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This paper investigates the intergenerational sharing of shocks on the permanent income
of new entry cohorts when prior-to-entry markets are missing. When Lucas trees are
traded among generations, procyclical cohort-specific shocks are shared partially via the
movement of asset prices; cohorts with lower endowments may benefit more from asset
pricing dynamics than cohorts with higher endowments. Given a reasonable set of
parameters concerning the Japanese labor market, the evaluated welfare loss ranges
from 1% to 3% in terms of the certainty equivalence consumption level. The first-best
outcome may be achieved by either a combination of subsidies and taxes or the
introduction of prior-to-entry markets.
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1. INTRODUCTION

This paper investigates the intergenerational sharing of shocks on the permanent
income of new entry cohorts when prior-to-entry markets are missing. We define
cohort-specific permanent shocks as the risks received by the cohort members
when they enter labor markets for the first time. Due to the absence of prior-
to-entry markets, it is not possible to insure perfectly against those risks using
financial claims after the cohort-specific permanent shocks are realized. We quan-
titatively evaluate the welfare losses from the partial sharing of the cohort-specific
permanent shocks. In addition, we investigate which policy interventions restore
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a first-best allocation and whether such a first-best allocation can be attained by
opening up prior-to-entry markets.

There are many empirical studies that support the existence of cohort-specific
permanent effects on labor earnings. For example, Baker et al. (1994) studied the
personnel data of managers in a single company and found that first-time wages
after entry were positively correlated with the lifetime wages of the corresponding
cohort. Using the National Longitudinal Survey of Youth (NLSY), Kahn (2007)
investigated the career outcomes of college graduates who entered labor mar-
kets during the 1982 recession and concluded that graduation in a recession has
significantly negative effects on lifetime income. Using the NLSY, Kletzer and
Fairlie (2003) found that a job displacement at an early stage of a career leads to
persistent wage losses. Card and Lemieux (2001) demonstrated that date of birth
significantly affects the lifetime wage of each cohort, using microdata from the
United States, the United Kingdom, and Canada.1

Despite the difficulties involved in accessing microdata in Japan, several pa-
pers have addressed cohort-specific effects on lifetime wages in the Japanese
labor market. Ohtake and Inoki (1997), Ohta (1999), and Okamura (2000) found
that not only the cohort size, but also the economic conditions of a graduation
year yield long-run effects on both wage rates and tenure. Genda (1997), upon
whose study our numerical exercises rely, demonstrated that cohort-specific eco-
nomic conditions, as well as an increase in the number of college graduates,
account for differences in wages between college and high-school graduates in
Japan.

Assuming that cohort-specific effects on lifetime wages are present,2 we theo-
retically investigate the sharing of cohort-specific shocks among different cohorts
through active financial transactions. For our research, we adopt an analytical
framework proposed by Huffman (1987). Within Huffman’s framework, perish-
able consumption goods are endowed upon the entry cohort, whereas Lucas trees
yield perishable consumption goods as dividends. In financial markets, claims
on Lucas trees are traded among cohorts. Given this endowment and dividend
structure, the inability of entry cohorts to trade financial claims prior to entry is a
fundamental source of market incompleteness.

In this model, a shock on entry endowments can be regarded as a cohort-specific
shock on capitalized lifetime labor income or permanent income. The above setup
completely removes age-specific consumption patterns, the timing of labor income
receipts (life-cycle wage profiles), idiosyncratic shocks on labor income, and any
other type of financial constraints. Thus, any welfare loss computed under the
above setup would arise as a consequence of missing prior-to-entry markets. If
the estimated welfare loss is not negligible for market allocations, then we will
consider whether such welfare losses can be avoided by either implementing policy
interventions or opening up prior-to-entry markets.

We augment Huffman’s (1987) setup with a class of nonexpected utility, known
as Kreps–Porteus preferences, to separate the elasticity of intertemporal substi-
tution from relative risk aversion. A major reason for this generalization is that
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existing papers, including Bohn (1998) and Krueger and Kubler (2003), have sug-
gested that the effect arising purely from intertemporal substitution is significant
in the determination of intergenerational allocation of resources and risks.

Given a reasonable set of parameters concerning the Japanese labor market, the
welfare loss ranges from 1% to 3% in terms of the certainty equivalence consump-
tion level. One interesting result is that when cohort-specific shocks are positively
correlated with dividend shocks, generations with lower endowments benefit much
more from asset pricing dynamics than cohorts with higher endowments. Although
cohorts receive lower endowments when they enter an economy in a recession,
they can expand their future consumption opportunities by purchasing Lucas trees
at substantially cheaper prices.

As a possible optimal policy, we demonstrate that a subsidy to the entry gen-
eration financed by a 100% levy on dividends from Lucas trees would yield
the first-best outcome as a consequence of the risk pooling of labor and capital
income. As an alternative way to restore the optimal allocation, on the other hand,
a new entry cohort may reach the first-best outcome by borrowing consumption
goods from existing cohorts in prior-to-entry markets and repaying outstanding
debts from every period’s capital income (dividends from Lucas trees) until death.
These arguments suggest that the optimal policy is concerned primarily not with
the intertemporal transfer from cohorts with higher endowments to cohorts with
lower endowments, but with the intratemporal risk sharing between endowment
receivers (entry cohorts) and capital-income earners (existing cohorts).

Our analytical focus contrasts sharply with the existing papers in several re-
spects. Many papers, including Gordon and Varian (1988), Bohn (1998), Shiller
(1999), DeMange (2002), Krueger and Kubler (2003), and Ball and Mankiw
(2007), have explored the intergenerational risk-sharing issue using stochastic
overlapping generations models with incomplete markets. However, in contrast to
our focus on permanent labor-income shocks faced by young cohorts, these au-
thors were interested in the sharing of capital-income risks faced by old cohorts.3

In addition, their focus was on mechanisms of redistribution from young to old
consumers, such as pay-as-you-go social security systems, as opposed to our focus
on income transfers from old to newly born generations. Finally, some of the above
works considered only a two-period lifetime horizon for every cohort in order to
limit financial transactions between generations, whereas our setup employs a
multiperiod lifetime horizon to allow active transactions among generations.

The study by Campbell and Nosbusch (2007) is similar to our investigation in
that these authors explored intergenerational risk sharing between labor and capital
income in a multiperiod overlapping-generations model. However, they did not
focus on the welfare loss associated with cohort-specific shocks and intertemporal
substitution. Smetters’s (2004) study is most closely related to our study, as he
also analyzed the effect of incompleteness arising from the inability of the unborn
to trade financial claims, and considered taxes (subsidies) on capital income to fix
such incompleteness. He employed a two-period overlapping-generations model
with endogenous capital accumulation and showed that the sign and magnitude
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of optimal capital income taxation depend crucially on the contemporaneous
correlation between labor and capital income. On the other hand, as mentioned
above, we focus on the intergenerational sharing of cohort-specific shocks on
permanent income within an exchange economy with multiperiod overlapping
generations. Thanks to a simple endowment structure, our model yields a clear
prediction concerning an optimal policy to recover first-best outcomes.

Our paper is organized as follows. Section 2 presents our theoretical frame-
work. In Section 3, we report on numerical exercises conducted under various
assumptions regarding structural parameters. In Section 4, we derive the optimal
subsidy/tax policy that results in a first-best allocation and attempt to restore such
an allocation by opening up prior-to-entry markets. Section 5 offers concluding
remarks.

2. THEORETICAL FRAMEWORK

We adopt Huffman (1987) as a baseline model to investigate the intergenerational
sharing of cohort-specific permanent shocks through capital market transactions.
This section describes the basic framework in detail.

2.1. Basic Setup

We consider an overlapping-generations economy. Identical consumers enter the
economy at time t and live until time t + N − 1. The population of each cohort
is constant over time and normalized to one. A consumer aged zero at time t is
endowed with yt (> 0) units of perishable consumption goods and receives no
endowments afterward. Here, yt follows a first-order Markov process. There is no
insurance market for this entry shock on yt . As discussed in the Introduction, this
uninsured shock on yt is regarded as the entry shock on capitalized labor income
or permanent income. As explained below, consumers use a portion of their initial
endowments to obtain parts of Lucas trees, thereby allocating consumption goods
over N periods.

