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This study investigates the rates of technological progress, total output growth, and per
capita output growth when population growth is negative using a semiendogenous research
and development (R&D) growth model. The analysis shows that within a finite time
horizon, the employment share of the final goods sector reaches unity and that of the R&D
sector reaches zero; accordingly, the rate of technological progress tends toward zero. In
this case, the growth rate of per capita output asymptotically approaches a positive value.
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1. INTRODUCTION

Japan’s first postwar experience of a fall in population occurred in 2005, with
negative population growth rates following in 2009 and 2011. Similarly, con-
cern about population decline has been increasing in Italy and Germany [World
Bank (2013)]. Therefore, population decline is an urgent problem in developed
economies.

In recent years, the negative effect of population decline has often been pointed
out, with per capita gross domestic product (GDP) rather than GDP per se shown
to be closely related to economic welfare. Accordingly, it is important to examine
whether population decline negatively affects per capita GDP growth. Based on the
foregoing, the present study investigates the rates of technological progress, total
output growth, and per capita output growth when population growth is negative
using a slightly modified Jones (1995) semiendogenous research and development
(R&D) growth model.1
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In the literature on this topic, Futagami and Hori (2010) investigate the relation-
ship between the low fertility rate in Japan and per capita output growth using an
extended Jones model.2 They measure economic welfare using per capita GDP and
investigate how a low fertility rate affects the rate of technological progress, which
then determines per capita GDP growth. In their model, the fertility rate (i.e., the
population growth rate) is endogenously determined. They compare the dynamics
of the market equilibrium fertility rate and the technological progress rate with
the dynamics of the socially optimal fertility rate and the technological progress
rate. They conclude that the market equilibrium values exceed the socially optimal
values and, accordingly, that it is not necessarily desirable for the government to
intervene in the private decisions of parents with regard to the number of chil-
dren that they want to have. However, the endogenously determined population
growth rate is positive. In other words, they investigate a decline in population
growth but not negative population growth. In contrast, the present study inves-
tigates the case of negative population growth even though this is exogenously
given.

Closely related to population decline is population aging. Many studies have
examined how population aging affects economic growth. For example, Pret-
tner (2013), using a semiendogenous growth model, shows that (1) increases in
longevity have a positive impact on per capita output growth; (2) decreases in
fertility have a negative impact on per capita output growth; and (3) which effect
dominates depends on the relative change between fertility and mortality in the
semiendogenous growth framework. However, similarly to Futagami and Hori
(2010), he does not consider the case of negative population growth.3

Gruescu (2007) considers negative population growth in the context of popula-
tion aging and economic growth. She surveys the relationship between population
size, the population growth rate, and economic growth to investigate the effects of
negative population using the Solow (1956) and Lucas (1988) models. However,
she does not strictly investigate the trend of the long-run growth rate of per capita
output when population growth is negative.

At first sight, few countries seem to have experienced negative population
growth. However, we should consider the effect of immigrants. For instance,
if we consider the rate of natural increase (i.e., the crude birth rate minus the
crude death rate), several countries have experienced negative population growth.
Indeed, according to United Nations (2013), the rates of natural population increase
of 17 OECD countries were negative between 2005 and 2010.4 Therefore, it is
meaningful to consider negative population growth in economic growth models.

Nevertheless, negative population growth is only just beginning to be considered
in the field of economic growth theory [Ferrara (2011)]. In this body of research,
Christiaans (2011) is relevant, as he shows the importance of negative population
growth using a simple growth model.5 Consider a neoclassical growth model
with a production function that exhibits increasing, but relatively small, returns to
scale. When the population growth rate is negative, contrary to expectations, per
capita output growth is positive. To obtain increasing returns to scale, he uses the
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externality that arises from capital accumulation. However, he does not explicitly
consider endogenous technological progress.

