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A cross-diffusion system modelling the information herding of individuals is analysed in a

bounded domain with no-flux boundary conditions. The variables are the species’ density

and an influence function which modifies the information state of the individuals. The cross-

diffusion term may stabilize or destabilize the system. Furthermore, it allows for a formal

gradient-flow or entropy structure. Exploiting this structure, the global-in-time existence of

weak solutions and the exponential decay to the constant steady state is proved in certain

parameter regimes. This approach does not extend to all parameters. We investigate local

bifurcations from homogeneous steady states analytically to determine whether this defines the

validity boundary. This analysis shows that generically there is a gap in the parameter regime

between the entropy approach validity and the first local bifurcation. Next, we use numerical

continuation methods to track the bifurcating non-homogeneous steady states globally and

to determine non-trivial stationary solutions related to herding behaviour. In summary, we

find that the main boundaries in the parameter regime are given by the first local bifurcation

point, the degeneracy of the diffusion matrix and a certain entropy decay validity condition.

We study several parameter limits analytically as well as numerically, with a focus on the

role of changing a linear damping parameter as well as a parameter controlling the cross-

diffusion. We suggest that our paradigm of comparing bifurcation-generated obstructions to

the parameter validity of global-functional methods could also be of relevance for many other

models beyond the one studied here.
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1 Introduction

In this paper, we study the following cross-diffusion system:

∂tu1 = div(∇u1 − g(u1)∇u2), (1.1)

∂tu2 = div(δ∇u1 + κ∇u2) + f(u1) − αu2, (1.2)

where u1 = u1(t, x), u2 = u2(t, x) for (t, x) ∈ [0, T ) × Ω, T > 0 is the final time, Ω ⊂ �d

(d � 1) is a bounded domain with sufficiently smooth boundary, ∇ denotes the gradient,

div = ∇· is the divergence and ∂t = ∂
∂t

denotes the partial derivative with respect to

time. The equations are supplemented by no-flux boundary conditions and suitable initial

conditions:

(∇u1 − g(u1)∇u2) · ν = 0

(δ∇u1 + κ∇u2) · ν = 0
on ∂Ω, t > 0, u1(0, x) = u0

1, u2(0, x) = u0
2 in Ω,

(1.3)

where ν denotes the outer unit normal vector to ∂Ω. The function u1(x, t) ∈ [0, 1] represents

the density of individuals with information variable x ∈ Ω at time t � 0, and u2(x, t) is an

influence function which modifies the information state of the individuals and possibly

may lead to a herding (or aggregation) behaviour of individuals. The influence function

acts through the term g(u1)∇u2 in (1.1). The non-negative bounded function g(u1) is

assumed to vanish only at u1 = 0 and u1 = 1, which provides the bound 0 � u1 � 1 if

0 � u1(0, x) � 1. In particular, we assume that the influence becomes weak if the number

of individuals at fixed x ∈ Ω is very low or close to the maximal value u1 = 1, i.e., g(0) = 0

and g(1) = 0, which may enhance herding behaviour. The influence function is assumed

to be modified by diffusive effects also due to the random behaviour of the density of the

individuals with parameter δ > 0, by the non-negative source term f(u1), relaxation with

time with rate α > 0, and diffusion with coefficient κ > 0.

If δ = 0, equations (1.1), (1.2) can be interpreted as a non-linear variant of the

chemotaxis Patlak–Keller–Segel model [33], where the function u2 corresponds to the

concentration of the chemoattractant. The model with non-linear mobility g(u1) was

first analysed by Hillen and Painter [26], even for more general mobilities of the type

u1β(u1)χ(u2). Generally, the mobility g(u1) = u1(1 − u1) models finite-size exclusion and

prevents blow-up phenomena [44], which are known in the original Keller–Segel model.

The convergence to equilibrium was shown in [29]. Such models were also employed to

describe evolution of large human crowds driven by the dynamic field u2 [7].

Systems (1.1) and (1.2) are the two possible models to describe the dynamics of

information herding in a macroscopic setting. There exist other approaches to model

herding behaviour, for instance, using kinetic equations [16] or agent-based models [37],

but the focus in this paper is to understand the influence of the parameters δ and α

on the solution from a mathematical viewpoint, i.e., to investigate the interplay between

cross-diffusion and damping.

Equations (1.1) and (1.2) with δ > 0 can be derived from an interacting “particle”

system modelled by stochastic differential equations, at least in the case g(u1) = const.

(see [22]). One expects that this derivation can be extended to the case of non-constant

g(u1) but we do not discuss this derivation here. The above system with g(u1) = u1 was
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analysed in [24] in the Keller–Segel context. The additional cross-diffusion with δ > 0 in

(1.2) was motivated by the fact that it prevents the blow up of the solutions in two space

dimensions, even for large initial densities and for arbitrarily small values of δ > 0. The

motivation to introduce this term in our model is different since the non-linear mobility

g(u1) allows us to conclude that u1 ∈ [0, 1], thus preventing blow up without taking into

account the cross-diffusion term δΔu1. Our aim is to investigate the solutions to (1.1) and

(1.2) for all values for δ, thus allowing for destabilizing cross-diffusion parameters δ < 0.

One starting point to investigate the dynamics is to consider the functional structure

of the equation. In this context, entropy methods are a possible tool [28]. The entropy

structure can frequently be used to establish the existence of (weak) solutions. Furthermore,

it is helpful for a quantitative analysis of the large-time dynamics of solutions for certain

reaction–diffusion systems; see, e.g., [14]. The method quantifies the decay of a certain

functional with respect to a steady state. An advantage is that the entropy approach

can work globally, even for initial conditions far away from steady states. Moreover,

the entropy structure may be formulated in the variational framework of gradient flows

which allows one to analyse the geodesic convexity of their solutions [?, 36]. However,

this global view indicates already that we may not expect that the approach is valid for

all parameters in general non-linear systems. Indeed, in many situations, global methods

only work for a certain range of parameters occurring in the system. The question is

what happens for parameter values outside the admissible parameter range and near the

validity boundary.

One natural conjecture is that upon variation of a single parameter, there exists a single

critical parameter value associated to a first local bifurcation point δb beyond which a

global functional approach does not extend. In particular, the homogeneous steady state

upon which the entropy is built, could lose stability and new solution branches may appear

in parameter space. Another possibility is that global bifurcation branches in parameter

space are an obstruction. In our context, the generic situation is different from the two

natural conjectures.

In the context of (1.1) and (1.2), the main distinguished parameter we are interested in

is δ. Here, we shall state our results on an informal level. Carrying out the existence of

weak solutions and the global decay to homogeneous steady states:

u∗ = (u∗1 , u
∗
2 )

via an entropy approach, we find the following results:

(M1) Using the entropy approach, one may prove the existence of weak solutions to (1.1)

and (1.2) in certain parameter regimes.

(M2) The global entropy decay to equilibrium does not extend to arbitrary negative δ.

Suppose we fix all other parameters, then there exists a critical δe (to be defined

below) such that global decay occurs only for δ > δe (δ �= 0).

(M3) If we consider the limit α → +∞, then we can extend the global decay up to

δ∗ := −κ/γ < 0, where γ := max
v∈[0,1]

g(v),
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i.e., global exponential decay to a steady state occurs for all δ > δ∗(δ �= 0) if α is

large enough.

(M4) In the limit α → 0, we find that δe → +∞. In particular, the entropy method breaks

down in this limiting regime in the formulation presented here.

We stress that the results for the global decay (M2)–(M4) may not be sharp, in the

sense that one could potentially improve the validity boundary δe. Interestingly, we shall

prove below that (M3) is indeed sharp for certain steady states, i.e., no improvement is

possible in this limit. The proofs of (M1)–(M4) provide a number of technical challenges,

which are discussed in more detail in Sections 2.1 and 3. We also note that the entropy

method definitely does not extend to any negative δ. It is clear that a global decay to

a homogeneous steady state for all initial conditions is impossible if bifurcating non-

homogeneous steady state solutions exist as well. We use analytical local bifurcation

theory for the stationary problem, based upon a modification of Crandall–Rabinowitz

theory [31], to prove the following:

(M5) The bifurcation approach for homogeneous steady states can be carried out as long

as

δ �= δd := −κ/g(u∗1 ).

On a generic open and connected domain, local bifurcations of simple eigenvalues

occur for

δnb = δd +
1

μn

[
f′(u∗1 ) −

α

g(u∗1 )

]
,

where μn are the eigenvalues of the negative Neumann Laplacian.

(M6) If α > 0 is sufficiently large and fixed, δnb < δd < δ∗ and the bifurcation points

accumulate at δd.

(M7) If α > 0 is sufficiently small and fixed, δd < δnb and the bifurcation points again

accumulate at δd.

Although these results are completely consistent with the global decay of the entropy

functional, they do not yield global information about the bifurcation curves. In general,

it is not possible to analytically characterize all global bifurcation for arbitrary non-linear

systems. Therefore, we consider numerical continuation of the non-homogeneous steady-

state solution branches (for spatial dimension d = 1). The continuation is carried out

using AUTO [12]. Our numerical results show the following:

(M8) We regularize the numerical problem using a small parameter ρ to avoid higher

dimensional bifurcation surfaces due to mass conservation.

(M9) The non-homogeneous steady-state bifurcation branches starting at the local bi-

furcation points extend in parameter space and contain multi-bump solutions,

which deform into more localized (herding) states upon changing parameters.

(M10) A second continuation run considering ρ → 0 yields non-trivial solutions for

the original problem. In particular, solutions may have multiple transition layers

(respectively concentration regions) and the ones with very few layers occupy the

largest ranges in δ-parameter space.
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Figure 1. Sketch of the different bifurcation scenarios; for more detailed numerical calculations

see Section 5. Only the main parameter δ is varied, a homogeneous branch is shown in black and

bifurcation points and branches in blue (dots and curves). Only the first two non-trivial branches

are sketched which contain solutions with one transition layer. (a) Case (C1) with α > 0 sufficiently

large; for a suitable choice of u∗ and α → +∞ all three vertical dashed red lines collapse onto one

line. (b) Case (C2) with α > 0 sufficiently small.

Combining all the results we conclude that we have the situations in Figure 1(a) and

(b) for generic fixed parameter values and a generic fixed domain. These two main cases

of interest are:

(C1) α > 0 sufficiently large: In this limit, the entropy validity boundary, the analytical

bifurcation approach and the numerical methods are organized around the singular

limit at δ = δ∗. Indeed, note that

δ∗ = δd, if u = u∗1 maximizes g(u) on [0, 1],

and we show below that δe → δ∗ as α → +∞. The generic picture for a homogeneous

steady state so that u∗1 does not maximize g and α is moderate and fixed is given in

Figure 1(a).

(C2) α > 0 sufficiently small : In this case, the generic picture is shown in Figure 1(b). The

entropy decay only occurs for very large values δ > δe. Interestingly, the approaches

do not seem to collapse onto one singular limit in this case.

We remark that the condition κ �= −δg(u1) does not only occur in the numerical

continuation analysis. It occurs in the context of the entropy method as well as the

analytical bifurcation calculation. It is precisely the condition for the vanishing of the

determinant of the diffusion matrix that prevents pushing existence and decay techniques

based upon global functionals further. The condition also prevents analytical bifurcation

theory to work as the linearized problem does not yield a Fredholm operator. In some

sense, this explains the singular limit as α → +∞ from (C1). Although (C1) is quite

satisfactory from a mathematical perspective, one drawback is that the forward problem

may not be well-posed in a classical sense if δ < δd; of course, the stationary problem is

s still well-defined.

For (C2), we cannot prove sharp global decay via an entropy functional. However, the

first non-trivial branch of locally stable stationary herding solutions can be reached in

forward time via a classical well-posed problem, and (C1) and (C2) always make sense for

adiabatic parameter variation. Although we postpone the detailed mathematical study of
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the limit α → 0 to future work, the observations raise several interesting problems, which

we discuss in the outlook at the end of this paper.

