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The new reliability notion describing the remaining lifetime is introduced for items with
monotonically increasing degradation. We consider the remaining lifetime of an item (to
be called, the predicted remaining lifetime) after its degradation reaches the predeter-
mined level. The prediction is executed at inception of an item into operation. For the
nonhomogeneous stochastic processes of degradation, this characteristic depends on the
random first passage time of a degradation process. Some properties of the predicted
remaining lifetime and the corresponding stochastic comparisons are discussed for items
from homogeneous and heterogeneous populations, and a generalization to the case of the
n-component coherent system is outlined. The problem of regime switching is described,
and the new notion of the corresponding virtual age after the switching is proposed.
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1. INTRODUCTION

1.1. Background and Setting

Let T be a lifetime of an item/system described by the Cdf F (t): F̄ (t) ≡ 1 − F (t). The
conventional remaining lifetime for a system that was incepted into operation at t = 0 and
did not fail in [0, y), Uy is described by the following survival function:

P (Uy > t) = F (t|y) =
P (T − y > t)

P (T > y)
=

F̄ (t + y)
F̄ (y)

. (1)

This is one of the main classic reliability characteristics. Its properties in various settings
and applications are widely studied in the literature. The remaining lifetime and the mean
remaining lifetime play a pivotal role in demography, survival analysis and reliability studies.
One of the recent meaningful extensions of this notion is due to considering the time y in
(1) as a random variable Y, which happens in many applications. Then, obviously, (1) turns
to

P (UY > t) =
P (T − Y > t)

P (T > Y )
=

∫ ∞
0

F̄ (y + t)fY (y)dy∫ ∞
0

F̄ (y)fY (y)dy
,
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or

P (UY > t) = P (T − Y > t|T > Y ) =
∫ ∞

0

P (T − Y > t|T > Y, Y = y)
F̄ (y)fY (y)
P (T > Y )

dy

=
∫ ∞

0

F̄ (t + y)
F̄ (y)

F̄ (y)fY (y)∫ ∞
0

F̄ (u)fY (u)du
dy, (2)

where fY ( ·) is the pdf of Y. Stochastic properties of UY including the relevant stochastic
comparisons were studied, for example, in Yue and Cao [19], Li and Zuo [12], Nanda and
Kundu [15], and Cai and Zheng [2]. Other generalizations of the residual lifetime and the
relevant analysis and comparisons can also be found in Li and Fang [10], Li and Lu [11],
and Misra et al. [14]. Thus, in (2), by “averaging” P (Uy > t) in (1) with respect to the
conditional distribution of (Y |T > Y ), we make a prediction for the remaining lifetime of
an item after Y on condition that it was operable at Y.

Another relevant model with numerous practical applications in reliability and demog-
raphy has been also developed. This model describes the situation when an item that starts
operating at t = 0 has already the initial age Y (see Finkelstein and Vaupel [7], Cha and
Finkelstein [3,4], and Hazra et al. [8]). Stochastic analyses in these papers relied on the
notion of an equilibrium distribution widely used in various branches of stochastics, for
example, in describing limiting distributions of the excess and waiting times for renewal
processes. The equilibrium distribution in the described context is defined as the distribu-
tion that is the same for the initial age and the remaining lifetime. Specifically, its pdf takes
a very simple but meaningful form

fe(t) =
F̄ (t)∫ ∞

0
F̄ (u)du

. (3)

It can be also shown that the latter random age model is more general, as it reduces to
(2) for the specifically chosen distribution of initial age [8].

The information on the dynamic performance of an item for defining the remaining
lifetimes in the above models was binary: either an item is operating or it has failed. However,
many real systems are characterized by the observed, monotonically increasing stochastic
degradation, which results in the failure upon reaching a threshold. Thus, at time t, we
observe the degradation of the operating item and are interested in the remaining lifetime.
The first guess would be that for the given threshold level, we do not need the time of
observation, as only the accumulated degradation matters. However, this is true only for
the homogeneous processes of deterioration, whereas for the nonhomogeneous processes, the
future (and, specifically, the remaining lifetime) will depend on time.