Based on the preceding observation, we use the Jones R&D growth model, in
which technological progress is endogenously determined, in order to investigate
the growth rates of key variables when population growth is negative. In this
model, labor allocation between the final-goods-producing sector and the R&D
sector is endogenously determined; it then specifies the rates of technological
progress and economic growth.6

Our analysis shows that when population growth is negative, the long-run rate
of technological progress is zero, that of total output growth is negative, and that
of per capita output growth is positive. That is, even though population growth is
negative, the long-run growth rate of per capita output is positive.

The remainder of the paper is organized as follows. Section 2 presents the
framework of our model, derives the system of differential equations, and briefly
investigates the dynamics when population growth is positive. Section 3 investi-
gates the dynamics of the model when population growth is negative. Section 4
concludes the paper.

2. THE MODEL

A closed economy with no government consists of three sectors: the final goods-
producing, capital goods-producing, and R&D sectors. The production function
of the final goods sector is given by

Y = L1−α
Y

∫ A

0
xα

i di, 0 < α < 1, (1)

where Y denotes the output of final goods; LY , the employment of the final goods
sector; xi , the input of capital goods; A, the number of capital goods; and α, a
positive parameter. Final goods are used as numéraire.

The market for final goods is perfectly competitive. Profits of final goods-
producing firms are given by

�Y = L1−α
Y

∫ A

0
xα

i di − wY LY −
∫ A

0
pixi di, (2)

where wY denotes the final goods sector’s wage rate and pi , the rental price of the
capital good that the ith capital good firm produces. From the profit maximization
condition and equation (1), we obtain

wY = (1 − α)
Y

LY

, (3)

pi = αL1−α
Y xα−1

i . (4)
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The market for capital goods is monopolistically competitive. The ith capital
good is produced only by the ith capital good firm. The ith capital good firm
buys a blueprint from the R&D sector and produces finished capital goods by
borrowing unfinished capital goods at an interest rate r . Unfinished capital goods
can be converted into finished capital goods at zero cost. Accordingly, profits of
capital goods-producing firms are given by

�i = pi(xi)xi − rxi, (5)

where pi(xi) is the inverse demand function for the ith capital good and is given
by equation (4). Considering symmetric equilibrium, from the profit maximization
condition, we obtain

pi = p = r

α
, (6)

xi = x =
(

αL1−α
Y

p

) 1
1−α

. (7)

Substituting equations (6) and (7) into equation (5), we obtain

�i = � = α(1 − α)
Y

A
. (8)

Total capital stock K is the sum of capital goods:

K =
∫ A

0
x di = Ax. (9)

Substituting equation (9) into equation (1), we obtain the aggregate production
function as follows:

Y = Kα(ALY )1−α. (10)

Thus, with equations (4), (6), (9), and (10), the interest rate is given by

r = α2 Y

K
. (11)

The market for blueprints is perfectly competitive. At equilibrium, the price of
blueprints PA is equal to the discounted present value of profits that new capital
goods produce. Accordingly, the following nonarbitrage condition holds:

�

r
= PA. (12)

Here, for simplicity, we consider a situation in which there is neither capital gain
nor capital loss, that is, ṖA = 0 (ẋ = dx/dt hereafter).
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Let LA be employment in the R&D sector. Then the full employment condition
leads to

LY + LA = L, (13)

where L denotes total population. We assume that the growth rate of total popu-
lation n is constant and can be positive (n > 0) or negative (n < 0).

The production function of the R&D sector is given by

Ȧ = δLA, where δ = Aγ , 0 < γ < 1, (14)

where δ denotes externalities specific to knowledge production. An individual firm
takes δ as given to maximize profits. The aggregate production function of the
R&D sector is given by

Ȧ = LAAγ , (15)

where γ is the degree of externalities.
Profits of the R&D sector are given by

�A = PAδLA − wALA. (16)

From the profit maximization and free entry conditions, we obtain

wA = PAδ. (17)

Using equations (14) and (17), we obtain

wA = PAAγ . (18)

Equalizing the wage rate of the final goods sector with that of the R&D sector
from equations (3) and (18), that is, wY = wA, we obtain

α
Y

LY

= PAAγ . (19)

From equations (8), (11), and (12), we can eliminate the interest rate r:

K

PAA
= α

1 − α
. (20)

We now turn to consumers’ behavior. Consumers solve the following utility
maximization problem:

max
C,S

U = C1−sSs, 0 < s < 1, (21)

s.t. C + S = Y, (22)
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where C denotes consumption of final goods and S, savings. From this, we obtain

C = (1 − s)Y, (23)

S = sY. (24)

From the final goods-market-clearing condition, total savings S are equal to
investment I :

K̇ = I = sY, 0 < s < 1, (25)

where we assume that the rate of depreciation is zero for simplicity.
Eliminating PA from equations (19) and (20), and substituting equation (10)

into the resultant expression, we obtain

σ =
(

α2

1 − α

) 1
α

A
2−γ−α

α K− 1−α
α L−1 = σ(A+,K− , L−), (26)

where σ = LY /L denotes the employment share of the final goods sector. Ac-
cordingly, the employment share of the R&D sector is given by 1 − σ = LA/L.
Equation (29) states that if A, K , and L are given, the value of σ is determined.

The dynamics of our model is summarized as the following three equations:

K̇

K
= sKα−1(AσL)1−α, (27)

Ȧ

A
= (1 − σ)LAγ−1, (28)

σ = σ(A+,K− , L−). (29)

When n > 0, there exists a balanced growth path (BGP hereafter) along which
A and K grow at constant rates and σ stays constant. In the following analysis,
gx denotes ẋ/x. By calculating ġK/gK and ġA/gA from equations (27) and (28)
and letting the resultant expressions be zero, we obtain the BGP growth rates of
A and K as follows:

g∗
A = φn > 0, φ ≡ 1

1 − γ
> 1, (30)

g∗
K = (1 + φ)n > 0, (31)

where the asterisk denotes the BGP value of a variable. Accordingly, A and K

continue to increase at constant rates. In this case, from equation (29), we know
that σ stays constant. Based on equations (30) and (31), we introduce the following
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scale-adjusted variables:

a ≡ A

Lφ
, (32)

k ≡ K

L1+φ
. (33)

In addition, from equation (29), σ is rewritten as follows:

σ =
(

α2

1 − α

) 1
α

a
2−γ−α

α k
α−1
α = σ(a

+
, k

−
). (34)

Accordingly, when a and k are given, σ is determined. The growth rate of σ is
given by

σ̇

σ
= 2 − γ − α

α

ȧ

a
− 1 − α

α

k̇

k
. (35)

By summarizing the preceding discussions, we obtain the following system of
differential equations:

k̇ = k
[
skα−1a1−ασ (a, k)1−α − (1 + φ)n

]
, (36)

ȧ = a
{
[1 − σ(a, k)]aγ−1 − φn

}
. (37)

When n > 0, we can show that there exist steady state values such that k∗ > 0
and a∗ > 0.7 From k̇ = ȧ = 0, we obtain

k∗ = [s(1 − α)]
2−γ−α

(1−α)(1−γ )

[α2(1 + φ)n]
α

1−α

{
[sφ(1 − α) + α2(1 + φ)]n

} 2−γ
1−γ

> 0, (38)

a∗ =
{

s(1 − α)[
s(1 − α)φ + α2(1 + φ)

]
n

} 1
1−γ

> 0. (39)

We now turn to the stability analysis. The elements of the Jacobian matrix J
that corresponds to equations (36) and (37) are given by

J11 = ∂k̇

∂k
= − (1 − α)(1 + φ)n

α
< 0, (40)

J12 = ∂k̇

∂a
= (1 − α)(2 − γ )(1 + φ)n

α

k∗

a∗ > 0, (41)

J21 = ∂ȧ

∂k
= α(1 + φ)n

s

a∗

k∗ > 0, (42)

J22 = ∂ȧ

∂a
= − (1 − γ )φn

1 − σ ∗ − α(2 − γ )(1 + φ)n

s
< 0. (43)
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All elements are evaluated by the steady state values. In this simplified Jones
model, both k and a are state variables. Accordingly, the necessary and sufficient
conditions for the local stability of the steady state are that the trace of J is negative
and the determinant of J is positive. From equations (40) and (43), we can easily
find that tr J = J11 + J22 < 0. The determinant of J is given by

det J = J11J22 − J12J21 = (1 − α)(1 − γ )φ(1 + φ)n2

α(1 − σ ∗)
> 0. (44)

Accordingly, the sign of det J is positive. Therefore, the local stability condition
is satisfied: k and a converge to their respective steady state values from arbitrary
initial values k0 and a0.

