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The impact of Strouhal number St (= 0.1–1.0), Reynolds number Re (= 50–2000) and
dimensionless wavelength λ (= 0.5–2.0) on the hydrodynamic performance of a travelling
wavy foil of a constant length is extensively investigated. The relationship of time-mean
thrust with St, Re and λ is presented, suggesting that the propulsive force increases with
increasing St, Re and λ. As such, the drag–thrust boundary advances as these parameters
increase. A shorter λ makes the thrust steadier while a longer λ enhances the maximum
instantaneous thrust. The latter is beneficial for prey to escape from a predator. The fluid
added mass caused by the foil oscillation increases with St and λ but declines with Re
(<500). Seven types of wake structures produced by the foil are identified, discussed and
connected to thrust generation, showing how St, Re and λ affect the fluid dynamics, wake
transition, vortex strength, wake jet, velocity, added mass, added damping, power input,
efficiency and pressure profiles. The outcome of this work renders a physical basis for
understanding the swimming of aquatic animals.

Key words: swimming/flying, flow-structure interactions

1. Introduction

The Myllokunmingia was a lonely swimmer several hundred million years ago (Shu et al.
1999) while aquatic swimmers exist everywhere in the ocean now. During this long history
of evolution, swimming animals have mastered an exquisite capacity to control their body
and the flow around themselves to efficiently cruise in water (Fish & Lauder 2006). There
is no doubt that human beings admire the swimming skills of aquatic animals and hope to
have a similar capacity.
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With the development of science and technology, researchers have conscientiously
considered swimming performance to be scientific, as explained in the light of fluid
dynamics (Lighthill 1969; Triantafyllou, Triantafyllou & Yue 2000; Dabiri 2009; Lauder
2009; 2015; Shelley & Zhang 2011; Wu 2011; Chao, Cao & Pan 2017; Smits 2019; Alam &
Muhammad 2020). Generally, natural swimmers share two similar propulsive strategies,
including body-caudal-fin (BCF) and media-paired-fin propulsion (Breder 1926). The
slender swimmers (such as fishes and mammals) always employ the BCF strategy to swim
long distances largely at a constant speed. Moreover, the biological observations have
shown that the BCF thrust-generation mechanisms can be further classified as oscillatory
and undulatory, depending on the types of motion of the thrust-generating structure (Webb
1984).

A pitching foil pivoted at its leading edge is generally used to study the hydrodynamic
performance of oscillatory BCF propulsion. Undergoing pitching oscillation, the foil
generates time-mean thrust quadratically or cubically with Strouhal number St (Floryan
et al. 2017; Van Buren et al. 2017; Alam & Muhammad 2020), where St is based on the
pitching frequency f, peak-to-peak amplitude 2AL and swimming speed U, i.e. St = 2fAL/U.
On the other hand, the propulsive force of a pitching foil is linked to the wake patterns
generated by the foil (Zhang 2017; Chao et al. 2021b). The Kármán vortex (KV) wake
and reverse Kármán vortex (RKV) wake are generally considered to produce drag and
thrust, respectively (Von Kármán & Burgers 1934). Recently, several studies reported
that the drag–thrust transition is not synchronous with the KV–RKV wake transition
(e.g. Godoy-Diana, Aider & Wesfreid 2008). Floryan, Van Buren & Smits (2020) have
reinterpreted results in the literature and pointed out that the wake-structure-based
performance assessment of swimmers may be misleading. For example, Godoy-Diana
et al. (2008) experimentally investigated the relationship between thrust force and wake
structures of a pitching foil undergoing sinusoidal oscillations. They found that the
KV–RKV wake transition precedes the drag–thrust transition. The asynchronization
between the two transitions implies that the RKV wake may not necessarily produce thrust
but may also lead to a drag. Following the work of Godoy-Diana et al. (2008), other works
also validated the asynchronization between the drag–thrust transition and the KV–RKV
wake transition of a pitching foil (Godoy-Diana et al. 2009; Marais et al. 2012; Deng, Sun
& Shao 2015; Deng et al. 2016; Andersen et al. 2017; Chao et al. 2019; Chao, Alam & Ji
2021a; Chao et al. 2021b). Alam & Muhammad (2020) analysed the fluid dynamics based
on inertia, using relative angular acceleration with respect to the foil, showing that the fluid
dynamics is strongly dictated by the inertia of the foil. They mathematically developed a
flow model based on Euler, Coriolis and centrifugal accelerations in a non-inertial frame to
assimilate the physical insight into the thrust generation and power input. While Euler and
Coriolis accelerations were involved in the power input, the centrifugal acceleration was
linked to the thrust generation. The KV and RKV wakes were found to be the attributes of
the drag and thrust, respectively, but not the origin of the thrust.

The undulatory BCF strategy is backbone undulation, which is a combination of two
waves. One is a cyclic change of the curved body producing a lateral wave propagation
in the caudal direction, and the other is every single point on the body undergoing
a sinusoidal track in a horizontal plane as the consequence of the wave propagation
(Gray 1933). Therefore, the movement of the slender swimmer can be appropriately
considered as the fish-like foil undergoing a streamwise travelling wavy motion that is
used by anguilliform, carangiform and subcarangiform swimmers (Carling, Williams &
Bowtell 1998; Liao et al. 2003; Kern & Koumoutsakos 2006). Similar to a pitching foil,
the travelling wavy foil also showed that the foil kinematics would directly affect the
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hydrodynamic performance of the foil (Barrett et al. 1999; Shen et al. 2003; Dong &
Lu 2005; Lu & Yin 2005; Deng, Shao & Ren 2006; Zhang et al. 2018). Lu & Yin (2005)
have investigated the propulsive performance of a fish-like travelling wavy wall and found
that the undulation amplitude and the oscillation frequency of the travelling wavy motion
are two important parameters in determining the thrust generation. The propulsive force
produced by the travelling wavy foil increases with increasing foil undulation amplitude.

Compared with the pitching foil, the travelling wavy foil complies better with the
swimming behaviour of the slender swimmer (Smits 2019). Although researchers have
made a considerable effort to understand the hydrodynamic performance of a fish-like foil
undergoing travelling wavy motion, the effect of the foil deforming characteristics is not
well understood. The different slender swimmers essentially employ different strategies to
bend their bodies (Breder 1926). A single specific swimmer even has different deforming
techniques under different conditions, such as the fish that uses C-start (C-shaped)
deformation during the survival behaviour (Gazzola, Van Rees & Koumoutsakos 2012).
However, to the authors’ knowledge, no systematic investigation has been done on how
the deforming characteristics affect the propulsive performance of a travelling wavy foil.
On the other hand, we also noted that the previous works on the travelling wavy foil
always kept a constant projected length of the foil body in the streamwise direction.
This is, however, not the case in reality as the projected length will be smaller when the
wave amplitude is larger. In this work, we therefore attempt to systematically investigate
the hydrodynamic performance of a travelling wavy foil with varying foil kinematics
(Strouhal number), fluid properties (Reynolds number) and foil deforming characteristics
(wavelength), with the foil length kept constant to replicate the native slender swimmer.
Moreover, the results for the travelling wavy foil configuration are compared with those
for the pitching foil configuration.

2. Method

2.1. Problem formulations
A schematic of the flow configuration is presented in figure 1(a). A two-dimensional
NACA0012 foil with chord-length of L is placed in a uniform flow of velocity U in the
x-direction, where the leading edge of the foil is located at the origin of the Cartesian
coordinate system. The movement of the foil midline can be expressed by the following
travelling wavy equation:

y(x, t) = A(x) sin
[

2π

(
x
λr

− t
T

)]

∫ Ls(t)
0

√
{1 + (∂y/∂x)2} dx = L

⎫⎪⎪⎬
⎪⎪⎭

, (2.1)

where A(x) is the swimming amplitude function, usually considered as a polynomial
A(x) = a0 + a1x + a2x2 (Videler 1993), x is measured from the leading edge of the foil,
y is the lateral displacement of the foil midline, λr is the real wavelength defined in
figure 1(b), t is the instantaneous time, T is the undulation period and Ls(t) denotes
projected length of the foil on the x-axis (streamwise direction), giving Ls(t) ≤ L. Without a
loss of generality, a0 = a2 = 0 and a1 = 0.05 are employed to determine the foil undulation.
In addition, the dimensionless wavelength λ normalized by L (i.e. λ= λr/L) is employed
to describe the foil deformation. With x ≤ L, only the first formula in (2.1) was employed
to describe the fish-like locomotion in the literature (Lu & Yin 2005; Deng et al. 2006;
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Xiao et al. 2011; Gupta et al. 2021), where the length of the foil midline varies with time
and Ls(t) is kept constant. This is, however, not the case in reality; the fish-like swimmer
cannot change its midline body length. To follow the kinematics of a real swimmer, both
the foil midline length and the included area are kept constant, with the foil midline
computed from (2.1). The foil surface is given by maintaining the normal distance (e.g.
hs at an arbitrary point on the midline) from the midline constant for the deformed and
undeformed foils. For example, consider that hs is the distance between point A on the foil
midline and point B (normal to the midline) on the foil surface when the foil is straight,
undeformed (figure 1c). At each time step, the line AB normal to the deformed midline can
be computed from the differential form of (2.1). The new location of point B on the foil
surface is then pinpointed with AB = hs. A typical envelope of the undulation is illustrated
in figure 1(d), where it is easy to understand that Ls(t) is a time-dependent variable, with
Ls(t) = L corresponding to the straight midline (dashed blue line), not undulating.