More specifically, at the time of inception of an item into operation, or even on the
design stage, we are interested in predicting the remaining lifetime after reaching some
predetermined level of degradation. This is, in fact, similar to the conventional remaining
lifetime defined in (1), or the generalized one in (2). The difference is that we do not need
the similar conditioning now, as the predetermined level of degradation is obviously smaller
than the deterministic degradation threshold. Another crucial distinction, as mentioned, is
that in our specific, degradation-wise setting, the remaining lifetime does not depend on Y
for the homogeneous process of degradation. On the other hand, as it will be shown, for the
nonhomogeneous degradation processes, this remaining lifetime will depend on the random
time of accumulating the specified degradation only through the corresponding degradation
rate (which is, obviously, constant for homogeneous processes). Thus, for the latter case,
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the random time to reach the specified level of degradation should be “integrated out”
to end up in the predicted remaining lifetime (PRL), as we define this term. The more
appropriate term would be probably the “expected remaining lifetime”, however, this can
create a confusion with the mean remaining lifetime defined as the expectation of Uy in (1).

A practically important application of the described setting is when we consider the
remaining lifetime at inception into operation of a used item with the observed level of
degradation. In this sense, the PRL can be loosely considered as the degradation-wise version
of remaining lifetimes in Cha and Finkelstein [3,4] and Hazra et al. [8]. The setting with the
used items will be especially relevant in practice for the n-component system considered in
Section 4.

As degradation of items depends on the severity of an environment/regime, it is natural
to model a change in the PRL after the switch of regimes. This is somehow related to
the cumulative exposure model and similar principles used in accelerated life testing [16].
However while dealing with this problem, a new, specific notion of a random virtual age
will be also introduced.

1.2. Preliminaries

Assume that the observable (continuously monitored or only at failure) internal deteriora-
tion process {Wt, t ≥ 0}, W0 = 0, describes the deterioration of an item/system. Assume
that it has independent increments and is characterized by the monotonically increasing
sample paths. A failure occurs when the process reaches the deterministic level w. Then,
the lifetime of a system, T, can be described by the following survival function:

P (T > t) ≡ F̄ (t, w) = P (Wt ≤ w). (4)

Note that, for the fixed t, F̄ (t, w) is, in fact, the Cdf (as a function of w) of a random
variable Wt, whereas it is the survival function of a random variable T for the fixed w. We
assume that P (T > t) in (4) is an absolutely continuous distribution with respect to t for
each fixed w. In accordance with (1), denote the Cdf F (t, w) = 1 − F̄ (t, w) = P (Wt > w).

For degrading systems, it is natural to obtain the remaining lifetime after degradation
of a system reaches a certain level as this information can be used for an efficient operation
of the system. For example, based on this information, one can schedule a preventive main-
tenance. Denote this level of degradation for the described system by w̃, 0 < w̃ < w. For
the homogeneous {Wt, t ≥ 0}, the remaining lifetime is, obviously, defined by the following
survival function:

F̄ (t, w − w̃) = P (Wt ≤ w − w̃), (5)

whereas for the nonhomogeneous process, it already matters at what time degradation w̃
was accumulated.

Denote the random time to reach the degradation level w̃ by Vw̃. It follows from (4)
that its Cdf for the fixed w̃ is given byF (t, w̃) = 1 − F̄ (t, w̃). Thus, the predicted remaining
lifetime (PRL) Lw̃ in this case is defined by the following survival function:

P (Lw̃ > t) ≡ F̄ ∗(t, w, w̃) =
∫ ∞

0

P (Wx+t − Wx ≤ w − w̃)f(x, w̃)dx, (6)

where f(x, w̃) = (∂/∂x)F (x, w̃). For convenience, we will omit “predicted” where appropri-
ate in what follows.

We will call Vw̃ the virtual age (to reach degradation w̃) as opposed to the “observed”
calendar age which is a realization of Vw̃. Note that, this is a different notion than that
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employed in the imperfect repair modeling [5,9]. Moreover, as mentioned in the Introduction,
this setting can be interpreted for a used item having a degradation level w̃ at inception
into operation at t = 0. Then, its virtual age Vw̃ at t = 0 is also defined as a random time
to accumulate w̃ under the same static regime/stress it will operate in t > 0.