In summary, the main contribution of this work is to study the interplay between three

different techniques available for reaction–diffusion systems with cross-diffusion: entropy

methods, analytical local bifurcation and numerical global bifurcation theory. Further-

more, for each technique, we have to use, improve and apply the previously available

methods to the herding model problem (1.1)–(1.3). Our results lead to clear insight on the

subdivision of parameter space into regimes, where each method is particularly well-suited

to describe the system dynamics. We identify two interesting singular limits and provide a

detailed analysis for the limit of large damping. Furthermore, we compute via numerical

continuation several solutions that are of interest for applications to herding behaviour

using a two-parameter homotopy approach to desingularize the mass conservation. From

an application perspective, we identify herding states with clustering of individuals in one,

or just a few, distinct regions, as the ones occupying the largest parameter ranges. Hence,

we expect applications to be governed by homogeneous stationary and relatively simple

heterogeneous herding states.

There seem to be very few works [1,20] studying the parameter space interplay between

global entropy-structure methods in comparison to local analytical and global numerical

bifurcation approaches. Our work seems to be, to the best of our knowledge, the first

analysis combining and comparing all three methods, and also the first to consider the

global-functional and bifurcations interaction problem for cross-diffusion systems. In fact,

our analysis suggests a general paradigm to improve our understanding of global methods

for non-linear spatio-temporal systems, i.e., one major goal is to determine the parameter

space validity boundaries between different methods.

The paper is organized as follows. In Section 2, we state our main results and

provide an overview of the strategy for the proofs respectively the numerical methods

employed. In particular, the entropy method results are considered in Section 2.1, the

analytical local bifurcation in Section 2.2, and the numerical global bifurcation results

in Section 2.3. The following sections contain the full details for the main results. The

proofs using the entropy method are contained in Section 3, where the weak solution

construction is carried out in Section 3.1 and the global decay is proved in Section 3.2.

Section 4 proves the existence of local bifurcation points to non-trivial solutions upon

decreasing δ. The details for the global numerical continuation results are reported in Sec-

tion 5. We conclude in Section 6 with an outlook, where we discuss several open questions.

Notation: When operating with vectors we view them as column vectors and use (·)� to

denote the transpose. We use the standard notation for Lp-spaces, Wk,p for the Sobolev

space with (weak) derivatives up to and including order k in Lp as well as the shorthand

notation Wk,2 = Hk; see [18] for details. Furthermore, ′ denotes the associated dual space,

when applied to a function space.

2 Main results

We describe the main results of this paper, obtained by either the entropy method or local

analytical and global numerical bifurcation analysis.
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2.1 Entropy method

First, we show the global existence of weak solutions and their large-time decay to

equilibrium. We observe that the diffusion matrix of systems (1.1) and (1.2) are neither

symmetric nor positive definite which complicates the analysis. Local existence of (smooth)

solutions follows from Amann’s results [3] if the system is parabolic in the sense of

Petrovskii, i.e., if the real parts of the eigenvalues of the diffusion matrix are positive. A

sufficient condition for this statement is δ � δd = −κ/γ. The challenge here is to prove

the existence of global (weak) solutions.

The main challenge of (1.1) and (1.2) is that the diffusion matrix of the system is

neither symmetric nor positive definite. The key idea of our analysis, similar as in [24],

is to define a suitable entropy functional. The entropy is a special Lyapunov functional

which provides suitable gradient estimates. Compared to Lyapunov functional techniques

like in [25,43] (used for the case δ = 0), the entropy method provides explicit decay rates

and, in our case, L∞ bounds without the use of a maximum principle. (Note that in the

system at hand, the L∞ bounds can be obtained by the standard maximum principle but

there are systems where this can be achieved by using the entropy method only; see [28].)

For this, we introduce the entropy density

h(u) = h0(u1) +
u2

2

2δ0
, u = (u1, u2)

� ∈ [0, 1] × �,

where h0 is defined as the second anti-derivative of 1/g,

h0(s) :=

∫ s

m

∫ σ

m

1

g(t)
dt dσ, s ∈ (0, 1), (2.1)

where 0 < m < 1 is a fixed number, and

δ0 := δ if δ > 0, δ0 := κ/γ if − κ/γ < δ < 0.

It turns out that the so-called entropy variables w = (w1, w2)
� with w1 = h′0(u1) and

w2 = u2/δ0 make the diffusion matrix positive semi-definite for all δ > δ∗ := −κ/γ, δ �= 0.

We remark that for δ = 0, the method does not work and we do not cover this case. In

the w-variables, we can formulate (1.1) and (1.2) equivalently as

∂tu = div(B(w)∇w) + F(u),

where u = u(w), F(u) = (0, f(u1) − αu2)
� and

B(w) =

(
g(u1) −δ0g(u1)

δg(u1) δ0κ

)
. (2.2)

The invertibility of the mapping w �→ u(w) is guaranteed by Hypothesis (H3) below. We

show in Lemma 4 below that B(w) is positive semi-definite if δ > δ∗, δ �= 0. The global

existence is based on the fact that the entropy

H(u(t)) =

∫
Ω

(
h0(u1(t)) +

u2(t)
2

2δ0

)
dx (2.3)
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is bounded on [0, T ] for any T > 0; note that we write u = u(t) here to emphasize the

time dependence of H . A formal computation, which is made rigorous in Section 3.1,

shows that

dH

dt
= −

∫
Ω

(
|∇u1|2
g(u1)

+

(
δ

δ0
− 1

)
∇u1 · ∇u2 +

κ

δ0
|∇u2|2

)
dx (2.4)

+
1

δ0

∫
Ω

(f(u1) − αu2)u2 dx.

The terms in the first bracket define a positive definite quadratic form if and only if

δ > δ∗. The second integral is bounded since f(u1) is bounded. This shows that for some

ε1(δ) > 0,

dH

dt
� −ε1(δ)

∫
Ω

(
|∇u1|2
g(u1)

+
|∇u2|2
δ2

0

)
dx + c, (2.5)

where the constant c > 0 depends on Ω, f and α. These gradient bounds are essential for

the existence analysis.

Before we state the existence theorem, we make our assumptions precise:

(H1) Ω ⊂ �d with ∂Ω ∈ C2, α > 0, κ > 0, h(u0) ∈ L1(Ω) with u0
1 ∈ (0, 1) a.e.

(H2) f ∈ C0([0, 1]) is non-negative.

(H3) g ∈ C2([0, 1]) is positive on (0, 1), g(0) = g(1) = 0, g(u) � γ for u ∈ [0, 1], where

γ > 0, and
∫ m

0
ds/g(s) =

∫ 1

m
ds/g(s) = +∞ for some 0 < m < 1.

The condition g(u) � γ in [0, 1] in (H3) implies that (u0
1 − m)2/(2γ) � h0(u

0
1) and hence,

h(u0) ∈ L1(Ω) in (H1) yields u0
1 ∈ L2(Ω) and u0

2 ∈ L2(Ω). Hypothesis (H3) ensures that

the function h0 defined in (2.1) is well defined and of class C4 (needed in Lemma 5). Its

derivative h′0 is strictly increasing on (0, 1) with range �, thus being invertible with inverse

(h′0)
−1 : � → (0, 1). For instance, the function g(s) = s(1 − s), s ∈ [0, 1], satisfies (H3) and

h0(s) = s log s+(1− s) log(1− s), where log denotes the natural logarithm. A more general

class of functions fulfilling (H3) is g(s) = sa(1 − s)b with a, b � 1.

Theorem 1 (Global existence) Let assumptions (H1)–(H3) hold and let δ > −κ/γ. Then,

there exists a weak solution to (1.1)–(1.3) satisfying 0 � u1 � 1 in Ω, t > 0 and

u1, u2 ∈ L2
loc(0,∞;H1(Ω)), ∂tu1, ∂tu2 ∈ L2

loc(0,∞;H1(Ω)′).

The initial datum is satisfied in the sense of H1(Ω; �2)′.

We provide a brief overview of the proof. First, we discretize the equations in time

using the implicit Euler scheme, which keeps the entropy structure. Since we are working

in the entropy-variable formulation, we need to regularize the equations in order to

be able to apply the Lax-Milgram lemma for the linearized problem. The existence of

solutions to the non-linear problem then follows from the Leray–Schauder theorem, where

the uniform estimate is a consequence of the entropy inequality (2.5). This estimate also

provides bounds uniform in the approximation parameters. A discrete Aubin lemma in the
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version of [15] provides compactness, which allows us to perform the limit of vanishing

approximation parameters.

Although the proof is similar to the existence proofs in [24, 28], the results of these

papers are not directly applicable since our situation is more general than in [24,28]. The

main novelties of our existence analysis are the new entropy (2.3) and the treatment of

destabilizing cross-diffusion (δ < 0).

For the analysis of the large-time asymptotics, we introduce the constant steady state

u∗ = (u∗1 , u
∗
2 ), where

u∗1 = u0
1, u∗2 =

f(u∗1 )

α
, with u0

j :=
1

m(Ω)

∫
Ω

u0
j (x) dx, j ∈ {1, 2},

and m(Ω) denotes the Lebesgue measure of Ω. Furthermore, we define the relative entropy

H(u|u∗) =

∫
Ω

h(u|u∗) dx

with the entropy density

h(u|u∗) = h0(u1|u∗1 ) +
1

2δ0
(u2 − u∗2 )

2, where h0(u1|u∗1 ) = h0(u1) − h0(u
∗
1 ). (2.6)

Note that u1 conserves mass, i.e., u1(t) := m(Ω)−1
∫
Ω
u1(t) dx is constant in time and

u1(t) = u∗1 for all t > 0. Thus, by Jensen’s inequality, h0(u1|u∗1 ) � 0.

Theorem 2 (Exponential decay) Let assumptions (H1)–(H3) hold, let Ω be convex, let f

be Lipschitz continuous with constant cL > 0, and let

δ0ε1(δ) >
γ

α
c2
LcS , (2.7)

where ε1(δ) > 0 and cS > 0 are defined in Lemmas 4 and 5, respectively. Then, for t > 0,

H(u(t)|u∗) � e−χ(δ)tH(u0|u∗), where χ(δ) := min

{
ε1(δ)

cS
− γc2

L

αδ0
, α

}
> 0. (2.8)

Moreover, it holds for t > 0,

‖u1(t) − u∗1‖L2(Ω) + ‖u2(t) − u∗2‖L2(Ω) � 2
√

max{γ, δ}H(u0|u∗)e−χ(δ)t/2. (2.9)

Recall that δ0 = κ/γ if δ < 0 and δ0 = δ if δ > 0. The values for δ0ε1(δ) are illustrated

in Figure 2. It turns out that (2.7) is fulfilled if either the additional diffusion δ > 0

is sufficiently large or if γ/α is sufficiently small. The latter condition means that the

influence of the drift term g(u1)∇u2 is “small” or that the relaxation −αu2 is “strong”.

The theorem states that in all these cases, the diffusion is sufficiently strong to lead to

exponential decay to equilibrium. For all parameters fixed, except δ, we conclude from

the condition (2.7) that there exists a δe such that exponential decay holds for δ > δe
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δ = δ∗
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1
(δ

)

Figure 2. Illustration of δ0ε1(δ) for κ = 1 and δ = 1
4

(black curves). The corresponding singular

limit δ∗ = −κ/γ = −4 is also marked (grey-dashed vertical line).

(δ �= 0) and we see that

lim
α→+∞

δe = δ∗ = −κ/γ

as a singular limit already discussed above. We remark that the exclusion of the decay

for δ = 0 seems to be purely technical and we conjecture that exponential decay also

holds for δ = 0. On the contrary, extensions to α → 0 are highly non-trivial and we can

currently not cover this degenerate limiting case using entropy methods.