The Ls(t) < L always holds during the travelling wavy motion; as an example, the waves
for λ= 0.50 are shown in figure 2(a) at different instants. Naturally, the time-mean midline
length Ls = (1/T)

∫ t+T
t Ls(t) dt is also smaller than L. The effect of the foil deformation

on the foil modality is described in figure 2(b), where Ls/L increases with increasing λ.
Figure 2(b) also displays the maximum and minimum Ls (i.e. Ls−max and Ls−min) to see
how Ls changes with time. It is seen that a smaller λ results in a greater fluctuation in
Ls(t), which can be viewed from the gap between the Ls−max and Ls−min (figure 2b). With
an example at λ= 1.0 in figure 2(b) (inset), the Ls(t) is minimum at the ends of the up
and down strokes of the foil tail while maximum when the amplitude equals a half of the
maximum swimming amplitude. The Ls(t) at zero amplitude is slightly larger than Ls−min.

The Strouhal number and Reynolds number are defined as

St = 2AL/UT, (2.2)

and

Re = UL/ν, (2.3)

where AL (= 0.05L) is the tail amplitude and ν is the kinematic viscosity of the fluid.
The time-mean thrust coefficient C̄T in one oscillation period is defined as

C̄T = 1
T

∫ t+T

t
CT dt = 1

T

∫ t+T

t
− Fx(t)

0.5ρU2L
dt, (2.4)

where CT is the instantaneous thrust coefficient, Fx(t) is the drag (x-direction) force acting
on the foil and ρ is the density of the fluid. Therefore, C̄T > 0 and C̄T < 0 represent the foil
generating time-mean thrust and experiencing time-mean drag, respectively, while C̄T = 0
is the drag–thrust transition boundary.

2.2. Numerical approach
All numerical experiments are conducted at Re ≤ 2000 giving a laminar flow (Gazzola,
Argentina & Mahadevan 2014). The unsteady flow field around the foil is simulated using
the commercially available computational fluid dynamics (CFD) package Fluent 14.0. For
a Newtonian fluid, the governing equations describing unsteady incompressible flow are
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the mass and momentum conservation equations

∇ · u = 0, (2.5)

and
Du
Dt

= − 1
ρ

∇p + ν∇2u, (2.6)

where u denotes the velocity vector and p is the static pressure.
The finite-volume method is used to achieve the spatial discretization of the

Navier–Stokes equations (2.5) and (2.6). The temporal discretization is done using the
second-order backward-implicit scheme. The semi-implicit method for pressure linked
equations (SIMPLE) algorithm is used to achieve the pressure–velocity coupling of the
continuity equation (2.5). Moreover, the Gauss–Seidel linear equation solver is employed
to solve the discretized equations.

The computational domain is rectangular with a size of 56L × 40L (figure 1a). The inlet
velocity boundary is at a distance of 20L from the leading edge of the foil, with u = (U,
0) and ∂p/∂x = 0 while the outflow boundary is 36L downstream, with u/x = (0, 0) and
∂p/∂x = 0 (no-stress outflow boundary conditions). The slip wall condition is used for the
upper and lower boundaries located symmetrically 40L apart (Bos et al. 2008).

The flow domain consists of three grid zones: 1, 2 and 3 (figure 1a). Zone 1 is regular
and has a very high resolution in unstructured grids around the foil while zone 2 is of
high resolution, where a large velocity gradient is expected. The region away from the
wake is zone 3 that has a medium resolution. In both zones 2 and 3, structured meshes are
used. The first cell is placed at a distance of 10−3L from the foil surface (figure 1e). The
locomotion of foil in the computational domain is achieved using a dynamic grid scheme
implemented in FLUENT. At each updated time instant, the foil motion is determined
using (2.1) while the cells around the foil are regenerated and smoothed using the FLUENT
DEFINE_GRID_MOTION function in regridding and smoothing processes.

Mesh and time-step independence tests were also performed at (St, Re, λ) = (0.5, 1000,
1.0). At the time step of �t = 4 × 10−4T (obtained using (11) in Kinsey & Dumas 2008),
the grid-independence test is done for grid numbers 9.8 × 105 (M1), 2.24 × 106 (M2)
and 9.5 × 106 (M3) corresponding to 191, 401 and 891 points on the surface of the foil,
respectively. The time histories of the thrust coefficient over two cycles are shown in
figure 3(a) for the three grid systems. It indicates no significant difference in thrust between
M2 and M3. We, therefore, adopted M2 for the computations. With M2, three time steps
of 1.0 × 10−3T (�t1), 4.0 × 10−4T (�t2), 2.0 × 10−5T (�t3) are tested. The computed
results shown in figure 3(b) suggest that �t2 is enough to ensure accuracy and save
computational resources. The time step with mesh M2 is further validated for St = 1.0
corresponding to the smallest period examined. Table 1 shows the time-step-independence
results when the time step is reduced from �t1 = 1.0 × 10−3T to �t3 = 2.0 × 10−5T.
Given that the difference in C̄T between �t2 = 4.0 × 10−4T and �t3 = 2.0 × 10−5T is
0.037 % only, �t2 (= 4.0 × 10−4T) is assumed small enough to ensure accuracy.

Before conducting extensive simulations, we simulated thrust generation of a travelling
wavy foil to compare our results with the results of Xiao et al. (2011) at Re = 45 000.
They investigated the near wake interaction between a travelling wavy foil and a D-section
cylinder, using the same numerical technique and foil geometry as ours. Xiao et al.’s
results are thus considered the benchmark to validate our work although their Reynolds
number is larger than ours. A comparison of CT between the present and Xiao et al.’s
works at (St, Re, λ) = (0.23, 45 000, 1.15) is made in figure 3(c) while the differences
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Figure 3. Numerical validations. (a,b) Mesh and time-step-independence test at (St, Re, λ) = (0.5, 1000, 1.0).
(c) Comparison between the results of present numerical method and those of Xiao et al. (2011) at (St, Re,
λ) = (0.23, 45000, 1.15).

C̄T Difference in C̄T (%)

�t1 (= 1.0 × 10−3T) 1.2892 4.685
�t2 (= 4.0 × 10−4T) 1.3501 0.037
�t3 (= 2.0 × 10−5T) 1.3496 —

Table 1. Time-step-independence test at (St, Re, λ) = (1.0, 1000, 1.0).

in the maximum thrust coefficient CTmax and C̄T between the Xiao et al.’s (2011) and
present works are listed in table 2. A good agreement in CT is achieved between the
present and Xiao et al.’s study, the differences in CTmax and C̄T being 0.438 % and
0.036 %, respectively. More discussion on the laminar flow model will be presented in
Appendix A.2.

3. Results and Discussions

To investigate the thrust generation and wake structures of the travelling wavy foil,
we systematically studied the time-mean thrust force acting on the foil for St = 0.1–1.0
with �St = 0.1, for Re = 50, 100, 250, 500, 750, 1000, 1250, 1500, 1750 and 2000, and
for λ= 0.50, 0.67, 1.0, 1.5 and 2.0. The results for the thrust generation are presented
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CTmax C̄T

Xiao et al. (2011) 0.09361 0.040217
Present 0.0932 0.040203
Difference (%) 0.438 0.036

Table 2. Comparisons of CTmax and C̄T between Xiao et al.’s (2011) and present works.

first, followed by the results for the added mass, added damping, power, efficiency and
wake structures. In particular, the dependence of thrust on λ is investigated up to λ= ∞. In
the present study, all cases were simulated for 40 undulation periods to ensure statistically
steady thrust signals and wake structures, while the averages were made over the last 10
simulation periods (from 31th to 40th periods), given that the simulations were statistically
converged after the 5–15th period, depending on Re, λ and St.

3.1. Dependence of thrust on Re, St and λ
Figure 4(a)–4(e) illustrates the dependence of C̄T on Re, St and λ. The solid black line
represents the drag–thrust boundary (C̄T = 0). For a given λ, the C̄T increases from
negative (lower-left corner) to positive (upper right corner) when St and Re are increased.
The travelling wavy foil cannot produce thrust when Re and St are low but can when
Re and St are sufficiently high, depending on λ. Interestingly, C̄T is equally dependent
on St and Re in the drag regime (C̄T < 0) but more sensitive to St in the thrust regime
(C̄T > 0). This observation indicates that viscous (Re) and inertia (St) effects both play
important roles in fluid dynamics in the drag regime while the inertia effect dictates the
fluid dynamics in the thrust regime. For a given set of St and Re, an increase in λ leads to an
enhancement in C̄T . As such, the drag–thrust boundary shifts to smaller St and Re when λ
is increased. With the same St and λ, C̄T gets higher at a higher Re, i.e. having acceleration
is easier at a higher speed. The reason is that the viscous effect weakens and the added mass
lessens (will be shown later) when Re is increased. On the other hand, a foil with a smaller
λ hinders the streamwise flow over the surface, resulting in a smaller thrust generation.
When the stationary wavy foil (St = 0) retains a travelling wavy shape (as sketched in
figure 4a–e), it would experience a thrust (C̄T0) that is negative (i.e. drag). Apparently,
C̄T0 would be dependent on Re as shown in figure 4( f ), where C̄T0 declines with Re as
C̄T0 = −6.13Re−0.6. Das, Shukla & Govardhan (2016) showed that a straight NACA0012
foil at zero attack angle incurs C̄T0 = −5.96Re−0.56 that is smaller in magnitude than the
present counterpart. This is plausible as an undulated foil would experience a higher drag
than a straight foil.