Let us consider now items from a heterogeneous population composed of homogeneous
subpopulations defined via the continuous frailty variable Z with the corresponding pdf
π(z), z ∈ [0,∞) (see, e.g., Finkelstein and Cha [6]). Thus, for given Z = z, the conditional
distributions are indexed in the following way:

P (T > t|Z = z) ≡ F̄z(t, w) = P (Wt ≤ w|Z = z), (7)

which is assumed to be an absolutely continuous distribution with respect to t for each
fixed w and given z. In accordance with this description, denote by W z

t the degradation in
a subpopulation with Z = z is, that is,

W z
t =D(Wt|Z = z), (8)

where “=D” stands for the equality in distribution. For the homogeneous processes {W z
t , t ≥

0}, the remaining population lifetime is, obviously, defined by the following mixed survival
function: ∫ ∞

0

F̄z(t, w − w̃)π(z)dz =
∫ ∞

0

P (Wt ≤ w − w̃|Z = z)π(z)dz,

whereas for the nonhomogeneous processes, taking into account (6), it is defined as

P (Lw̃ > t) ≡ F̄ ∗(t, w, w̃) =
∫ ∞

0

∫ ∞

0

P (W z
x+t − W z

x ≤ w − w̃)f(x, w̃|z)π(z)dxdz, (9)

where f(x, w̃|z) = (∂/∂x)Fz(x, w̃) and Fz(x, w̃) = 1 − F̄z(t, w̃).

2. COMPARING LIFETIMES FOR TWO REGIMES

Consider now two lifetimes T1 and T2 that are defined by the corresponding deterioration
processes {W1,t, t ≥ 0} and {W2,t, t ≥ 0} with the same failure threshold and assume that
degradation in one process is more intensive than that in the other in the sense of the usual
stochastic ordering, that is, W1,t≤stW2,t for all t ≥ 0. This means that

F̄1(t, w̃) = P (W1,t ≤ w̃) ≥ P (W2,t ≤ w̃) = F̄2(t, w̃) (10)

for all t and w̃, 0 < w̃ ≤ w. We assume that distributions in (10) are absolutely continuous
with respect to t for each fixed w̃. When w̃ = w, it follows from (4) and (10) that the
corresponding lifetimes are ordered in the sense of the usual stochastic ordering, that is,
T1≥stT2. Due to our definition of a virtual age, it means that the corresponding virtual ages
are also ordered in the same sense

V1,w̃≥stV2,w̃. (11)

The following result for the predicted remaining lifetimes with the more specific
assumptions can be also proved:

Proposition 1. Let W1,x+t − W1,x≤stW2,x+t − W2,x for all x ≥ 0, t > 0, and W2,x+t −
W2,x is stochastically decreasing in x in the sense of the usual stochastic order for all fixed
t > 0. Then,

F̄ ∗
1 (t, w, w̃) ≥ F̄ ∗

2 (t, w, w̃), for all t > 0,

where F̄ ∗
1 (t, w, w̃) and F̄ ∗

2 (t, w, w̃), in accordance with the definition (4), are the survival
functions of the expected remaining lifetimes for the first and the second items.
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Proof:

F̄ ∗
1 (t, w, w̃) =

∫ ∞

0

P (W1,x+t − W1,x ≤ w − w̃)f1(x, w̃)dx

≥
∫ ∞

0

P (W2,x+t − W2,x ≤ w − w̃)f1(x, w̃)dx

≥
∫ ∞

0

P (W2,x+t − W2,x ≤ w − w̃)f2(x, w̃)dx = F̄ ∗
2 (t, w, w̃)

The first inequality holds due to the assumption that W1,x+t − W1,x≤stW2,x+t − W2,x,
for all x ≥ 0, t > 0, and the second inequality holds due to (10) and W2,x+t − W2,x is
stochastically decreasing in x in the usual stochastic order sense for all fixed t > 0.