The production function for final goods is rewritten as

Y = σ 1−αa1−αkαL1+φ. (45)

Hence, the growth rate of per capita output y = Y/L is given by

gy = (1 − α)
σ̇

σ
+ (1 − α)

ȧ

a
+ α

k̇

k
+ φn. (46)

In the steady state, k̇ = ȧ = σ̇ = 0. Accordingly, the BGP growth of per capita
output leads to

g∗
y = φn > 0. (47)

Therefore, the BGP growth rate of per capita output is proportional to population
growth.

3. ANALYASIS WHEN POPULATION GROWTH IS NEGATIVE

In this section, we show that if n < 0, the BGP never exists, and then investigate
what happens when n < 0.8

When n < 0, the right-hand sides of equations (36) and (37) are always positive.
Hence, we find that there never exists a situation in which k̇ = ȧ = 0. Because
σ(a, k) is restricted to the range σ ∈ [0, 1], the growth rate of a is always
positive even if σ takes any value. Thus, a continues to increase over time and,
consequently, the growth rate of a asymptotically approaches −φn > 0 because
a−(1−γ ) in equation (37) approaches zero with γ < 1.

At this stage, the dynamics of σ(a, k) is uncertain: σ may increase, decrease, or
converge to a constant value. First, if σ continues to decrease and reaches σ = 0,
then the growth rate of k becomes −(1 + φ)n > 0. Next, we consider a case in
which σ continues to increase and reaches σ = 1 and a case in which σ converges
to a constant value. In both cases, we can prove that the term kα−1a1−α of equation
(36) converges to zero in the long run. Define z = kα−1a1−α . By differentiating
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both sides with respect to time, we obtain

ż = (1 − α)[(1 − σ)aγ−1 − sσ 1−αz + n]z. (48)

Note that σ in equation (48) is unity or a constant. For t → ∞, we have aγ−1 → 0
because ga is always positive. Accordingly, we rewrite equation (48) as follows:

ż = −(1 − α)(sσ 1−αz − n)z. (49)

Because n < 0, we have sσ 1−αz − n > 0, and hence, the steady state value is
z∗ = 0. Moreover, because dż/dz|z∗ = (1 − α)n < 0, the steady state is locally
stable. Therefore, the term z = kα−1a1−α approaches zero in the long run. In these
cases, the growth rate of k also becomes −(1 + φ)n > 0.

Given the growth rates of a and k, from equation (35), the growth rate of σ

becomes −n > 0 in the long run: σ continues to increase in the long run. Note that
σ is restricted to the range σ ∈ [0, 1]. Accordingly, within a finite time horizon,
σ = 1. This means that within this finite time horizon, the employment share of
the R&D sector becomes zero and that of the final goods sector becomes unity.

We confirm the preceding discussions by using numerical simulations with
regard to the dynamics of σ . For this purpose, we need to set the parameters of the
model. We use parameters drawn from empirical observations and previous work;
accordingly, we confine our analysis to Japan, Italy, and Portugal, because all the
parameter values can be obtained for these countries.

First, the values of n are the annual rates of natural increase during the period
2005–2010, which are defined as the crude birth rate minus the crude death rate
and taken from United Nations (2013): −0.01%, −0.02%, and −0.04% for Japan,
Italy, and Portugal, respectively.

Second, the values of s are the average gross national saving rates, taken from
OECD (2013), for the period 2005–2010: 0.253, 0.180, and 0.113 for Japan, Italy,
and Portugal, respectively.