Based on the previous studies on the scaling of a flapping foil (Floryan et al. 2017; Van
Buren et al. 2017; Alam & Muhammad 2020), the relationship of C̄T with St, Re and λ can
be written as

C̄T = c0ReaStbλc + C̄T0. (3.1)

Thus, λ naturally describes how the flow is transported from the leading edge to the
trailing. When λ= 1, the flow transportation time Tλ (i.e. wave travelling time from the
leading edge to the trailing) equals the travelling wavy motion period T. On the other
hand, the Tλ> T and Tλ< T emerge at λ< 1 and λ> 1, respectively. This suggests that
their relationship is linear, giving the exponent c of λ in (3.1) as c = 1. Based on the
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theoretical model involving the Euler angular, Coriolis and centrifugal accelerations of
a cone of fluid around the foil, Alam & Muhammad (2020) theoretically showed that the
relationship between C̄T and St can be considered as C̄T ∝ St3. Thus, (3.1) can be written
as

C̄T = c0ReaSt3λ1 + C̄T0. (3.2)

The linear least-squares regression for a given Re is used to find the relationship between
C̄T , St and λ, giving C̄T = c1St3λ+ c2, where four examples are illustrated in figure 5.
The relationship provides c1 = 0.904, 1.388, 1.533 and 1.704 and c2 = −0.3848, −0.1543,
−0.0951 and −0.061 for Re = 100, 500, 1000 and 2000, respectively (figure 5a–d). The
dependence of c1 and c2 on Re (for all Re examined) can be observed from figure 6(a),
where their dependencies are reprocessed as c1 = 0.36Re0.208 and c2 = −6.13Re−0.6 (the
C̄T0 scaling). Therefore, the relationship of C̄T with St, Re and λ can be unified as

C̄T = 0.36Re0.208St3λ− 6.13Re−0.6. (3.3)

Here, C̄T0 = −6.13Re−0.6, with exponent −0.6 close to that of Re in 1/
√

Re, indicates
the dominance of fluid resistance forces from the unseparated boundary layer over the
stationary foil surface. Equation (3.3) displays how St, Re and λ affect the propulsive force
on the foil. It is easy to understand from (3.3) that the thrust generation (C̄T > 0) is largely
dictated by St and λ, especially by St. The C̄T grows slowly with increasing Re, which
essentially reflects the viscous flow resistance weakening with increasing Re. In particular,
when Re is large enough, the second term on the right-hand side approaches zero, which
gives C̄T = 0.36Re0.208St3λ. When the foil is stationary (St = 0), (3.3) degenerates into
C̄T = −6.13Re−0.6, i.e. the C̄T0 scaling. To see how much (3.3) is capable of collapsing
all simulated data, C̄T is presented against 0.36Re0.208St3λ− 6.13Re−0.6 in figure 6(b).
The data for different values of λ collapse well on the line, suggesting that (3.3) can be
used to estimate C̄T for any values of St, Re and λ. Alam & Muhammad (2020) proposed
a model of flow around a pitching hydrofoil. The flow model explicitly reflected the
produced torque and thrust, involving Euler angular, Coriolis and centrifugal accelerations
of a cone of fluid around the foil. They found that torque (power input) is required to
compensate Euler and Coriolis accelerations, and thrust (output) is essentially produced
from the centrifugal acceleration. The developed theoretical model showed that thrust is
proportional to St3.

Since Re appears in both terms on the right-hand side of (3.3), the dependence
of C̄T on Re may not be straightforward. We therefore calculate ∂C̄T/∂Re
(= 0.07488Re−0.792St3λ+ 3.678Re−1.6) from (3.3) to investigate the effect of Re on C̄T .
Figure 7(a) displays ∂C̄T/∂Re against Re at St = 0.1, 0.5 and 1.0 with λ= 1.25. The value of
∂C̄T/∂Re declines with increasing Re regardless of St while a smaller St leads to a smaller
∂C̄T/∂Re. The observation suggests that manoeuvring is easier at a smaller Re and a higher
St. The value of ∂C̄T/∂Re sharply drops at Re ≤ 250−600 (depending on St) and reaches
its asymptotically small value at Re ≥ 250−600 (depending on St). That is, the effect of
Re on C̄T is predominant in the former Re range and insignificant in the latter Re range.
To see how this information is dependent on λ and other St values, contours of ∂C̄T/∂Re
are presented in the St–Re plane for different λ values examined (figure 7b). The value of
∂C̄T/∂Re degrades when λ is decreased, which can be observed from the higher ∂C̄T/∂Re
region shrinking with decreasing λ. This again suggests that a higher λ is required for
agility and manoeuvring. The ∂C̄T/∂Re contour can also be employed to understand the
survival hydrodynamics of swimmers. A few interesting natural observations can be linked
to the results in figure 7. Firstly, the prey is generally smaller in size than the concerned
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Figure 5. Time-mean thrust coefficient C̄T as a function of Strouhal number St and wavelength λ, denoted as
C̄T = c1St3λ+ c2. The dashed line is the linear least-squares regression line.

predator, hence the former having a smaller Re. This facilitates the prey having a greater
agility or acceleration to escape from the predator. Secondly, a larger St and λ are beneficial
to generating larger acceleration, which is consistent with Triantafyllou, Weymouth &
Miao’s (2015) observation that a swimmer usually adopts a larger St and λ during the
predator–prey behaviour. When Re is sufficiently high due to increased speed, the Re
effect disappears and the predator–prey game relies on St and λ only. Equation (3.3) further
reflects that ∂C̄T/∂St is proportional to Re0.208 and λ, which suggests that the enhancement
of C̄T with St is larger at a higher Re and a larger λ. The scenario is also reflected
in figure 4, with the contour lines having smaller slopes at smaller Re and vice versa.
A predator usually large in size (hence higher Re) gets benefits of thrust enhancement with
increasing St.

The drag–thrust boundary (C̄T = 0) is found to be dependent on λ. It is worth finding
the relationship between St, Re and λ corresponding to the drag–thrust boundary (figure 4).
The drag–thrust boundary can be obtained from (3.3) by plugging C̄T = 0, i.e.

St = 2.57Re−0.27λ−1/3. (3.4)

Equation (3.4) reflects that the drag–thrust boundary in the St-Re domain advances
with increasing λ, as illustrated in figure 4. This result conforms with the previous
work by Gazzola et al. (2014). At a given λ, the boundary follows St ∝ Re−0.27, which
indicates that the drag–thrust boundary is more sensitive to St at smaller Re, and
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Figure 7. (a) Variation in ∂C̄T/∂Re with Re at λ= 1.25. (b) Relationship of ∂C̄T/∂Re with St, Re and λ.
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Figure 8. Dependence of drag–thrust boundary on Strouhal number, Reynolds number and wavelength for the
travelling wavy foil. The drag–thrust boundary corresponds to St = 2.57Re−0.27λ−1/3 marked by the dashed
line that fits well with the present data.

vice versa. The drag–thrust boundary can be considered as the native swimmer cruising
at a constant speed, with no acceleration and no deceleration. Here, we again refer to
the work of Gazzola et al. (2014) where the locomotion of a cursing swimmer conforms
to St ∝ Re−0.25 when Re ≤ 2000. The present results and relationship conform with the
biological observations (Gazzola et al. 2014) while the effect of the deforming strategy
(λ) on the cruising locomotion is first presented in this work (figure 8). When cruising in
the water, different swimmers employ different deforming strategies, and hence different
swimming strategies (e.g. St). It is the biological diversity of aquatic locomotion. Since
λ values adopted by aquatic animals are restricted in a limited scope (Lucas et al. 2014),
it is easy to understand that most cruising swimmers operate in a relatively narrow range
of St, such as 0.2 ≤ St ≤ 0.4 (Taylor, Nudds & Thomas 2003; Eloy 2012; Gazzola et al.
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Hydrodynamic performance of slender swimmer

2014). In addition, the swimmer can generate accelerating or decelerating locomotion
by increasing or decreasing λ, which provides a simple way to control the motion. For
example, a swimmer can have a longer λ at the start of locomotion, a moderate λ to swim
at a constant speed and a shorter λ to reduce the speed (deceleration).

