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Global stability of flow past a cylinder
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Global absolute and convective stability analysis of flow past a circular cylinder
with symmetry conditions imposed along the centreline of the flow field is carried
out. A stabilized finite element formulation is used to solve the eigenvalue problem
resulting from the linearized perturbation equation. All the computations carried
out are in two dimensions. It is found that, compared to the unrestricted flow, the
symmetry conditions lead to a significant delay in the onset of absolute as well as
convective instability. In addition, the onset of absolute instability is greatly affected
by the location of the lateral boundaries and shows a non-monotonic variation.
Unlike the unrestricted flow, which is associated with von Kármán vortex shedding,
the flow with centreline symmetry becomes unstable via modes that are associated
with low-frequency large-scale structures. These lead to expansion and contraction of
the wake bubble and are similar in characteristics to the low-frequency oscillations
reported earlier in the literature. A global linear convective stability analysis is
utilized to find the most unstable modes for different speeds of the disturbance.
Three kinds of convectively unstable modes are identified. The ones travelling at
very low streamwise speed are associated with large-scale structures and relatively
low frequency. Shear layer instability, with relatively smaller scale flow structures
and higher frequency, is encountered for disturbances travelling at relatively larger
speed. For low blockage a new type of instability is found. It travels at relatively high
speed and resembles a swirling flow structure. As opposed to the absolute instability,
the convective instability appears at much lower Re and its onset is affected very
little by the location of the lateral boundaries. Analysis is also carried out for
determining the convective stability of disturbances that travel in directions other
than along the free stream. It is found that the most unstable disturbances are not
necessarily the purely streamwise travelling ones. Disturbances that move purely in
the cross-stream direction can also be convectively unstable. The results from the
linear stability analysis are confirmed by carrying out direct time integration of the
linearized disturbance equations. The disturbance field shows transient growth by
several orders of magnitude confirming that such flows act as amplifiers. Direct time
integration of the Navier–Stokes equation is carried out to track the time evolution of
both the large-scale low-frequency oscillations and small-scale shear layer instabilities.
The critical Re for the onset of convective instability is compared with earlier results
from local analysis. Good agreement is found.

† Email address for correspondence: smittal@iitk.ac.in
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1. Introduction
Flows past bluff bodies are endowed with various kind of instabilities. For

symmetric bodies, linear stability analysis of wake flows reveals the presence of
two types of modes: symmetric and antisymmetric. Flow past a circular cylinder
becomes unsteady at Re ∼ 47 via an instability of the wake (Jackson 1987; Zebib
1987; Williamson 1989; Norberg 1994; Chen, Pritchard & Tavener 1995; Ding &
Kawahara 1999; Morzynski, Afanasiev & Thiele 1999; Norberg 2001; Kumar &
Mittal 2006a, b). The Reynolds number Re is based on the diameter of the cylinder.
The resulting flow becomes asymmetric with respect to the wake centreline. Due to
the loss of symmetry the instability is also referred to as symmetry breaking instability
(Tang & Aubry 1997). It can be shown, via global linear stability analysis, that the
loss of symmetry and the subsequent appearance of von Kármán shedding is related
to the contrasting symmetry properties of the base flow and the unstable eigenmodes.
In terms of the vorticity field the base flow is antisymmetric and looses stability
to a symmetric mode of disturbance. Due to its oscillatory nature the instability is
also referred as a Hopf bifurcation (Marsden & McCracken 1976). The unsteadiness
develops into a periodic flow which has a different kind of symmetry called the
spatio-temporal symmetry – a translation in time by half a period and subsequent
reflection about the wake centreline takes the flow back to the initial state (Blackburn
et al. 2005). The Strouhal number St related to the non-dimensional frequency of
the unsteadiness at the onset of instability is 0.12, approximately, and continues to
increase with Re. At larger Re the appearance of small-scale vortices due to the
instability of the separated shear layer is observed (Prasad & Williamson 1997).

While the primary wake instability occurs due to the instability of a symmetric
mode, both symmetric and antisymmetric modes may become unstable at larger Re.
This complicates the flow considerably. Better understanding of the various modes
of instabilities is expected if one can design investigations which allow one to study
these instabilities separately. In this respect, we note that the primary wake instability
can be suppressed by imposing a symmetry condition at the centreline. For example,
the centreline can be forced to remain a streamline. This condition does not alter the
base flow and the antisymmetric modes but eliminates the symmetric modes. Thus,
such an arrangement helps us to identify those phenomenon which owe their origin
to the instability of the modes that are antisymmetric. In particular, shear/mixing
layer instabilities can be studied in addition to other antisymmetric unstable modes
that might exist. In the past, wake flows have been investigated in great detail. In
comparison, wakes with centreline symmetry have received less attention. The present
effort is an attempt to investigate the flow past a cylinder with centreline symmetry.

There are two approaches to the linear stability analysis: local analysis of the
assumed parallel flow and global non-parallel flow theory. In the local analysis
the flow field is assumed to be locally parallel at different stations in the streamwise
direction. Then, the absolute/convective nature of instability of the flow is determined
at each station. On the other hand, global non-parallel analysis attempts to determine
the stability of the entire flow field at once. Thus one obtains various temporal modes,
their growth rate and frequencies. A global non-parallel approach is employed to carry
out the present investigations. Both absolute as well as convective instabilities are
considered. The absolute instability modes eventually lead to self-sustained oscillations
which, therefore, appear as being intrinsic to the flow. In contrast, a convectively
unstable flow results in disturbances that travel downstream as they grow (Huerre &
Monkewitz 1990).
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Global stability of flow past a cylinder with centreline symmetry 275

In the past, most of the stability studies of the wake with centreline symmetry have
been carried out via local analysis. Koch (1985) investigated family of symmetric
and asymmetric basic wake flows modelled with analytical functions. In his study
shear layer was investigated as a limiting case of asymmetrical wake flows. It was
found that at least one bifurcation point exists corresponding to time-attenuated
convective instabilities. Huerre & Monkewitz (1985) investigated tangent hyperbolic
profiles for the case of inviscid flows and showed that the flow becomes absolutely
unstable when the velocity ratio, defined as the ratio of the difference to the sum of
the velocity of the upper and lower streams, becomes larger than 1.315. Convective
instability is observed in the range 0.84–1.315. Hultgren & Aggarwal (1987) considered
a Gaussian velocity profile normalized with the maximum velocity. Though the main
focus of their study was modes corresponding to the Kármán-type shedding they also
investigated the flow with symmetry conditions enforced at the centreline. In the later
case, antisymmetric modes were found to become unstable. The onset of convective
instability was found to occur at Re = 53. The Re is based on the wake half-width
and the maximum velocity difference for the local profile. Castro (2005) carried out
similar computations and studied the effect of the location of lateral boundaries on
the critical parameters. A free-slip condition was imposed at the lateral boundaries.
It was found that the critical Re for the convective as well as absolute instability
increases when the lateral boundaries are brought closer.

In another interesting study, Fasel & Postl (2006) carried out direct numerical
simulation of a laminar separation bubble formed on a flat plate by introducing a
volume force field. The study was carried out for steady, marginally unsteady, unsteady
and highly unsteady separation bubbles. In each case the convective/absolute nature
of instability was determined for a typical flow profile. It was found that the steady
flow profile was highly convectively unstable. The Fourier amplitude of the spanwise
disturbance vorticity got magnified by several orders of magnitude in the streamwise
direction. This indicated that extremely small background disturbances could lead to
large-disturbance wave and vortices. The fluid system in this case acts as an amplifier –
a characteristic of convectively unstable flows.