Third, the value of α is set to 0.3 because this can be interpreted as capital’s
share of income.

Fourth, the value of γ is set to 0.5, taken from Futagami and Hori (2010).
Finally, the initial values of k(t) and a(t), namely k(0) and a(0), are set to

k(0) = a(0) = 0.01 so that the initial value of σ(t) will not exceed unity.
Figures 1–3 show the results of the numerical simulations for Japan, Italy,

and Portugal, respectively. In every case, the employment share of the final goods
sector continues to increase and reaches unity within a finite time horizon. Because
the Jones model is effective within the interval σ ∈ (0, 1), after σ = 1, the Jones
model will degenerate into the standard Solow model.

Therefore, within this finite time horizon, the employment share of the R&D
sector becomes zero and hence the growth rate of A becomes zero. Accordingly,
we can say that t1 ∈ (0,∞), so that we have σ ∈ (0, 1) during t ∈ [0, t1) and we
have σ = 1 during t ∈ [t1,∞). In what follows, we call the situation in which
σ ∈ (0, 1) the Jones regime, whereas the situation in which σ = 1 is termed the
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FIGURE 1. Estimated employment shares of the final goods sector in Japan over time.

FIGURE 2. Estimated employment shares of the final goods sector in Italy over time.

Solow regime. Hence, the system of differential equations is decomposed into the
following two subsystems:

Jones regime : for t ∈ [0, t1)

{
k̇ = k

[
skα−1a1−ασ (a, k)1−α − (1 + φ)n

]
ȧ = a

{
[1 − σ(a, k)]aγ−1 − φn

}
,

(50)

Solow regime : for t ∈ [t1,∞)

{
k̇ = k

[
skα−1a1−α − (1 + φ)n

]
ȧ = −φna.

(51)
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FIGURE 3. Estimated employment shares of the final goods sector in Portugal over time.

The Jones regime corresponds to t ∈ [0, t1), whereas the Solow regime corre-
sponds to t ∈ [t1,∞). Thus, at time t1, the Jones regime switches to the Solow
regime. By investigating the Solow regime, we find that the growth rates of k and
a asymptotically approach −(1 +φ)n > 0 and −φn > 0, respectively, in the long
run. In this case, from equation (46), the growth rate of per capita output y = Y/L

is given by

gy = −(1 − α)(φn) − α[(1 + φ)n] + φn = −αn > 0. (52)

That is, even if population growth is negative, the growth rate of per capita output
is positive in the long run.9

Suppose that a certain economic policy could keep the employment share of the
final goods sector, σ , constant over time. In this case, the long-run growth rate of
per capita output would also asymptotically approach gy = −αn > 0.

Therefore, when population growth is negative, per capita output continues
to increase at a rate of −αn > 0 in the long run. In this case, the rates of
economic growth, capital accumulation, and technological progress are given by
gY = (1 − α)n < 0, gK = 0, and gA = 0, respectively.

PROPOSITION 1. Suppose that the population growth rate is constant and
negative. Then, in a semiendogenous R&D growth economy, the growth rates of
total output, technological progress, and per capita output are negative, zero, and
positive, respectively.

Figure 4 shows the long-run relationship between population growth and per
capita output growth. The higher the absolute value of population growth, the
faster per capita output grows.
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FIGURE 4. Relationship between population growth and per capita output growth.

Based on Figure 4, we consider the policy implications with regard to population
growth. From the restrictions of 0 < α < 1 and φ > 1, the slope of the graph
when n > 0 is steeper than that of the graph when n < 0.

Suppose that the population growth rate is zero. Then, if a certain economic
policy could change the population growth rate, increasing this rate would be
more favorable than decreasing it in order to increase the growth rate of per capita
output as long as the increment and decrement were the same.