It should be noted that travelling wavy motion can be considered as the pitching motion
when λ→ ∞. We undertook numerical simulations for λ= 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 7.5,
10, 25, 50, 100, 1000, 10 000 and ∞ (straight foil, pitching) at St = 0.5 and Re = 1000 in
order to understand how the results approach those for pitching motion of a straight foil.
The foil kinematics gradually modifies from travelling wavy motion to pitching motion
when λ is increased to ∞ (figure 9a). The foil with λ=∞ corresponds to a pitching
angle of 2.867°, given a1 = 0.05. Interestingly, C̄T escalates for 0.50 ≤ λ≤ 7.5 before
declining for 7.5 < λ< 100. The value of C̄T at λ= 100–10 000 is the same as that at
λ=∞ (figure 9b). The zoom-in view of figure 9(b) (shown as an inset) demonstrates
that the linearity of C̄T with λ (i.e. C̄T ∝ λ) prevails at λ≤ 2.5. To understand the thrust
generation at λ> 100, simulations were conducted at λ= 1000 which provides the same
C̄T as λ=∞ (figure 9b). Figure 9(c) shows C̄T contours in the St–Re plane for St = 0.1–1.0
with �St = 0.1 and Re = 50, 100, 250, 500, 750, 1000, 1250, 1500, 1750 and 2000. The
value of C̄T increases from negative to positive when St and Re are increased, where
C̄T < 0 emerges at smaller Re and/or St, and C̄T > 0 is observed at larger Re and/or St,
with the solid line (C̄T = 0) representing the drag–thrust boundary. Compared with the
travelling wavy motion (figure 4), the pitching motion (λ= 1000 → ∞) produces a higher
C̄T with the drag–thrust boundary (C̄T = 0) shifting to a smaller Re and St.

Figure 10 displays CT histories in one oscillation period at four selected points: A
(St = 0.2, Re = 100) in drag regime, B (St = 0.4, Re = 250) close to the drag–thrust
boundary at high λ, C (St = 0.6, Re = 600) close to the drag–thrust boundary at small
λ and D (St = 0.8, Re = 1000) in thrust regime, all marked in the St-Re map (figure 4).
Similar to the previous works on the pitching foil (Koochesfahani 1989), two CT peaks are
observed in the upstroke and downstroke. The travelling wavy foil experiences drag during
the entire period at St = 0.2, Re = 100 (figure 10a). For the given St and Re, the CT peak
becomes larger when λ increases from 0.50 to 2.0. At intermediate St and Re values (points
B and C), the foil undergoes both drag and thrust in the period (figure 10b,c). On the other
hand, at a higher St and Re, only thrust acts on the foil in the entire period (figure 10d). The
CT amplitude (the gap between maximum and minimum) grows with increasing St, Re and
λ (figure 10a–d). A smaller λ, therefore, engenders a more steady thrust, which explains
the swimming behaviour of the anguilliform swimmer. On the other hand, the maximum
instantaneous thrust generated for a higher λ explicates why the slender swimmer usually
employs the C-start strategy during the survival behaviour (Gazzola et al. 2012). More
discussion on the instantaneous thrust coefficient is provided in Appendix A.3.

The total thrust acting on the travelling wavy foil consists of a friction drag (negative
thrust) and a form thrust (positive or negative), i.e. CT = CTp + CTf , where CTp and CTf
denote the instantaneous pressure and friction thrust coefficients, respectively. Naturally,
C̄T = C̄Tp + C̄Tf . Figure 11 shows the dependence of C̄Tp, C̄Tf and C̄T on St and Re. At a
moderate Re of 1000, the dependence of C̄Tp, C̄Tf and C̄T on St = 0.1–1.0 and λ= 0.5–2.0
is illustrated in figure 11(a). With increasing St, C̄Tp grows from negative to positive while
C̄Tf remains negative and linearly decreases, regardless of λ (figure 11a). To understand
the dependence of C̄Tp and C̄Tf on St, we made polynomial fit to the curves as C̄Tp = c0p +
c1pSt + c2pSt2 + c3pSt3 and C̄Tf = c0f + c1f St. The curve fitting provided c2p ≈ 0.001 ≈
0 regardless of λ while c1p and c1f were almost equal in magnitude but opposite in sign.
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Figure 10. The instantaneous thrust coefficient for the travelling wavy foil in one oscillation period. In (a),
C̄T = −0.423, −0.416, −0.407, −0.392 and −0.386 for λ= 0.50, 0.67, 1.0, 1.5 and 2.0, respectively; in (b),
C̄T = −0.212, −0.185, −0.176, −0.101 and −0.052 for λ= 0.50, 0.67, 1.0, 1.5 and 2.0, respectively; in (c),
C̄T = −0.026, 0.056, 0.207, 0.468 and 0.637 for λ= 0.50, 0.67, 1.0, 1.5 and 2.0, respectively; and in (d), C̄T =
0.230, 0.402, 0.746, 1.311 and 1.687 for λ= 0.50, 0.67, 1.0, 1.5 and 2.0, respectively. (a) St = 0.2, Re = 100,
(b) St = 0.4, Re = 250, (c) St = 0.6, Re = 500 and (d) St = 0.8, Re = 1000.

The total thrust can, therefore, be written as C̄T = C̄Tp + C̄Tf = (c0p + c0f ) + c3pSt3.
For a stationary foil (St = 0), c0p + c0f = C̄T0, which makes C̄T = C̄T0 + c3pSt3. The
polynomial fit of C̄Tp and linear fit of C̄Tf are presented in figure 11(a), where the data
derived from different St values collapse well on the lines. When λ increases, C̄Tp rapidly
grows while C̄Tf does not significantly change. That is, the effect of λ on C̄T is largely
determined by C̄Tp. Figure 11(b) displays the Re effect on C̄Tp, C̄Tf and C̄T at St = 0.5
at different λ values. With increasing Re, the magnitude of C̄Tf (negative in the entire
range of Re) diminishes rapidly at Re ≤ 500 but mildly at Re > 500. In other words, C̄Tf is
more sensitive to Re for Re ≤ 500 than for Re > 500. On the other hand, the reduction of
C̄Tp at Re ≤ 500 is not as much as that of the C̄Tf magnitude, C̄Tp remaining more or less
constant at Re > 500. As such, C̄T grows more rapidly at Re ≤ 500 than at Re > 500. Again,
with increasing λ, the C̄Tf distribution does not change appreciably while C̄Tp enhances
significantly, as does C̄T . The observation conforms with the dependence of C̄T on Re and
λ presented in figure 7.

Figure 12(a) shows the distributions of the local time-mean pressure thrust coefficient
C̄s

Tp along the foil, where s varying from 0 to L is the distance measured from the
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leading edge. As expected, C̄s
Tp/|C̄Tp| is negative near the leading edge for λ≤ 2.0

(figure 12a1–a5). As marked by the red-dashed circles for λ= 0.50 (figure 12a1), there
are two C̄s

Tp/|C̄Tp| peaks at s/L = 0.26 and 0.76, the latter being 4.6 times higher than
the former. The trailing edge (s/L = 0.90–1.00) largely undergoes negative thrust while
the positive thrust is largely generated at 0.55 < s/L < 0.90. With increasing λ from 0.5
to 2.0 (figure 12a1–a5), (i) C̄s

Tp/|C̄Tp| near the leading edge does not change appreciably,
remaining negative for s/L < 0.07–0.14 depending on λ, (ii) the first peak weakens, losing
its identity for λ≥ 1.0, (iii) the second peak shifts toward the middle, becoming wider and
blunt and (iv) the negative thrust near the trailing edge reduces in magnitude, becoming
positive at λ= 2.0. Figure 12(a6) shows the C̄s

Tp/|C̄Tp| distribution at λ= ∞ to understand
the trend for the widely studied pitching foil. The trend C̄s

Tp/|C̄Tp| > 0 emerges at all s/L
values. When λ increases from 2.0 to ∞, the peak C̄s

Tp/|C̄Tp| is further postponed from
s/L = 0.55 to 0.69, with the peak magnitude declining from 1.90 to 1.42.