Theorem 2 is proved by differentiating the relative entropy H(u|u∗) with respect to

time, similar as in (2.4). We wish to estimate the gradient terms from below by a multiple

of H(u|u∗). The convex Sobolev inequality from Lemma 5 shows that the L2-norm of

g(u1)
1/2∇u1 is estimated from below by

∫
Ω
h0(u1|u∗1 ) dx, up to a factor. The L2-norm

of ∇u2 is estimated from below by a multiple of
∫
Ω
(u2 − u2)

2 dx, using the Poincaré

inequality. However, the variable u2 generally does not conserve mass and in particular,

u2 �= u∗2 . We exploit instead the relaxation term in (1.2) to achieve the estimate

H(u(t)|u∗) + χ(δ)

∫ t

0

H(u(s)|u∗) ds � 0.

Then Gronwall’s lemma gives the result. The difficulty is the estimate of the source term

f(u1). This problem is overcome by controlling the expression involving f(u1) by taking

into account the contribution coming from the convex Sobolev inequality. However, we

need that δ is sufficiently large, i.e., cross-diffusion has to dominate reaction.

The above arguments hold on a formal level only. A second difficulty is to make these

arguments rigorous since we need the test function h′0(u1) − h′0(u
∗
1 ), which is undefined if

u1 = 0 or u1 = 1 (since h′0(0) = −∞ and h′0(1) = +∞ by Hypothesis (H3)). The idea is

to perform a transformation of variables in terms of so-called entropy variables which

ensure that 0 < u1 < 1 in a time-discrete setting. Passing from the semi-discrete to the

continuous case, the variable u1 may satisfy 0 � u1 � 1 in the limit.
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2.2 Analytical bifurcation analysis

As outlined in the introduction, the first natural conjecture for the failure of the entropy

method is to study bifurcations of the homogeneous steady states u∗ = (u∗1 , u
∗
2 ), which

solve

0 = div(∇u1 − g(u1)∇u2),

0 = div(δ∇u1 + κ∇u2) + f(u1) − αu2,
(2.10)

with the no-flux boundary conditions (1.3). To study the bifurcations of u∗ under variation

of δ, we use the right-hand side of (2.10) to define a bifurcation function and apply

the theory of Crandall–Rabinowitz [10, 31]. The problem is that u∗ is not an isolated

bifurcation branch as a function of δ since fixing any initial mass yields a different

one-dimensional family of homogeneous steady states with

u∗1 =
1

m(Ω)

∫
Ω

u1(x) dx � 0. (2.11)

Hence, the standard approach has to be modified and we follow arguments that can be

found in [9, 39, 45]. It is helpful to introduce some notations first. For p > d, let

X := {u ∈ W 2,p(Ω) : ∇u · ν = 0 on ∂Ω},
Y := Lp(Ω),

Y0 :=
{
u1 ∈ Lp(Ω) :

∫
Ω
u1(x) dx = 0

}
,

(2.12)

where the space X includes standard Neumann boundary conditions. Due to the Sobolev

embedding theorem, we know that W 2,p(Ω) is continuously embedded in C (1+θ)(Ω̄) for

some θ ∈ (0, 1). If Neumann boundary conditions hold, then our original boundary

conditions (1.3) hold as well. However, the converse is only true if we can invert the

diffusion matrix, i.e., as long as δ �= δd = − κ
g(u1)

. In particular, we shall always assume for

the local bifurcation analysis of homogeneous steady states that

δ �= δd = − κ

g(u∗1 )
. (2.13)

This implies that we may not find all possible bifurcations and the single point when the

diffusion matrix vanishes has to be treated separately; we leave this as a goal for future

work.

Next, we define the mapping F : X × X × � −→ Y0 × Y × � by

F(u1, u2, δ) :=

⎛
⎜⎜⎝

div(∇u1 − g(u1)∇u2)

δΔu1 + κΔu2 − αu2 + f(u1)∫
Ω
u1(x) dx− m(Ω)u∗1

⎞
⎟⎟⎠ . (2.14)

The first two terms are the usual bifurcation functions one would naturally define, the

third term is used to isolate the bifurcation branch for the mapping F , i.e., to avoid the

problem with mass conservation, whilst the last two terms take into account the boundary

conditions. We know that there exists a family of homogeneous steady state solutions:

F(u∗1 , u
∗
2 , δ) = 0
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for each δ ∈ �. The goal is to find the parameter values δb such that at δ = δb a

non-trivial (or non-homogeneous) branch of steady states is generated at the bifurcation

point; see also Figure 1. We are going to check that F is C1-smooth and the Fréchet

derivative DuF with respect to u at a point ũ = (ũ1, ũ2) is given by

Aδ(ũ)

(
U1

U2

)
:= DuF(ũ, δ)

(
U1

U2

)
=

⎛
⎜⎜⎝
ΔU1 − div[g′(ũ1)(∇ũ2)U1 + g(ũ1)∇U2]

δΔU1 + κΔU2 − αU2 + f′(ũ1)U1∫
Ω
U1(x) dx

⎞
⎟⎟⎠ , (2.15)

where (U1, U2)
� ∈ X × X and Aδ : X × X → Y0 × Y × �. We already know from

Theorem 2 that for all δ > δe (δ �= 0), the homogeneous steady state u∗ is globally stable.

Clearly, this implies local stability as well and this fact can also be checked by studying

the spectrum of Aδ(u
∗). From the structure of the cross-diffusion equations (1.1) and (1.2),

one does expect destabilization of the homogeneous state upon decreasing δ.

Theorem 3 Let u∗ = (u∗1 , u
∗
2 ) be a homogeneous steady state, consider the generic parameter

case with −κ �= δg(u∗1 ) and suppose all eigenvalues μn of the negative Neumann Laplacian

on Ω are simple. Then, the following hold:

(R1) DuF(ũ, δ) : X × X → Y0 × Y × � is a Fredholm operator with index zero;

(R2) there exists a sequence of bifurcation points δ = δnb such that dim
(
N [DuF(u∗, δnb)]

)
=

1, where N [·] denotes the nullspace;

(R3) there exist simple real eigenvalues λn(δ) of Aδ(u
∗), which satisfy λn(δ

n
b) = 0. Further-

more, λn(δ) crosses the imaginary axis at δnb with non-zero speed, i.e., DδuF(u∗, δnb)e
n
b �

R[Aδnb
], where R[·] denotes the range and span[enb] = N [Aδnb

].

The results from (R1)–(R3) hold quite generically (i.e., for δ �= δd and for generic

domains [41]) and yield, upon applying a standard result by Crandall–Rabinowitz [10,11,

31], the existence of branches of non-trivial solutions:

(u1[s], u2[s], δ[s]) ∈ X × X × �, (u1[0], u2[0], δ[0]) = (u∗1 , u
∗
2 , δ

n
b),

where s ∈ [−s0, s0] parametrizes the steady-state branch locally for some small s0 > 0, and

(u1[s], u2[s], δ[s]) �= (u∗1 , u
∗
2 , δ

n
b) for s ∈ [−s0, 0) ∪ (0, s0]. Slightly more precise information

about the branch can be obtained using the eigenfunction eb and we refer to Section 4

for the details. The main conclusion of the bifurcation theorem is that we know that the

entropy method cannot show the decay to steady state for all parameter regions. However,

to track the non-trivial solution branches in parameter space, it is usually not possible to

compute the global shape of all bifurcation branches analytically. In this case, numerical

bifurcation analysis is extremely helpful.

2.3 Numerical bifurcation analysis

The results from Sections 2.1 and 2.2 do not provide a full exploration of the dynamical

structure of the solutions for the parameter regime δ < δ∗. To understand this regime
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better, we study the bifurcations of (2.10) numerically for

f(s) = s(1 − s), g(s) = s(1 − s), s ∈ Ω = [0, l] ⊂ �, (2.16)

for some interval length l > 0. Note that this yields a boundary-value problem involving

two second-order ordinary differential equations (ODEs):

0 =
d

dx

(
du1

dx
− g(u1)

du2

dx

)
, (2.17)

0 = δ
d2u1

dx2
+ κ

d2u2

dx2
− αu2 + f(u1), (2.18)

with boundary conditions:

0 =
du1

dx
(0) − g(u1(0))

du2

dx
(0), 0 = δ

du1

dx
(0) + κ

du2

dx
(0), (2.19)

0 =
du1

dx
(1) − g(u1(1))

du2

dx
(1), 0 = δ

du1

dx
(1) + κ

du2

dx
(1). (2.20)

An excellent available tool to study the problem (2.17)–(2.20) is the software AUTO [12]

for numerical continuation of boundary-value problems; for other possible options and

extensions, we refer to the discussion in Section 6. AUTO is precisely designed to deal with

boundary-value problems for ODEs of the form

dz

dx
= F(z; p), x ∈ [0, 1], G(w(0), w(1)) = 0, (2.21)

where F : �N × �P → �N , G : �N × �N → �N and p ∈ �P are parameters and

z = z(x) ∈ �N is the unknown vector. It is easy to re-write (2.17)–(2.20) as a system in

the form (2.21) of four first-order ODEs, i.e., we get N = 4, consider the scaling x̃ = x/l

to normalize the interval length to one, then drop the tilde for x again, and let

p1 := δ, p2 := κ, p3 := α, p4 := l,

so P = 4 with primary bifurcation parameter δ. For more background on AUTO and on

numerical continuation, we refer to [21, 30, 32]. In the setup (2.21), one can numerically

continue the family of homogeneous solutions:

(u∗, δ) = (u∗1 , u
∗
2 , δ)

as a function of δ, i.e., to compute u∗ = u∗(·; δ) for δ in some specified parameter

interval. Although this calculation yields bifurcation points for some δ values, it is

not straightforward to use the formulation (2.17) and (2.18) to switch onto the non-

homogeneous solution branches generated at the bifurcation point. The problem is due

to the mass conservation since

u1 = m(Ω)−1

∫
Ω

u1 dx = u∗1 , u∗2 =
f(u∗1 )

α
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is a solution for every positive initial mass u0
1. In particular, the branch of solutions is

not isolated and there exist parametric two-dimensional families of solutions. There are

multiple ways to deal with this problem; see also Section 6. One possibility is to resolve

the degeneracy of the problem via a small parameter 0 < ρ � 1 and consider

0 =
d

dx

(
du1

dx
− g(u1)

du2

dx

)
− ρ(u1 − u1), (2.22)

0 = δ
d2u1

dx2
+ κ

d2u2

dx2
− αu2 + f(u1) (2.23)

for a fixed positive parameter u1 > 0. In particular, upon setting

z1 := u1, z2 := u2, z3 :=
du1

dx
, z4 :=

du2

dx
,

as well as

p5 := u1, p6 := ρ, P = 6,

we end up with a problem of the form (2.21) by transforming the two second-order ODEs

to four first-order ODEs and re-labelling parameters. The vector field for the ODE–BVP

we study numerically is then given by

F(z; p) =

⎛
⎜⎜⎜⎜⎜⎜⎝

p4z3

p4z4

p4[−g(z1)f(z1) + p3g(z1)z2 + p2g
′(z1)z3z4 + p2p6(z1 − p5)]/Dg

p4[−f(z1) + p3z2 − p1g
′(z1)z3z4 − p1(z1 − p5)p6]/Dg

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2.24)

where Dg := p2 + p1g(z1) and the detailed choices for the free parameters are discussed in

Section 5. Observe that the system (2.24) becomes singular if Dg = 0, which is precisely

the condition δ �= −κ/g(u1) already discovered above. Therefore, we would need also for

the numerical analysis a re-formulation (or de-singularization) of the problem to deal

with this singularity and we postpone this problem to future work. As mentioned above,

the primary bifurcation parameter we are going to be interested in is δ = p1. The main

results of the numerical bifurcation analysis, which are presented in full detail in Section

5, are the following:

(B1) As predicted by the analytical results, we find the existence of local bifurcation

points on the branch of homogeneous steady states in the parameter region with

δ < δd for the case of sufficiently large α and for δ > δd for the case of sufficiently

small α. At each bifurcation point on the homogeneous branch, a simple eigenvalue

crosses the imaginary axis.