Experimental investigations in the past have reported the presence of shear layer
vortices that arise due to the Kelvin–Helmholtz mechanism. Various values of the
critical Reynolds number Rec, at which this instability is first observed, have been
reported in the literature. Bloor (1964) observed the shear layer instability for Re

larger than 1300. Unal & Rockwell (1988) reported that they did not observe the
shear layer transition waves for Re < 1900 using flow visualization technique. Prasad &
Williamson (1997) found that the end conditions affected the Rec; it is ∼1200 for
parallel shedding conditions and significantly higher (∼2600) for end conditions that
result in oblique shedding. Recently, Rajagopalan & Antonia (2005), using a single
hot wire probe, found that the Re for the onset of the shear layer instability is 740.
An interesting case is that of Gerrard (1978). He observed the shear layer instability
to occur as low as Re = 350. Through computations, Mittal (2008) investigated the
receptivity of the separated shear layer for the Re = 300 flow past a cylinder to
pulsatile inflow. It was found that the shear layer instability can be excited in a
certain range of frequencies and at Re as low as 100. In a very recent study Mittal,
Kottaram & Kumar (2008) showed that the origin of these kind of instabilities can
be traced down to very low values of Re. However, at these low Re this convective
instability has a very low growth rate compared to that of the regular Kármán
shedding and, therefore, it cannot be observed in the experiments.
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Another type of instability, relevant in the present context, is the low-frequency
oscillations observed in the turbulent wake bubbles (Alam & Sandham 2000;
Manhart & Fredrich 2001). The precise nature and the cause of these oscillations has
been an issue of debate in the literature. Hudy et al. (2003) suggested that an inherent
absolute instability near the middle of the recirculation region is the basic driver for
the unsteadiness of the bubble. Generally, experiments and computations carried for
two-dimensional bubble have been at high enough Re where the flow is naturally
turbulent. Castro (2005), via time integration of the Navier–Stokes equations, showed
the presence of these low-frequency oscillations at much lower Re, in the case of
symmetrically separated wake produced by imposing centreline symmetry in flow
past a normal flat plate.

In this paper we carry out global stability analysis of the flow past a cylinder
with centreline symmetry to understand the absolute and convective instabilities
associated with the flow. The global modes that lead to the low-frequency and large-
scale expansion/contraction of the wake bubble and the small-scale structures due to
the Kelvin–Helmholtz instability of the separated shear layer are identified. Extensive
computations are carried out to determine the instability modes associated with
different velocities. Particular attention is paid to those which move in the streamwise
direction. The growth rate of the instabilities is sensitive to the amount of reverse flow.
The region of the flow occupied by the recirculation bubble is related to, among other
parameters, the blockage. The location of the lateral boundaries is, therefore, crucial
in the stability of the flow. The growth rate of the instability modes is found to be
greatly affected by the location of the lateral boundaries. The onset of instability for
the stationary modes shows a non-monotonic variation. For the case of low blockage
we find instability modes, perhaps not reported earlier, which give rise to spanwise
swirling structures or horizontal tornadoes travelling at relatively high speeds.

In addition to the stability analysis, full nonlinear equations have also been
integrated in time to study the time evolution of the flow field. It is found that
both the low-frequency and shear layer modes are present in the flow. Thus an
explanation for the appearance of various instabilities is offered in terms of the linear
stability of the base flow.

A stabilized finite element formulation is used for the study. The streamline-
upwind/Petrov–Galerkin (SUPG) and pressure-stabilizing/Petrov–Galerkin (PSPG)
stabilization technique (Tezduyar et al. 1992) is employed to stabilize the computations
against spurious numerical oscillations. Equal-order-interpolation bilinear functions
for velocity and pressure are employed. For unsteady computations, we utilize a
second-order-in-time procedure to carry out the time integration of the flow equations.
The algebraic equation systems resulting from the finite element discretization of the
flow equations are solved using the generalized minimal residual (GMRES) technique
(Saad & Schultz 1986) in conjunction with diagonal preconditioners. The formulation
for the linear stability analysis with the stabilized finite element method, being
used here, was proposed in one of our earlier articles (Mittal & Kumar 2003).
First, the steady-state solutions at various Re are obtained by solving the governing
equations by dropping the unsteady terms and progressively increasing the Re. The
linear stability analysis of these steady states involves the solution to an eigenvalue
problem. A subspace iteration procedure (Morzynski et al. 1999) in conjunction
with shift-invert transformation is utilized. Double precision arithmetic is used in all
the computations. The paper is arranged in the following sequence. In the § 2, we
present the governing equations. The stabilized finite element formulation to carry
out the direct time integration of the governing equations and for the linear stability
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analysis are presented in § 3. This is followed by problem set-up and boundary
conditions presented in § 4. The results are presented and discussed in § 5. We end
with conclusions in § 6.

2. The governing equations
2.1. The incompressible flow equations

Let Ω ⊂ IRnsd and (0, T ) be the spatial and temporal domains respectively, where nsd

is the number of space dimensions, and let Γ denote the boundary of Ω . The spatial
and temporal coordinates are denoted by x and t . The Navier–Stokes equations
governing incompressible fluid flow are

ρ

(
∂u
∂t

+ u · ∇∇∇u
)

− ∇∇∇ ·σσσ = 0 on Ω × (0, T ), (1)

∇∇∇ · u = 0 on Ω × (0, T ). (2)

Here ρ, u and σσσ are the density, velocity and the stress tensor, respectively. The stress
tensor is written as the sum of its isotropic and deviatoric parts:

σσσ = −pI + T, T = 2μεεε(u), εεε(u) =
1

2
((∇∇∇u) + (∇∇∇u)T ), (3)

where p and μ are the pressure and coefficient of dynamic viscosity, respectively.
The above set of equations can be solved along with suitable initial and boundary
conditions to obtain the time evolution of the flow field. The steady-state solution
can be computed by simply dropping the time derivative term from (1).

2.2. Equations for the perturbation

We decompose the unsteady solution as a combination of the steady-state solution
and perturbation:

u = U + u′, p = P + p′. (4)

Here, U and P represent the steady-state solution while u′ and p′ are the perturbation
fields of the velocity and pressure, respectively. Substituting (4) in (1)–(2) and
subtracting from them the equations for steady flow one obtains

ρ

(
∂u′

∂t
+ u′ · ∇∇∇U + U · ∇∇∇u′ + u′ · ∇∇∇u′

)
− ∇∇∇ ·σσσ ′ = 0 on Ω × (0, T ), (5)

∇∇∇ · u′ = 0 on Ω × (0, T ). (6)

Here, σσσ ′ is the stress tensor for the perturbed solution computed using (3).

2.3. Linearized equations for the perturbation

Assuming that the perturbation field is small, the nonlinear term from (5) is dropped
to obtain the linearized momentum equation for the perturbation. The continuity
equation remains as it is. The linearized disturbance equations are

ρ

(
∂u′

∂t
+ u′ · ∇∇∇U + U · ∇∇∇u′

)
− ∇∇∇ ·σσσ ′ = 0 on Ω × (0, T ), (7)

∇∇∇ · u′ = 0 on Ω × (0, T ). (8)
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2.4. Equations for the linear stability analysis

Following the idea proposed by Mittal & Kumar (2007) we note that the global
linear stability analysis of a non-parallel flow can be carried out in a frame
moving with uniform velocity with respect to the laboratory frame. Let x denote
the position vector of a point in the flow field with respect to the laboratory frame.
Let z be its position vector in another frame that is moving with velocity c with
respect to the laboratory frame. The transformations which relate the two frames
are

x = z + ct, ∇∇∇x = ∇∇∇z,
∂

∂t

∣∣∣∣
x

=
∂

∂t

∣∣∣∣
z

− c · ∇∇∇z. (9)