From the C̄s
Tp/|C̄Tp| distributions (figure 12a), it is worth seeing the contributions

of anterior, mid and posterior bodies to pressure thrust. Following Lucas, Lauder &
Tytell (2020), we define the anterior, mid and posterior bodies as 0.00 ≤ s/L ≤ 0.10,
0.10 < s/L ≤ 0.55 and 0.55 < s/L ≤ 1.00, respectively. The contributions δp of the three
portions to pressure thrust are estimated as

δp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ 0.10
0.00 C̄s

Tp d(s/L)

C̄Tp
for anterior body

∫ 0.55
0.10 C̄s

Tp d(s/L)

C̄Tp
for mid body

∫ 1.00
0.55 C̄s

Tp d(s/L)

C̄Tp
for posterior body

. (3.5)

The corresponding results are presented in figure 12(b). The anterior body provides a
negative contribution (δp < 0), small in magnitude, to the pressure thrust for all λ values.
With increasing λ, δp for the mid body firstly increases for 0.50 ≤ λ≤ 1.0 and then declines
for 1.0 ≤ λ≤ 2.0, while the posterior body shows an opposite scenario. In other words,
the posterior body provides the largest δp = 83.18 % at the smallest λ= 0.50 examined,
and the mid body renders the greatest δp = 72.76 % at λ= 1.0. Their contributions are
comparable at the largest λ= 2.0 examined. At λ= ∞ (figure 12b6), δp for the mid body
shrinks while that for the posterior body grows to 55 %, a 12 % increase from λ= 2.0.
This result conforms to the previous works on the pitching foil (e.g. Das et al. 2016;
Alam & Muhammad 2020) as well as the biological observations (Lucas et al. 2020). In
particular, Alam & Muhammad (2020) showed that the pressure field over the pitching foil
characterizes the inertial effects and determines the thrust generation. The observations
suggest that for the anguilliform swimmers with a smaller λ (e.g. the eel, Lindsey 1978),
the pressure thrust is mainly generated from the posterior oscillation, while both mid
and posterior are equally important to generate pressure thrust for the carangiform (e.g.
mackerel, Lindsey 1978) and thunniform swimmers (e.g. tuna, Lindsey 1978) with λ> 1.0.

Figure 13(a) shows local time-mean friction thrust C̄s
Tf distributions along the foil.

The entire foil undergoes negative C̄s
Tf . In the anterior region, the C̄s

Tf /|C̄Tf | plummets
immediately behind the leading edge and then grows rapidly. The increase in C̄s

Tf /|C̄Tf | is
rather mild in the mid region while the second half of the posterior region has a decreasing
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C̄s
Tf /|C̄Tf |. Interestingly, the minimum C̄s

Tf /|C̄Tf | in the anterior region rises with increasing
λ while that in the posterior region drops. The influence of λ on C̄s

Tf /|C̄Tf | is less in the
mid region than in the other two regions. With λ increasing from 2.0 to ∞, C̄s

Tf /|C̄Tf |
magnitudes at the leading and trailing edges become smaller and larger, respectively.
A native swimmer uses lateral lines as sensors to achieve the flow information (e.g.
pressure and shear stress around itself) and hence to make a swimming decision, while
the lateral lines are mainly distributed at the head and caudal fin of a fish (Sapède et al.
2002). Recently, Verma et al. (2020) studied optimal sensor configurations that enable
swimmers to maximize the information gathered from their surrounding flow field. At λ
≈ 1.0, it is noted that the shear stress sensors should be densely distributed in the anterior
and in the second half of the posterior regions of the swimmer.

Similar to the definition of δp in (3.6), we employed δf to denote the contributions of
anterior, mid and posterior bodies to the friction thrust. When λ grows from 0.50 to 2.0,
figure 13(b) depicts that the δf decreases from 28.05 % to 21.71 % for the anterior body
and from 43.44 % to 32.92 % for the mid body, while increasing from 28.51 % to 45.37 %
for the posterior body. For λ≤ 2.0, δf > 20 % for the anterior, mid and posterior regions,
which suggests that the contributions from all portions are significant. The increase in λ
from 2 to ∞ leads to declining δf for the anterior and mid bodies but increasing δf for the
posterior body. At λ= ∞, the posterior body undergoes δf = 50.24, an 11 % increase from
λ= 2, which suggests that the posterior body is the main contributor to the friction drag.

3.2. Dependence of added mass, added damping and efficiency on Re, St and λ
For the undulating swimmer, the added mass plays a dominant role in the propulsive
performance (Lighthill 1970, Candelier, Boyer & Leroyer 2011, Eloy, 2012, Paniccia et al.
2021). In the elongated-body theory (Lighthill 1970), the added mass per unit length at
the foil trailing edge can be calculated from a curvilinear coordinate system as ρπh2/4,
where h denotes the thickness of the foil and is assumed to be smaller enough, i.e. h 
 L.
As Lighthill’s theory is inviscid, the viscous influence is neglected, while recent work
reveals that the resistive mechanism is also crucial for the inertial undulatory swimmers
(Piñeirua, Godoy-Diana & Thiria 2015). Both h/L and Re effects cannot be ignored in the
case of viscous flow. It is thus worth understanding how the added mass is affected by St,
Re and λ and how it impacts the thrust and power.

Generally, the total fluid added mass ma due to the foil oscillation can be calculated as

ma =
∫ Ls

0
mx dx, (3.6)

where x is measured from the leading edge and mx denotes the added mass for an elemental
length dx (figure 14a). A summation can be considered to replace the integral in (3.6), i.e.

ma =
n=N∑
n=1

mn, (3.7)

where n is the number of sample slices of the foil. The difference in the estimated
ma between N = 20 and 30 is found to be less than 1 %. The value N = 20 is adopted
(figure 14a). Each slice is assumed to be sinusoidally oscillating in the vertical direction.
Thus, mn can be calculated using the equation introduced by Qin, Alam & Zhou (2017) for
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an oscillating cylinder, as

mn = FLn cos φ

ω2Yn
, (3.8)

where FLn is the amplitude of the time-dependent lift force FL(t) = FLn sin(ωt + φ) at
slice n, Yn is the amplitude of the displacement of slice n with Y(t) = Yn sin(ωt), φ is the
phase shift between FL(t) and Y(t) and ω = 2π/T. Note that the mn is the effective added
mass, not the potential added mass (Williamson & Govardhan 2004). The added mass ratio
m∗

a can then be estimated as

m∗
a = ma

mf
, (3.9)

where mf is the mass of fluid displaced by the foil. In our paper, the effective added
mass is calculated from the component of the fluid force in phase with the foil
acceleration ((3.7)–(3.9)). The effective added mass includes both potential added mass
and flow-induced added mass (Konstantinidis, Dorogi & Baranyi 2021; Alam 2022). As
a result, the effective added mass can be positive or negative, as shown in figure 14(b1).
More discussion on the relationship between the effective added mass and potential added
mass can be found in Facchinetti, de Langre & Biolley (2004) and Han & de Langre
(2022).

How m∗
a is contingent on St and Re is illustrated in figure 14(b). When Re = 1000

(figure 14b1), m∗
a is negative at St = 0.1, and its magnitude gets large with increasing λ.

On the other hand, m∗
a is positive at St ≥ 0.2, increasing with increasing St and λ. Note that

a negative m∗
a makes the foil lighter to move, while a positive m∗

a makes the foil heavier.
The value of m∗

a is a stronger function of St at a larger λ. The effect of Re on m∗
a can

be understood from figure 14(b2), where m∗
a declines with increasing in Re, particularly

at Re ≤ 500, regardless of λ. The viscous effect on m∗
a becomes negligible when Re is

sufficiently large. On the other hand, λ has a strong influence on m∗
a, the higher the λ, the

larger the m∗
a.

The effect of St, Re and λ on the out-of-phase component of the lift force (i.e. added
damping) is also considered. Recalling the work of Qin et al. (2017), the added damping
of the travelling wavy foil can be defined as

ca =
n=N∑
n=1

cn, (3.10)

where

cn = −FLn sin φ

ωYn
. (3.11)

As shown in figure 14(c), St and Re have effects on ca, where ca reduces with increasing
St and/or Re, and ca < 0 at St = 0.5 for all tested Re values. The case ca > 0 is only
observed at λ= 0.50, 0.67 and 1.0 with St = 0.1 (figure 14c1). The declination of ca with
increasing St is larger at a larger λ (figure 14c1). As such, the larger the St, the greater the
ca decrease with increasing λ. Since a negative ca implies the flow assisting the motion,
the contribution by the flow is constructive to C̄T when St, Re and λ all are increased
(figure 4).

The effect of St and Re on the input power C̄pi required to move the foil is depicted in
figure 14(d). The total power is composed of power Ps associated with oscillation and
power PT associated with thrust (Shen et al. 2003; Dong & Lu 2005). The former is
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Figure 14. (a) Sketches for the sampling slices. Effects of St, Re and λ on (b) m∗
a, (c) ca, (d) C̄pi and (e) η.