Indeed, integrating by parts:
∫ ∞

0

P (W2,x+t − W2,x ≤ w − w̃)(f1(x, w̃) − f2(x, w̃))dx

= −
∫ ∞

0

∂

∂x
P (W2,x+t − W2,x ≤ w − w̃)(F1(x, w̃) − F2(x, w̃))dx ≥ 0,

where f1(x, w̃) = ∂
∂xF1(x, w̃), f2(x, w̃) = ∂

∂xF2(x, w̃). �

Example 1: Consider two nonhomogeneous Gamma processes with (α1(t), λ1) and
(α2(t), λ2) as the shape function (increasing and αi(0) = 0) and the scale parameter, accord-
ingly. It follows, for example, from Noortwijk [18] that the survival function for an increment
of this process is given by

P (Wi,x+t − Wi,x ≤ w − w̃) = 1 − Γ((αi(t + x) − αi(x)), λi(w − w̃))
Γ(αi(t + x) − αi(x))

, i = 1, 2, (12)

where Γ(b) =
∫ ∞
0

zb−1 exp{−z}dz, Γ(b, x) =
∫ ∞

x
zb−1exp{−z}dz, b > 0, λ > 0.

Specifically, when x = 0, w̃ = 0,

P (Wi,t ≤ w) ≡ F̄i(t, w) = 1 − Γ((αi(t), λiw)
Γ(αi(t))

=
∫ w

0

1
Γ(αi(t))

λi
αi(t)xα1(t)−1exp(−λix) dx, i = 1, 2.

(13)

Let α1(x + t) − α1(x) ≤ α2(x + t) − α2(x) for all x ≥ 0, t > 0, and λ1 ≥ λ2, and α2(t)
is concave. Then, F̄1(t, w̃) ≥ F̄2(t, w̃), for all t > 0. Indeed, consider the ratio of the pdfs of
W1,x+t − W1,x and W2,x+t − W2,x, that is,

Γ(α2(x + t) − α2(x))
Γ(α1(x + t) − α1(x))

λ1
α1(x+t)−α1(x)

λ2
α2(x+t)−α2(x)

u(α1(x+t)−α1(x))−(α2(x+t)−α2(x))exp{−(λ1 − λ2)u},

which is decreasing in u due to assumptions: α1(x + t) − α1(x) ≤ α2(x + t) − α2(x), x ≥
0, t > 0 and λ1 ≥ λ2. Thus, W1,x+t − W1,x≤lrW2,x+t − W2,x and, accordingly, W1,x+t −
W1,x≤stW2,x+t − W2,x, for all x ≥ 0, t > 0. Furthermore, as α2(t) is concave, it can
be shown that W1,x2+t − W1,x2≤lrW2,x1+t − W2,x1 , for x1 < x2, which also implies that
W2,x+t − W2,x is stochastically decreasing in x in the usual stochastic order for all fixed
t > 0.

https://doi.org/10.1017/S0269964821000097 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964821000097


ON DEGRADATION-BASED REMAINING LIFETIME 817

Following our discussion in the previous section, compare now predicted remain-
ing lifetimes for items from two heterogeneous populations. Let these populations be
described by the degradation processes {W1,t, t ≥ 0} and {W2,t, t ≥ 0} and the continu-
ous frailty variables Z1 and Z2 with the corresponding pdfs π1(z) andπ2(z), respectively.
Then, the conditional lifetimes T1 and T2 for the same failure threshold w are specified,
similar to (7), as

P (Ti > t|Zi = z) ≡ F̄i,z(t, w) = P (Wi,t ≤ w|Zi = z), i = 1, 2.

We assume that the distributions F̄i,z(t, w), i = 1, 2, are absolutely continuous with
respect to t for each fixed w and given z.

Similar to (8), denote

W z
i,t=D(Wi,t|Zi = z), i = 1, 2.

Proposition 2. Let

(i) W z
1,x+t − W z

1,x≤stW
z
2,x+t − W z

2,x, for all x ≥ 0, t > 0, for each fixed z,
(ii) W z1

1,x+t − W z1
1,x≤stW

z2
1,x+t − W z2

1,x, for z1 < z2, for all x ≥ 0, t > 0,
(iii) W z

i,x+t − W z
i,x is stochastically decreasing in x in the sense of the usual stochastic

order for all fixed t > 0, for each fixed z, i = 1, 2,
(iv) Z1<stZ2.