We further assume that the disturbances are of the following form:

u′(x, t) = û(x − ct) eλt , (10)

p′(x, t) = p̂(x − ct) eλt . (11)

Such a perturbation would be seen as moving with velocity c in the laboratory frame
while it will appear stationary in the moving frame. Substituting (10)–(11) in (7)–(8)
we get

ρ(λû + û · ∇∇∇zU + (U − c) · ∇∇∇zû) − ∇∇∇z · σ̂σσ = 0 on Ω (12)

∇∇∇z · û = 0 on Ω. (13)

It is important to note that the base flow U (x) is computed in the laboratory frame.
However, in (12)–(13), it is to be interpreted as U (z + ct). Therefore, in the moving
frame, the base flow varies with time. At t = 0, z = x and one can use the same base
flow as computed in the stationary frame. At other time instants z and x are different
and the perturbation encounters different base flow at different times. Therefore, this
analysis, for determining the global convective instability, is valid in an instantaneous
sense. λ(c) is the eigenvalue of the fluid system and governs its stability. In general,
λ(c) = λr (c)+iλi(c) where, λr (c) and λi(c) are the real and imaginary parts, respectively.
Growth of a perturbation, indicated by λr (c) > 0, would be seen as a global absolute
instability in the moving frame, while in the laboratory frame it will appear as globally
convectively unstable. It follows that the flow is globally convectively unstable if there
exists a c for which λr (c) > 0, provided λr (0) < 0. When λr (0) > 0, the flow is globally
absolutely unstable. The boundary conditions for (û, p̂) are the homogeneous versions
of the ones for (U , P ).

3. The finite element formulation
Consider a finite element discretization of Ω into subdomains Ωe, e =1, 2, . . . , nel ,

where nel is the number of elements. Based on this discretization, for velocity and

pressure perturbation fields we define the finite element trial function spaces Ŝh
u and

Ŝh
p , and weighting function spaces V̂h

u and V̂h
p . Here, the superscript ‘h’ represents

spatial discretization. These function spaces are selected by taking the Dirichlet
boundary conditions into account, as subsets of [H1h(Ω)]2 and H1h(Ω), where H1h(Ω)
is the finite-dimensional function space over Ω .
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3.1. The incompressible flow equations

The stabilized finite element formulation of (1) and (2) is written as follows: find
uh ∈ Sh

u and ph ∈ Sh
p such that ∀wh ∈ Vh

u and qh ∈ Vh
p

∫
Ω

wh · ρ
(

∂uh

∂t
+ uh · ∇∇∇uh

)
dΩ +

∫
Ω

εεε(wh) : σσσ (ph, uh) dΩ

+

∫
Ω

qh∇∇∇ · uh dΩ +

nel∑
e=1

∫
Ωe

1

ρ

(
τSUPGρuh · ∇∇∇wh + τPSPG∇∇∇qh

)
.

(14)[
ρ

(
∂uh

∂t
+ uh · ∇∇∇uh

)
− ∇∇∇ ·σσσ (ph, uh)

]
dΩe

+

nel∑
e=1

∫
Ωe

τLSIC∇∇∇ · whρ∇∇∇ · uhdΩe =

∫
Γh

wh · hhdΓ.

In the variational formulation given by (14), the first three terms on the left-hand
side and the one on the right-hand side constitute the Galerkin formulation of
the problem. To give stability to the basic formulation, a series of element-level
integrals are added. The first series of element-level integrals are the SUPG and
PSPG stabilization terms added to the variational formulations (Tezduyar et al.
1992). The SUPG formulation for convection dominated flows was introduced by
Hughes & Brooks (1979) and Brooks & Hughes (1982). The Petrov–Galerkin term for
Stokes flows, to admit the use of equal-order interpolations for velocity and pressure
without producing oscillations in the pressure field, was proposed by Hughes, Franca
& Balestra (1986). Tezduyar et al. (1992) proposed a formulation using the SUPG and
PSPG stabilizations for finite-Reynolds-number flows. The second series of element
level integrals are stabilization terms based on the least squares of the divergence-free
condition on the velocity field. The definition of the stabilization parameters being
used is the same as presented in an earlier article (Kumar & Mittal 2006a).

3.2. The perturbation equation

The application of the stabilized finite element method to the perturbation equations,

(5) and (6), results in the following formulation: find ûh ∈ Ŝh
u and p̂h ∈ Ŝh

p such that

∀ŵh ∈ V̂h
u and q̂h ∈ V̂h

p

∫
Ω

wh · ρ
(

∂u′h

∂t
+ U h · ∇∇∇u′h + u′h · ∇∇∇U h + u′h · ∇∇∇u′h

)
dΩ +

∫
Ω

εεε(wh) : σσσ (p′h, u′h) dΩ

+

∫
Ω

qh∇∇∇ · u′hdΩ +

nel∑
e=1

∫
Ωe

1

ρ

(
τSUPGρU h · ∇∇∇wh + τPSPG∇∇∇qh

)
.

(15)[
ρ

(
∂u′h

∂t
+ U h · ∇∇∇u′h + u′h · ∇∇∇U h + u′h · ∇∇∇u′h

)
− ∇∇∇ ·σσσ (p′h, u′h)

]
dΩe

+

nel∑
e=1

∫
Ωe

τLSIC∇∇∇ · whρ∇∇∇ · u′h dΩe = 0.

The variational formulation given by (15) includes the nonlinear term arising from
the convection of the disturbance. The formulation for the linearized disturbance
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u1 = 0

σ12 = 0

σ11 = 0

σ12 = 0

u = Uo

u2 = 0 σ12 = 0u2 = 0

u2 = 0

H

Y

X

Figure 1. Flow past a half-cylinder: schematic of the computational domain
and boundary conditions.

equations given by (7) and (8) can be obtained from (15) by simply dropping the
terms quadratic in u′h.

3.3. The linear stability equations

Let Ŝh
u and Ŝh

p be the finite element trial function spaces and V̂h
u and V̂h

p the
weighting function spaces for the perturbations in the velocity and pressure fields,
respectively. The finite element formulation for the perturbation equations, (12) and

(13), is given as: find ûh ∈ Ŝh
u and p̂h ∈ Ŝh

p such that ∀ŵh ∈ V̂h
u and q̂h ∈ V̂h

p∫
Ω

ŵh · ρ
(
λûh + (U h − c) · ∇∇∇ûh + ûh · ∇∇∇U h

)
dΩ +

∫
Ω

εεε(ŵh) : σσσ (p̂h, ûh) dΩ

+

∫
Ω

q̂h∇∇∇ · ûhdΩ +

nel∑
e=1

∫
Ωe

1

ρ

(
τSUPGρ(U h − c) · ∇∇∇ŵh + τPSPG∇∇∇q̂h

)
.

(16)[
ρ

(
λûh + (U h − c) · ∇∇∇ûh + ûh · ∇∇∇U h

)
− ∇∇∇ ·σσσ (p̂h, ûh)

]
dΩe

+

nel∑
e=1

∫
Ωe

τLSIC∇∇∇ · ŵhρ∇∇∇ · ûhdΩe = 0.

The stabilization coefficients for this formulation are based on the steady-state velocity
field U h.

3.4. The eigenvalue problem

Equation (16) leads to a generalized eigenvalue problem of the form AX − λBX =0,
where A and B are non-symmetric matrices. The subspace iteration method (Stewart
1975) in conjunction with shift-invert transformation is used to solve the eigenvalue
problem.