Here, (b1, c1, d1, e1) Re = 1000, and (b2, c2, d2, e2) St = 0.5.

required to produce the lateral oscillations of the foil while the latter is needed to generate
the thrust force. The mathematical definitions of Ps and PT are as follows:

Ps = −
∮

( f p
y + f f

y )[1 + (1 + dy/dt)2]1/2 dy
dt

dx, (3.12)

and

PT = −Fx(t)U, (3.13)

where
∮

denotes the integration along the foil surface, f p
y = −p and f f

y = μ[2(∂v/∂y) −
(dy/dx)(∂v/∂x + ∂u/∂y)] with u and v representing the velocity components in the x and
y directions, respectively. Thus, time-mean power coefficient C̄pi in one oscillation period
is defined as

C̄pi = 1
T

∫ t+T

t

Ps + PT

0.5ρU3L
dt. (3.14)
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As illustrated in figure 14(d1), C̄pi exponentially grows with increasing St, approximately
following C̄pi ∝ St3. Alam & Muhammad (2020) mathematically showed that the input
power of a pitching foil is highly sensitive to St and varies as the cube of St. For a
given St, a larger C̄pi is required for a larger λ for St ≥ 0.2 while C̄pi deceases with
increasing λ at St = 0.1 (inset of figure 14d1), which coincides with the relationship of
m∗

a with λ (figure 14b). The C̄T scaling in (3.4) echoes that C̄T values at St = 0.1 for
different λ values are close to each other, with only a 2.36 % difference in C̄T between
λ= 0.50 and 2.0. As such, Ps is the dominant factor contributing to C̄pi. A shorter λ,
therefore, causes a higher C̄pi at St = 0.1 (see the inset of figure 14d1). When St ≥ 0.2,
PT gradually dominates Ps where a longer λ complements a larger C̄T (figure 4). It
should be noted that St ≥ 0.5 (depending on λ) provides positive C̄T (figure 11a), hence
aquatic animals may use St ≥ 0.5. The relationship of C̄pi with Re (figure 14d2) is similar
to that of m∗

a with Re (figure 14b2). Overall, a large λ corresponds to a larger m∗
a and

a higher C̄pi for St ≥ 0.2. The dependence of m∗
a on λ evokes that a slender tail or a

slender swimming body cannot have a large λ because a large m∗
a makes the tail or

body heavier, so it is difficult for the animal to oscillate its tail/body, given that it has
limited strength and limited rigidity of the tail. It could thus be said that a longer tail/body
may adopt a shorter λ. For example, the λ employed by eel swimmers is shorter than
that used by trout (Webb 1984). Biological observations of Gray (1933) provided similar
conclusions.

It is also worth investigating how the propulsive efficiency is affected by St, Re and λ.
Here, the foil’s propulsive efficiency is calculated via

η = C̄T/C̄pi. (3.15)

Using C̄T data in figure 11 and C̄pi data in figure 14(d), we obtained the relationship
of η with St, Re and λ in figure 14(e). Following the sign of C̄T in figure 11(a), η < 0
at a smaller St (figure 14e1). When St passes the drag–thrust boundary (3.4), i.e. St >

2.57Re−0.27λ−1/3, the foil can generate positive thrust (C̄T > 0) (figure 11a) and thus a
positive efficiency (figure 14e1). The value of η increases for a certain range of St, reaching
a maximum before declining, except for λ= 0.50 where η keeps increasing with St up to
St = 1.0. While the maximum efficiency value is weakly dependent on λ, the St value
corresponding to the maximum efficiency is smaller at a larger λ, i.e. η = 14.67 % for
(St, λ) = (1.0, 0.50), η = 15.63 % for (St, λ) = (0.9, 0.67), η = 15.87 % for (St, λ) = (0.8,
1.0), η = 15.03 % for (St, λ) = (0.5, 1.5) and η = 14.26 % for (St, λ) = (0.5, 2.0), see
inset of figure 14(e1). The data indicate that λ= 1.0 renders the largest η. That is, the
aquatic swimmers can achieve a higher propulsive efficiency by employing λ≈ 1.0, which
is in agreement with the biological observations from swimming fish (Videler 1993).
Figure 14(e2) shows the effect of Re on η, where η increases with Re. At 50 < Re ≤ 500,
a larger λ leads to a higher η, while λ= 1.5 and 1.0 cause the higher η at 750 < Re ≤ 1500
and 1750 < Re ≤ 2000, respectively.

Besides the effects of St, Re and λ on m∗
a, it is also worth understanding the distribution

of mn along the foil length, i.e. n = 1 - 20. Here, mn is normalized as m∗
n = mn/mf .

As shown in figure 15, m∗
n is highly dependent on n for large λ (≥ 1.0) values,

where it is large (positive) near the midspan (n = 7 - 15) and negative near the leading
edge of the foil. At small λ= 0.50 and 0.67 each, m∗

n displays small peaks at n = 4
and 17.
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Figure 15. The m∗
n at different slices; St = 0.5 and Re = 1000.

3.3. Flow structures
Following the above discussion on thrust generation, the associated flow structures are
presented to gain the physical insight into fluid dynamics around the swimmer. Seven
distinguished wake structures are identified in the St–Re domain examined: steady wake
(+ symbol), quasi Kármán vortex (q-KV) wake ( symbol), quasi reverse Kármán vortex
(q-RKV) wake ( symbol), KV wake (◦ symbol), 2S (two single) aligned wake (�
symbol), RKV wake (δ symbol) and slanted reverse Kármán vortex (s-RKV) wake (∇
symbol). The representative flow structures and their presence in the St–Re domain are
shown in figures 16 and 17. The steady wake is observed at St ≤ 0.6 and Re ≤ 250
(figures 16a and 17), where the wake is steady, similar to the flow structure behind a
quiescent foil (St = 0). With a little increase in St and/or Re, the steady wake transmutes
to q-KV wake (figure 16b) or q-RKV wake (figure 16c) representing a transition from a
steady wake to a classical KV or RKV wake. The q-KV and q-RKV wakes form at low
and high St, respectively, the former prevailing for smaller λ (≤1.0) only (figure 17). Here,
Kármán or reverse Kármán vortices form immediately behind the foil, vanishing rapidly
to generate a steady wake downstream (figure 16a–c). The generation of a steady wake
followed by a Kármán wake was also found in the wake of a fixed elliptical cylinder at
Re = 100–150 in Shi, Alam & Bai (2020a) and Shi et al. (2020b). Depending on λ, when
Re is further increased, a KV wake forms, featuring negative and positive vortices above
and below the foil symmetry line correspondingly (figure 16d). The 2S aligned wake refers
to the case where both positive and negative vortices lie on the symmetric line (figure 16e).
The 2S aligned wake is considered as the boundary between KV and RKV wakes, and has
been extensively discussed in previous works (Godoy-Diana et al. 2008, 2009; Marais
et al. 2012; Deng et al. 2015, 2016; Andersen et al. 2017; Chao et al. 2019; Chao et al.
2021b). The emergence of the 2S aligned wake at the KV–RKV boundary (red dashed
line) precedes the drag–thrust boundary (black solid line) in the St–Re map (figure 17).
The same is true for a pitching foil (Godoy-Diana et al. 2008). With a further increase
in St and/or Re, the RKV wake emerges, where the negative and positive vortices nestle
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Figure 16. Typical instantaneous vorticity structures: (a) steady wake (St, Re, λ= 0.2, 100, 1.0); (b) q-KV
wake (St, Re, λ= 0.4, 100, 1.0); (c) q-RKV wake (St, Re, λ= 0.7, 100, 1.0); (d) KV wake (St, Re, λ= 0.3, 1000,
1.0); (e) 2S aligned wake (St, Re, λ= 0.3, 2000, 1.0); ( f ) RKV wake (St, Re, λ= 0.5, 1000, 1.0); (g) downward
slanted reverse Kármán vortex (ds-RKV) wake (St, Re, λ= 0.8, 1000, 1.0); and (h) upward slanted reverse
Kármán vortex (us-RKV) wake (St, Re, λ= 0.8, 1000, 1.5).

oppositely to those of KV wake (figure 16f ). In the s-RKV wake, the symmetric line of
two vortex streets does not coincide with the foil symmetric line. The slant direction can
be upward or downward. The downward slanted RKV is referred to as the ds-RKV wake
(figure 16g) while the upward slanted RKV is referred to as the us-RKV wake (figure 16h).
The slant direction of the s-RKV wake is also affected by λ, see figure 16(g,h). Generally,
the slant direction strongly depends on the first vortex pair generated by the foil (Zheng
& Wei 2012). Here, both the ds-RKV and us-RKV wakes are considered as an s-RKV
wake because the physical mechanisms of the ds-RKV and us-RKV wakes are identical.
The formation of the slanted wake is also common in flow-induced vibrations of cylinders
(Bhatt & Alam 2018).

Figure 17 also shows how λ affects the wakes behind a travelling wavy foil, particularly
the transition between two different types of flow structures. For example, the KV–RKV
wake transition bordered by the 2S aligned wake advances with increasing λ. Similarly,
the RKV–s-RKV wake transition (blue dash-dotted line) also shifts to smaller St and/or Re
when λ is increased. In addition, there is no s-RKV wake observed at λ= 0.50 (figure 17a).
Physically, λ describes how the foil locomotion propagates from the leading to trailing
edges. Therefore, the foil’s horizontal acceleration at the trailing edge declines with the
decrease in λ. As a result, the convection velocity of the vortices with respect to U also
decreases with declining λ. In the previous work, Godoy-Diana et al. (2009) showed that
the generation of the s-RKV wake is significantly dependent on the value of this convection
velocity, where a larger value of this convection velocity may induce an s-RKV wake.
A smaller λ thus postpones the transition between RKV and s-RKV wakes.