There exist fixed K units of nondepreciable physical capital or Lucas trees. In
period t , consumers sell or buy physical capital at a market price Pt , measured
in terms of consumption goods. When consumers hold physical capital at the
beginning of period t , they receive dt (> 0) units of perishable consumption
goods per unit of capital as dividends. Again, dt follows a first-order Markov
process. As long as N ≥ 3, the transaction of physical capital takes place among
generations.

We assume that both endowments yt and dividends dt are generated by a four-
state Markov chain zt with state space Z = {zHH , zHL, zLH , zLL}, where the first
(second) lower subscript denotes the realization of yt (dt ). To be specific, income
and dividend shocks are represented by

yt =
{
(1 + εy)ȳ if zt ∈ {zHH , zHL}
(1 − εy)ȳ if zt ∈ {zLH , zLL} , (1)
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dt =
{
(1 + εd)d̄ if zt ∈ {zHH , zLH }
(1 − εd)d̄ if zt ∈ {zHL, zLL} , (2)

where ȳ and d̄ are the average values and εy and εd represent the volatility of
endowments and dividends.

Following Krueger and Kubler (2003), we characterize the transition matrix of
zt by

(1 − δ)� + δI,

where I is a four-dimensional identity matrix, and 0 ≤ δ < 1. Each row of �

corresponds to the stationary distribution of each state (πHH , πHL, πLH , πLL).
If δ = 0, then yt and dt are sequentially independent. An increase in δ makes
shocks more serially correlated. The stationary distribution � is assumed to
be symmetric: πHH = πLL and πHL = πLH . If πHH > (<) 0.25, then yt

and dt are positively (negatively) correlated with each other. When πHH =
0.5 (0.0), yt and dt are perfectly positively (negatively) correlated with each
other.

Let cj,t+j and xj,t+j be the consumption goods and capital holdings at the
age of j of an agent born in t . Owing to the absence of bequest motives, agents
exhaust capital at death. A consumer maximizes a utility function characterized
by Kreps–Porteus preferences.4 The agent’s utility function at the age of j (< N ),
denoted by Uj,t+j , is recursively defined as follows:

Uj,t+j =
{
c

σ−1
σ

j,t+j + β
[
Et+jUj+1,t+j+1

1−γ
] σ−1

σ(1−γ )

} σ
σ−1

and UN,t+N = 0 (∀ t), where Et+j is the expectation operator conditional on
information available at time t + j . β (> 0) is a discount factor, σ (> 0, σ �= 1)

is the elasticity of intertemporal substitution, and γ (> 0, γ �= 1) is the degree of
relative risk aversion.

If σγ = 1, then the above specification reduces to a constant relative risk-
aversion preference. The case where σ = γ = 1 (a logarithmic preference) is the
same as in Huffman (1987).

A consumer born at t chooses a plan of {cj,t+j , xj,t+j }N−1
j=0 to maximize U0,t

subject to

c0,t + Ptx0,t = yt ,

cj,t+j + Pt+j xj,t+j = (
Pt+j + dt+j

)
xj−1,t+j−1, if j = 1, . . . , N − 1,

xj,t+j > 0, for j = 0, . . . , N − 2, and xN,t+N−1 = 0.

Let us define a competitive equilibrium for the above framework. There are
two competitive markets (consumption goods and physical capital) in terms of
the cross-sectional allocation. A competitive equilibrium at time t consists of
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consumers’ optimal plans {cj,t , xj,t }N−1
j=0 and an asset price Pt such that all mar-

kets are cleared:
∑N−1

j=0 cj,t = yt + dtK for the consumption goods market, and∑N−2
j=0 xj,t =K for the physical capital market at time t . By Walras’s law, if the

capital market is cleared, then the consumption goods market is cleared.
As zt follows a first-order Markov process, the optimal decision rules and

the equilibrium price function can be represented by cj,t = cj (xt−1, zt ), xj,t =
xj (xt−1, zt ), and Pt = P(xt−1, zt ), where xt−1 ≡ (x0,t−1, . . . , xN−1,t−1) is a one-
period lagged distribution of Lucas trees among generations. As shown later, the
equilibrium process of capital prices is indeed influenced by the evolving cross-
generational capital distribution. Substituting the optimal rules and the equilibrium
price function into the lifetime utility function, we obtain the indirect lifetime
utility of a consumer born at time t [V (xt−1, zt )].

2.2. Methods for Evaluating Risk-Sharing Performance

To evaluate the intergenerational allocation of cohort-specific permanent shocks,
we adopt both unconditional and conditional welfare measures based on the life-
time utility. The conditional expected lifetime utility is the welfare evaluated after
the realization of cohort-specific permanent shocks, whereas the unconditional
expected lifetime utility is the welfare evaluated before their realization.

We make a welfare comparison under various combinations of structural pa-
rameters including σ and γ . For this purpose, we convert the absolute level
of welfare into the certainty equivalence consumption (hereafter, the CEQ con-
sumption) for the conditional and unconditional lifetime welfare. The CEQ con-
sumption level c̄ is computed such that the evaluated welfare may be equal to
U0 ≡ {(1 + β + · · · + βN−1)c̄

σ−1
σ } σ

σ−1 .

In addition, we report the following ratio of the CEQ consumption of a market
allocation relative to that of a governmental allocation in which a social planner
distributes the entire endowment available at time t according to age-specific
weights:

c̄j (zt ) = βj

1 + β + · · · + βN−1
(yt + dtK).

We refer to the above intergenerational allocation as a simple sharing rule. As
proved in Appendix A.1, the allocation delivered by this rule corresponds to the
first-best allocation where a planner treats all generations with equal weights if
(i) a preference is logarithmic (σ = γ = 1)5 or (ii) a preference is time-additive
(σγ = 1) with β = 1.6

On the other hand, the above rule may not result in the first-best outcome
in the case where Kreps–Porteus preferences apply because, unlike the case of
time-additive preferences, marginal period utility depends not only on current
consumption, but also on future consumption.7 Accordingly, the welfare loss im-
plied by the CEQ consumption ratio is underestimated by using the simple sharing
rule as a reference point. Nevertheless, we evaluate the welfare loss based on the
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simple sharing rule for the following reasons. First, the allocation delivered by this
rule always yields substantially higher welfare than does the market allocation, as
shown in the numerical examples of the next section. Consequently, the extent to
which the cohort-specific shock is shared effectively may be inferred from how
the unconditional CEQ consumption of the market allocation is short of that of
the simple sharing rule.

Second, as discussed in the Introduction, the separation of the welfare impact
of intertemporal substitution from that of risk aversion is critically important in
the context of an overlapping-generations setup. Only Kreps–Porteus preferences
allow for this kind of thought experiment. We are particularly interested in the
welfare comparison between the cohorts with high intertemporal substitution and
those with low intertemporal substitution given a fixed risk aversion parameter. The
effect of overall underestimation may be minimized in such a welfare comparison
among those with different preference parameters.

Third, in the case of Kreps–Porteus preferences, optimal decision rules are not
available without numerical computation. Thus, the welfare evaluation depends on
the accuracy of numerical procedures. However, as examined in detail in Appendix
A.3, the numerical computation errors have little effect on the comparison of
welfare losses in this case.