4. Problem set-up
4.1. Computational domain and boundary conditions

A schematic of the computational domain and the boundary conditions used in the
present work is shown in the figure 1. To capture the modes that are symmetric with
respect to the wake centreline only one-half of the cylinder is considered. The lateral
boundary is located at a distance H from the centre of the cylinder. Computations are
carried out for various values of H . The upstream and downstream boundaries are
located at 50D and 150D, respectively, from the centre of the cylinder. A free-stream
value Uo is assigned to the velocity at the upstream boundary. At the downstream
boundary, a Neumann-type boundary condition for the velocity is specified that
corresponds to zero stress vector. On the upper and lower boundaries a ‘slip-wall’
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Figure 2. Flow past a half-cylinder: close-up view of a typical finite element mesh.

boundary condition is employed, i.e. the component of velocity normal to and the
component of stress vector along these boundaries are prescribed a zero value. For
the linear stability analysis, the boundary conditions are the homogeneous versions
of the ones used for determining the steady-state solutions. A typical finite element
mesh is shown in the figure 2. Four noded quadrilateral elements with equal order
interpolation for velocity and pressure are employed. Sufficient grid points are used
close to the cylinder to resolve the boundary layer and separating shear layer.

4.2. The non-dimensional parameters

The radius of the cylinder R is used for non-dimensionalizing the length scales
while the free stream speed U is used as the characteristic speed. Time is non-
dimensionalized with R/U . The Reynolds number Re is defined as UD/ν, ν being the
kinematic viscosity of the fluid and D, the diameter. The cross-stream width of the
domain H is expressed in terms of R. For the linear stability analysis, each component
of the frame velocity c is non-dimensionalized with U . Another parameter that is
referred to is the Strouhal number, St . It is defined as f D/U , where f is the frequency
of signal of interest. The drag and lift coefficients per unit length are represented
by CD and CL, respectively. They are computed by performing an integration, that
involves the pressure and viscous stresses, around the circumference of the cylinder
and non-dimensionalized with respect to the dynamic pressure and diameter of the
cylinder.

5. Results
5.1. Steady flow

The time-dependent terms in (1) and (2) are dropped to compute the steady flow past
a half-cylinder. We note that the steady flow past a circular cylinder is symmetric
about the wake centreline. Hence the flow being computed here also represents the
steady flow past a full cylinder. Computations are carried for various values of H

and the results compared with those presented by earlier researchers. The steady flow
characteristics like the length and width of the wake bubble, maximum vorticity on
the surface of the cylinder and drag coefficient have been extensively studied in the
past. It is found, both from the theoretical results as well as from computations (Smith
1979; Fornberg 1985; Fornberg 1991; Gajjar & Azzam 2004), that the bubble length
increases linearly with Re. Smith (1979) suggested that the width of the wake bubble
grows as O(Re1/2). Fornberg (1985) showed that it grows as O(Re1/2) up to Re = 300
and increases linearly thereafter. The asymptotic nature of the eddy structure in the
case of bluff body flows was revealed by Chernyshenko (1988). Both the length and
the width of the wake bubble were reported to scale as O(Re). Later numerical
computations by Fornberg (1991) conformed with these estimates. Gajjar & Azzam
showed that although the width grows initially, for high enough Re it is limited by
the blockage and hence gets saturated. Recently, Griffith et al. (2007) carried out an
investigation of a partially blocked two-dimensional channel across a range of Re
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Figure 3. Steady flow past a circular cylinder: variation of the bubble characteristics with Re.
The results obtained from the present study are compared with those from Gajjar & Azzam
(2004). The abbreviations used are: LB , bubble length; WB , bubble width; CD , drag coefficient;
Ωm, maximum vorticity on the cylinder surface. In the figure, H refers to the domain half-width
and G refers to results from Gajjar & Azzam (2004).

and blockage. Over the Re range considered the variation of the length of the first
recirculation bubble is found to be approximately linear.

The present results are in very good agreement with those reported by Gajjar &
Azzam (2004). All the results have been checked for grid independence. For example,
the bubble length computed for H = 10 case, at Re = 1000, with two different finite
element meshes consisting of 57 313 and 86 419 nodes, respectively, differ from each
other by less than 0.1 %. As reported by Gajjar & Azzam the computations for H = 50
and beyond are very demanding on computational resources. With our computational
resources we are unable to compute flows for Re > 500 accurately for H = 50. Figure 3
shows the variation of bubble characteristics with Re for various domain width. Good
agreement with data from Gajjar & Azzam is apparent from this figure. The linear
growth of bubble length with Re can be clearly observed.

With respect to the blockage the flow can be broadly classified in three categories.
Following the nomenclature proposed by Gajjar & Azzam (2004), we refer to these
as ‘Type I-III’ solutions. When the adjacent boundaries are extremely close to the
cylinder the recirculation bubble is slender. The length of the bubble increases with
increase in Re. H =5 flow is typical of very high blockage. We refer to these as
‘Type I’ solutions. As the lateral walls are shifted away from the cylinder the solution
changes to ‘Type II’. The flow begins to develop features, associated with low blockage
close to the reattachment point. An unusual increase in the bubble width near the
downstream end of the bubble is observed. This feature of the bubble is similar to
that observed in the Sadovskii type of vortex (Sadovskii 1971) and was also observed
by Gajjar & Azzam. The bubble length increases linearly with Re. However, the
bubble width saturates for large Re. Flow for H = 10 shows this behaviour. Type III
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solution is observed for even lower blockage cases, for example, with H = 50. Both
the length as well as the width of the bubble become very large. A large Sadovskii
vortex (Sadovskii 1971) is observed in the wake of the cylinder. While the length of
the bubble increases linearly with Re, the bubble width is constrained by the lateral
wall and, therefore, is expected to level out for large Re. Similar behaviour of the
recirculation bubble was reported by Castro (2002) for steady flow past a cascade of
flat plates in stratified fluid.

5.2. Linear stability analysis: global absolute instability

5.2.1. Variation with blockage

Having validated the steady flow results of the present study with those from
earlier researchers we investigate their global stability characteristics. A stabilized
finite element formulation of the linearized disturbance equations, given by (16),
is utilized. First, the absolute stability of the flow is studied by carrying out the
analysis for stationary disturbances, i.e. c = 0. In the rest of the article the phrase
‘absolute/convective’ should be understood in a global non-parallel sense and should
not be confused with the usual meaning that they have in the local theory (Huerre &
Monkewitz 1990), unless stated otherwise. We track the variation of the rightmost
eigenvalue (most positive/least negative) with Re for various H .

Figure 4 shows the variation of the growth rate λr and Strouhal number St with
Re for various values of H . Of interest, for each H , is the critical Re for which
the flow becomes unstable. The effect of blockage is classified into three categories
to highlight the variation of λr with Re. The top row of figure 4 shows the results
for high blockage (H � 15). For this case, λr first increases with Re and then, after
achieving a maximum value, reduces with further increase in Re. The second and
third rows of figure 4 show the results for moderate (16 � H � 20) and low blockage
(H � 25), respectively. For moderate blockage, a steep rise in λr with increase in Re

is observed for Re < 600, approximately. This is followed by a mild increase in the
growth rate with any further increase in Re. For low blockage our computations
are restricted to Re ∼ 500. The flow is found to be stable up to this Re. The critical
Re for which the λr becomes positive is expected to be much higher. In fact, it is
possible that the flow may not become absolutely unstable at all as it approaches the
limit of unbounded flow. For all values of H the St , related to the imaginary part
of the eigenvalue with largest λr , decreases with increase in Re. In fact, for H =30
and 50 the least stable mode for large Re is a real mode and, therefore, its St is
zero.