To evaluate quantitatively the influence of St, Re and λ on vortex strength in different
regimes, figure 18 presents dimensionless spanwise vorticity ω* (=ωL/U) structures at the
four selected points located in the St–Re plane (figure 17). The value of ω* increases with
St, Re and λ, which is consistent with the change in C̄T in figure 4. A similar relationship of
the spatial wavelength �d with St, Re and λ is noticeable, having the same correspondence
with C̄T . The growth of �d with St and Re is ascribed to the increased velocity of vortices
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Figure 17. The wake structure map with the black solid line denoting the drag–thrust boundary, red dashed line
denoting the KV–RKV wake boundary and blue dash-dotted line denoting the RKV-s-RKV wake boundary.
Here, A, B, C and D are four points selected as A (St = 0.2, Re = 100) in drag regime, B (0.4, 250) close to
the drag–thrust boundary at high λ, C (0.6, 600) close to drag-thrust boundary at small λ and D (0.8,1000)
in thrust regime to show the influence of λ on flow structures in figure 17. Here, (a) λ = 0.50, (b) λ = 0.67,
(c) λ = 1.0, (d) λ = 1.5 and (e) λ = 2.0.

when St and Re are increased. On the other hand, it is easy to understand that a smaller λ
would lead to a smaller velocity of the vortices, hence a smaller �d and C̄T .

Figure 19(a) illustrates the effect of St on the wake structure at Re = 1000 and λ= 1.0.
A couple of observations can be made here. First, when St is increased, the wake structure
transmutes from the KV wake (figure 19a1) into the RKV wake (figures 19a2 and 19a3)
and then into the s-RKV wake (figures 19a4–19a6). Second, the streamwise spatial
wavelength of vortices in the vortex street shrinks with increasing St, i.e. vortices are
densely distributed for a higher St. Third, an increase in St enhances vorticity magnitudes
of vortices in the wake. Based on the definition of the St (2.2), one can understand that the
increase in St corresponding to a decrease in the undulating period T causes an increase
in acceleration and velocity of the foil tail, and hence results in the enhancement of
vorticity (Das et al. 2016; Alam & Muhammad 2020; Muhammad, Alam & Noack 2022).
Figure 19(b) shows how Re affects the wake structures at St = 0.8 and λ= 1.0. When Re is
increased, the wake structure modifies from RKV to s-RKV, and vorticity magnitudes rise.
Since Re physically describes the fluid resistance, it is easy to understand that ω* and C̄T
increase when Re increases (figure 4c). Also, the slant angle of the RKV wake gradually
rises when Re increases from 1000 to 2000, which ties in with the work on a pitching foil
by Das et al. (2016).

3.4. Effect of λ on velocity and pressure on the foil
Figure 20 illustrates the instantaneous relative streamwise velocity u∗

r (= u/U − 1)

snapshots at y/L = 0.15 (upper side) and −0.15 (lower side), where u denotes the
instantaneous streamwise velocity. Three λ values, i.e. λ= 0.50, 1.0 and 2.0, are presented.
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Figure 20. Variation of u∗
r = (u/U − 1) over the foil at y/L = 0.15 (red dashed line) and y/L = −0.15 (green

dash-dotted line), where u is the local instantaneous streamwise velocity. The black solid line denotes the foil
centreline profile; (St, Re) = (0.5, 1000) with (a) λ = 0.50, (b) λ = 1.0 and (c) λ = 2.0.

Here u∗
r can be considered as the indicator of local momentum transport in the streamwise

direction. It is thus connected to the generation of thrust. It is worth understanding which
part of the foil is crucial for generating thrust, particularly when λ is short.

The u∗
r profiles following the foil shape form waves and propagate from the leading

edge to the trailing edge. At y/L = 0.15 (red dashed line), the peaks in u∗
r occur close to

the troughs of the foil wave for a short λ and before the troughs for a long λ. An opposite
scenario is observed for the u∗

r profile at y/L =−0.15. That is, the travelling of the V-shaped
buckets on the upper side and overturned V-shaped buckets on the lower side is mainly
responsible for the momentum transport in the streamwise direction in the case of a short
λ. On the other hand, for a long λ, both lateral oscillation of foil and streamwise travel of
the buckets contribute to the streamwise momentum transport, given that u∗

r peaks precede
the troughs.

Consider a slice of the foil (yellow backdrop, figure 20a3) forming an overturned
V-shaped bucket where a fluid mass over the upper surface of the foil tends to move
downstream but is hindered by the crest of the foil. As a result, u∗

r on the upper side is
negative, with minimum u∗

r corresponding to the crest of the foil. On the other hand, the
fluid mass beneath the lower surface of the foil is pushed downstream by the travelling
wave, which results in the increased u∗

r . For a longer λ (figure 20b4), each point of the
foil’s geometry experiences both lateral and horizontal motion. The crests or valleys of the
foil shape do not coincide with those of u∗

r .
Figure 21 shows the evolution of the pressure coefficient Cp = ( p − p∞)/0.5ρU2

pattern with changing λ at St = 0.5 and Re = 1000, where p∞ is the free-stream pressure.
The pressure pattern appears complex at λ= 0.50 (figure 20a). With t/T = 0.25, the
pressure around the crests and troughs (upper side) is negative and positive, respectively,
as the crests have downward accelerations and the troughs have upward accelerations (see
pointing arrows). The low and high pressure on the crests and troughs increase and their
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Figure 21. Evolution of pressure coefficient Cp in one undulating period at St = 0.5 and Re = 1000. The
arrows denote the moving direction. (a) λ = 0.50, (b) λ = 1.0 and (c) λ = 2.0.

regions shift downstream from t/T = 0.25 to 0.50 following the movement of the foil wave.
The pressure is generally larger in the V-shaped or overturned V-shaped buckets than that
on other sides (see figures for t/T = 0.25–1.0). This explains that the bucket movement in
the streamwise direction engenders streamwise momentum transport. Similar observations
are made for λ= 1.0 (figure 21b). At λ= 2.0 (figure 21c), when the trailing edge of the foil
moves downwards (green arrow) at t/T = 0.25, the lower and upper trailing surfaces of
the foil undergo high and low pressure, respectively. Since the foil tail is bent upward
with its maximum amplitude, the positive and negative pressures appear on the lower and
upper trailing surfaces, respectively. At t/T = 0.50 where the foil is concave up near the
middle (red arrow) with the leading and trailing edges aligned with y/L = 0, the pressure
is positive on the concave side and negative on the convex side. Naturally, the pressure
patterns at t/T = 0.75 and 1.0 are opposite to those at t/T = 0.25 and 0.50, respectively.

4. Conclusions

A systematic numerical study is performed on the hydrodynamic performance of a fish-like
foil undergoing travelling wavy undulation for Strouhal number St = 0.1–1.0, Reynolds
number Re = 50–2000 and non-dimensional wavelength λ= 0.50–2.0 with the foil length
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remaining constant to replicate the native slender swimmer. When the foil length is
constant at L, the projected length Ls of the undulated foil on the streamwise direction is
time dependent, Ls(t) ≤ L in one oscillation period. The time-mean value of Ls(t) declines
with decreasing λ.

We home in on the effect of St, Re and λ on thrust generation, added mass, added
damping, efficiency and wake structures of the foil. The time-mean thrust C̄T is mapped
on the St–Re plane for different λ values. A unifying mechanistic relationship of C̄T

with St, Re and λ is obtained as C̄T = 0.36Re0.208St3λ− 6.13Re−0.6. The value of C̄T

increases with increasing St, Re and λ. The enhancement of C̄T with Re rapidly degrades
for Re ≤ 250−600 (depending on St), being negligibly small for Re ≥ 250−600. On the
other hand, the enhancement of C̄T with St is higher at a higher Re and larger λ. That is,
a prey, being smaller, gets the benefits of C̄T enhancement at smaller Re while a predator
gets advantages of a higher C̄T enhancement with St at a higher Re. A predator–prey game
at a sufficiently high Re relies on St and λ only as the Re effect on C̄T is negligible
at a high Re. The unifying relationship also provides the scaling law of the drag–thrust
boundary (C̄T = 0) that is marked as St = 2.57Re−0.27λ−1/3. An increase in λ advances
the drag–thrust boundary to smaller Re and St values. The decreasing λ leads to a smaller
fluctuation in thrust. A swimmer may have a more steady thrust when λ is smaller,
consistent with the swimming behaviour of the anguilliform swimmer. On the contrary,
a larger λ enhances the maximum instantaneous thrust, which explains why a slender
swimmer adopts the C-start strategy during the survival behaviour. The foil with λ> 100
behaves similarly to that with λ= ∞. The analysis of the local time-mean pressure thrust
along the foil suggests that the posterior body of the foil dominates the pressure thrust
generation at λ= 0.50, while the mid and posterior bodies show similar contributions
to pressure thrust at λ= 2.0. The local time-mean friction thrust is negative over the
entire length of the foil, and its magnitudes near the leading and trailing edges of the
foil decrease and increase, respectively, with increasing λ. The added mass ratio enhances
with increasing St and λ but declines with increasing Re. At a sufficiently large Re (> 500),
the viscous effect on added mass is negligible while λ has a strong effect on m∗

a. A longer
λ yields a larger m∗

a. As such, a longer tail or a longer swimming body adopts small λ. The
travel of the foil wave in the streamwise direction is predominantly attributed to the thrust
generation for a short λ while both streamwise and lateral motion of the foil contribute to
the thrust generation for a long λ. The added damping, largely negative, linearly decreases
with increasing St or Re, while the decrease rate is larger at a larger λ. The contribution
by the flow is constructive to C̄T when St, Re and λ all are increased. This work provides a
physical basis for understanding the swimming behaviour of aquatic animals.