2.3. Properties of the Logarithmic Preference Case

Optimal decision rules. In this section, we discuss several important properties
concerning the equilibrium allocation for a logarithmic preference (σ = γ = 1).
As shown in Huffman (1987), a closed form is available for optimal decision rules
and equilibrium pricing in this case. The optimal consumption/saving decision
rule is derived as follows:

c0,t = ψ0yt , x0,t = (1 − ψ0)
yt

Pt

, (3)

and

cj,t+j = ψj(Pt+j + dt+j )xj−1,t+j−1, xj,t+j = (1 − ψj)
Pt+j + dt+j

Pt+j

xj−1,t+j−1,

(4)

where ψj = 1
1+β+···+βN−1−j for j = 0, 1, . . . , N − 2 and ψN−1 = 1. These optimal

decision rules are called “myopic” in the sense that the rules depend only on the
current state variables.8 The consumption rule is rewritten as

cj,t+j = βjyt

1 + β + · · · + βN−1

j∏
i=1

Pt+i + dt+i

Pt+i−1
, j = 1, . . . , N − 1. (5)

The above optimal decision rule sharply contrasts with those of a standard
overlapping-generations setup where labor income is yielded every period. In
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the current setup, zero-year-old consumers earn no dividends, and the other con-
sumers receive no endowments. Only Lucas trees are traded among generations.
As equation (4) implies, consumers consume a portion of capital every period,
but always carry positive assets before they exhaust their assets at death. That is,
consumers do not consume beyond their remaining capitalized labor income. On
the other hand, when insurance markets are missing in a standard overlapping-
generations setup, financial assets may serve as buffer stocks for negative income
shocks, and transactions in risk-free assets may facilitate self-insurance for income
fluctuations.9

Negative correlation in asset pricing. Given the capital-market-clearing con-
dition, or K = ∑N−2

i=0 xi,t , the equilibrium asset price [P(xt−1, zt )] is de-
rived as

P(xt−1, zt ) = (1 − ψ0)yt + dtξ(xt−1)

K − ξ(xt−1)
, (6)

where xt−1 = (x0,t−1, . . . , xN−2,t−1) and ξ(xt−1) = ∑N−2
j=1 (1 − ψj)xj−1,t−1. Note

that ξ(xt−1) < K always holds.
As equation (6) implies, P(xt−1, zt ) depends on the realization of endowments

(yt ), dividends (dt ), and the one-period lagged cross-generational capital distribu-
tion xt−1. P(xt−1, zt ) is increasing in both yt and dt . The volatility of P(xt−1, zt )

becomes higher when the volatility of yt or dt (εy or εd ) rises, or when yt and
dt are more positively correlated. Among the four possible states given xt−1,
P(xt−1, zHH ) is the highest, whereas P(xt−1, zLL) is the lowest. It is possible to
prove that P(xt−1, zHL) > P (xt−1, zLH ), if and only if (1−ψ0)εyȳ > εd d̄ξ(xt−1).
If the cross-generational capital distribution is skewed more toward younger gen-
erations, then the equilibrium price is higher.10

Due to the fact that equilibrium pricing is influenced by the cross-generational
capital distribution xt−1, a negative serial correlation in asset prices emerges even
when there is no serial correlation in either yt or dt . That is, a lower realization
of dt , leading to a decrease in the current asset price P(xt−1, zt ), favors the entry
generation over the older generations; the entry generation can purchase capital
at a lower price than can the older generations. An increase in the saving of the
entry generation yields stronger subsequent demand for capital, thereby raising
asset prices in the next period. In this way, the asset prices become higher after
they decrease due to a lower realization of dt .11

The above asset-pricing behavior generates interesting properties of risk shar-
ing among generations. Below, we demonstrate that the entry generation with
low yt may share risks with the entry generation with high yt . Suppose that
yt and dt are perfectly positively correlated, and there is no serial correlation
in either yt or dt . Consequently, only zHH and zLL emerge. Given the opti-
mal consumption/saving rule [equation (5)], the unconditional indirect utility
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V (xt−1)
[
= ∑N−1

j=0 βj ln(cj,t+j )
]

is expressed as

V (xt−1) = ψ0

N−1∑
j=0

βj ln(βj ) + (1 + β + · · · + βN−1) ln(yt )

+ (β + · · · + βN−1) ln
Pt+1 + dt+1

Pt

+ · · ·+βN−1 ln
Pt+N−1+dt+N−1

Pt+N−2
.

In computing the conditional expectations of indirect utility V (xt−1, zt ), yt+j

and dt+j can be replaced by their averages ȳ and d̄ because there is no serial
correlation in endowments or dividends. It is assumed that the conditional average
of Pt+j is constant over time. Thus, V (xt−1, zt ) can be approximated by

V (xt−1, zt ) ≈ constant + (1 + β + · · · + βN−1) ln(yt ) − (β + · · · + βN−1) ln Pt .

If N is sufficiently large, and β is close to one, then V (xt−1, zt ) is approximated
by constant N ln yt

Pt
.

Given the above approximation, it is possible to prove that if εy < εd , then
V (xt−1, zLL) > V (xt−1, zHH ).12 That is, when the volatility of cohort-specific
endowment shocks is small relative to that of aggregate shocks on dividends, the
entry generation with low yt can attain higher welfare than the entry generation
with high yt .

A major reason for the above welfare consequence of the market allocation
is that, in a recession state (zLL), the entry generation suffers from a low level
of human capital, but its cohort members can purchase physical capital at cheap
prices as a consequence of the low realization of dividends. In a boom state (zHH ),
on the other hand, the entry generation enjoys a high level of human capital
but is forced to purchase costly physical capital for future consumption. Given
a relatively large εd , asset pricing is volatile, and Pt is low enough for the entry
generation to purchase a large amount of capital during a recession period. Hence,
a negative shock on permanent income borne initially by the entry cohort would
be passed over to older generations (asset holders).

Equilibrium consumption profiles. One caveat to the above argument is that
although the welfare conditional on entry is similar among all cohorts when εy

is close to εd , the corresponding welfare remains short of that of the first-best
outcome. In relation to this point, we make a brief remark on the equilibrium
age profile of consumption. A gross return on capital, defined as Pt+1+dt+1

Pt
, is

equal to
Pt+1 + dt+1

Pt

= (1 − ψ0)yt+1 + dt+1K

(1 − ψ0)yt + dtξ(xt−1)
,

whereas its average is

P̄ + d̄

P̄
= 1 + 1 − ξ(x̄)/K

(1 − ψ0)ȳ/d̄K + ξ(x̄)/K
.
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The above equation implies that the average return on capital is greater than
one. Thus, given zero time preferences (β = 1), the consumption profile is upward
sloping on average in the market allocation [see equation (5)], whereas it is flat
on average in the first-best allocation, which can be attained by the simple sharing
rule. Hence, the degree of welfare loss is associated with the extent to which the
consumption profile is upward sloping at market allocations.

3. QUANTITATIVE PROPERTIES OF MARKET ALLOCATION

Using the theoretical framework presented in the preceding section, this section
investigates quantitative properties of the market allocation. We choose structural
parameters based on the macroeconomic performance and labor market of the
Japanese economy.

3.1. Parameter Settings

It is assumed that one period corresponds to two years, and that a consumer lives
for 30 periods (N = 30) or 60 years. The amount of physical capital is standardized
at K = 100.

The average dividend ratio d̄ is set at the average ratio of aggregate capital
income relative to physical capital. As reported in Hayashi and Prescott (2004),
d̄ = 0.099 for the period between 1974 and 2000. Based on a method proposed
by Tauchen (1986),13 the two-state Markov process of dt is approximated as[

0.89 0.11

0.11 0.89

]

at the annual frequency. Given the above approximated transition probability, εd

is approximated to be 0.1411. Accordingly, dt takes a value of either 0.08503
or 0.11297. In addition, the serial correlation coefficient in dt is computed as
δ = 0.608, when one period is two years.14

In our framework, the capitalized labor income is endowed at the beginning of
a lifetime. Thus, the average yt/K can be regarded as the average of aggregate
labor income relative to physical capital. As reported by Hayashi and Prescott
(2004), the average of yt (ȳ) is 34.9 for the period between 1974 and 2000.
For simplicity, we assume that a cohort-specific permanent shock is perfectly
positively correlated with dividend shocks; πHH is equal to 0.5, and only zHH

and zLL emerge. Hereafter, we call such a cohort-specific shock procyclical in
the sense that dividends and labor endowments move in accordance with the total
endowment.

The volatility of yt (εy) is based on a finding of Genda (1997). Genda investigated
the business-cycle-related changes in the wage profile between the ages of 25–
29 and 40–44 for male university graduates. Controlling for aggregate effects
on wages,15 he found that the wage profile is steeper (flatter) for workers who
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graduated during booms (recessions). As a concrete number, we pick the slope
(the 15-year wage growth) of the entry year 1963 (57%) as that of a boom period,
and the slope of the entry year 1965 (52%) as that of a recession period.