(B2) The non-trivial (i.e., non-homogeneous) solution branches consist of solutions of

multiple “interfaces” or “layers”; branches originating further away from δd contain

less layers. The branches can acquire sharper layers upon variation of further

parameters which is important for information herding.

https://doi.org/10.1017/S0956792516000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000346


Cross-diffusion herding 331

−4 −3 −2 −1 0 1
0

0.5

1

δ

δ = δ∗

1
(δ

)

Figure 3. Illustration of ε1(δ) for κ = 1 and δ = 1
4

(black curves). The corresponding singular

limit δ∗ = −κ/γ = −4 is also marked (grey-dashed vertical line).

(B3) At the local bifurcation points, we observe the emergence of two symmetric branches

of solutions for the case when the non-linearities are identical quadratic non-

linearities of the form s �→ s(1 − s).

(B4) We also construct non-homogeneous solutions for ρ = 0 by a homotopy continu-

ation step first continuing onto the non-trivial branches in δ and then decreasing ρ

to zero in a second continuation step.

(B5) Furthermore, we also study the shape deformation of non-trivial solutions upon

variation of κ and the domain length l. The numerical results show that the main

interesting structures of the problem have already been obtained by just varying δ

and α.

3 Entropy method – proofs

3.1 Proof of Theorem 1

First, we prove that the new diffusion matrix B(w), defined in (2.2), is positive semi-definite

if δ is not too negative.

Lemma 4 Assume (H3) and δ > −κ/γ, δ �= 0. Then, the matrix B(w) is positive semi-

definite, and there exists ε1(δ) > 0 such that for all z = (z1, z2)
� ∈ �2, w ∈ �2:

z�B(w)z � ε1(δ)(g(u1)z
2
1 + z2

2).

It holds ε1(δ) → 0 as δ ↘ 0 and δ ↘ −κ/γ (see Figure 3).

For later use, we note that the lemma implies that

∇w : B(w)∇w � ε1(δ)

(
|∇u1|2
g(u1)

+
|∇u2|2
δ2

0

)
, (3.1)
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where w = (w1, w2) = (h′0(u1), u2/δ0) are the entropy variables introduced in the introduc-

tion and A : B =
∑

i,j AijBij for two matrices A = (Aij), B = (Bij).

Proof Let z = (z1, z2)
� ∈ �2. Then,

z�B(w)z = g(u1)z
2
1 − (δ0 − δ)g(u1)z1z2 + δ0κz

2
2 .

If δ > 0, then δ0 = δ and the mixed term vanishes, showing the claim for ε1(δ) =

min{1, δκ}. If −κ/γ < δ < 0, we have δ0 = κ/γ. We make the (non-optimal) choice

ε0 = ε0(δ) =
1

2

(
1 − 1

4

(
1 − γδ

κ

)2
)

> 0.

Then, ε0 < 1 − (1 − γδ/κ)2/4, which is equivalent to (κ− γδ)2 < 4(1 − ε0)κ
2. Thus, using

g(u1) � γ (see assumption (H3)),

z�B(w)z = g(u1)z
2
1 −

(
κ

γ
− δ

)
g(u1)z1z2 +

κ2

γ
z2
2

= ε0g(u1)z
2
1 + (1 − ε0)g(u1)

(
z1 −

(κ− γδ)z2

2γ(1 − ε0)

)2

+
1

γ

(
κ2 − (κ− γδ)2

4γ(1 − ε0)
g(u1)

)
z2
2

� ε0g(u1)z
2
1 +

1

γ

(
κ2 − (κ− γδ)2

4(1 − ε0)

)
z2
2 .

In view of the choice of ε0, the bracket on the right-hand side is positive, and the

claim follows after choosing ε1(δ) = min{ε0(δ), [κ2 − (κ − γδ)2/(4(1 − ε0(δ)))]/γ} > 0 for

−κ/γ < δ < 0. �

The proof of Theorem 1 is based on the solution of a time-discrete and regularized

problem.

Step 1 (Solution of an approximate problem) Let T > 0, N ∈ �, τ = T/N, ε > 0 and

n ∈ � such that n > d/2. Then, Hn(Ω; �2) ↪→ L∞(Ω; �2). Let wk−1 ∈ L∞(Ω; �2) be

given. If k = 1, we define w0 = h′(u0). We wish to find wk ∈ Hn(Ω; �2) such that

1

τ

∫
Ω

(u(wk) − u(wk−1)) · φ dx +

∫
Ω

∇φ : B(wk)∇wk dx (3.2)

+ ε

∫
Ω

( ∑
|β|=n

Dβwk · Dβφ + wk · φ
)

dx =

∫
Ω

F(u(wk)) · φ dx

for all φ ∈ Hn(Ω; �2), where β ∈ �n
0 is a multi-index, Dβ is the corresponding partial

derivative, u(w) = (h′)−1(w) for w ∈ �, and we recall that F(u) = (0, f(u1) − αu2)
�. By

definition of h0, we find that u1(w) ∈ (0, 1), thus avoiding any degeneracy at u1 = 0 or

u1 = 1.

The existence of a solution to (3.2) will be shown by a fixed-point argument. In order

to define the fixed-point operator, let y ∈ L∞(Ω; �2) and η ∈ [0, 1] be given. We solve

https://doi.org/10.1017/S0956792516000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000346


Cross-diffusion herding 333

the linear problem

a(w,φ) = G(φ) for all φ ∈ Hn(Ω; �2), (3.3)

where

a(w,φ) =

∫
Ω

∇φ : B(y)∇w dx + ε

∫
Ω

⎛
⎝ ∑

|β|=n

Dβw · Dβφ + w · φ

⎞
⎠ dx,

G(φ) = −η

τ

∫
Ω

(
u(y) − u(wk−1)

)
dx + η

∫
Ω

F(u(y)) · φ dx.

The forms a and G are bounded on Hn(Ω; �2). Moreover, in view of the positive semi-

definiteness of B(y) and the generalized Poincaré inequality (see Chap. II.1.4 in [40]), the

bilinear form a is coercive:

a(w,w) � ε

∫
Ω

( ∑
|β|=n

|Dβw|2 + |w|2
)

dx � εc‖w‖Hn(Ω) for w ∈ Hn(Ω; �2).

By the Lax–Milgram lemma, there exists a unique solution w ∈ Hn(Ω; �2) ↪→ L∞(Ω; �2)

to (3.3). This defines the fixed-point operator S : L∞(Ω; �2) × [0, 1] → L∞(Ω; �2),

S(y, η) = w.

By construction, S(y, 0) = 0 for all y ∈ L∞(Ω; �2), and standard arguments show that

S is continuous and compact, observing that the embedding Hn(Ω; �2) ↪→ L∞(Ω; �2)

is compact. It remains to prove a uniform bound for all fixed points of S(·, η). Let

w ∈ L∞(Ω; �2) be such a fixed point. Then, w solves (3.3) with y replaced by w. With the

test function φ = w, we find that

η

τ

∫
Ω

(u(w) − u(wk−1)) · w dx +

∫
Ω

∇w : B(w)∇w dx (3.4)

+ ε

∫
Ω

( ∑
|β|=n

|Dβw|2 + |w|2
)

dx = η

∫
Ω

F(u(w)) · w dx.

Since h′′0 = 1/g > 0 on (0, 1), h0 is convex. Consequently, h0(x) − h0(y) � h′0(x)(x− y) for

all x, y ∈ [0, 1]. Choosing x = u(w) and y = u(wk−1) and using h′0(u(w)) = w, this gives

η

τ

∫
Ω

(u(w) − u(wk−1)) · w dx �
η

τ

∫
Ω

(
h(u(w)) − h(u(wk−1))

)
dx.

Since u1 = u1(w) ∈ (0, 1) and f is continuous, there exists fM = maxs∈[0,1] f(s) and thus,

∫
Ω

F(u(w)) · w dx �

∫
Ω

(fM − αu2)u2 dx � cf,
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where cf > 0 only depends on fM and α. Hence, (3.4) can be estimated as follows:

η

∫
Ω

h(u(w)) dx + τ

∫
Ω

∇w : B(w)∇w dx + ετ

∫
Ω

( ∑
|β|=n

|Dβw|2 + |w|2
)

dx (3.5)

� ητcf + η

∫
Ω

h(u(wk−1)) dx.

This yields an Hn bound for w uniform in η (but not uniform in τ or ε). The Leray–

Schauder fixed-point theorem shows the existence of a solution w ∈ Hn(Ω; �2) to (3.3)

with y replaced by w and with η = 1, which is a solution to (3.2).

Step 2 (Uniform bounds) Let wk be a solution to (3.2). Set w(τ)(x, t) = wk(x) and

u(τ)(x, t) = u(wk(x)) for x ∈ Ω and t ∈ ((k − 1)τ, kτ], k = 1, . . . , N. At time t = 0, we set

w(τ)(·, 0) = h′0(u
0) and u(τ)(0) = u0. We introduce the shift operator (στu

(τ))(t) = u(wk−1) for

t ∈ ((k − 1)τ, kτ], k = 1, . . . , N. Then, u(τ) solves

1

τ

∫ T

0

∫
Ω

(u(τ) − στu
(τ)) · φ dx dt +

∫ T

0

∫
Ω

∇φ : B(w(τ))∇w(τ) dx dt (3.6)

+ ε

∫ T

0

∫
Ω

( ∑
|β|=n

Dβw(τ) · Dβφ + w(τ) · φ
)

dx dt =

∫ T

0

∫
Ω

F(u(τ)) · φ dx dt

for piecewise constant functions φ : (0, T ) → Hn(Ω; �2). By density, the weak formulation

also holds for all L2(0, T ;Hn(Ω; �2)).

We have shown in Step 1 that the solution w = wk satisfies the entropy estimate (3.5).

By (3.1), we obtain the gradient estimate∫
Ω

∇wk : B(wk)∇wk dx � ε1(δ) min{γ−1, δ−2
0 }

∫
Ω

(|∇uk1|2 + |∇uk2|2) dx,

since g(uk1) � γ. Thus, we obtain from (3.5) the following entropy inequality:∫
Ω

h(uk) dx + c0τ

∫
Ω

(|∇uk1|2 + |∇uk2|2) dx (3.7)

+ ετ

∫
Ω

( ∑
|β|=n

|Dβwk|2 + |wk|2
)

dx � cfτ +

∫
Ω

h(uk−1) dx,

where c0 = ε1(δ) min{γ−1, δ−2
0 }. Adding these inequalities leads to

∫
Ω

h(uk) dx + c0τ

k∑
j=1

∫
Ω

(|∇u
j
1|2 + |∇u

j
2|2) dx

+ ετ

k∑
j=1

∫
Ω

( ∑
|β|=n

|Dβwk|2 + |wk|2
)

dx � cfkτ +

∫
Ω

h(u0) dx.

Since ∫
Ω

h(uk) dx =

∫
Ω

(
h0(u

k
1) +

(uk2)
2

2δ0

)
dx �

1

2δ0

∫
Ω

(uk2)
2 dx,
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the above estimate shows the following uniform bounds:

‖u(τ)
1 ‖L∞(0,T ;L∞(Ω)) + ‖u(τ)

2 ‖L∞(0,T ;L2(Ω)) � c, (3.8)

‖u(τ)
1 ‖L2(0,T ;H1(Ω)) + ‖u(τ)

2 ‖L2(0,T ;H1(Ω)) � c, (3.9)
√
ε‖w(τ)‖L2(0,T ;Hn(Ω)) � c, (3.10)

where c > 0 denotes here and in the following a constant which is independent of ε or τ

(but possibly depending on T ).