Then,
F̄ ∗

1 (t, w, w̃) ≥ F̄ ∗
2 (t, w, w̃), for all t > 0.

where F̄ ∗
1 (t, w, w̃) and F̄ ∗

2 (t, w, w̃) are the survival functions of the predicted remaining
lifetimes for the items in the first and the second populations.

Proof: Define the conditional survival functions of the expected remaining lifetimes L1w̃

and L2w̃ for the first and the second populations as

P (Liw̃ > t|Zi = z) ≡ F̄ ∗
i (t, w, w̃|z) =

∫ ∞

0

P (W z
i,x+t − W z

i,x ≤ w − w̃)fi(x, w̃|z)dx, i = 1, 2,

where fi(x, w̃|z) = (∂/∂x)Fi,z(x, w̃) and Fi,z(x, w̃) = 1 − F̄i,z(t, w). Denote by V z
1,w̃ and V z

2,w̃

the corresponding virtual ages for subpopulations with the following Cdfs

P (V z
i,w̃ ≤ x) ≡ P (Vi,w̃ ≤ x|Zi = z) = P (Wi,x > w̃|Zi = z) = 1 − F̄i,z(x, w̃) = Fi,z(x, w̃), i = 1, 2.

Then, due to the assumption (i), V z
1,w̃≥stV

z
2,w̃, and, by assumptions (i), (iii) and by the

similar arguments stated in the proof of Proposition 1, it can be shown that

F̄ ∗
1 (t, w, w̃|z) ≥ F̄ ∗

2 (t, w, w̃|z), for all t, z ≥ 0.

Furthermore, for z1 < z2, due to assumption (ii), it obviously holds that V z1
1,w̃≥stV

z2
1,w̃.

By assumptions (ii), (iii) and again by the similar arguments stated in the proof of Proposi-
tion 1, it can be shown that F̄ ∗

1 (t, w, w̃|z1) ≥ F̄ ∗
1 (t, w, w̃|z2), for z1 < z2, which implies that

F̄ ∗
1 (t, w, w̃|z) is decreasing in z. Then,

P (L2w̃ > t) = F̄ ∗
2 (t, w, w̃) =

∫ ∞

0

F̄ ∗
2 (t, w, w̃|z)π2(z)dz

≤
∫ ∞

0

F̄ ∗
1 (t, w, w̃|z)π2(z)dz ≤

∫ ∞

0

F̄ ∗
1 (t, w, w̃|z)π1(z)dz =F̄ ∗

1 (t, w, w̃) = P (L1w̃ > t),

where, in the last inequality, similar to the proof of Proposition 1, the fact that F̄ ∗
1 (t, w, w̃|z)

is decreasing in z and assumption (iv) are applied. �
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Comparing the operation of two items characterized by different degradation processes
can also help in dealing with the situation when an item, at first, operate in one regime
and then is switched to another one, for instance, severer one. Thus, the virtual age of
the first regime should be “recalculated” to the virtual age in the second one. This model
will be considered in the next section. Note that, there are numerous publications related
to this problem, for example, in the framework of accelerated life testing (Nelson [16,17]
and Meeker and Escobar [13]), where this age correspondence is performed on the basis
of the cumulative exposure principle, when the probabilities of failure in both regimes are
equated. In contrast to the general modeling in these references, we are considering systems
with more information at hand, that is, the observed monotone degradation, which allows
to make this age correspondence in a different way.

3. SWITCHING THE REGIMES

Let, as previously, the system starts operating at t = 0, under the first regime (lighter)
described by the degradation process{W1,t, t ≥ 0}. If it does not fail in [0, ts), the regime
is switched at ts to the severer one characterized by the process{W2,t, t ≥ 0}. As before,
define F̄i(t, w) = P (Wi,t ≤ w), i = 1, 2 and assume that these distributions are absolutely
continuous. Thus, the accumulated degradation in [0, ts) becomes the initial degradation for
the second phase. Assume first, that the processes {Wi,t, t ≥ 0}, i = 1, 2 are homogeneous.
Then, the combined (on the whole t-axis) process can be defined as