We make the following assumptions to pin down the magnitude of business-
cycle-related cohort shocks (εy). First, the entry wage level is identical for all
cohorts. Second, the wage profile is steep up to the age of 49 and then flat up to
the retirement age of 64.16 Third, the applied discount rate is equal to the growth
rate of overall wages.17 Thus, the difference in lifetime income between the boom
entry and the recession entry amounts to 5.24%.18 Accordingly, the volatility of
yt is equal to εy = 0.0262, and yt takes a value of either 33.986 or 35.814. As
discussed in the preceding section, given that εy (= 0.0262) is smaller than εd

(= 0.1411), a cohort with low endowments is likely to be better off than a cohort
with high endowments.

For numerical exercises of overlapping-generations models, a time preference
β is often chosen such that the predicted life-cycle profile of asset accumulation
is consistent with the observed profile among households. In our framework,
however, such a life-cycle aspect is removed completely. Thus, we set β = 1 for
simplicity.

This assumption about time preference yields reasonable predictions under
logarithmic preference. First, as implied by the properties of this model (see
Section 2.3), the individual consumption profile becomes upward; the average
annual growth rate of consumption is 5.07%,19 and it is comparable to the observed
growth between the ages of 25 and 64.20 Second, the economywide consumption
inequality amounts to 0.1612 in terms of the standard deviation of logarithmic
consumption. Ohtake and Saito (1998) reported that the consumption inequality
reached 0.4911 in 1989 using the same measure. It follows that around one-
third of the economywide consumption inequality can be explained by business-
cycle-related cohort-specific shocks on labor income. Idiosyncratic shocks and
population shocks, both of which are out of our consideration, may be responsible
for another two-thirds of consumption inequality.

For a numerical procedure, we employ the algorithm proposed by Krusell and
Smith (1998). The detailed procedure is discussed in Appendix A.2. In addition,
Appendix A.3 carefully explores the accuracy of the approximated law of motion
for asset pricing, partly because it is always one of the most essential issues in
any numerical study on economies with heterogeneous agents, and partly because
the welfare evaluation depends critically on how accurately the law of motion for
asset pricing is approximated.

3.2. Numerical Results

We begin with the logarithmic preference case. As the first column (perfectly
positive contemporaneous correlation between yt and dt , or πHH = 0.5) of Table 1
shows, the unconditional CEQ consumption is 1.477, and the ratio relative to that of
the first-best allocation is 99.0%. That is, the presence of uninsured cohort-specific
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TABLE 1. Unconditional and conditional CEQ consumption with logarithmic
preferences under different contemporaneous correlation coefficients between
endowments and dividends

Contemporaneous correlation coefficient
between y and d

+1.0 0.0 −1.0
(πHH = 0.5) (πHH = 0.25) (πHH = 0.0)

Unconditional CEQ (CEQ ratio) 1.477 (0.990) 1.477 (0.989) 1.477 (0.989)
CEQ conditional on high y and high d 1.452 1.452 —
CEQ conditional on high y and low d — 1.524 1.523
CEQ conditional on low y and high d — 1.431 1.432
CEQ conditional on low y and low d 1.503 1.503 —

shocks reduces welfare by 1.0% in terms of the CEQ consumption. Such a relative
welfare loss is not at all negligible.

As suggested in the preceding section, given that εy (= 0.0262) is smaller than
εd (= 0.1411) in our setup, the CEQ consumption conditional on zLL (1.503) is
greater than that conditional on zHH (1.452) because the entry generation with
low endowments can purchase physical capital at low prices. The procyclical
movement of asset pricing favors the cohort with low endowments over the cohort
with high endowments. As discussed in the preceding section, the serial correlation
in asset pricing tends to decline in relation to the original dividend process. In our
baseline case where δ = 0.608, the serial correlation in asset pricing is 0.588. If
δ is zero, then it falls to −0.016.

In the case with a weaker or negative contemporaneous correlation between
endowments and dividends (πHH = 0.25 and 0.0 in Table 1), the movement of
asset pricing does not contribute to the risk sharing between the low-endowment
and high-endowment entry cohorts. The CEQ consumption conditional on zLH

is much lower than that conditional on zHL in the absence of procyclical asset
pricing. Nevertheless, the unconditional CEQ consumption is higher in the cases
where πHH = 0.25 or 0.0 than in the case where πHH = 0.5. A possible reason
for this is that, in the latter case, the price movement excessively favors the entry
cohort with low dividends, as εd is much larger than εy in our numerical setup.21

Next, we examine the impact of both intertemporal substitution (σ ) and relative
risk aversion (γ ) on the CEQ ratio (the ratio of the unconditional CEQ consumption
relative to that of the approximated first-best allocation) and asset pricing. As
shown in Table 2, the unconditional CEQ consumption ratio is decreasing in σ

given γ . For example, when γ = 0.2, the unconditional ratio decreases from
99.8% to 97.0% as σ increases from 0.2 to 5.0. The resulting welfare loss is
serious when σ is large.

Table 3 shows that the average price of physical capital is more expensive
as σ becomes larger. The reason for this is that stronger intertemporal motives
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TABLE 2. Unconditional CEQ consumption ratios un-
der various combinations of relative risk aversion and
elasticity of intertemporal substitution

γ = 0.2 γ = 1.0 γ = 1.25 γ = 5.0

σ = 0.2 0.998 0.993 0.992 0.994
σ = 0.8 0.992 0.991 0.992 0.990
σ = 1.0 — 0.990 — —
σ = 1.25 0.987 0.987 0.987 0.987
σ = 5.0 0.970 0.970 0.970 0.970

TABLE 3. Averages and standard errors of logarithmic asset prices

γ = 0.2 γ = 1.0 γ = 1.25 γ = 5.0

σ = 0.2 1.716 (0.140) 1.717 (0.141) 1.717 (0.141) 1.722 (0.141)
1.848 (0.045) 1.850 (0.046) 1.850 (0.046) 1.855 (0.046)
1.581 (0.039) 1.582 (0.040) 1.582 (0.039) 1.587 (0.040)

σ = 0.8 1.767 (0.058) 1.767 (0.058) 1.767 (0.058) 1.767 (0.058)
1.824 (0.008) 1.824 (0.008) 1.824 (0.008) 1.824 (0.008)
1.709 (0.008) 1.709 (0.008) 1.709 (0.008) 1.709 (0.007)

σ = 1.0 — 1.782 (0.050) — —
— 1.831 (0.005) — —
— 1.732 (0.005) — —

σ = 1.25 1.807 (0.041) 1.807 (0.041) 1.807 (0.041) 1.807 (0.041)
1.848 (0.003) 1.848 (0.003) 1.847 (0.003) 1.847 (0.003)
1.766 (0.003) 1.766 (0.003) 1.766 (0.003) 1.765 (0.003)

σ = 5.0 1.999 (0.018) 1.999 (0.018) 1.999 (0.018) 1.998 (0.018)
2.017 (0.003) 2.016 (0.003) 2.016 (0.003) 2.015 (0.003)
1.982 (0.003) 1.981 (0.003) 1.981 (0.003) 1.980 (0.003)

Note: (i) The numbers in parentheses are the standard errors of logarithmic asset prices. (ii) In each cell,
the number in the top row corresponds to the unconditional average, whereas the numbers in the middle
and bottom rows correspond to the averages conditional on high y and high d, and those on low y and
low d, respectively.

promote the postponement of consumption and boost asset demand. Thus, it costs
more to employ physical capital as a risk-sharing instrument. Accordingly, when
σ is larger, the merit of procyclical asset pricing becomes smaller for the entry
generation with low endowments; as shown in Table 4, an increase in σ narrows
the difference in the conditional CEQ ratio between zHH and zLL.