In order to derive a uniform estimate for the discrete time derivative, let φ ∈ L2(0, T ;

Hn(Ω)). Then, setting QT = Ω × (0, T ),

1

τ

∣∣∣∣∣
∫ T

τ

∫
Ω

(u(τ)
1 − στu

(τ)
1 )φ dx dt

∣∣∣∣∣ �
(
‖∇u

(τ)
1 ‖L2(QT ) + ‖g(u(τ)

1 )‖L∞(QT )‖∇u
(τ)
2 ‖L2(QT )

)
× ‖∇φ‖L2(QT ) + ε‖w(τ)

1 ‖L2(0,T ;Hn(Ω))‖φ‖L2(0,T ;Hn(Ω))

� c
√
ε‖φ‖L2(0,T ;Hn(Ω)) + c‖φ‖L2(0,T ;H1(Ω)),

1

τ

∣∣∣∣∣
∫ T

τ

∫
Ω

(u(τ)
2 − στu

(τ)
2 )φ dx dt

∣∣∣∣∣ �
(
δ‖∇u

(τ)
1 ‖L2(QT ) + κ‖∇u

(τ)
2 ‖L2(QT )

)
‖∇φ‖L2(QT ) (3.11)

+ ε‖w(τ)
1 ‖L2(0,T ;Hn(Ω))‖φ‖L2(0,T ;Hn(Ω)) +

(
‖f(u(τ)

1 )‖L2(QT ) + α‖u(τ)
2 ‖L2(QT )

)
‖φ‖L2(QT )

� c
√
ε‖φ‖L2(0,T ;Hn(Ω)) + c‖φ‖L2(0,T ;H1(Ω)),

which shows that

τ−1‖u(τ) − στu
(τ)‖L2(0,T ;(Hn(Ω))′) � c. (3.12)

Step 3 (The limit (ε, τ) → 0) The uniform estimates (3.9) and (3.12) allow us to apply

the discrete Aubin lemma in the version of [15], showing that, up to a subsequence which

is not relabelled, as (ε, τ) → 0,

u(τ) → u strongly in L2(0, T ;L2(Ω)) and a.e. in QT , (3.13)

u(τ) ⇀ u weakly in L2(0, T ;H1(Ω)),

τ−1(u(τ) − στu
(τ)) ⇀ ∂tu weakly in L2(0, T ; (Hn(Ω))′),

εw(τ) → 0 strongly in L2(0, T ;Hn(Ω)).

Because of the L∞ bound (3.8) for (u(τ)
1 ), we have

g(u(τ)
1 ) ⇀∗ g(u1), f(u(τ)

1 ) ⇀∗ f(u1) weakly* in L∞(0, T ;L∞(Ω))

(and even strongly in Lp(QT ) for any p < ∞). Thus, we can pass to the limit (ε, τ) → 0 in

(3.6) to obtain a solution to

∫ T

0

〈∂tu1, φ〉 dt +

∫ T

0

∫
Ω

(∇u1 − g(u1)∇u2)φ dx dt = 0,

∫ T

0

〈∂tu2, φ〉 dt +

∫ T

0

∫
Ω

(δ∇u1 + κ∇u2)φ dx dt =

∫ T

0

∫
Ω

(f(u1) − αu2)φ dx dt
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for all φ ∈ L2(0, T ;Hn(Ω)). In fact, performing the limit ε → 0 and then τ → 0, we see

from (3.11) that ∂tu ∈ L2(0, T ; (H1(Ω))′) and hence, the weak formulation also holds for

all φ ∈ L2(0, T ;H1(Ω)). It contains the no-flux boundary conditions (1.3). Moreover, the

initial conditions are satisfied in the sense of (H1(Ω; �2))′; see Step 3 of the proof of

Theorem 2 in [28]. This finishes the proof.

3.2 Proof of Theorem 2

We recall first the following convex Sobolev inequality which is used to estimate the

gradient terms in the entropy inequality.

Lemma 5 Let Ω ⊂ �d (d � 1) be a convex domain and let φ ∈ C4 be a convex function

such that 1/φ′′ is concave. Then, there exists cS > 0 such that for all integrable functions u

with integrable φ(u) and φ′′(u)|∇u|2,

1

m(Ω)

∫
Ω

φ(u) dx− φ

(
1

m(Ω)

∫
Ω

u dx

)
�

cS

m(Ω)

∫
Ω

φ′′(u)|∇u|2 dx,

where m(Ω) denotes the measure of Ω.

Proof The lemma is a consequence of Proposition 7.6.1 in [6] after choosing the probability

measure dμ = dx/m(Ω) on Ω and the differential operator L = Δ−x·∇, which satisfies the

curvature condition CD(1,∞) since Γ2(u) = 1
2
(|∇2u|2 + |∇u|2) � 1

2
|∇u|2 = Γ (u). Another

proof can be found in [4, Section 3.4]. �

Step 1 (Uniform bound for the L1 norm of uk1) The L1 norm of uk1 is not conserved but

we are able to control its L1 norm. For this, let wk ∈ Hn(Ω; �2) be a solution to (3.2)

and set uk1 = u1(w
k). We introduce the notation v = m(Ω)−1

∫
Ω
v(x) dx for any integrable

function v. This implies that u∗1 = u0
1. Employing the test function φ = (1, 0) in (3.2), we

find that uk1 = uk−1
1 − ετwk

1. Solving the recursion gives

uk1 = u0
1 − ετ

k∑
j=1

w
j
1 = u∗1 − ετ

k∑
j=1

w
j
1,

and by (3.10), we conclude that

|u(τ)
1 (t) − u∗1 | � ε‖w(τ)

1 ‖L1(0,t;L1(Ω)) �
√
εc,

where u
(τ)
1 (t) = uk1 for t ∈ ((k − 1)τ, kτ]. Consequently, as (ε, τ) → 0, the convergence (3.13)

shows that u1(t) = u∗1 for t > 0.

Step 2 (Estimate of the relative entropy) We employ the test function:

φ = (h′0(u
k
1) − h′0(u

∗
1 ), (u

k
2 − u∗2 )/δ0) = (wk

1 − h′0(u
∗
1 ), w

k
2 − u∗2/δ0)
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in (3.2) to obtain

0 =
1

τ

∫
Ω

(
(uk1 − uk−1

1 )(h′0(u
k
1) − h′0(u

∗
1 )) +

1

δ0
(uk2 − uk−1

2 )(uk2 − u∗2 )

)
dx

+

∫
Ω

∇wk : B(wk)∇wk dx + ε

∫
Ω

( ∑
|β|=n

|Dβwk|2 + wk
1(w

k
1 − h′0(u

∗
1 )) (3.14)

+ wk
2(w

k
2 − u∗2 )/δ0)

)
dx− 1

δ0

∫
Ω

(f(uk1) − αuk2)(u
k
2 − u∗2 ) dx

=: I1 + · · · + I4.

For the first integral, we employ the convexity of h0:

(uk1 − uk−1
1 )(h′0(u

k
1) − h′0(u

∗
1 )) � (h0(u

k
1) − h0(u

k−1
1 )) − h′0(u

∗
1 )(u

k
1 − uk−1

1 ),

(uk2 − uk−1
2 )(uk2 − u∗2 ) �

1

2

(
(uk2 − u∗2 )

2 − (uk−1
2 − u∗2 )

2
)
,

which yields

I1 �
1

τ

∫
Ω

(h0(u
k
1) − h0(u

k−1
1 )) dx− h′0(u

∗
1 )

τ

∫
Ω

(uk1 − uk−1
1 ) dx

+
1

2δ0τ

∫
Ω

(
(uk2 − u∗2 )

2 − (uk−1
2 − u∗2 )

2
)

dx.

By (3.1), it follows that

I2 � ε1(δ)

∫
Ω

(
|∇uk1|2
g(uk1)

+
|∇uk2|2
δ2

0

)
dx = ε1(δ)

∫
Ω

(
h′′0 (uk1)|∇uk1|2 +

|∇uk2|2
δ2

0

)
dx.

Lemma 5 then shows that

I2 �
ε1(δ)

cS

∫
Ω

(h0(u
k
1) − h0(u

k
1)) dx +

ε1(δ)

δ2
0

∫
Ω

|∇uk2|2 dx.

The third integral in (3.14) is estimated by using Young’s inequality:

I3 �
ε

2

∫
Ω

(
(wk

1)
2 + (wk

2)
2 − h′0(u

∗
1 )

2 − δ−2
0 (u∗2 )

2
)

dx � − ε

2

∫
Ω

(
h′0(u

∗
1 )

2 + δ−2
0 (u∗2 )

2
)

dx.

Summarizing these estimates, we infer from (3.14) that∫
Ω

(h0(u
k
1) − h0(u

k−1
1 )) dx− h′0(u

∗
1 )

∫
Ω

(uk1 − uk−1
1 ) dx

+
1

2δ0

∫
Ω

(
(uk2 − u∗2 )

2 − (uk−1
2 − u∗2 )

2
)

dx

+
ε1(δ)τ

cS

∫
Ω

(h0(u
k
1) − h0(u

k
1)) dx +

ε1(δ)τ

δ2
0

∫
Ω

|∇uk2|2 dx

�
ετ

2

∫
Ω

(
h′0(u

k
1)

2 + δ−2
0 (u∗2 )

2
)

dx +
τ

δ0

∫
Ω

(f(uk1) − αuk2)(u
k
2 − u∗2 ) dx.
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Adding these equations over k and using the notation as in the proof of Theorem 1 for

u
(τ)
i , we obtain

∫
Ω

(h0(u
(τ)
1 (t)) − h0(u

0
1)) dx− h′0(u

∗
1 )

∫
Ω

(u(τ)
1 (t) − u0

1) dx

+
1

2δ0

∫
Ω

(
(u(τ)

2 (t) − u∗2 )
2 − (u0

2 − u∗2 )
2
)

dx (3.15)

+
ε1(δ)

cS

∫ t

0

∫
Ω

(
h0(u

(τ)
1 ) − h0(u

(τ)
1 )

)
dx ds +

ε1(δ)

δ2
0

∫ t

0

∫
Ω

|∇u
(τ)
2 |2 dx ds

�
ε

2

∫ t

0

∫
Ω

(
h′0(u

(τ)
1 )2 + δ−2

0 (u∗2 )
2
)

dx ds +
1

δ0

∫ t

0

∫
Ω

(f(u(τ)
1 ) − αu

(τ)
2 )(u(τ)

2 − u∗2 ) dx ds.

Step 3 (The limit (ε, τ) → 0) Because of the L∞ bound for (u(τ)
1 ), it follows that, for a

subsequence, u(τ)
1 ⇀∗ u1 weakly* in L∞(0, T ;L1(Ω)) and thus, as (ε, τ) → 0,

∫
Ω

(u(τ)
1 (t) − u0

1) dx =

∫
Ω

(u(τ)
1 (t) − u∗1 ) dx →

∫
Ω

(u1(t) − u∗1 ) dx = 0,

since u1(t) = u∗1 for t > 0, by Step 1. The weak convergence of (∇u
(τ)
2 ) to ∇u2 in

L2(0, T ;L2(Ω)) implies that

lim inf
τ→0

∫ t

0

∫
Ω

|∇u
(τ)
2 |2 dx ds �

∫ t

0

∫
Ω

|∇u2|2 dx ds.

Furthermore, by the strong convergence u
(τ)
1 → u1 in L2(0, T ;L2(Ω)), up to a subsequence,

u
(τ)
1 → u1 a.e. in QT = Ω × (0, T ) and h0(u

(τ)
1 ) → h0(u1) a.e. in QT . Then, the L∞ bound of

(u(τ)
1 ) implies that h0(u

(τ)
1 ) → h0(u1) strongly in Lp(0, T ;Lp(Ω)) for any p < ∞. Furthermore,

we know that u(τ)
2 → u2 strongly in L2(0, T ;L2(Ω)), see (3.13). Therefore, the limit (ε, τ) → 0

in (3.15) leads to

∫
Ω

(h0(u1(t)) − h0(u
0
1)) dx +

1

2δ0

∫
Ω

(
(u2(t) − u∗2 )

2 − (u0
2 − u∗2 )

2
)

dx

+
ε1(δ)

cS

∫ t

0

∫
Ω

(
h0(u1) − h0(u

∗
1 )

)
dx ds +

ε1(δ)

δ2
0

∫ t

0

∫
Ω

|∇u2|2 dx ds

�
1

δ0

∫ t

0

∫
Ω

(f(u1) − αu2)(u2 − u∗2 ) dx ds.