W (t) =
{

W1,t, 0 ≤ t ≤ ts,
W1,ts

+ W2,t−ts
, t ≥ ts,

(14)

whereas the system survival function, for the same failure threshold w for both phases, in
accordance with (4) and the definition of the virtual age, is given by

P (W (t) ≤ w) =

⎧⎨
⎩

F 1(t, w), 0 ≤ t ≤ ts,∫ w

0

∫
0

f1(ts, y)F 2(t − ts, w − y)dy, t ≥ ts,
(15)

where f1(ts, w) = (∂/∂w)F 1(ts, w). Thus, the second line in (15) can be considered as the
PRL at ts for a system that did not fail in [0, ts).

Modeling becomes more complex for nonhomogeneous processes, as after switching to
the severer regime, the time ts should be “recalculated” to some virtual time (age) that
is defined as the time that a system had to operate in a severer regime to gain the same
degradation w̃ as it was just before the switching. More specifically, we observe degradation
w̃, 0 < w̃ < w accumulated at time instant ts by a system in Regime 1, which is then
instantaneously switched to Regime 2.

What would be the time in this case for a system operating in Regime 2 to reach
this degradation level? In accordance with our reasoning of the previous section, it is the
random virtual age V2,w̃ described by the Cdf F2(t, w̃) defined in (10)–(11). It means that
V2,w̃ should be considered as the starting age after switching. Thus, the corresponding
predicted remaining lifetime after switching is defined by the modified Equation (6) for the
following survival function:

F̄ ∗
2 (t, w, w̃) =

∫ ∞

0

P (W2,x+t − W2,x ≤ w − w̃)f2(x, w̃)dx, (16)

where f2(x, w̃) = (∂/∂x)F2(x, w̃).
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As the suggested approach presents the innovative, justified degradation-based method
of recalculation of age when switching to another regime, we provide the formal definition.

Definition 1. The degradation-based recalculated age after switching from the first
regime to the second for the increasing nonhomogeneous stochastic processes with inde-
pendent increments is defined as the virtual age V2,w̃ (see F2(t, w̃) in (10)), that is, the
random time that is needed for the second process that starts at t = 0 to accumulate the
same degradation w̃, 0 < w̃ ≤ w as was accumulated by the first process before switching.

Thus, everything is assessed/predicted at t = 0, and we do not need to observe the time
when reaching w̃.

Taking into account the above considerations, (15) should be modified for the
nonhomogeneous processes as

P (W (t) ≤ w) =
{

F̄1(t, w), 0 ≤ t ≤ ts,∫ w

0
f1(ts, y)F̂2(t, ts, w − y)dy, t ≥ ts,

(17)

where

F̂2(t, ts, w − y) =
∫ ∞

0

F 2(t + x − ts, w − y)f2(x, y)dx

and the variable x has a meaning of the realization of the virtual age V2,w̃.
Remark 1: Note that, for the homogeneous case, the virtual age that a system should

operate in Regime 2 to accumulate degradation w̃ that was accumulated in Regime 1, also,
obviously, exists. However, it does not affect the PRL after switching.

Example 2: For the nonhomogeneous gamma processes (as in Example 1), the relevant
functions in (17) take the form:

F̄1(t, w) =
∫ w

0

1
Γ(α1(t))

λ1
α1(t)xα1(t)−1 exp(−λ1x)dx,

f1(ts, y) =
1

Γ(α1(ts))
λ1

α1(ts)yα1(ts)−1 exp(−λ1y),

f2(x, y) =
∂

∂x

(
1 −

∫ y

0

1
Γ(α2(x))

λ2
α2(x)uα2(x)−1 exp(−λ2u)du

)
,

=
A(x, y)(∫ ∞

0
sα2(x)−1 exp(−s)ds

)2 ,

where

A(x, y) =
∫ y

0

[
−(ln λ2 + ln u) α′

2(x)λα2(x)
2 uα2(x)−1 exp(−λ2u)

(∫ ∞

0

sα2(x)−1 exp(−s)ds

)

+λ
α2(x)
2 uα2(x)−1 exp(−λ2u)

(∫ ∞

0

α′
2(x)(ln s)sα2(x)−1 exp(−s)ds

)]
du,

F2(t + x − ts, w − y) =
∫ w−y

0

1
Γ(α2(t + x − ts))

λ2
α2(t+x−ts)uα2(t+x−ts)−1 exp(−λ2u)du.