On the other hand, risk-averse behavior would generate two opposite effects
on asset pricing. First, high risk aversion promotes precautionary savings and
accordingly has a positive impact on asset pricing. Second, risk-averse investors
require premiums on risk assets and discount asset pricing heavily. According to
Tables 2–4, when σ is less than one (weaker intertemporal motives), the former
effect is dominant. That is, as γ increases, the average asset price becomes more
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TABLE 4. Conditional CEQ consumption ratios under
various combinations of relative risk aversion and elas-
ticity of intertemporal substitution

γ = 0.2 γ = 1.0 γ = 1.25 γ = 5.0

σ = 0.2 0.898 0.897 0.897 0.893
1.101 1.101 1.100 1.095

σ = 0.8 0.963 0.963 0.963 0.962
1.021 1.021 1.021 1.020

σ = 1.0 — 0.968 — —
— 1.012 — —

σ = 1.25 0.974 0.974 0.974 0.974
1.001 1.001 1.001 1.001

σ = 5.0 0.977 0.977 0.977 0.978
0.962 0.963 0.963 0.963

Note: In each cell, the number in the top row corresponds to the CEQ consump-
tion ratio conditional on high y and high d, whereas the number in the bottom
row corresponds to the CEQ consumption ratio conditional on low y and low d.

TABLE 5. Effects of the contraction of trading opportunities (N = 30 versus
N = 6)

γ = 0.2 γ = 1.0 γ = 1.25 γ = 5.0

σ = 0.2 0.998 ⇒ 0.996 0.993 ⇒ 0.992 0.992 ⇒ 0.991 0.994 ⇒ 0.989
σ = 0.8 0.992 ⇒ 0.989 0.991 ⇒ 0.989 0.992 ⇒ 0.989 0.990 ⇒ 0.988
σ = 1.0 — 0.990 ⇒ 0.987 — —
σ = 1.25 0.987 ⇒ 0.984 0.987 ⇒ 0.984 0.987 ⇒ 0.984 0.987 ⇒ 0.984
σ = 5.0 0.970 ⇒ 0.965 0.970 ⇒ 0.965 0.970 ⇒ 0.965 0.970 ⇒ 0.966

Note: In each cell, the number on the left-hand side (right-hand side) corresponds to the unconditional CEQ
consumption ratio in the case of N = 30 (N = 6).

expensive, and the unconditional and conditional CEQ ratios decrease slightly.
When σ is larger than one, the former effect is almost canceled out by the latter,
and the risk aversion coefficients do not have significant effects on either asset
pricing or the unconditional CEQ ratio.

Now, we evaluate the effect of the contraction of trading opportunities. In
contrast to the previous setup (N = 30), a 60-year lifetime is divided into six
periods (N = 6).22 Table 5 compares the unconditional CEQ ratios between the
two cases. As this table demonstrates, when intertemporal substitution is large,
the contraction of trading opportunities reduces the CEQ ratio to some extent. For
example, when γ = 0.2 and σ = 5.0, the CEQ ratio decreases from 97.0% to
96.5%. In other words, the expansion of trading opportunities favors those with
strong intertemporal saving motives.
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In summary, the level and movement of asset pricing play key roles in sharing
cohort-specific shocks between cohorts with high endowments and cohorts with
low endowments. That is, the intergenerational risk sharing through financial
transactions is effective to the extent that physical capital as a risk-sharing in-
strument is cheaply available. In other words, the capital market allocation is less
efficient in the presence of strong demand for physical assets. In addition, the
expansion of trading opportunities favors young cohorts with stronger incentives
to postpone consumption.

4. ON THE OPTIMAL POLICY INTERVENTION AND THE
INTRODUCTION OF PRIOR-TO-ENTRY MARKETS

As documented in the preceding section, the capital market transactions among
generations contribute to the sharing of cohort-specific permanent shocks. How-
ever, the shocks remain partially uninsured, particularly under a large elasticity of
intertemporal substitution and limited transaction opportunities, because physical
capital as a risk-sharing instrument is quite costly in these cases. Therefore, there
may be an opportunity for a government to directly intervene in the intergenera-
tional allocation.

The current section demonstrates that the optimal allocation may be attained
by pooling resources between endowment receivers (entry cohorts) and capital-
income earners (existing cohorts). Concretely, when preference is logarithmic, the
first-best allocation is attainable through a subsidy to the entry generation financed
by a 100% levy on dividend income. In addition, this section examines whether
the first-best allocation can be achieved by opening up prior-to-entry markets.

4.1. Optimal Policy Intervention

Suppose that a government provides a transfer to the youngest (entry) generation.
To finance this transfer, the government levies taxes on the dividends of the other
generations at a rate τ . In this case, we can obtain the optimal rule of consumption
and saving by replacing yt and dt with ỹt = yt + τdtK and d̃t = (1 − τ)dt .

Given a 100% levy on dividends (τ = 1), the following optimal consumption
and saving rules of age j at period t are derived from equations (3) and (4):

c0,t = ψ0(yt + dtK), x0,t = (1 − ψ0)
yt + dtK

Pt

,

cj,t = Ptψjxj−1,t−1, xj,t = (1 − ψj)xj−1,t−1, j = 1, . . . , N − 2.

From equation (6), we obtain

Pt = (1 − ψ0)
yt + dtK

K − ξ(xt−1)
,

where ξ(xt−1) = ∑N−2
j=1 (1 − ψj)xj−1,t−1.23
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Substituting the above pricing equation into x0,t = (1 − ψ0)
yt+dtK

Pt
yields

x0,t = K − ξ(xt−1). As xj,t = (1 − ψj)xj−1,t−1 for j ≥ 1, the cross-generational
capital distribution xt = (x0,t , . . . , xj−1,t ) is independent of yt and dt , and de-
pends only on xt−1. Hence, the capital distribution is constant over time. We
denote the time-invariant capital distribution by x̄ = (x̄0, . . . , x̄N−2). Thus,
cj,t = Ptψj x̄j−1 for j ≥ 1. Note that the consumption profile, as well as the
asset pricing, is proportional to the aggregate outcome yt + dtK . We can show
that x̄j−1 = βj 1

ψj

ψ0

1−ψ0
[K − ξ(x̄)].24 Accordingly, we obtain

cj,t = ψ0β
j (yt + dtK), j = 0, . . . , N − 1.

The above consumption allocation corresponds to the allocation under the optimal
sharing rule (the first-best outcome).

By conducting intensive numerical calculations, we confirmed that the above
subsidy to the entry generation financed by a 100% levy on dividends would
almost yield the first-best allocation even if preference were not logarithmic. In
the case where σ = γ = 5.0, for example, the unconditional CEQ consumption
ratio is 97.0% without any policy intervention, but it reaches 99.7% under the
above combination of subsidies and taxes.

4.2. Opening up Prior-to-Entry Markets

Given the above optimal policy, cohort-specific shocks and dividend shocks are
pooled completely, and all generations are exposed only to aggregate risks (pro-
portional to yt +dtK) through the movement of asset prices Pt . The next question
is whether the first-best allocation can be achieved by introducing another market.

Here, we introduce a prior-to-entry market into the current setup. To imitate
the resource allocation delivered by the optimal policy combination of subsidies
and taxes, we suppose that the entry cohort borrows an amount equivalent to
the aggregate capital income in the above prior-to-entry market and repays its
outstanding debts using the entire capital income earned at every age until death.
Is this borrowing contract arbitrage-free under the first-best allocation?

As discussed in the preceding section, cj,t = ψ0β
j (yt + dtK) holds at the

first-best allocation and, accordingly, a stochastic discount factor between time t

and t + j (Mt,t+j ) can be characterized as βj c0,j

cj,t+j
. Then, for Mt,t+j , we obtain

Mt,t+j = yt + dtK

yt+j + dt+jK
.

As discussed before, the cross-generational capital distribution is constant over
time under the first-best allocation. A capital holding at age j is defined as x̄j .
Thus, for the above borrowing contract, the following arbitrage condition should
be satisfied prior to entry:

Et−1 [dtK] = Et−1[Mt,t+1dt+1x̄0+Mt,t+2dt+2x̄1+ · · ·+Mt,t+N−1dt+N−1x̄N−2].
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With some manipulation, the above condition is rewritten as

Et−1

[
dtK

yt + dtK

]

=Et−1

[
dt+1

yt+1 + dt+1K
x̄0+ dt+2

yt+2 + dt+2K
x̄1+ · · · + dt+N−1

yt+N−1 + dt+N−1K
x̄N−2

]
.