Castro (2005), using arguments regarding the diffusion of vorticity from within
an eddy of length LB to outside the bubble, proposed that the time period of the
instability should scale with ReH 2. From the direct numerical simulations he found
that on a log–log plot the variation of the time period of the instability is linear with
ReH 2. However, the slope is closer to 2 than to 1. Figure 5 shows the variation of
the time period T of oscillation of the rightmost mode with ReH 2 on a log–log plot.
Piecewise linear variation is seen for H � 25. The slope of the variation is different for
various H and it also changes with Re, for each H . In general, the slope increases with
increase in H . For H = 5 the slope of the graph is ∼0.88 for lower Re and goes up
to ∼1.2 for large Re. For H = 20 the slope is ∼4.22 for low Re and reduces to ∼1.35
for large Re. The slope for H = 50 is 5, approximately, for low Re. It increases very
rapidly with increase in Re. In fact, the St for the most unstable mode approaches
0, for large Re, as seen from figure 4. This seems to suggest that the time period
becomes infinite as H increases and that the global mode might completely disappear
for an unbounded flow. To confirm this, one would have to carry out computations
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Figure 4. Linear stability analysis for flow past a half-cylinder for various H : variation of
the growth rate of the most unstable mode (a) and St (b) with Re.

for larger H and Re. Unfortunately, this requires more computational resources than
what we have access to at present.

Figure 6 shows the variation of the critical Reynolds number Rec and the
corresponding Strouhal number Stc with H . A non-monotonic variation of Rec

with H is observed. Rec decreases as the wall is moved away from the cylinder for
H < 15. For H > 15, the flow becomes more stable as the wall moves away further.
Similar non-monotonic behaviour has been reported earlier for the onset of primary
wake instability in the flow past a circular cylinder (see Kumar & Mittal 2006a, b).
The presence of lateral boundaries has two competing effects on the disturbance field.
When the lateral walls are close to the cylinder, they suppress the growth of the
disturbances in the cross-stream direction owing to the v = 0 condition prescribed on
the walls. However, they are also responsible for the local acceleration of the flow,
thereby, subjecting the cylinder to an apparent higher Re flow and, therefore, making
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Figure 5. Linear stability analysis for flow past a half-cylinder for various H and Re: variation
of the time period with ReH 2 of the most unstable mode. The lines with slopes 1 and 2 are
also shown.
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Figure 6. Linear stability analysis for flow past a half-cylinder: variation of the critical
Reynolds number Rec for absolute instability and the associated Strouhal number Stc with H .

it more unstable. These two effects oppose each other and result in a non-monotonic
variation of Rec with H . For very low H the former effect dominates; the stabilizing
effect of the walls reduce as they are moved away. Therefore, Rec decreases with
increase in H . However, when the walls are taken sufficiently far away the stabilizing
effect almost disappears. In this situation the decrease in blockage leads to an increase
in Rec. From figure 6 it is observed that Stc monotonically decreases with increase
in H .

5.2.2. Eigenmodes at the onset of instability

Figure 7 shows the vorticity field of the real part of the most unstable eigenmode for
various blockage. The stagnation streamline for the steady state is also shown. The Re

for each value of H , for which the eigenmode is shown, is a little beyond the onset of
instability. In all cases a bubble-like disturbance is observed in the wake of the cylinder
which increases in size with increase in H . It occupies the entire recirculation zone
of the steady flow. For future reference, we refer to this mode as the ‘bubble mode’.
For higher blockage, as is the case with the recirculation bubble of the base flow, the
bubble-like structure of the disturbance field is slender; its width is constrained by the
lateral walls. In all the figures in this article with grey-scale shading the background
shade of grey corresponds to a zero value. The lighter shades represent positive while
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Figure 7. Flow past a half-cylinder: vorticity field of the real part of the rightmost eigenmodes
for different lateral width of the domain; the modes shown were obtained for Re a little beyond
the onset of instability. The stagnation streamline for the steady state is also shown in white
colour.

–20 0 20 40 60 80 100 120 140 160 180 200

H = 50, Re = 500

Figure 8. Re =500, H = 50 flow past a half-cylinder: vorticity field of the real part of the
least stable eigenmode. The stagnation streamline for the steady state is also shown in white
colour.

the darker shades represent negative values. The length scale of the bubble/eddy
structure at critical Re increases with increase in H . This corresponds to a decrease of
Stc with increase in H as is also seen from figure 6. Figure 8 shows the real part of the
vorticity field of the bubble mode at Re =500 for low blockage (H = 50). Although
it corresponds to the rightmost eigenvalue it is found to be stable.

Compared to the mode that causes von Kármán vortex shedding the bubble mode
is associated with very low frequency. For example, for H = 10 the Stc is ∼0.002 for
the bubble mode while it is ∼0.116 for the von Kármán vortex shedding mode for
the full cylinder in an unbounded flow. To understand the nature of the instability we
construct an unsteady flow by combining the steady flow and the complex conjugate
pair of the eigenmode corresponding to the bubble mode. We choose H = 10 and
Re = 750. Recall that the onset of instability for H = 10 occurs at Re ∼ 651.64. It is
found that it is this mode which leads to the low-frequency oscillations related to the
streamwise expansion and contraction of a laminar separation bubble.

5.2.3. H = 5: the bubble mode at various Re

Figure 4 shows that the growth rate of the bubble mode, for high blockage,
exhibits non-monotonic variation with Re. We offer a possible explanation for this
observation. It is observed that as Re increases the mode recedes downstream. The
time evolution of the kinetic energy of the disturbance field depends very significantly
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on the transfer of kinetic energy from the base flow to the disturbance. It can be
shown that the transfer term depends on the shear in the base flow. The shear in the
base flow increases with Re. For each Re, it reduces as one moves downstream of the
cylinder. Therefore, with increase in Re there is an increase in the transfer of energy
from the base flow to the disturbance modes. However, beyond a certain Re, due to
the downstream movement of the modes, the energy transfer from the base flow to
the instability mode reduces. This anomalous behaviour causes the non-monotonic
variation.

5.3. H = 10, Re =750: unsteady computations

Figures 4 and 6 show that the steady flow for H = 10 looses stability beyond Re ∼ 651.
The unsteady flow equations, which include the nonlinear terms, are integrated in time
to compute the evolution of the flow for Re =750. The computations begin from the
steady flow at the same Re. Since the steady base flow is linearly unstable the round
off errors of the order of machine precision grow with time and the flow becomes
unsteady. The top two rows of figure 9 show the time variation of the aerodynamic
coefficients. The last row shows the crossflow component of velocity at a point
located at (7.56R, 0.133R) with respect to the centre of the cylinder. From these time
histories we note that there are low-frequency oscillations which are accompanied by
oscillations of higher temporal frequency. Although the large-scale oscillations are not
very periodic, the average period is 1500 time units, approximately. This corresponds
to St ∼ 0.00133. The St predicted by the linear stability analysis is 0.00144. Figure 10
shows the vorticity field of the unsteady flow at various time instants. The expansion
and contraction of the attached wake bubble is clearly observed in these visuals.
Also observed from this figure is the significant reduction in the length and increase
of the width of the bubble. This is due to the nonlinear effects that are accounted
for in the direct numerical simulations. This also explains the difference in St from
the linear stability analysis and the direct numerical simulation. The mean length of
the bubble for the first cycle, at the beginning of the direct numerical simulation
when the disturbances are small, is quite comparable to that for the steady solution.
Numerical simulations were also carried out for Re = 660 which is close to the
critical Re for the onset of the global absolute instability. Compared to Re = 750,
the nonlinear effects were found to set in at a later time. Barring the appearance
of small-scale shear layer vortices the flow for Re = 660 is virtually the same up to
500 non-dimensional time units as that obtained by the superimposition of the most
unstable eigenmode and the steady base flow.