Note that, f1(ts, y) is just the density of the corresponding gamma-distributed random
variable for the fixed ts, whereas f2(x, y) is already the pdf of the lifetime (the derivative
of F2(x, y) is taken with respect to x, see (16)).
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4. SYSTEM OF N COMPONENTS

In this section, we will briefly outline the meaningful generalization of the model described in
Section 1.2 to the case of coherent, non-repairable systems with n independent components.
In practical situations, it may happen that we are interested, for instance, in the predicted
remaining lifetime of a system composed of the used components with observed levels of
degradation. Then under some assumptions, the suggested approach can be extended to
this important setting.

Denote the structure function of the described system [1] by φ(x1, x2, . . . , xn) and the
corresponding reliability function by

r(p1, p2, . . . , pn) = E[φ(X1,X2, . . . , Xn)],

where Xi is the binary state variable of component i with E[Xi] = pi, i = 1, 2, . . . , n. Sup-
pose that the deterioration of the components in the system is described by n statistically
independent monotonically increasing degradation processes with independent increments,
{Wi,t, t ≥ 0}, i = 1, 2, . . . , n. A failure of the ith component occurs if Wi,t reaches its
threshold wi. In accordance with (4), we define

F̄i(t, wi) ≡ P (Wi,t ≤ wi); Fi(t, wi) = 1 − F̄i(t, wi) = P (Wi,t > wi), i = 1, 2, . . . , n.

Then, the reliability function of the system’s lifetime T can be written as

P (T > t) = r(F̄1(t, w1), F̄2(t, w1), . . . , F̄n(t, wn)).

Similar to the one-component case, at the time of inception of an item into operation (or
even on the design stage), we are interested in the PRL of the system after its components’
degradation levels reach the levels, that is, w̃i ≤ wi i = 1, 2, . . . , n. Equivalently, as was
stated above, at time t = 0, we want to define the remaining lifetime of a system with used
components having initial degradation levels w̃i < wi, i = 1, 2, . . . , n.

Denote by V = {V1,w̃1 , V2,w̃2 , . . . , Vn,w̃n
} the n-variate vector of random virtual ages

that corresponds to {w̃1, w̃2, . . . . , w̃n}. However, note that all the n components in the
system start to operate at t = 0 simultaneously and their degradation levels are also observed
simultaneously at the same time point. This means that the operating times until the
observation of degradation levels for all the components are the same, and thus, the virtual
ages for all components should be the same, which is a simple but remarkable fact.

As before, define

fi(vi, w̃i) =
∂

∂vi
Fi(vi, w̃i), i = 1, 2, . . . , n.

Then, we have to obtain the distribution of the common virtual age of the components
V(w̃1,w̃2,...,w̃n) given that V1,w̃1 = V2,w̄2 = · · · = Vn,w̃i

. As the processes of degradation in
the components are independent, the corresponding conditional pdf at time t should be
proportional to

∏n
i=1 fi(t, w̃i). Thus, by normalizing, it can be defined as

f(V(w̃1,w̃2,··· ,w̃n)|V1,w̃1=V2,w̄2=···=Vn,w̃i
)(v) =

∏n
i=1 fi(v, w̃i)∫ ∞

0

∏n
i=1 fi(u, w̃i)du

, 0 < t < ∞.

Then, the survival function of the PRL of the system, L(w̃1,w̃2,...,w̃n), after reaching
degradation levels {w̃1, w̃2, . . . , w̃n} by the components (or “having” these levels at t = 0
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by the used components) is given by

P (L(w̃1,w̃2,...,w̃n) > t)

=
∫ ∞

0

r(P (W1,v+t − W1,v ≤ w1 − w̃1), P (W2,v+t − W2,v ≤ w2 − w̃2), . . . ,

P (Wn,v+t − Wn,v ≤ wn − w̃n))

×
∏n

i=1 fi(v, w̃i)∫ ∞
0

∏n
i=1 fi(u, w̃i)du

dv,

where, if for some j, wj − w̃j = 0 (meaning a failure of a component), then P (Wj,v+t −
Wj,v ≤ 0) = 0 in the reliability function on the integrand. The latter is not, obviously,
relevant for the used components.