As mentioned above, the capital distribution xt = (x0,t , . . . , xj−1,t ) is fixed
over time in a first-best allocation. In addition, we have

∑N−2
j=0 x̄j = K from

market-clearing conditions. Thus, the above equality implies that if the ratio of
dividends to entire endowments, dt

yt+dtK
, is sequentially independent (δ = 0), and

its expectation is constant, then the arbitrage condition holds.25

Given that δ = 0, the first-best allocation is attainable in a decentralized manner
as long as the entry cohort can arrange the above type of borrowing contract in
the prior-to-entry market. The preceding argument suggests that the allocation
inefficiency arising from Huffman’s (1987) setup is indeed a consequence of the
inability of the entry cohort to make short positions at the prior-to-entry market.
Viewed from a different angle, the inefficiency associated with the capital market
allocation arises not from the failure of an intertemporal transfer from a cohort with
high endowments to one with low endowments, but from insufficient intratemporal
risk sharing between receivers of labor endowments (entry cohorts) and capital-
income earners (existing cohorts).

5. CONCLUDING REMARKS

This paper evaluates the intergenerational sharing of a procyclical cohort-specific
shock on permanent income through capital market transactions, given the absence
of prior-to-entry markets. The level and movement of asset pricing play a key role
in sharing those shocks. The market allocation is effective to the extent that
physical capital is cheaply available as a risk-sharing instrument. Conversely, the
capital market fails to share the cohort-specific permanent shocks effectively in
the presence of strong capital demand for intertemporal reasons.

Our numerical investigation shows that, given a reasonable set of parameters
concerning the Japanese labor market, the market incompleteness with respect to
the cohort-specific permanent shock would result in welfare losses of between 1%
and 3% in terms of the CEQ consumption level. Such inefficiency in the capital
market transactions is not a consequence of a failure of risk sharing between a
cohort with high endowments and a cohort with low endowments. The risk sharing
between these cohorts may be achieved at least partially by the movement of asset
prices as long as cohort-specific shocks are procyclical.

As a possible optimal policy, we demonstrate that a subsidy to the entry gen-
eration financed by a 100% levy on dividends from Lucas trees would yield
the first-best outcome as a consequence of the effective risk pooling of labor
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and capital income. In addition, the first-best outcome may be attained in a
decentralized manner when the entry cohort can make short positions at the prior-
to-entry market.

Given these implications from our theoretical and numerical investigation, an
optimal policy response to uninsured cohort-specific shocks on permanent income
should reflect not the intertemporal transfer from high-endowment cohorts to low-
endowment cohorts, but the intratemporal risk sharing between labor-endowment
receivers (entry cohorts) and capital-income earners (existing cohorts).

One of the theoretical limitations of our setup is that capital supply is exogenous
and fixed. If this assumption is relaxed, as in Bohn (1998), Krueger and Kubler
(2003), and Smetters (2004), then capital accumulation or decumulation may serve
as an additional hedge device for cohort-specific permanent shocks. We leave this
extension to future research.

NOTES

1. Von Wachter and Bender (2006) argued that cohort effects are not permanent, but temporary.
Allowing for job mobility among firms and employees, they found that an early job displacement as
well as graduation during a recession have only transitory wage effects in Germany.

2. Kahn (2007) showed that a theory of task-specific human capital [Gibbons and Waldman (2006)]
was consistent with her empirical finding about cohort effects on wages.

3. In focusing on the intergenerational sharing of capital-income risks, some of the above authors
assumed that human capital, yielding labor income, is a riskless asset. This assumption may be
justified when labor income has a small cohort-specific risk and a weak correlation with capital income
[Campbell et al. (2001)]. However, Benzoni et al. (2007) discovered that labor and capital income
are cointegrated, and that the relationship between the two magnifies labor-income risk in the long
run. Consequently, cohort-specific shocks on permanent labor income can no longer be regarded as
negligible.

4. See Kreps and Porteus (1978) and Epstein and Zin (1989).
5. As the next section shows, in case (i), the marginal propensity to consume out of wealth (MPCW)

in the simple sharing rule exactly corresponds to the MPCW of the optimal consumption decision rule
in the market equilibrium. This aspect guarantees the simple sharing rule as the optimal policy under
logarithmic preferences regardless of β.

6. In case (ii), marginal period utility depends only on current consumption and is independent
of future consumption. When β is equal to one in time-additive preferences, the individual weight
over period utility is exactly equal to the planner’s weight over each lifetime utility. Thanks to these
features, the simple sharing rule generates the first-best outcome under time-additive preferences with
β = 1.

7. For exactly the same reason, it is extremely difficult to compute first-best outcomes even numer-
ically, particularly in the presence of aggregate risks.

8. The main reason for this property of the optimal decision rules is that logarithmic preferences
balance wealth and substitution effects so that a decision maker may ignore any effect of future
uncertainty.

9. If a risk-free assets market is introduced into the current setup, transactions of risk-free assets may
emerge among cohorts. That is, some cohorts may have short positions in risk-free assets. However,
as Constantinides and Duffie (1996) and others have suggested, it may be hard to self-insure against
permanent shocks on lifetime income using noncontingent claims (risk-free assets). In this regard,
risk-free assets may not play an active role in self-insuring against permanent cohort-specific shocks.
As shown in Section 4, on the other hand, once a prior-to-entry market opens, an entry cohort may
issue a particular type of contingent claim for a risk-sharing purpose.
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10. Note that 1 − ψj is decreasing in age j.

11. It is difficult to directly relate this theoretical property of asset pricing to any empirical obser-
vations of actual financial markets, but it may be possible to interpret it as a potential source of mean
reversion in stock prices. Using financial data on market economies, Poterba and Summers (1988) and
others found that declines in stock prices tend to be followed by increases in stock prices at a relatively
low frequency (longer than one year).

12. From equation (6), we obtain yt /Pt = K−ξ(xt−1)

(1−ψ0)+ξ(xt−1)dt /yt
and

E(Vt |zLL) > E(Vt |zHH ) ⇔ (1 − εy)ȳ

P (·, zLL)
>

(1 + εy)ȳ

P (·, zHH )
⇔ (1 − εy)ȳ

(1 − εd )d̄
>

(1 + εy)ȳ

(1 + εd )d̄
.

Then, we establish εy < εd as the condition under which E(Vt |zLL) > E(Vt |zHH ) holds.
13. Tauchen (1986) proposed a method for approximating a transition probability matrix of a finite

number of discrete state variables from the first-order autoregression model with normally distributed
errors.

14. Concretely, δ is chosen such that, after the transition probability matrix is raised to the second
power, the first element 0.804 may be equal to 0.5(1 − δ) + δ.

15. Genda (1997) controlled aggregate shocks by subtracting the growth of the average wage of
male university graduate workers.

16. Such a pattern of wage profiles is observed for the monthly cash earnings of male university
graduates in Table 2 from the Ministry of Labour and Welfare (2004).

17. This assumption itself is rather heroic, but for our purposes, it is not so audacious as it looks.
Here, we are interested not in calculating the present value of lifetime income, but in computing a
difference in the present value between boom cohorts and recession cohorts. A misspecified discount
rate may have similar impacts on the computation of lifetime income of both cohorts; consequently,
the computed difference between the two cohorts is relatively free of the impact of misspecification of
discount rates.

18. More concretely, the annual wage Xt begins with X0, grows at the annual rate of µ for 20 years
(between the ages of 25–29 and 45–49), and then becomes constant for 15 years (up to the ages of
60–64). That is,

Xt =
{
X0 exp(µt) t ∈ [0, 20),

X0 exp(20µ) t ∈ [20, 35].

In this case, the lifetime income is derived as

X0

[∫ 20

0
exp(µt)dt + 15 exp(20µ)

]
= X0

µ
[exp(20µ) − 1 + 15µ exp(20µ)].

Suppose that µa is the annual growth rate of a boom cohort, whereas µb is that of a recession cohort
(µa > µb). A difference in logarithmic lifetime income between the two cohorts reduces to

ln

[
µb

µa

exp(µax) − 1 + µay exp(µax)

exp(µbx) − 1 + µby exp(µbx)

]
.