In contrast, suppose that the population growth rate were negative. In this case,
the long-run growth rate of per capita output would increase to a greater degree
when n decreased than when n increased as long as n continued to be negative
after n changed. However, because the effect of a change in n on gy is larger when
n is positive than when n is negative, it is more favorable to make n positive than
it is to make n negative. In addition, our model does not consider the possible
negative effects of population decline on pension and social security systems.
Consequently, we should be cautious when interpreting the result that a decrease
in n when n is negative leads to a higher gy . The main point here is that the
long-run growth rate of per capita output is positive even if population growth is
negative as long as we use a standard growth model.

In order to understand why we obtain these results, from the production function
of the final goods sector, we rewrite per capita output growth as follows:

gy = (1 − α)

(
σ̇

σ
+ Ȧ

A

)
︸ ︷︷ ︸

RD effect

+ α
˙̃k
k̃︸︷︷︸

CD effect

, (53)

where k̃ = K/L denotes per capita capital stock. Thus, per capita output growth is
decomposed into two effects: the R&D effect (RD effect) and the capital deepening
effect (CD effect). After t = t1, that is, after the economy enters into the Solow
regime, we have σ = 1 and gA = 0; thus, the RD effect vanishes and only the CD
effect lasts. The CD effect is given by

˙̃k
k̃

= K̇

K
− n = sĀ1−αk̃α−1 − n > 0, (54)
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where Ā denotes the constant value of A after t1. The CD effect is always positive
and thus k̃ increases indefinitely. Hence, gk̃ converges to

lim
k̃→∞

gk̃ = −n > 0. (55)

From equation (53), we obtain gy = −αn > 0.
We explain the preceding results intuitively. In equation (20), the employment

share of the final goods sector σ increases with the passage of time. However,
the maximum value of σ is unity, and thus, σ̇ /σ in the RD effect becomes zero
within finite time. In addition, because population growth is negative, the level of
employment in the R&D sector decreases over time, and accordingly, the growth
rate of knowledge converges to zero, that is, Ȧ/A → 0. Hence, the RD effect
vanishes in the end. The Jones regime switches to the Solow regime and only
the CD effect remains. From equation (21), we can see that the growth rate of
per capita capital stock k̃ is positive when population growth is negative. The
growth rate of total capital stock K approaches zero, but L continues to decrease.
Accordingly, k̃ continues to increase. Therefore, the CD effect is always positive.
Summarizing the preceding discussions, we can state that when population growth
is negative, the long-run growth rate of per capita output is positive because the
capital deepening effect is always positive although technological progress stops
within finite time.

From Figure 4, when population growth is zero, the long-run growth rate of
per capita output is minimized, that is, zero. When population growth is zero,
the long-run growth rate of knowledge becomes zero and the growth rate of the
employment share of the final goods sector also becomes zero. Accordingly, the
RD effect in equation (20) vanishes in the end. Moreover, when population growth
is zero, the long-run growth rate of per capita capital stock becomes zero; that is,
the CD effect in equation (20) vanishes in the end. Therefore, when population
growth is zero and population is constant, the long-run growth rate of per capita
output is zero.

To what extent is our model plausible? The long-run growth rate of per capita
output depends only on α and n; hence, we can obtain the theoretical values of
gy and compare these with the actual values for the annual average growth rates
of per capita output during 2005–2010 for Japan, Italy, and Portugal from World
Bank (2013).

Table 1 shows the results of the numerical experiments when n is set to −0.01%,
−0.02%, and −0.04% for Japan, Italy, and Portugal, respectively, and capital’s
share of income α changes from 0.3 to 0.8. Futagami and Hori (2010) use α = 0.8
because α is the mark-up rate. The bottom row of Table 1 shows the actual growth
rates of per capita output. Except for Italy, whose actual value is negative, the
theoretical values are much lower than the actual values. Note that the theoretical
growth rates are obtained after enough time elapses. From the analysis of the
Solow regime, we further find that the growth rate of per capita output continues
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TABLE 1. Comparison of the theoretical and actual
per capita income growth rates

Theoretical growth rate (%)

α Japan Italy Portugal

0.3 0.03 0.06 0.12
0.4 0.04 0.08 0.16
0.5 0.05 0.10 0.20
0.6 0.06 0.12 0.24
0.7 0.07 0.14 0.28
0.8 0.08 0.16 0.32
Actual growth rate 0.38 −0.88 0.42

to decline over time and converges to gy = −αn. Therefore, we expect the growth
rates of per capita output in Japan and Portugal to decrease in the future.