Example 3 : Series and parallel system with three components.
As in Example 1, consider three nonhomogeneous gamma processes with parameters

(αi(t), λi) for {Wi,t, t ≥ 0}, i = 1, 2, 3, respectively. Then,

(i) for a series system, the PRL is defined as

P (L(w̃1,w̃2,w̃3) > t)

=
∫ ∞

0

P (W1,v+t − W1,v ≤ w1 − w̃1)P (W2,v+t − W2,v ≤ w2 − w̃2)

P (W3,v+t − W3,v ≤ w3 − w̃3)

× f1(v, w̃1)f2(v, w̃2)f3(v, w̃3)∫ ∞
0

f1(u, w̃1)f2(u, w̃2)f3(u, w̃3)du
dv,

whereas

(a) for a parallel system,

P (L(w̃1,w̃2,w̃3) > t)

=
∫ ∞

0

[1 − (1 − P (W1,v+t − W1,v ≤ w1 − w̃1))(1 − P (W2,v+t − W2,v ≤ w2 − w̃2))

(1 − P (W3,v+t − W3,v ≤ w3 − w̃3))]

× f1(v, w̃1)f2(v, w̃2)f3(v, w̃3)∫ ∞
0

f1(u, w̃1)f2(u, w̃2)f3(u, w̃3)du
dv,

where, similar to Example 2,

P (Wi,v+t − Wi,v ≤ wi − w̃i) =
∫ w

0

1
Γ(αi(v + t) − αi(t))

λi
αi(v+t)−αi(t)xαi(v+t)−αi(t)−1

exp(−λix)dx, i = 1, 2, 3,

fi(v, w̃i) =
Ai(v, w̃i)(∫ ∞

0
sαi(x)−1 exp(−s)ds

)2
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and

Ai(v, w̃i) =
∫ w̃i

0

[
−(ln λi + ln u) αi

′(v)λαi(v)
i uαi(v)−1 exp(−λiu)

×
(∫ ∞

0

sαi(v)−1 exp(−s)ds

)

+λ
αi(x)
i uαi(x)−1 exp(−λiu)

(∫ ∞

0

α′
i(x)(ln s)sαi(x)−1 exp(−s)ds

)]
du,

i = 1, 2, 3.

5. CONCLUDING REMARKS

We consider a new notion of the remaining lifetime (called the predicted remaining lifetime)
for degrading items with degradation modeled by the homogeneous and nonhomogeneous
processes with independent increments. For this, we introduce the notion of the virtual age
as a random time required to accumulate the specified degradation level. An important,
novel application of the proposed setting is when the used item is incepted into operation
with the observed level of degradation and we are interested in its remaining lifetime.

Some stochastic comparisons are obtained for homogeneous and heterogeneous popu-
lations of items operating in two regimes. Specifically, we show that under the formulated
assumptions on the ordering of stochastic processes of deterioration in each regime, the cor-
responding predicted remaining lifetimes are ordered accordingly. Moreover, the problem
of recalculation of the virtual age upon switching from one regime to another is considered
and the corresponding PRL is derived using the suggested virtual age concept.

A generalization of the described approach to the case of coherent, non-repairable sys-
tems with n independent components is discussed. In practical situations, it may happen
that we are interested, for instance, in the lifetime of a system composed of the used com-
ponents with observed levels of degradation. Under certain assumptions, the suggested
approach is extended to this important setting. Specifically, the general relationship for the
distribution of the predicted remaining lifetime is derived and the specific cases of series
and parallel systems of two independent components are considered.

We think that the developed approach can be extended in several directions. In the
current paper, the failure threshold for a component was fixed. At some instances, it is
reasonable to consider a random failure threshold. The n-component system in Section 4
was described under the assumption of independent components. This can be possibly lifted
by considering the dependence structure in the form of the relevant copula.
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