According to Genda (1997), the estimated 15-year wage growth was 57% (52%) for the boom (reces-
sion) cohort. Substituting µa = 0.57/15 and µb = 0.52/15 into the above equation, the logarithmic
difference is equal to 5.24%.

19. This result suggests that the implied risk-free rate is about 5% per year under logarithmic pref-
erences with β = 1. As in other asset-pricing models, the current model is subject to the overestimation
of risk-free rates or the so-called risk-free rate puzzle.

20. The computed growth rate of the expenditure per household is based on the data grouped accord-
ing to the age of household heads in Table 6 from the Ministry of Internal Affairs and Communications
(2000).
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21. We numerically confirm that the unconditional CEQ consumption is highest in the case where
πHH = 0.5 when εy = εd .

22. Given a lifetime horizon, an increase (decrease) in N expands (contracts) the opportu-
nity for intergenerational financial transactions as dividend shocks arrive with higher (lower)
frequency.

23. Given a 100% levy on dividends, the value of Lucas trees is not backed by dividends as income
rises. However, older cohorts can sell their Lucas trees to younger cohorts. Consequently, Lucas trees
are valued by principals in such intergenerational asset transactions.

24. Using x̄0 = K − ξ(x̄), x̄j = (1 − ψj )x̄j−1, and 1 − ψj−1 = βψj−1
ψj

, we obtain

x̄j−1=(1−ψj−1)(1−ψj−2) · · · (1−ψ1)[K−ξ(x̄)] = βj−1 ψ1

ψj

[K−ξ(x̄)] = βj 1

ψj

ψ0

1 − ψ0
[K−ξ(x̄)].

The last equality is established by ψ1 = βψ0
1−ψ0

.
25. Without δ = 0, the arbitrage condition no longer holds. Appendix A.4 proves that, if εd > εy

as in our numerical setting, and 0 < δ < 1, then

Et−1

(
dtK

yt + dtK

)
< Et−1

(
dt+1

yt + dtK
x̄0 + · · · + dt+N−1

yt + dtK
x̄N−2

)
when zt−1 = zHH , zHL,

Et−1

(
dtK

yt + dtK

)
> Et−1

(
dt+1

yt + dtK
x̄0 + · · · + dt+N−1

yt + dtK
x̄N−2

)
when zt−1 = zLH , zLL.

Thus, the arbitrage condition does not hold. When δ is greater than zero, a more sophisticated investment
strategy in the prior-to-entry market may deliver first-best outcomes. However, we cannot find such a
strategy in an explicit form.

26. We set the lower bound of x at a small but positive number because, except at the time of
death, the equilibrium asset holding never reaches zero to avoid positive infinity of marginal period
utility.

27. We adopt Newton’s method and a grid search method for optimization procedures. Because
there is not any noticeable difference in numerical results between the two methods, we report the
results based on Newton’s method.

28. Table A.1 reports the minimum R2 among four possible cases, where zt is either zHH or
zLL, and zt+1 is either zHH or zLL, because there is no noticeable difference in R2 among the four
cases.
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APPENDIX
A.1. PROOF OF THE OPTIMALITY OF A SIMPLE SHARING RULE

In this appendix, we prove that when a social planner treats each cohort equally, a simple-
sharing-rule allocation, cj,t = βj (yt +dtK)/(1+β +· · ·+βN−1) for j = 0, 1, . . . , N −1,
is the first-best allocation if a preference is logarithmic, or if it is time-additive (σγ = 1)
with β = 1.

We obtain the first-best allocation by solving a social planner’s problem as of time 0.
Let U0,t be the lifetime utility function of a consumer born at time t . When σγ = 1, U0,t

is represented as U0,t = ∑N−1
j=0 βju(cj,t+j ) for t ≥ 0, and U0,t = ∑N−1

j=−t β
ju(cj,t+j ) for

−1 + N ≤ t < 0, where u(c) is either ln(c) if γ = 1, or c1−γ /(1 − γ ) if γ �= 1. The social
planner maximizes the welfare function

E0

[ ∞∑
t=−N+1

λtU0,t

]
,

subject to the feasibility constraint
∑N−1

i=0 ci,t = yt + dtK for each period t , where λt > 0
is a welfare weight.

The first-best consumption plan is characterized by a set of first-order conditions, or

µt = λt−j β
ju′(cj,t ),

for j = 0, . . . , N − 1, where µt is the Lagrange multiplier associated with the feasibility
condition at period t .

We assume that the planner’s weight on the period t entry generation (λt ) is identical
among all generations. Thus,

u′(c0,t ) = βu′(c1,t ) = · · · = βN−1u′(cN−1,t ).

The allocation cj,t = βj (yt + dtK)/(1 +β + · · ·+βN−1) for j = 0, 1, . . . , N − 1 satisfies
the above condition if a preference is logarithmic, or if it is time-additive (σγ = 1) with
β = 1.

A.2. NUMERICAL PROCEDURES

In this appendix, we briefly describe the numerical procedure adopted in our paper. We
basically follow the algorithm proposed by Krusell and Smith (1998). In this economy, the
optimal consumption rule in period t depends on the exogenous state variables zt as well
as the asset pricing Pt ; Pt may summarize the information of the one-period lagged cross-
generational distribution of capital holdings xt−1 = (x0,t−1, . . . , xN−2,t−1). We assume that
the decision rules of consumers at age j in period t depend on zt , Pt , and their own capital
holding xj,t−1. In addition, we assume that all consumers predict the price of Lucas trees
in period t + 1 using the forecasting rule

ln P(zt+1) = b0 (zt , zt+1) + b1 (zt , zt+1) ln P(zt ), (A.1)

where coefficients b0 and b1 depend on the current and future states zt and zt+1.
The Krusell–Smith algorithm proceeds as follows.
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(1) Make a grid of points on both individual capital holdings x and capital price P for
each state of z ∈ {zHH , zHL, zLH , zLL}. We make 50 grid points in x and 100 grid
points in P at equal intervals. The lower bound of x is set at 0.01,26 whereas its upper
bound is set at 40 for N = 6, and 20 for N = 30. For each value of N , the lower
(upper) bound of P is half (1.5 times) as large as the asset price that is computed
under the assumption of logarithmic preferences.

(2) Choose the case of a logarithmic preference without any uncertainty as the initial
value of the capital distribution ({xj,0}N−1

j=0 ) and the forecasting rule of capital pricing
(A.1).

(3) Given the forecasting rule, solve the maximization problem of each age group by a
backward induction at each point in the grid.27 Starting from V̂N = 0, V̂j is computed
based on the following Bellman equation:

V̂j (x, z, P ) = max
x′

{
f (x, x ′, z, P ) + β

[
EV̂j+1(x

′, z′, P ′)1−γ
] σ−1

σ(1−γ )

} σ
σ−1

,

where

f (x, x ′, z, P ) =
{

[y(z) − Px ′]
σ−1
σ if j = 0

[Px + d(z)x − Px ′]
σ−1
σ otherwise.

y(z) and d(z) are determined by equations (1) and (2). The forecasting rule sets
one-period-ahead asset prices P ′. The value of V̂j+1 for any point other than the grid
points is computed by the two-dimensional piecewise linear interpolation. In this way,
the decision rule of the age j cohort [xj,t = ĝj (xj−1,t−1, zt , Pt )] is approximated.

(4) Generate exogenous state variables {zt } for 41, 000 periods. Given the ini-
tial capital distribution {xj,0}N−1

j=0 and the forecasting rule of capital prices,

compute {{xj,t }N−1
j=0 , Pt }41,000

t=1 using the approximated decision function xj,t =
ĝj (xj−1,t−1, zt , Pt ), and the market-clearing condition

∑N−1
j=0 xj,t = K . Given Pt

found by the bisection method, {xj,t }N−1
j=0 and cj,t can be calculated.

(5) Discard the first 1,000 observations of the above simulated sample. Update the
prediction rule by regressing Pt+1 on Pt for a given (zt , zt+1).

(6) Repeat steps 3–5 until the forecasting rule converges.