4. CONCLUSIONS

In the present study, using the Jones semiendogenous growth model, we investi-
gated the long-run growth rates of per capita output when population growth is
negative. Our results showed that when population growth is negative, the tech-
nological growth rate is zero, the growth rate of total output is negative, and that
of per capita output is positive in the long run. Therefore, incorporating negative
population growth into growth models is more complicated than simply replacing
a positive population growth rate with a negative one.

Clearly, the OECD is heading in the direction of negative population growth.
However, our analysis suggests that the hype about slow or negative population
growth in OECD member nations (as often advocated by the Economist) is exag-
gerated. Therefore, the productivity effects of low fertility may not be as bad as
often stressed in the news.

Our analysis focused only on the long-run relationship between negative popu-
lation growth, economic growth, and technological progress. In particular, we only
investigated growth rates after a sufficiently long time had passed. Accordingly,
any analysis of transitional dynamics along which growth rates approach constant
values is inadequate. Hence, detailed analysis of transitional dynamics will be
left for future research. In addition, our analysis neglected the effects of negative
population growth on population composition, the social security system, and so
forth. These effects should also be included in future research.

NOTES

1. Some studies criticize the empirical validity of Jones’s (1995) semiendogenous growth model.
For example, Abdih and Joutz (2006) and Madsen (2008) conduct empirical analyses and conclude
that Romer’s (1990) endogenous growth model is more realistic than Jones’s (1995) semiendogenous
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growth model. Strulik et al. (2013) empirically show that there is a negative correlation between popu-
lation growth and total factor productivity growth. Moreover, Sasaki (2011) states that the relationship
between population growth and per capita real income growth differs for developed and developing
countries.

2. The related study of Futagami and Nakajima (2001) investigates how population aging influences
economic growth using an extended Romer (1986) AK model. However, these authors do not consider
the case of negative population growth.

3. The survey of Prettner and Prskawetz (2010) is useful for understanding how population aging
influences economic growth.

4. Japan, Belarus, the Czech Republic, Hungary, the Republic of Moldova, Romania, the Russian
Federation, Ukraine, Estonia, Latvia, Lithuania, Bosnia and Herzegovina, Croatia, Italy, Portugal,
Serbia, and Germany.

5. Sasaki (2015) builds a small-open-economy non-scale-growth model with negative population
growth and investigates the relationship between trade patterns and per capita consumption growth.
He shows that the home country is better off under free trade than under autarky in terms of per capita
consumption growth irrespective of whether the population growth is positive or negative.

6. In some Schumpeterian models such as Dinopoulos and Thompson (1998, 1999), Peretto (1998),
and Young (1998), the long-run growth rate of per capita output depends positively on both population
growth and the employment share of the R&D sector. Hence, they remove the growth effect of popula-
tion as Jones does (1995) but obtain endogenous growth as Romer does (1990). These Schumpeterian
models generate endogenous growth without scale effects by introducing localized intertemporal R&D
spillovers [Dinopoulos and Thompson (1999)].

7. If we consider the dynamic optimization of consumers, the Euler equation for consumption
appears. In addition, if we consider capital gain and capital loss, the differential equation for PA also
appears. Hence, the Jones model consists of four differential equations. The dynamic stability of the
Jones model in this case is fully analyzed by Arnold (2006).

8. As we will show later, when population growth is negative, the steady state in the usual sense
(k̇ = 0 and ȧ = 0) does not exist, and accordingly, the BGP in the usual sense does not exist. For this
issue, see Christiaans (2011).

9. Note that with the passage of time, the growth rate of per capita output approaches gy = −αn

but never reaches it. For this reason, gy = −αn can be called the asymptotic BGP rate of growth of
per capita output.
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