Now, we estimate the right-hand side. Because of f(u∗1 ) = αu∗2 and the Lipschitz

continuity of f with Lipschitz constant cL > 0, we infer that (recall (2.6) for the definition
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of h0(u1|u∗1 ))∫
Ω

(
h0(u1(t)|u∗1 ) dx− h0(u1(0)|u∗1 )

)
dx +

1

2δ0

∫
Ω

(
(u2(t) − u∗2 )

2 − (u2(0) − u∗2 )
2
)

dx

+
ε1(δ)

cS

∫ t

0

∫
Ω

h0(u1(s)|u∗1 ) dx ds

�
1

δ0

∫ t

0

∫
Ω

(f(u1) − f(u∗1 ))(u2 − u∗2 ) dx ds− α

δ0

∫ t

0

∫
Ω

(u2 − u∗2 )
2 dx ds

�
1

2δ0α

∫ t

0

∫
Ω

(f(u1) − f(u∗1 ))
2 dx ds− α

2δ0

∫ t

0

∫
Ω

(u2 − u∗2 )
2 dx ds

�
c2
L

2αδ0

∫ t

0

∫
Ω

(u1 − u∗1 )
2 dx ds− α

2δ0

∫ t

0

∫
Ω

(u2 − u∗2 )
2 dx ds.

Since u1 = u∗1 , a Taylor expansion and the assumption 1/h′′0 (u1) = g(u1) � γ give

∫ t

0

∫
Ω

h0(u1|u∗1 ) dx ds =

∫ t

0

∫
Ω

(h0(u1) − h0(u
∗
1 ) dx ds

=

∫ t

0

∫
Ω

(
h′0(u

∗
1 )(u1 − u∗1 ) +

1

2
h′′0 (ξ)(u1 − u∗1 )

2

)
dx ds (3.16)

�
1

2γ

∫ t

0

∫
Ω

(u1 − u∗1 )
2 dx ds,

where ξ is a number between u1 and u∗1 . We conclude that

∫
Ω

h0(u1(t)|u∗1 ) dx +
1

2δ0

∫
Ω

(u2(t) − u∗2 )
2 dx +

(
ε1(δ)

cS
− γc2

L

αδ0

)∫ t

0

∫
Ω

h0(u1(s)|u∗1 ) dx ds

+
α

2δ0

∫ t

0

∫
Ω

(u2 − u∗2 )
2 dx ds �

∫
Ω

h0(u1(0)|u∗1 ) dx +
1

2δ0

∫
Ω

(u2(0) − u∗2 )
2 dx,

and recalling the notation h(u|U) = h0(u1|u∗1 ) + (u2 − u∗2 )
2/(2δ0),

∫
Ω

h(u(t)|U) dx + min

{
ε1(δ)

cS
− γc2

L

αδ0
, α

} ∫ t

0

h(u|U) ds �

∫
Ω

h(u(0)|U) dx.

Then, Gronwall’s lemma implies that

H(u(t)|U) =

∫
Ω

h(u(t)|U) dx � e−χ(δ)tH(u(0)|U), t � 0,

where χ(δ) is defined in (2.8). Finally, taking into account (3.16), we estimate

h(u|U) �
1

2γ
(u1 − u∗1 )

2 +
1

2δ
(u2 − u∗2 )

2,

which shows (2.9) and finishes the proof.
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4 Analytical bifurcation analysis – proofs

In this section, we are going to prove Theorem 3. The proofs follow closely ideas presented

for similar systems in [9, 39, 45], which are fundamentally based upon an application of

results of Crandall and Rabinowitz [10, 11]; see also [31] for a detailed exposition of the

these results. Recall that we defined the spaces X , Y , Y0 in (2.12) and the mapping

F : X × X × � → Y0 × Y × �

in (2.14). A first step is to investigate the Fredholm and differentiability properties of F .

Lemma 6 The mapping F satisfies the following properties:

(L1) F(u∗, δ) = 0 for all δ ∈ �.

(L2) F(u1, u2, δ) = 0 implies that (u1, u2) solves (2.10).

(L3) F is C1-smooth with Fréchet derivative DuF given by (2.15).

(L4) If ũ(x) ≡ (ũ1, ũ2) is a homogeneous state and δg(ũ1) �= −κ, then DuF(ũ1, ũ2, δ) is a

Fredholm operator with index zero.

Proof For (L1) recall that u∗ = (u∗1 , u
∗
2 ) was the notation for a homogeneous steady state.

Regarding (L2), observe that the first two components of F are just the steady-state

equations (2.10). Statement (L3) follows from a direct calculation. The problem is to show

(L4). We follow the argument given in [9, 45] and consider

DuF(ũ1, ũ2, δ)(U1, U2)
� = B1(U1, U2)

� + B2(U1, U2)
�, (4.1)

where B1 : X × X → Y0 × Y × � is defined by

B1

(
U1

U2

)
=

⎛
⎜⎜⎝
ΔU1 − div[g′(ũ1)(∇ũ2)U1 + g(ũ1)∇U2]

δΔU1 + κΔU2 − αU2 + f′(ũ1)U1

0

⎞
⎟⎟⎠ , (4.2)

and the mapping B2 : X × X → Y0 × Y × � is given by

B2

(
U1

U2

)
=

⎛
⎜⎜⎝

0

0∫
Ω
U1(x) dx

⎞
⎟⎟⎠ . (4.3)

We observe easily that B2 : X × X → Y0 × Y × � is linear and compact. We need an

ellipticity condition and B1 should satisfy Agmon’s condition [39]. We have ellipticity for

B1 (in the sense of Petrovskii [27, 39]) if

det

[(
1 −g(ũ1)

δ κ

)
ξ · ξ

]
�= 0, (4.4)
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for all ξ = (ξ1, ξ2, . . . , ξd) ∈ �d\{0}. Computing the determinant this condition just yields

0 �= (ξ2
1 + · · · + ξ2

d)(κ + δg(ũ1)) if and only if − κ �= δg(ũ1)

and ellipticity in the sense of Petrovskii follows. Moreover, we need to verify Agmon’s

condition at a fixed angle θ ∈ [−π, π). Using [39, Remark 2.5] with θ = π/2, one verifies

computing a shifted determinant similar to the previously computed one in (4.4) that

Agmon’s condition holds for all values of κ. In particular, the ellipticity condition gives a

restriction on the parameters for the bifurcation analysis and not Agmon’s condition. By

applying [39, Thm. 3.3], we infer that

B1 : X × X → Y × Y × {0}

is a Fredholm operator of index zero. Hence, Y0 ×Y ×{0} = R(B1)⊕W , where R(B1) is

the range of B1 and W is a closed subspace of Y ×Y ×� with dimW = dimN (B1) < ∞.

Consequently, since the first component of B1 is in Y0, we have

Y0 × Y × � = R(B1) ⊕W0 ⊕ span{(0, 0, 1)�},

where W0 = {(H1, H2, H3) ∈ W |
∫ L

0
H1(x)dx = 0} and W = W0 + span{(1, 0, 0)}. Then,

dimW = dimW0 + 1. Thus, the co-dimension of R(B1) in Y0 × Y × � is equal to

dimW = dimN (B1). Hence, B1 : X × X → Y0 × Y × � is a Fredholm operator of index

zero for δg(ũ1) �= −κ. Therefore, DuF is a Fredholm operator of index zero as B2 is a

compact perturbation. Hence, the result (R1) in Theorem 3 follows. �

It seems difficult to improve the result to include the degenerate cases when κ = −δg(u∗1 )

as this would require to deal with bifurcation problems with non-elliptic operators. The

next goal is to apply [39, Theorem 4.3]. To do so, we need some additional properties

of F . In particular, in order that bifurcations occur from the homogeneous steady state

u∗ = (u∗1 , u
∗
2 ) we need that the implicit function theorem fails. For the following lemma,

we need to be in the case where each eigenvalue μn of the negative Neumann Laplacian

on Ω eigenvalue is simple. For the one-dimensional case, this always holds, whilst for

generic d-dimensional domains the eigenvalues are also simple [41].

Lemma 7 Suppose the eigenvalues of the negative Neumann Laplacian on Ω ⊂ �d are

simple and δg(u∗1 ) �= −κ. Then, there exist bifurcation points at δ = δnb such that the map

F satisfies the following properties:

(L5) the null space N [DuF(u∗, δnb)] is one-dimensional, i.e., span[enb] = N [DuF(u∗, δnb)];

(L6) the non-degenerate crossing condition holds, i.e.,

DδuF(u∗, δnb)e
n
b � R[DuF(u∗, δnb)]. (4.5)
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Proof We start by proving (L5). By (4.2), the null space of DuF(u∗, δ) consists of solutions

for

ΔU1 − g(u∗1 )ΔU2 = 0,

δΔU1 + κΔU2 − αU2 + f′(u∗1 )U1 = 0,∫
Ω

U1(x) dx = 0,

(4.6)

with no-flux conditions on ∂Ω. For any pair u = (u1, u2) ∈ X × X , we can expand u1 and

u2 as a series of mutually orthogonal eigenfunctions of the following system:

{
−Δu = μu in Ω,

∂u
∂ν

= 0 on ∂Ω
(4.7)

multiplied by constants vectors. Let μn > 0 be a simple eigenvalue of (4.7) and eμn is the

eigenfunction corresponding to μn normalized by
∫
Ω
(eμn)

2 dx = 1. Then, we define

Ū1 :=

∫
Ω

u1(x)eμn(x) dx, Ū2 :=

∫
Ω

u2(x)eμn(x) dx.

We obtain ∫
Ω

eμnΔu1 dx = −μn

∫
Ω

u1eμn dx = −μnŪ1,∫
Ω

eμnΔu2 dx = −μn

∫
Ω

u2eμn dx = −μnŪ2.

(4.8)

Now, by multiplying the first two equations of (4.6) by eμn and integrating over Ω, using

the boundary condition and (4.8), we arrive at the following algebraic system for Ū1 and

Ū2:

Ū1 − g(u∗1 )Ū2 = 0,

(κμn + α)Ū2 − (f′(u∗1 ) − δμn)Ū1 = 0.
(4.9)

If δ > f′(u∗1 )/μn, then the system (4.9) has only the zero solution. In this case, we would

have N [DuF(u∗, δ)] = 0 for all δ. In order to have existence of a non-homogeneous

solution, we necessarily require δ � f′(u∗1 )/μn. In this case, the system (4.9) has a non-zero

solution if and only if

δ =: δnb = − κ

g(u∗1 )
+

1

μn

[
f′(u∗1 ) −

α

g(u∗1 )

]
= δd +

1

μn

[
f′(u∗1 ) −

α

g(u∗1 )

]
. (4.10)

Taking δ = δnb, we can rewrite the first two equations of (4.6) as the system:

(
ΔU1

ΔU2

)
=

1

κ + δnbg(u
∗
1 )

(
−g(u∗1 )f

′(u∗1 ) g(u∗1 )α

−f′(u∗1 ) α

) (
U1

U2

)
=: A

(
U1

U2

)
. (4.11)

Using (4.10) and computing the determinant and the trace of the matrix A, we find that

its eigenvalues are λ1 = 0 and λ2 = −μn, where μn > 0 is a single eigenvalue of the

problem (4.7). Let T be the matrix whose columns are the eigenvectors corresponding to
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λ1 and λ2, respectively:

T =

(
α g(u∗1 )

f′(u∗1 ) 1

)
.