The convection of the large-scale vortices seen in the fifth, sixth and seventh
frames of figure 10 is similar to that observed by Castro (2005). He also observed
the shear layer vortices. It was reported that for high blockage they appear before
the appearance of low-frequency modes. An opposite trend was observed for low
blockage. However, not much attention was paid in his investigation to study the
instability of the shear layer. Later in the paper, we relate the shear layer vortices
to the convective instability of the flow. The results for H =10 are typical of those
for other cases with high blockage. For the low blockage case (H = 50) we carried
out computations for Re =500. In conformity with the results from linear stability
analysis the flow is found to be stable in this situation and all disturbances eventually
decay. As seen from figure 6 there is the rapid increase in the Rec as the lateral
boundaries are moved away. This behaviour is in contrast to that found by Castro
(2005) for the flow normal to a plate with free-slip condition on the symmetry plane.
His direct numerical simulations show a monotonic decrease in the Rec with increase
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Figure 9. Direct time integration of the flow equations for the H = 10, Re = 750 flow past
a half-cylinder: time histories of the force coefficients acting on the cylinder and the vertical
component of velocity recorded at x = 7.56R and y = 0.133R from the centre of the cylinder.

in H (for H � 30). Two possibilities exist. Either the non-monotonicity reported in
the present paper is specific to the cylinder or the flow past a normal flat plate may
behave differently for lower blockage. More work is needed to resolve the apparent
discrepancy. The agreement between the results from linear stability analysis and
direct numerical simulations adds confidence to the present results.
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Figure 10. Direct time integration of the flow equations for the H = 10, Re = 750 flow
past a half-cylinder: vorticity field of the flow computed at various time instants during,
approximately, one cycle of the bubble mode.

5.4. Linear stability analysis: global convective instability

The results from the unsteady computations, shown in figures 9 and 10, indicate the
presence of small-scale vortices in addition to the bubble mode. These vortices do
not show a very well defined periodic behaviour and neither do they resemble any
of the absolutely unstable modes determined from the linear stability analysis. This
leads us to suspect that they might be a consequence of the convective instability of
the base flow. To investigate this further we conduct global linear stability analysis
of the flow to determine the convectively unstable modes. For each value of H and
Re the analysis is carried out for various values of disturbance velocity c = (cx, cy).

5.4.1. H =10, Re = 500 and cy =0

Figure 11 shows the growth rate and Strouhal number for the most unstable mode
for various values of cx . In these computations we track the disturbances which move
in the streamwise direction, i.e. cy is prescribed a zero value. To ensure the accuracy
of results two finite element meshes are utilized: Mesh 1 with 57 313 and Mesh 2
with 86 419 grid points. The unsteady results from the direct numerical simulations,
presented in the previous section, have been computed using Mesh 2. As seen from
figure 11 the results from the two meshes are in excellent agreement. This confirms
the adequacy of the spatial resolution being utilized here. The growth rate increases
quite rapidly with cx . At cx =0 the growth rate is slightly negative. This reflects the
marginal absolute stability of the flow. The flow is found to be unstable beyond
cx ∼ .05. This marks the onset of convective instability of the flow. The St at the
onset is 1.12 × 10−3. Figure 12 shows the real part of the most unstable eigenmodes
for various values of cx . As cx increases vortical structures reduce in size and shift
upstream towards the cylinder. For cx = 0.5 and larger the eigenmodes exhibit very
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Figure 11. Linear stability analysis for the H = 10, Re = 500 flow past a half-cylinder:
variation of growth rate and St with cx (cy =0) with two different finite element meshes.
Mesh 1 consists of 57 313 nodes while Mesh 2 has 86 419 nodes.
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Figure 12. Linear stability analysis for the H = 10, Re = 500 flow past a half-cylinder: real
part of the most unstable convective modes at various values of cx . Only streamwise travelling
modes are considered (cy =0).

small-scale structures. Figure 11 shows that a sudden change in the St corresponding
to the most unstable mode takes place at cx ∼ 0.5. This indicates a qualitative change
in the type of mode which dominates the flow. The same can be seen from the
variation of λr with cx . This is because two different branches of the stability curve
intersect at cx ∼ 0.5. The maximum growth rate is observed for cx ∼ 0.8. It is expected
that if all the convectively unstable eigenmodes are introduced in the flow the one
that moves with cx ∼ 0.8 will grow at the fastest rate and therefore dominate the
flow. However, this being a convectively unstable mode, once the disturbance field
is advected outside the domain the flow is expected to return to its undisturbed
state.

5.4.2. Direct time integration of linearized disturbance equations

Direct time integration of the linearized disturbance equations is carried out to
confirm the results from the linear stability analysis. The kinetic energy of the
disturbance field in the flow domain Ω is defined as E(t) = ρ

2

∫
Ω

u′ · u′d Ω . We consider
the case when an eigenmode, as defined by (10) and (11), is used as an initial
condition for the computations. In this situation the kinetic energy can be expressed
as E(t) = ρ

2
e2λr t

∫
Ω

û · û dΩ . Here, the overbar indicates the complex conjugate while
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Figure 13. H = 10, Re =500 flow past a half-cylinder: time history of the normalized
disturbance energy (E(t)/E(0)) computed from the linearized disturbance equation. The initial
disturbance field is the most unstable mode for cx = 0.8 (cy = 0) obtained from the global linear
stability analysis.

0 10 20 30 40 50 600 10 20 30 40 50 60

t = 0

t = 10

t = 20

t = 40

t = 5

t = 15

t = 30

t = 50

Figure 14. H = 10, Re = 500 flow past a half-cylinder: snap shots of the disturbance
vorticity field at different time instants (see the caption of figure 13 for details).

λr is the growth rate of the mode. This leads to the following expression for an
estimate of λr

λr =
1

2t
ln

E(t)

E(0)
. (17)

Figure 13 shows the time history of the kinetic energy of the disturbance for the
Re =500 flow with H = 10 when the computations are initiated with the most unstable
mode moving with cx = 0.8 and cy = 0.0. Exponential growth of the energy is seen at
the beginning of the computation followed by a plateau and then a fall-off as the
disturbances are washed out of the domain. The time evolution of the vorticity field
of the disturbance is shown in figure 14. The disturbances grow as they are convected
downstream leading to an increase in E(t) with time. Using the value of energy at
t = 5 and the expression given by (17) the growth rate is found to be λr ∼ 0.268.
This value is in good agreement with that from the linear stability analysis that
predicts λr ∼ 0.263. The convective speed of the disturbance from this figure is also
estimated to be close to 0.8 for t near 0. The good agreement in the results from the
linear stability analysis and the direct time integration of the linearized disturbance
equations adds to our confidence in the present analysis. At this point we note that,
since the modes under consideration are convectively unstable, the energy estimate
given by (17) is valid only in the frame travelling with the mode. However, for small
t , the parts of the domain that differ between the laboratory and moving frames
contain little energy.
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Figure 15. Linear stability analysis for the H = 10 flow past a half -cylinder: variation of
the growth rate of the most unstable eigenmode with cx for different Re. Only streamwise
travelling modes are considered (cy = 0). The vorticity field of the unstable eigenmode close to
the onset of the instability (Re = 51, cx = 0.44) is also shown.

From figure 13 it is seen that the energy ratio grows up to ∼7000 in about
50 time units. Similar kinds of rapidly growing disturbances have been reported
earlier in other situations. For example, Fasel & Postl (2006) showed that the steady-
state separation bubble of the boundary layer over a flat plate is associated with
large convective growth. This leads to growth of perturbations by several orders of
magnitude. As a result extremely small environmental disturbances can grow and
lead to instabilities which are not intrinsic to the flow. A similar situation can arise
in numerical computations in flows that are marginally absolutely stable but highly
unstable with respect to convective disturbances. Despite the flow being absolutely
stable, this can lead to sustained instabilities because of very large growth of round
off errors. Such high growth can also cause the nonlinear effects to become prominent
leading to the possibility of subcritical bifurcation. This aspect, however, has not been
investigated in the present work.