A.3. ACCURACY OF THE APPROXIMATED LAW OF MOTION
FOR ASSET PRICING

As mentioned in Appendix A.2, the forecast of logarithmic asset prices of Lucas trees
is based on equation (A.1). The underlying presumption of this forecasting rule is that
the current price of Lucas trees summarizes well the information concerning the infinite-
dimensional cross-sectional capital distribution.

In general, the accuracy of the approximated law of motion is one of the most essential
issues in any numerical study on economies with heterogeneous agents. Particularly in our
context, the welfare evaluation depends critically on how accurately the law of motion
is approximated. That is, if the law of motion is approximated inaccurately, the resulting
decision rules are likely to be less optimal. When the welfare evaluation is based on the
market allocation that is generated by such less optimal decision rules, welfare losses may
be overestimated seriously.

https://doi.org/10.1017/S1365100509090014 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100509090014


116 KENJI MIYAZAKI ET AL.

TABLE A.1. R2-based accuracy tests for the law of
motion of asset pricing

Relative risk aversion (γ )

EIS (σ ) 0.2 1.0 1.25 5.0

0.2 0.951 0.950 0.950 0.947
0.8 0.960 0.960 0.960 0.960
1.25 0.935 0.935 0.935 0.947
5.0 0.989 0.989 0.989 0.989

Note: The reported R2 corresponds to the minimum R2 among four
possible cases, where zt is either zHH or zLL, and zt+1 is either zHH or
zLL. There is not any noticeable difference in R2 among the four cases.

In the literature, the accuracy of the approximated law of motion is usually evalu-
ated by the fitness of one-period-ahead forecasting by equation (A.1), R-squared (R2) is
most often adopted for this purpose. On the other hand, den Haan (2007) pointed out
several drawbacks of R2-based tests and proposed an alternative accuracy test. In partic-
ular, he pointed out that R2-based tests are based on the in-sample fitness using actual
observations as explanatory variables. To overcome this weakness, a test proposed by
den Haan (2007) compares the observed series in equilibrium with the simulated series
based only on the approximated law of motion [equation (A.1)] without any update, given
the initial asset price and the time series of realized shocks. The comparison is made in
terms of the maximum and average of the difference between the observed and simulated
values.

Table A.1 reports the results of R2-based tests for our numerical exercises with various
combinations of preference parameters.28 R-squared ranges between 0.935 and 0.989. These
levels of R-squared are a little lower than those of Krusell and Smith (1998), who studied the
infinite-horizon economy with heterogeneous agents. A possible reason for this difference
is that the degree of heterogeneity is more serious owing to cross-sectional differences in
the remaining time horizon in our overlapping generations setup.

Using the accuracy test proposed by den Haan (2007), Table A.2 reports the results for
numerical exercises with the degree of relative risk aversion (γ ) fixed at one. In any case,
the maximum absolute error is three or four times as large as the average absolute error.
However, the two measures exhibit similar patterns; the error is decreasing substantially
with the elasticity of intertemporal substitution (σ ).

As mentioned above, our primary concern is that welfare losses may be overestimated
as a result of inaccurately approximated laws of motion. However, this is not the case at
all in our numerical exercises. As Table 2 reports, when γ is equal to one, the estimated
welfare loss increases with σ ; for example, it is 0.7% (1 − 0.993) for σ = 0.2, but it
is 3.0% (1 − 0.970) for σ = 5.0. On the other hand, as reported in Tables A.1 and
A.2, both R2-based and den Haan accuracy tests indicate that the approximated law of
motion is most accurate when σ = 5.0. Therefore, it is hard to imagine that the eval-
uated welfare loss is influenced heavily by the inaccuracy of the approximated law of
motion.
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TABLE A.2. Den Haan’s (2007) accuracy tests for the law of motion of asset
pricing

N = 30 N = 20

Maximum Average Maximum Average
EIS (σ ) absolute error absolute error absolute error absolute error

0.2 0.0593 0.0157 0.0610 0.0160
0.8 0.0122 0.0035 0.0110 0.0034
1.25 0.0054 0.0017 0.0052 0.0016
5.0 0.0022 0.0007 0.0022 0.0007

Notes: (i) The degree of relative risk aversion (γ ) is set at one. (ii) The absolute error is defined as the absolute
difference in logarithmic asset prices between the observed price and the simulated price.

A.4. PROOF OF THE ARBITRAGE CONDITION IN FOOTNOTE 5

Let Q ≡ (1 − δ)� + δI , where 0 ≤ δ < 1, � = (π π π π)′, π = (πHH , πHL, πLH , πLL)′,
and I is a four-dimensional identity matrix. Then

Qn = {(1 − δ)� + δI }n = (1 − δ)n�n + · · · + (1 − δ)δn−1�n + δnI

= � + δn(I − �).

Let at = dt/(yt + dt ), and Eat = πHH aHH + πHLaHL + πLH aLH + πLLaLL = ā. Then
we have

Et−1at+i = (1 − δi+1)ā + δi+1at−1,

Et−1atK = (1 − δ)āK + δat−1K = āK − δ(at−1 − ā)K,

Et−1(at+1x̄0 + · · · + at+N−1x̄N−2) = āK − (at−1 − ā)(δ2x̄0 + · · · + δN x̄N−2).

If δ = 0, Et−1atK = Et−1(at+1x̄0 + · · · + at+N−1x̄N−2), and otherwise,

Et−1atK − Et−1(at+1x̄0 + · · · + at+N−1x̄N−2) = (at−1 − ā)(δ2x̄0 + · · · + δN x̄N−2 − δK).

As
∑

xi = K and 0 < δ < 1, the term (δ2x̄0 + · · · + δN x̄N−2 − δK) is always negative.
If δ = 0, Et−1atK = Et−1(at+1x̄0 + · · · + at+N−1x̄N−2), and otherwise,

Et−1atK > Et−1(at+1x̄0 + · · · + at+N−1x̄N−2) if at−1 < ā,

Et−1atK < Et−1(at+1x̄0 + · · · + at+N−1x̄N−2) if at−1 > ā.

Recall that at−1 = dt−1/(yt−1 + dt−1K) holds. If δ = 0, then

Et−1

(
dtK

yt + dtK

)
= Et−1

(
dt+1

yt + dtK
x̄0 + · · · + dt+N−1

yt + dtK
x̄N−2

)
,
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and if 0 < δ < 1, then

Et−1

(
dtK

yt + dtK

)

> Et−1

(
dt+1

yt + dtK
x̄0 + · · · + dt+N−1

yt + dtK
x̄N−2

)
if

dt−1K

yt−1 + dt−1K
<

d̄K

ȳ + d̄K
,

Et−1

(
dtK

yt + dtK

)

< Et−1

(
dt+1

yt + dtK
x̄0 + · · · + dt+N−1

yt + dtK
x̄N−2

)
if

dt−1K

yt−1 + dt−1K
>

d̄K

ȳ + d̄K
.

In the case where εd > εy ,

(1) If zt−1 = zHH , dt−1K/(yt−1 + dt−1K) = d̄K/(
1+εy

1+εd
ȳ + d̄K) > d̄K/(ȳ + d̄K).

(2) If zt−1 = zHL, dt−1K/(yt−1 + dt−1K) = d̄K/(
1+εy

1−εd
ȳ + d̄K) > d̄K/(ȳ + d̄K).

(3) If zt−1 = zLH , dt−1K/(yt−1 + dt−1K) = d̄K/(
1−εy

1+εd
ȳ + d̄K) < d̄K/(ȳ + d̄K).

(4) If zt−1 = zLL, dt−1K/(yt−1 + dt−1K) = d̄K/(
1−εy

1−εd
ȳ + d̄K) < d̄K/(ȳ + d̄K).

Hence, we obtain

Et−1

(
dtK

yt + dtK

)
< Et−1

(
dt+1

yt + dtK
x̄0 + · · · + dt+N−1

yt + dtK
x̄N−2

)
if zt−1 = zHH , zHL,

Et−1

(
dtK

yt + dtK

)
> Et−1

(
dt+1

yt + dtK
x̄0 + · · · + dt+N−1

yt + dtK
x̄N−2

)
if zt−1 = zLH , zLL.
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