We have

T−1AT =

(
0 0

0 μn

)
.

Then, by considering the transformation

(
p

q

)
= T−1

(
U1

U2

)
, (4.12)

it follows that the first two equations of (4.6) can be uncoupled and we find that

Δp = 0 in Ω,

Δq = μnq in Ω,

α

∫
Ω

p(x) dx + g(u∗1 )

∫
Ω

q(x) dx = 0,

∇p · ν = ∇q · ν = 0 on ∂Ω,

(4.13)

where the genericity condition −κ �= δnbg(u
∗
1 ) is used to obtain zero Neumann boundary

conditions. Recall that μn is a simple eigenvalue of (4.7) with eigenfunction eμn . Observe

that
∫
Ω
eμn (x) dx = 0, which implies that p = 0 and q = Ceμn for some constant C are the

solutions of (4.13). Therefore, it follows that

(U1, U2)
� = Ceμn(g(u

∗
1 ), 1)�. (4.14)

This shows that N [DuF(u∗, δnb)] = span[eμn(g(u
∗
1 ), 1)�] =: span[enb]. In particular, the

nullspace is one-dimensional and the result (L5) follows.

To prove (L6), we argue by contradiction and suppose that (4.5) is not satisfied. Hence,

by computing DδuF(u∗, δnb), it follows there exists (p, q) such that

Δp− g(u∗1 )Δq = μng(u
∗
1 )eμn in Ω,

κΔq + δnbΔp− αq + f′(u∗1 )p = 0 in Ω,∫
Ω

p(x) dx = 0,

∇p · ν = ∇q · ν = 0 on ∂Ω.

(4.15)

As in the first part of the proof, it is helpful to consider a suitable projection and we

define P and Q as

P :=

∫
Ω

p(x)enb(x) dx, Q :=

∫
Ω

q(x)enb(x) dx.
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Multiplying the first two equations (4.15) by enb and integrating over Ω and using boundary

conditions, one obtains an algebraic system for P and Q given by

{
P − g(u∗1 )Q = −g(u∗1 ),

(f′(u∗1 ) − δnbμn)P − (κμn + α)Q = 0.
(4.16)

By the definition of δnb, the determinant of the matrix of coefficients on the left-hand

side of the system (4.16) is zero. This implies that the inhomogeneous linear system

has no solution. Hence, the system (4.15) has no solutions and the result (4.5) in (L6)

follows. �

Note that (L5) and (L6) are just the results (R2) and (R3) claimed in Theorem 3. By

applying [39, Theorem 4.3], we obtain the existence of a non-trivial branch of solutions.

Therefore, the local dynamics of the problem already shows that the entropy method

cannot provide exponential decay to a distinguished steady state for all parameter values.

5 Numerical bifurcation analysis – continuation results

In Section 2.1, we proved the existence of a weak solution for δ > δ∗ = −κ/δ as well

as global convergence to a steady state for δ > δe (δ �= 0); in addition, δe converges to

δ∗ = −κ/γ as α → +∞ and δe converges to +∞ as α → 0. In Section 2.2, we showed the

existence of non-trivial solutions for δ = δnb, where δnb is defined in (4.10) and in particular

δnb could be bigger or smaller than δd = κ/g(u∗1 ) depending on α.

The numerical continuation results presented in this section aim to augment and extend

these results. To simplify the comparison to numerical results, we focus on the case

κ = 1, g(s) = s(1 − s), f(s) = s(1 − s),

which yields the condition δ > δ∗ = −4 for the validity of the entropy method for

α → +∞. As already mentioned, the values for δnb depend on α, so we are going to

study a case with α sufficiently large (Section 5.2) and the case with α sufficiently small

(Section 5.3). Below we are going to define the meaning of sufficiently large and sufficiently

small. First, we want to compare the values that we obtain for δnb with the numerical

results. The analytical problem did not include the small parameter ρ and the introduction

of this term has the effect of shifting the bifurcation points.

5.1 Comparison between the values of δnb

The formula for δnb given in the equation (4.10) does not consider the additional term ρ.

Introducing this term, we get a new formula which reads

δnb =
f′(u∗1 )

μ
− (κμ + α)(μ + ρ)

g(u∗1 )μ
2

= δd +
1

μ

[
f′(u∗1 ) −

κρ + α

g(u∗1 )
− αρ

g(u∗1 )μ

]
. (5.1)

We observe that the formulas (4.10) and (5.1), due to the presence of the term ρ, will not

give the same values δnb but the two equations correspond if we take ρ = 0. We fix the
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Table 1. Comparison between the analytical and numerical bifurcation values. The last two

rows compare the numerical and analytical solutions with 0 < ρ � 1

n 1 2 3 4 5 6 7 8 9

(4.10) −45.38 −14.45 −8.73 −6.72 −5.80 −5.29 −4.99 −4.79 −4.66

(5.1) −121.89 −20.81 −10.50 −7.51 −6.24 −5.58 −5.19 −4.94 −4.77

AUTO −121.89 −20.81 −10.50 −7.51 −6.24 −5.58 −5.19 −4.94 −4.77

following parameter values:

(κ, α, l, ū1, ρ) = (1, 0.2, 20, 0.594, 0.05).

We are interested in computing the values of δnb and to observe how the parameter ρ

shifts the bifurcation branches.

In Table 1, we reported the bifurcation points δnb for n ∈ {1, 2, . . . , 9} computed with the

two formulas (4.10) and (5.1) in comparison to the numerical continuation results using

AUTO. The values detected using AUTO precisely correspond to the values computed with

the formula (5.1) as expected whilst the points are shifted in comparison to the values

for ρ = 0.

5.2 Case 1: α sufficiently large

Recall the formula for δnb given in (4.10):

δnb = δd +
1

μn

[
f′(u∗1 ) −

α

g(u∗1 )

]
.

We observe that if α > f′(u∗1 )g(u
∗
1 ), then δnb < δd and the branches will approach the limit

value δd for n → ∞. Since we are using (5.1), the condition on α is

α > μn

[f′(u∗1 )g(u∗1 ) − κρ

ρ + μn

]

and, in the case of an interval, we can compute the eigenvalues μ. So, α sufficiently large

means

α >
(nπ

l

)2[f′(u∗1 )g(u∗1 ) − κρ

ρ + ( nπ
l
)2

]
. (5.2)

Figure 4 shows a continuation calculation for fixed parameters

(κ, α, l, ū1, ρ) = (p2, p3, p4, p5, p6) = (1, 0.2, 12, 0.594, 0.05)

using δ as the primary bifurcation parameter. We observe that the condition on α is

satisfied since the right-hand side of (5.2) is negative for all n ∈ � and α = 0.2. The steady

state we start the continuation with is given by

(u∗1 , u
∗
2 ) = (ū1, f(ū1)/α).
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Figure 4. Continuation calculation for the system (2.21) with parameter values (κ, α, l, ū1, ρ) =

(p2, p3, p4, p5, p6) = (1, 0.2, 20, 0.594, 0.05) and primary bifurcation parameter δ. (a) Bifurcation dia-

gram in (δ, ‖z‖L2 )-space showing the parameter on the horizontal axis and the solution norm on

the vertical axis. Some of the detected bifurcation points are marked as circles (magenta). The

last branch point (blue circle) is not a true bifurcation point but results from the degeneracy

δ = −κ/g(u∗1 ) =: δd. At the other branches points (magenta, filled circles), non-homogeneous

solution branches (blue, cyan, magenta, green...) bifurcate via single eigenvalue crossing. The value

δ∗ = −κ/γ = −4 is marked by a vertical grey-dashed line. (b) Solutions are plotted for (x, u1 = u1(x))

at certain points on the non-homogeneous branches; the solutions are marked in (a) using crosses.

We begin the continuation at δ = −25 and we find only one bifurcation point when δ

is decreasing, i.e., for δ < −25. This result is expected since δ1
b = −121.889 is the value

corresponding to the first eigenvalue. Moreover, we do not detect any bifurcations for

δ > −4 = δ∗. The interesting results in the bifurcation calculation in Figure 4 occur when

we increase the primary bifurcation parameter δ. In this case, several branch points are

detected, in particular the closer we are to the value δd, the more bifurcation points are

found. In Figure 4, we have shown the first six branch points detected obtained upon

increasing δ. The point detected at δ = −20.8116 corresponds to the second non-trivial

bifurcation branch. There are more and more points as we get closer to δd. The last point

detected (in blue) is not a bifurcation point but corresponds to the degeneracy at

κ/g(u∗1 ) = −1/(0.594(1 − 0.594)) ≈ −4.1466.

The remaining detected branch points in Figure 4 are true bifurcation points. This

numerical result is in accordance with the analytical results on the existence of bifurcations

in Theorem 3. In fact, one can carry out the same calculation as in Section 4. At

each bifurcation point, a simple eigenvalue crosses the imaginary axis. One can use
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Figure 5. Continuation calculation for the system (2.21) as in Figure 4 with a focus on the

second bifurcation point (filled circle, magenta). One can show that by using two different local

branching directions that two different non-homogeneous solution branches (red) bifurcate via

single eigenvalue crossing but the two branches contain solutions with identical L2-norm for the

same parameter value. This is a result of a symmetry in the problem. (b) Three different solutions

plotted in (x, u1 = u1(x))-space at the parameter value δ = −21.8819. The three solutions are marked

in (a) using crosses.

the branch switching algorithm implemented in AUTO to compute the non-homogeneous

families of solutions as shown for four points in Figure 4(a). In Figure 4(b), we show a

representative solution u1 = u1(x) on each of the four solution families. The solutions are

non-homogeneous steady states and have interface-like behaviour in the spatial variable.

Each family has a characteristic number of these interfaces. There are families with

even more interfaces than the one shown in Figure 4(b4), which can be found upon

increasing δ even further; we are not interested in these highly oscillatory solutions

here.

Another observation regarding the continuation run in Figure 4 is reported in more

detail in Figure 5 with a focus on the second bifurcation point. It is shown that there

are actually two different branches bifurcating at the same point with families of non-

homogeneous solutions that are symmetric. In particular, one non-trivial solution branch

can be transformed into the other by considering u �→ 1− u; as an illustration we refer to

three representative numerical solutions on the three branches originating at the second

bifurcation point as shown in Figure 5(b).

5.3 Case 2: α sufficiently small

As specified in (M7) when α < f′(u∗1 )g(u
∗
1 ) then δnb > δd and this means that the branches

will approach the limit value δd from the right. As pointed out in 5.1, the condition on α
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Figure 6. Continuation calculation for the system (2.21) with parameter values (κ, α, l, ū1, ρ) =

(p2, p3, p4, p5, p6) = (1, 0.0001, 50, 0.211325, 0.05) and primary bifurcation parameter δ. (a) Bifurcation

diagram in (δ, ‖z‖L2 )-space showing the parameter on the horizontal axis and the solution norm

on the vertical axis. The detected bifurcation points are marked as circles (magenta). At the three

branch points (magenta, filled circles), non-homogeneous solution branches (blue, cyan, magenta)

corresponding to δ3
b , δ

4
b , δ

5
b bifurcate via single eigenvalue crossing. The value δ∗ = −κ/γ = −4 is

marked by a vertical grey-dashed line. (b) Solutions are plotted for (x, u1 = u1(x)) at certain points

on the non-homogeneous branches; the solutions are marked in (a) using crosses.

is more complicated since our model contains ρ. The condition on α becomes

0 < α < μn

[f′(u∗1 )g(u∗1 ) − κρ

ρ + μn

]
,

i.e., we must choose an α which satisfied the inequality for each single μn. We fix

(κ, α, l, ū1, ρ) = (1, 0.001, 50, 0.211325, 0.05)

for the numerical continuation in this section.

With these values, the condition on α is given by 0 < α < 0.0033827 which is satisfied.