5.4.3. H = 10, critical Re for the onset of shear layer instability

We now seek the critical Re for which the shear layer instability appears for
H = 10. Computations are carried out for various Re. At each Re the stability of
the convective modes is evaluated for various values of cx . The lowest value of Re

at which the growth rate of any of the convective modes becomes unstable is Rec.
Figure 15 shows the variation of growth rate with cx for different values of Re.
Only streamwise moving disturbances are considered, i.e. cy =0. We can see that the
flow becomes convectively unstable beyond Re =50. In the same figure the vorticity
field of the unstable eigenmode at the critical condition (cx = 0.44, Re = 51) is also
shown. This mode is found to be purely real. We note that the vortical structures
in the mode are relatively large compared to what have been observed at large Re

in experiments by earlier researchers. The shear layer vortices become smaller as Re

increases.
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Figure 16. Linear stability analysis of the H =50, Re = 500 flow past a half-cylinder: vorticity
field of the real part of the most unstable mode for different values of cx (growth rates are
also shown). Only streamwise travelling modes are considered (cy = 0).

5.4.4. Effect of blockage on Rec for the onset of shear layer instability

In the previous section results were presented for H =10. Such large blockage is
expected to significantly alter the flow as compared to that in an unbounded flow
situation. A question that comes to mind is the effect of blockage on the onset of
shear layer instability. We, therefore, examine results for larger values of H .

Our results for the case of H =50 shows that the growth rate, in general, increases
with increase in Re. The variation of λr with cx , for each Re, is interesting. For larger
Re, λr first increases and then decreases as cx increases. The critical Re for the onset
of convective instability for H = 50 is Re = 54. This value is a little larger than the
critical Re for H =10. In general, for a given Re, the growth rate for H = 50 is smaller
than that for H = 10. Hence, we conclude that as the sidewalls are brought closer the
instability becomes stronger.

Figure 16 shows the real part of the most unstable modes obtained for different
values of cx at Re = 500 and H =50. The corresponding growth rates of the modes
are also shown. The modes can be classified in one of the three types. The first type
of modes are the ones which have bubble-like structure in the wake. These can be
seen for cx =0.0, 0.1 and 0.2. The second type of modes have small-scale structures
in the shear layer emanating from the cylinder. This type of modes are observed
for 0.25 � cx � 0.8 and are very typical of the shear layer vortices that have been
observed in experiments at larger Re. The third type of modes, for cx = 0.9 and
cx = 1.0, resemble a tornado. These modes have very low growth rate. However, if
excited sufficiently, they could lead to tornado type of motion. It is possible that for
very high Re they may show large growth rate.

5.4.5. H =50, Re = 500: direct time integration of the disturbance equations

The time evolution of the disturbance is computed via time integration of the
nonlinear disturbance equations. The initial condition is the steady flow perturbed by
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a very small randomized velocity field having amplitude of the order of 5.0 × 10−5.
Unlike the linearized disturbance equations, the nonlinear equations limit the growth
of disturbance amplitude. It is observed that the disturbances, which resemble the
shear layer modes predicted by the global linear stability analysis, develop with time.
After an initial growth they start decaying. At t ∼ 1000 the disturbance resembles the
modes which are predicted by the stability analysis for low values of cx (figure 16).
These modes have long streaks of vorticity along the shear layer. The simulation
testifies to the fact that the modes which have larger growth rate dominate the flow
and those which have larger speeds leave the flow field earlier. The time evolution of
the disturbance starting from the most unstable convective mode, i.e. the mode for
cx =0.6, is also carried out via integration of the linearized disturbance equations.
Large transient growth similar to that for H = 10 is observed.

5.4.6. Comparison of present results with those from local analysis

In the past, local analysis has been carried out for various cases of shear
flows (Huerre & Monkewitz 1985; Hultgren & Aggarwal 1987; Castro 2005).
While Huerre & Monkewitz investigated the hyperbolic tangent profile, Hultgren &
Aggarwal and Castro investigated the Gaussian profile. In the later two cases the
investigations were also carried out with the symmetry condition imposed at the
centreline. Castro, in his investigation, also considered the flow bounded by slip walls
placed at finite distance.

We compare our results from the global stability analysis of the non-parallel flow
with those from earlier researchers. We consider two cases, H = 10 and H = 50.
Recall, the critical Re for the onset of convective instability, from the global stability
analysis, for the two values of H is 51 and 54, respectively. Using the computed
profiles we estimate the local Reynolds number Rel based on the maximum velocity
defect (= s(x) u(x, y =H )) and the wake half-width. The parameter s(x) is computed
with the help of the expression

s(x) =
u(x, y = H ) − u(x, y = 0)

u(x, y = H )
.

The wake half-width b(x) is the vertical distance from the wake centreline where the
velocity defect with respect to u(x, y =H ) is one-half the maximum defect at each
location (= u(x, H ) − u(x, 0)).

It is found from our computations that the Rel shows substantial streamwise
variation and achieves a maximum value of ∼45 for H = 10. The maximum for
H = 50 is slightly lower. For the same Re, based on the diameter of the cylinder, the
maximum local Reynolds number is higher for smaller H . The larger Rel for H = 10
is a consequence of the larger local increase in the streamwise speed for the higher
blockage. The critical Re for convective instability predicted by Castro (2005) for
H = 10 is 53.06. The maximum value of Rel from the present analysis is lower (∼45).
This value is achieved in the near wake of the cylinder. It is found that, in the near
wake, the velocity profiles for the base flow from the direct numerical simulations are
quite different than the Gaussian profile utilized by Castro. Therefore, a difference in
the results from the two methods is not surprising. In fact, it is quite interesting that the
two approaches lead to comparable values of Rec that are different by less than 20 %.

5.4.7. H = 10, Re = 500 and non-zero cy

So far we have restricted ourselves to streamwise travelling disturbance waves, i.e.
cy =0.0. In general, a disturbance can travel in any direction. Is it possible that the
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Figure 17. Linear stability analysis of the H = 10, Re = 500 flow past a half-cylinder:
variation of the growth rate and St with cx for two different values of cy ( = 0.0 and 0.1).
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Figure 18. Linear stability analysis of theH =10,Re = 500 flowpast a half-cylinder: vorticity
field of the real part of the most unstable mode for various values of cx (and cy = 0.1).

growth rate of a wave travelling in any other directions could be more? To investigate
this we carry out linear stability analysis with non-zero value of cy . We begin with
cy = 0.1. Figure 17 shows the results from the computations. The variation of growth
rate and St with cx are shown. For comparison, the results from cy = 0 are also
shown. It is seen from the figure that the results for cy = 0 and cy =0.1 are very
similar, qualitatively. However, the maximum value of the growth rate is higher for
cy = 0.1 and the maxima occurs at cx ∼ 0.7. For cy = 0.0 the maximum growth rate
occurs for cx ∼ 0.8. The real part of the most unstable modes for various values of cx

are shown in the figure 18. Comparing the modes for cy = 0 and cy = 0.1, shown in
the figures 12 and 18, respectively, we observe significant differences for low values
of cx . For cy =0.0 the modes have larger scale vortical structures in the wake for low
values of cx . For larger cx the mode shapes are very comparable.