Seven distinct wake structures are identified, namely steady, q-KV, q-RKV, KV, 2S,
RKV and s-RKV wakes. Among them, the steady, q-KV, KV and 2S wakes are always drag
producing while the q-RKV and RKV wakes can produce both drag and thrust depending
on λ. On the other hand, the s-RKV wake is always thrust producing. When λ is smaller,
the s-RKV wake transmutes into RKV, hence the s-RKV wake disappears at the λ= 0.50
examined. A smaller λ enhances the stability of the wake to not be slanted, deferring the
RKV–s-RKV wake boundary, KV–RKV wake boundary and drag–thrust boundary.
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Government through grant JCYJ20180306171921088, by the National Natural Science Foundation of China
through Grants 11672096 and 91752112 and by the Khalifa University of Science and Technology through
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Appendix A

A.1. Effects of swimming amplitude and wavelength on thrust, efficiency and wake
structure

Floryan, Van Buren & Smits (2019) reported that the foil efficiency can be increased by
increasing the trailing edge amplitude of a flapping foil at a given St. This may not be the
case for a travelling wavy foil. To understand how a1 affects the thrust and efficiency for
the travelling wavy foil, we investigated thrust and efficiency for a1 = 0.05, 0.10, 0.15 and
0.20, and λ= 0.50, 0.67, 1.0, 1.5 and 2.0 at St = 0.5, Re = 1000.

With increasing a1 or decreasing λ, the projected length (Ls) of the foil in the streamwise
(x) direction shortens because of more foil length getting involved in the vertical (y)
direction (2.1). Figure 22 demonstrates the effects of a1 and λ on C̄T and η of the
travelling wavy foil at (St, Re) = (0.5, 1000). The value of C̄T increases with λ but linearly
decreases with a1 (figure 22a,c). This observation suggests that a sufficiently smaller a1
and a sufficiently larger λ are required to produce thrust. For example, the travelling wavy
foil with the smallest λ= 0.50 examined cannot generate thrust (C̄T > 0) at the smallest
a1 = 0.05 examined. A further reduction in a1 (< 0.05) at λ= 0.50 is required to generate
thrust. With increasing λ, the drag–thrust boundary (CT = 0) moves to a larger a1, such as
a1 = 0.07 for λ= 0.67 and a1 = 0.138 for λ= 1.0. For a constant St (2.2), an increase in the
amplitude must be accompanied by a decrease in the frequency. Figure 22(a,c) indicates
that an increase in amplitude reduces thrust. One can therefore understand from (2.2) that
the frequency must be increased to compensate for the decreased thrust, given a constant
St.

The dependence of η on a1 is shown in figure 22(b,d), where η monotonically decreases
with increasing a1 at λ= 0.05, 0.67 and 1.0 but first increases and then decreases for
λ= 1.5 and 2.0. The peak efficiency is attained at a1 = 0.10 and 0.15 for λ= 1.5 and 2.0,
respectively. This phenomenon can be understood from the characteristics of the travelling
wavy motion. On the one hand, the foil requires more power to generate a complicated
travelling wavy motion at a smaller λ and/or a larger a1. On the other hand, increasing a1
hinders the flow passing around the foil. At a larger λ, an improvement in η can, therefore,
be achieved through increasing a1 before it declines with further increasing a1 while at a
smaller λ, η monotonically declines with a1. The shift in the η peak to a higher a1 value
with increasing λ further proves that η at λ→ ∞ (purely pitching) would monotonically
keep increasing with increasing a1 (Floryan et al. 2019). Observations of swimming
behaviours of aquatic animals further revealed that a larger a1 may not necessarily produce
a higher η (Rohr & Fish 2004). A large tail-beating amplitude is usually employed during
the predator–prey behaviour, such as the C-start (Gazzola et al. 2012).

The dependence of wake structure on a1 at different λ values is presented in figure 23.
When a1 is increased from 0.05 to 0.20 at λ= 0.50 and 0.67 (figure 23a1–d1, a2–d2), (i)
the wake modifies from RKV to KV, (ii) the lateral width of the two vortex rows expands
and (iii) the spatial wavelength of the vortex streets grows, i.e. the number of vortices
declines. All these modifications explain the rapid decrease in η and C̄T with increasing
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Figure 22. Dependence of (a) C̄T and (b) η on a1, and contours of (c) C̄T and (d) η in the a1–λ plane, where
the black dashed line in (c) denotes the drag–thrust boundary; (St, Re) = (0.5, 1000).

a1 (figure 22). The expansion of the lateral width with increasing a1 is easily understood
while the declination of the number of vortices is attributed to the decreased oscillation
frequency, given a constant St. At λ= 1.0, the inversion of vortex streets does not happen,
i.e. RKV wake remains RKV (figure 23a3–d3). The lateral distance between the two vortex
streets, however, extends with a1. On the other hand, at λ= 1.5 and 2.0, the increase in a1
causes transmutation of the s-RKV wake into the RKV wake (figure 23a4–d4, a5–d5).

A.2. Validation for laminar flow assumption

In Xiao et al.’s (2011) work, the authors did not compare the numerical results between
the laminar flow model and turbulence model. They assumed laminar flow based on the
biological investigation of Anderson, McGillis & Grosenbaugh (2001) and the numerical
study of Flanagan (2004). Anderson et al. (2001) examined tangential and normal velocity
profiles of the boundary layers generated around two different swimming fishes, including
a carangiform swimmer scup Stenotomus chrysops and an anguilliform swimmer smooth
dogfish Mustelus canis. The boundary layer profile shape corresponded to laminar flow
when the swimmer cruises in still water. In the present work, the NACA0012 foil
undulating in the oncoming uniform flow is essentially similar to a fish swimming in still
water. Moreover, Flanagan’s (2004) work also suggested that the laminar boundary layer
is valid up to a Reynolds number of 45 000.

To validate the laminar flow assumption, we have simulated thrust generation with
two different turbulence models, including SA (Spalart & Allmaras, 1992) and k–ω

SST (Wilcox, 1998) models, at (St, Re, λ) = (0.23, 45 000, 1.15) and (St, Re, λ) = (0.5,
2000, 1.0) and compared the results with those from the laminar flow model in table 3.
The differences in the C̄T results between the SA, k–ω SST and laminar models are less
than 1 %. It suggests that the laminar flow assumption is valid at both Re values.
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Numerical model C̄T Difference in C̄T (%)

(St, Re, λ) = (0.23, 45 000, 1.15) SA turbulence 0.04058 0.9532
k–ω SST turbulence 0.03988 0.7927
Laminar 0.0402 –

(St, Re, λ) = (0.5, 2000, 1.0) SA turbulence 0.14836 0.6069
k–ω SST turbulence 0.14694 0.3544
Laminar 0.14784 –

Table 3. Different numerical models for the thrust generation.

(a) (b) (c)

(d) (e) ( f )
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3

Figure 24. (a–c) Three types of thrust signals derived from a pitching foil at Re = 1173 (Godoy-Diana, Aider
& Wesfreid 2008), for (a) periodic signal at St = 0.2848, (b) quasi-periodic signal at St = 0.561 and (c)
non-periodic signal at St = 1.615. (d,e) Periodic signals from current travelling wavy foil at Re = 1000 and
λ= 1.0 with (d) St = 0.1, (e) St = 0.5 and ( f ) St = 1.0. Here, C̄T0 is the drag force acting on a stationary foil.

A.3. Discussion on the instantaneous thrust coefficient

Pitching or undulating motion generally produces two thrust waves in one oscillation
period, one in the upstroke and the other in the downstroke. Based on the difference
in thrust peaks between the two waves, Godoy-Diana et al. (2008), for a pitching foil,
observed three different types of thrust signals: periodic, quasi-periodic and non-periodic
(figure 24a–c). We observed periodic thrust signals for the travelling wavy foil with
0.1 ≤ St ≤ 1.0 (figure 24d–e), similar to the case of a pitching foil with smaller St
(Figure 24a). The quasi-periodic thrust signal, occurring for moderate St, refers to the
case where two thrust peaks are not the same (Figure 24b). For a large St, the thrust signal
becomes non-periodic because of strong wake interactions (Figure 24c). Overall, the thrust
signal would be transformed as the periodic → quasi-periodic → non-periodic signals
when the wake interaction intensifies. Figure 24(d–f ) shows the thrust signals derived
from the present travelling wavy foil at Re = 1000 and λ= 1.0, where the thrust signals
are periodic at the three examined St = 0.1, 0.5 and 1.0. This result suggests that a fish can
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actively control the flow around itself using travelling wavy motion (Fish & Lauder 2006)
to generate a more steady thrust compared with the case of pitching motion.
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