β

)q
�

1
β
.

Let B∗ = 2nB, where 2nB denotes the ball concentric with B whose radius is 2n times
the radius of B. If β ≤ 1/|B|, then it suffices to show that for j = 0, 1,∞,∣∣∣∣∣{x < B∗ : sup

R>0
|T (n−1)/2

R, j (b)(x)| > β
}∣∣∣∣∣ ≤ C/β.
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Recalling the proof of Theorem 2.1, we know that for j = 0,∞,

sup
R>0
|T (n−1)/2

R, j (b)(x)| � M(b)(x) +
1
|D|
∗ |b|(x),

and we obtain the weak (1, 1) inequality∣∣∣∣∣{x < B∗ : sup
R>0
|T (n−1)/2

R, j (b)(x)| > λ
}∣∣∣∣∣ � ‖b‖L1/β � |B|1−1/q‖b‖q/β � 1/β,

for j = 0,∞, where we have used Hölder’s inequality and the size estimate of the
atom b.

Our final step is to show∣∣∣∣∣{x < B∗ : sup
R>0
|T (n−1)/2

R,1 (b)(x)| > β
}∣∣∣∣∣ � ‖b‖L1/β.

Recall that

T (n−1)/2
R,1 (b)(x) =

∑
λ∈Λ

Φ1(‖µ‖/R)(1 − ‖ µ ‖2/R2)(n−1)/2
+

(‖µ‖/R)γ
dλχλ ∗ b(x)

= =R ∗ b(x),

where

=R(x) =
∑
λ∈Λ

Φ1(‖µ‖/R)(1 − ‖ µ ‖2/R2)(n−1)/2
+

(‖µ‖/R)γ
dλχλ(x).

In order to apply Lemma 3.3, we need to check the Fourier transforms of =̂(`), 0 ≤ ` ≤
(n − m)/2, for the radial function

=(|y|) = |y|−γΦ1(|y|)(1 − |y|2)(n−1)/2
+ .

Next we will prove that the estimate

|=̂(`)(s)| � (1 + |s|)−m−2` (3-1)

holds for s ∈ R and 0 ≤ ` ≤ k = (n − m)/2.
Note that the Fourier transform of |y|−γΦ1(|y|) is a Schwartz function, and it will

be denoted by Θ(2πξ). Let u(y) = (1 − |y|2)(n−1)/2
+ , y ∈ Rm+2`. Using the result in [16,

Theorem 4.15, page 171], we see that

û(ξ) = Cn,m,`V(m+2`+n−1)/2(2π|ξ|),

where Cn,m,` = 2(m+2`+n−1)/2π(m+2`)/2Γ((n + 1)/2) and Γ(·) is the gamma function. Thus
we may write

=̂(`)(s) = Cn,m,`(V(m+2`+n−1)/2 ∗ Θ)(2πx)

= Cn,m,`

∫
Rm+2`

V(m+2`+n−1)/2(|2πx − z|)Θ(z) dz

= (2π)nCn,m,`

∫
Rm+2`

V(m+2`+n−1)/2(2π|x − y|)Θ(2πy) dy,

where s = |x|.
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Applying the property of the Bessel function (see [10, Appendix B]), we have
V(m+2`+n−1)/2(z) = O(1) for all z ∈ C. Then∣∣∣∣∣∫

Rm+2`
V(m+2`+n−1)/2(2π|x − y|)Θ(2πy) dy

∣∣∣∣∣ � ∫
Rm+2`
|Θ(y)| dy � 1

for |x| ≤ 10.
For |x| ≥ 10, we write∫

Rm+2`
V(m+2`+n−1)/2(2π|x − y|)Θ(2πy) dy

=

(∫
|y|/2≤|x|≤2|y|

+

∫
|x|<|y|/2

+

∫
|x|>2|y|

)
V(m+2`+n−1)/2(2π|x − y|)Θ(2πy) dy.

Since ψ is a Schwartz function,∣∣∣∣∣∫
|y|/2≤|x|≤2|y|

V(m+2`+n−1)/2(2π|x − y|)Θ(2πy) dy
∣∣∣∣∣ � ∫

|x|/2≤|y|≤2|x|
|Θ(2πy)| dy

� |x|−N

for any positive integer N.
By the asymptotic behavior of the Bessel function Jv(r) as r→∞ (see [16, Lemma

3.11, page 158] or [8, Proposition 5.1, page 93]), we know that

|V(m+2`+n−1)/2(|y|)| � |y|−(m+2`+n)/2.

Noting that |x| < |y|/2, we have |x − y| ' |y|. Since n ≥ 2` + m,∣∣∣∣∣∫
|x|<|y|/2

V(m+2`+n−1)/2(2π|x − y|)Θ(2πy) dy
∣∣∣∣∣

�

∫
|y|>2|x|

|x − y|−(m+2`+n)/2|Θ(2πy)| dy

�

∫
|y|>2|x|

|y|−(m+2`+n)/2|Θ(2πy)| dy

�

∫
|y|>2|x|

|y|−m−2`|Θ(2πy)| dy

≤ |2x|−m−2`
∫
|y|>2|x|

|Θ(2πy)| dy

� |x|−m−2`.

Similarly, ∣∣∣∣∣∫
|x|>2|y|

V(m+2`+n−1)/2(2π|x − y|)Θ(2πy) dy
∣∣∣∣∣ � |x|−m−2`.

Combining all the estimates, we prove that (3-1) holds.
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Hence it follows from Lemma 3.3 that for xz−1 ∼ exp ξ,

=R(xz−1) = O(Rnϕ̂(n)((2π)−1R|ξ|)) +
1

|D(exp(ξ))|

= O(|ξ|−n) +
1

|D(exp(ξ))|
.

For x < B∗ and z ∈ B, we have |ξ| ' d(xz−1, I) = d(x, z) ≥ d(x, I)/2. Thus for x < B∗,

|T (n−1)/2
R,1 (b)(x)| =

∣∣∣∣∣∫
B
=R(xz−1)b(y) dy

∣∣∣∣∣ � ∣∣∣∣∣ 1
|D|
∗ b(x)

∣∣∣∣∣ + d(x, I)−n
∫

B
|b(z)| dz

�

∣∣∣∣∣ 1
|D|
∗ b(x)

∣∣∣∣∣ + d(x, I)−n‖b‖L1 .

It then easily yields the desired inequality∣∣∣∣∣{x < B∗ : sup
R>0
|T (n−1)/2

R,1 (b)(x)| > β
}∣∣∣∣∣ � 1/β.

Theorem 2.2 is proved. �
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