It is also observed from figure 17 that the disturbances travelling in the crossflow
direction (cx = 0, cy = 0.1) are convectively unstable. We, therefore, investigate the
effect of cy while cx is kept zero, i.e. waves that travel purely in the crossflow direction.
If indeed some such waves have growth rate that are larger than other waves, they can
grow and be seen in experiments. This possibility exists and is, perhaps, more likely in
a non-parallel flow. Figure 19 shows the growth rate and Strouhal number variation
with the cross-stream speed cy for cx = 0, of the most unstable modes. The real part
of the corresponding modes are shown in the figure 20. We observe that, in general,
the growth rate of these modes are relatively smaller than the streamwise moving
modes. Hence these modes will get dominated by others. The maximum growth rate
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Figure 19. Linear stability analysis of the H = 10, Re = 500 flow past a half-cylinder: variation
of the growth rate and St with cy . Only crossflow moving disturbances are considered (cx =0.0).
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Figure 20. Linear stability analysis of the H = 10, Re = 500 flow past a half-cylinder: vorticity
field of the real part of the most unstable mode for various values of cy . Only crossflow moving
disturbances are considered (cx = 0.0).

occurs around cy = 0.15 and the corresponding mode has small-scale structures in the
wake which are very similar to those seen for the streamwise moving disturbances.

The global analysis in the present work, of perturbations in a moving frame,
has significant parallels with the local analysis carried out by Healey (2006) and
Juniper (2007). As opposed to the usual parallel flow analysis which considers the
disturbance velocity in the streamwise direction only, Juniper carried out the analysis
for perturbations which could move in the cross-stream direction as well. It was found
that for unconfined flows the behaviour at t = 0 was a good representation for the
behaviour at large times. However, in the case of confined flows a very interesting
observation was made. The disturbance waves get reflected from the lateral walls and
set up a standing wave that is not captured by the behaviour at t = 0.

6. Conclusions
Global absolute and convective stability analysis has been carried out for the

cylinder wake with centreline symmetry. The base flow is the steady flow computed
for one-half of the domain with free-slip conditions on the symmetry plane. Various
locations of the lateral boundary are considered. The results are in very good
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agreement with those reported earlier (Fornberg 1985; Fornberg 1991; Gajjar &
Azzam 2004).

The linear stability analysis of the steady flow has been carried out via an eigenvalue
formulation to get the most unstable modes and the corresponding frequencies. The
growth rate shows a non-monotonic variation with Re. This behaviour is more
pronounced for higher blockage. The non-monotonic variation is primarily caused
by the decrease in the shear of the base flow as one moves downstream in the
wake. The corresponding St shows a monotonic decrease with increase in Re. The
critical Re for the onset of absolute instability has been found for various values
of H . The variation of Rec with H also shows a non-monotonic behaviour. The
minimum Rec is observed for H = 15. The non-monotonicity is caused by the dual
role of the lateral boundary in both stabilizing and destabilizing the flow. Similar
non-monotonic variation of Rec with blockage has been reported earlier for the
primary wake instability (Kumar & Mittal 2006a; Kumar & Mittal 2006b). Castro
(2005) carried out full nonlinear computations for flow past a normal flat plate with
free-slip conditions on the symmetry plane. Unlike the present results, he found that
the Rec for the onset of unsteadiness decreases with increase in H . This suggests that
either the non-monotonicity is specific to the cylinder or the flow past a flat plate
needs to be examined for lower blockage. More work is needed to resolve this issue.
Generally, the most unstable mode for all H have bubble-like structure in the near
wake followed by long streaks of vorticity in the far wake. We refer to these modes as
bubble modes. It is shown that they are responsible for the low-frequency expansion
and contraction of the recirculation bubble. Such low-frequency oscillations have
been observed in flows earlier (see Alam & Sandham 2000; Manhart & Fredrich
2001; Castro 2005).

Castro (2005) proposed, from physical arguments, that the time period T of these
oscillations varies as ReH 2. However, from his direct numerical simulations he found
that the slope of the T versus ReH 2 is closer to 2 than to 1. Our results from the
linear stability analysis also show that the slope is larger than 1. In general, the slope
increases with increase in H . In fact, T increases very rapidly with ReH 2 for larger
values of H . The results suggest that the time period approaches infinity with H , i.e.
the bubble mode instability might disappear for a truly unbounded flow. More work
needs to be done to ascertain this. The St , at the onset of instability, from the present
analysis shows a monotonic decrease with decrease in blockage. It is found that Rec

increases very rapidly as the lateral boundaries are moved away from the cylinder
beyond H = 15. This also motivates us to speculate that, for low blockage, the flow
might remain stable to the bubble mode up to fairly high Re.

Direct time integration of the full nonlinear flow equations has been carried out for
the Re = 750 flow for H = 10. The time histories of CL and CD show oscillations on
two different time scales. The large time scale or low-frequency oscillations correspond
to the expansion/contraction of the wake bubble and release of large-scale vortices.
The small time scale or high-frequency oscillations are due to the small-scale vortices
which are a consequence of the instability of the separated shear layer from the
cylinder. This has been ascertained via a global stability analysis for convective
disturbances following the method presented by Mittal & Kumar (2007).

The critical Re for small-scale disturbances (shear layer instability) has been a
contentious issue for a while. Various values of Rec have been proposed in the
past: = 1300 by Bloor (1964), beyond 350 by Gerrard (1978), beyond 1900 by Unal &
Rockwell (1988), beyond 1200 for parallel shedding by Prasad & Williamson (1997)
and beyond 740 by Rajagopalan & Antonia (2005). Global linear stability analysis has
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been carried out for various speeds of the disturbance. The critical Re for the onset of
shear layer instability, from the present analysis, is found to be 51 and 54 for H = 10
and H =50, respectively. The H = 50 is a good approximation to the unbounded flow,
at least at Re as low as 54. The scatter in the data from experiments regarding Rec

can be explained by the fact that the shear layer instabilities are convective in nature.
Therefore, their appearance in experiments or computations is largely dependent on
the background disturbance. Furthermore, at low Re they can be overshadowed by
the more dominant wake modes.

In general, the convective modes can travel in any direction. It is found from
our computations, for H = 10, that modes that travel with a velocity having a small
component in the cross-stream direction in addition to streamwise speed have larger
growth rates as compared to the modes travelling strictly in the streamwise direction.
Analysis has also been carried out for modes that travel in the crossflow direction
only. Some modes of this kind are also found to be convectively unstable. The present
results from the linear stability analysis are also supported by those from direct time
integration of linearized disturbance equations. The time evolution of the energy of
the disturbance show intermediate increase up to very high values before decaying.
Such large increase in energy has also been observed earlier for other flow problems
(Fasel & Postl 2006). This suggests that very small sustained background disturbances
can grow to significant strength and be observed in a flow and give the same effect
as a global absolute instability. The linear stability analysis for the Re = 500 flow for
low blockage (H = 50) leads to three kinds of modes depending on the speed of the
disturbance. Based on the vortical structures in the modes they are classified as the
bubble, shear layer and tornado modes.

The results from the global analysis are compared with earlier results from local
analysis (Hultgren & Aggarwal 1987; Castro 2005). For the Rec from the global
analysis, the streamwise variation of the local Reynolds number (Rel), based on the
maximum speed difference and the wake half-width, is determined for the base flow.
Rel shows substantial streamwise variation and achieves a maximum value of ∼45 for
H = 10. The maximum for H = 50 is slightly lower. The local analysis predicts about
20 % lower value. This difference might also be because the local analysis by Castro
(2005) and Hultgren & Aggarwal (1987) was carried out for a synthetic velocity
profile based on a Gaussian distribution. In the near wake the velocity profile from
the present analysis are different from the Gaussian profile. However, they are in very
good agreement in the far wake. It should be noted that all the computations in the
present work are restricted to two dimensions. Since the Re considered is rather high
it is possible that the actual flow might exhibit modes that are three-dimensional in
nature. This will be investigated in a future study.

Partial support for this work from the Department of Science & Technology, India
is gratefully acknowledged.
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