We also find that with our choices

δd < δnb < δ∗ < δ5
b < δ4

b < δ3
b < δ2

b < δ1
b < δe, n � 6,

i.e., there are some bifurcation points which are bigger than δ∗ and some which are

smaller but all of them are bigger than δd. We begin the continuation at δ = 3 and we
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Figure 7. Continuation calculation for the system (2.21) with parameter values (κ, α, l, ū1, ρ) =

(p2, p3, p4, p5, p6) = (1, 0.0001, 50, 0.211325, 0.05) and primary bifurcation parameter δ. (a) Bifurcation

diagram in (δ, ‖z‖L2 )-space showing the parameter on the horizontal axis and the solution norm

on the vertical axis. Some of the detected bifurcation points are marked as circles (magenta). The

last branch point (blue circle) is not a true bifurcation point but results from the degeneracy

δ = −κ/g(u∗1 ) =: δd. At the other branch points (magenta, filled circles), non-homogeneous solution

branches (green, blue, cyan) bifurcate via single eigenvalue crossing. The value δ∗ = −κ/γ = −4 is

marked by a vertical grey dashed line. (b) Solutions are plotted for (x, u1 = u1(x)) at certain points

on the non-homogeneous branches; the solutions are marked in (a) using crosses.

detect only two more branches when we increase δ at δ = 43.4851 and δ = 9.98041 which

correspond to δ1
b and δ2

b. We focus on the branches for n ∈ {1, 2, 3, 4, 5} such that δnb > δ∗.

This case is represented in Figure 6.

Numerically, we observe that all the branches stop when they reach the critical value

δ∗. Next, we consider n � 6 such that δd < δnb < δ∗ as reported in Figure 7. In this

case, there are two critical values: δ∗ = −4 (dashed line) and δd = −6 (blue circle). The

branches detected for a δ close to δ∗ have the same direction as the branches detected

for δ > δ∗; but starting from a certain n, in this case n = 8, we notice that the branches

change the direction. Probably this behaviour is due to the fact that the branches cannot

cross the value δ = δd. We do no detect any branch for δ < δd.

In the range between δd and δ∗, the branches do not seem to overlap. Numerically,

one observes that the branches get shorter and shorter due to the numerical continuation

breaking down as the branches approach δd. Looking at the shape of the solutions in

the different branches, we can observe that they have more and more interfaces as we

approach the limiting value δd. Moreover, the solutions inside a fixed branch get sharper

and sharper peaks along the branch (see for example the cyan branch).
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Figure 8. Continuation calculation for the system (2.21) starting with the same basic parameter

values as in Figure 4 but with ρ = 0.001. We stop the continuation at the solution points for a

certain δ (as done in Figure 4(a)) and change from δ as a primary continuation parameter to ρ

as a primary parameter with the goal to decrease the parameter to ρ = 0. The values for δ are

δ = −16 for the red branch, δ = −9.4 for the green branch and δ = −7 for the blue one. (a1)–(a3)

Bifurcation diagrams in (ρ, ‖z‖L2 )-space. The starting point for the continuation is at the right

boundary where ρ = 0.001 and then ρ is decreased. (b1)–(b3) Solutions obtained on the bifurcation

branches above at the point ρ = 0 (points are marked with squares in (a1)–(a3)). (c1)–(c3) Solutions

obtained on the bifurcation branches for the initial system with ρ = 0.001. We can observe that

also for ρ = 0 the solutions have a non-trivial herding-type profile.

5.4 Continuation in ρ

The next question is if we can find non-homogeneous steady states also for the original

problem with ρ = 0. This can be achieved by using a homotopy-continuation idea.

First, we continue the problem in δ and compute the non-homogeneous solution

branches. Then, we pick a steady state on the non-homogeneous branch and switch to

continuation in ρ whilst keeping δ fixed. The results of this strategy are shown in Figure 8

(for α = 0.2) and in Figure 9 (for α = 0.001). For the first three solutions shown in

Figure 4(b), this strategy works if we start from a very small ρ. Figure 8(c) shows the

solution in the branch for a ρ �= 0: We notice that the solutions for the case ρ = 0 keep

the non-constant profile as for ρ �= 0 yielding relevant herding solutions for applications.

In the case with α sufficiently small, the strategy works better and we indeed find

non-homogeneous steady states for ρ = 0 as shown in Figure 9(b). Moreover, we can also

obtain herding solutions. We use the starting parameter values:

(κ, α, l, ū1, ρ) = (1, 0.001, 50, 0.211325, 0.05).
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Figure 9. Continuation calculation for the system (2.21) starting with the same parameter value

and as in Figure 6. We stop the continuation at δ = −9 (as done in Figure 6(a)) and change from

δ as a primary continuation parameter to ρ as a primary parameter with the goal to decrease

the parameter to ρ = 0. (a) Bifurcation diagram in (ρ, ‖z‖L2 )-space. The starting point for the

continuation is at the right boundary where ρ = 0.05 and then ρ is decreased. (b) Solution on the

second branch δ2
b of non-homogeneous steady states at ρ = 0 (point is marked with squares in (a)).

We start from δ = 10 and the first branch we detect is δ2
b = 9.98041. Once we are in this

branch, we continue in ρ for a fixed δ (in this case δ = −9). For information herding

models, solutions which are of particular importance are those with sharp interfaces

between the endstates, i.e., the solution is near zero and near one in certain regions with

sharp interfaces in between. These solutions represent a herding effect in the sense of

sharply split opinions. More precisely, they indicate for which values of the information

variable x we observe a herding behaviour, i.e., a concentration of individuals (u ≈ 1) at

certain values of x. Figure 9(b) shows herding in the interval [0, 0.2] ∪ [0.8, 1], whilst only

a few individuals adopt the information value in [0.3, 0.7].

5.5 Solutions and other parameters

In this section, we focus on the case with α sufficiently small. We are interested in studying,

how the solutions change depending on the other parameters κ and l. We fix as starting

parameters

(κ, α, l, ū1, ρ) = (1, 0.001, 50, 0.211325, 0.05)

and consider the branch δ2
b. We study the solutions depending on the different parameters.

In Figure 10, we show changes along the branch (which bifurcates at δ = 9.98041). We

observe that the shape is the same along the branch but the interfaces sharpen as δ is

decreased.

In Figure 11, we show how the solution changes with the length of the do-

main. We consider l = 20, l = 50, and l = 100. The branch δ2
b is detected at
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Figure 10. Solutions along the branch δ2
b for the system (2.21) with parameter values (κ, α, l, ū1, ρ) =

(p2, p3, p4, p5, p6) = (1, 0.001, 50, 0.211325, 0.05). (a) Solution of non-homogeneous steady states at

δ = 8.72901. (b) Solution of non-homogeneous steady states at δ = 5.76477. (c) Solution of

non-homogeneous steady states at δ = 1.548.

0 0.5 1
0.15

0.2

0.25

0.3

0 0.5 1
0.15

0.2

0.25

0.3

0 0.5 1
0.15

0.2

0.25

0.3

u
1

u
1

u
1

xxx

(a) (b) (c)

Figure 11. Solutions in the branch δ2
b for the system (2.21) with parameter values (κ, α, ū1, ρ) =

(p2, p3, p5, p6) = (1, 0.001, 0.211325, 0.05). (a) Solution of non-homogeneous steady states at δ =

−3.5154, l = 20. (b) Solution of non-homogeneous steady states at δ = 8.93964, l = 50. (c) Solution

of non-homogeneous steady states at δ = 37.9117, l = 100.

δ = −3.28144, 9.98041, 43.4851, respectively. Since we consider the same branch, the

shape does not change and length of the domain shifts the bifurcation points and just

scales the solution.

When we change the parameter κ the bifurcation points are also simply shif-

ted. We consider κ = 1, κ = 5, and κ = 10. The branch δ2
b is detected at

δ = 9.98041,−92.2877,−214.999, respectively. Moreover, for the first case, the branches

approach the value δd from the right, whilst in the other two cases from the left. As

for the previous case, we consider three different solutions with (almost) the same norm

(163.863 for the case (a), 163.872 for (b) and 163.911 for (c)).

In summary, we conclude that κ and l do not seem to be the parameters of primary

importance in our context as we can re-obtain similar solutions and similar bifurcation

structures for different values of κ and l upon varying δ, α as primary parameters.

6 Outlook

So far, relatively little attention has been devoted to the study of the parameter space

interfaces of different mathematical methods. In this contribution, we have analysed as
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Figure 12. Solutions in the branch δ2
b for the system (2.21) with parameter values (α, l, ū1, ρ) =

(p3, p4, p5, p6) = (0.001, 50, 0.211325, 0.05). (a) Solution of non-homogeneous steady states at δ =

8.72901, κ = 1. (b) Solution of non-homogeneous steady states at δ = −92.2877, κ = 5. (c) Solution

of non-homogeneous steady states at δ = −220.578, κ = 10.

an example a cross-diffusion herding model to understand where, and how, the global

non-linear analysis approach via entropy variables is connected to bifurcation analysis

techniques from dynamical systems. We have shown that both approaches encounter

similar problems regarding the degeneracy of the diffusion matrix and we were able to

cover different parameter regimes by combining the results of the two methods.

This paper is only a first starting point. Here, we shall just mention a few ideas for

future work.

The next step is to analyse the regime α → 0 and to check whether the limitation in

(2.8) on α can be improved, or not. In this regard, one also has to consider in which sense

the forward problem should be interpreted for moderate and small values of α and for

δ < δd. Recent work [35] suggests that one should not only use the notion of Petrovskii

ellipticity for the stationary problem [39] but also consider it in the parabolic context; see

the classical survey [5].

The next step is to expand the approach to other examples. In particular, many

reaction–diffusion systems as well as other classes of PDEs have natural entropies, which

can be used to study global existence and convergence properties. In the non-linear case,

one frequently can also employ approaches from dynamical systems to understand the

dynamics of the PDE. Using a similar approach as we presented here could be illuminating

for other examples. For example, it is natural to conjecture that there are examples in

applications, which exhibit the following characteristics:

(Z1) There exists one fixed parameter region in which the entropy method yields global

decay. Upon variation of a single parameter, the validity boundary of the entropy

method coincides precisely with an isolated local supercritical bifurcation point.

(Z2) There exists one fixed parameter region in which the entropy method yields global

decay. Upon variation of a single parameter, the validity boundary of the entropy

method does not coincide with a local bifurcation point. Instead, the obstruction is

a global bifurcation branch in parameter space with a fold point precisely at the

validity boundary.
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In this work, we apparently found a more complicated case as shown in Figure 1.

However, it seems plausible that the cases (Z1) and (Z2) should occur even in clas-

sical problems without cross-diffusion, i.e., reaction–diffusion equations with a diagonal

positive-definite diffusion matrix. Determining whether this is true for several classical

examples from applications is an interesting open problem.

Regarding the entropy method [8, 13], it would be interesting to investigate in more

detail parametric scenarios for its validity regime. For example, the question arises whether

it is possible to find criteria for the validity range that are computable for entire classes

of PDEs. The entropy approach relies on upper bounds. Although the bounds we present

here turn out to be sharp in the sense of global decay dynamics in a suitable singular

limit, this may not always be easy to achieve as demonstrated by the α → 0 case discussed

above. It would be relevant to estimate a priori, which regime in parameter space one

fails to cover if certain non-optimal upper bounds are used. As above, carrying this out

for several examples could already be very illuminating.

Regarding the analytical and numerical bifurcation analysis, there are multiple strategies

to deal with the problem of mass conservation, or more generally with higher dimensional

solution manifolds. For example, one may try to compute the entire solution family

of steady states parametrized by the mass numerically [17, 23], which yields a numerical

continuation problem for higher dimensional manifolds and not only curves. Furthermore,

we have focussed on the numerical problem in the one-dimensional setup and computing

the two- and three-space dimension cases could be interesting [?,42]. Regarding analytical

generalizations, a possible direction is to view δ∗ as a singular limit and phrase the

problem as a perturbation problem [2, 19, 38].
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