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Let F andG be life-length distributions such th&tZ G. We solve the following
problem How should(X,Y) be generated in order to maximiZé€X = Y), under

the conditionsX 2 FY z G, and X = Y? We also find a necessary and suffi-
cient condition for the existence of such a maximal coupling with the property
thatX andY are independentonditioned thaX < Y. It is pointed out that using
familiar Poisson process thinning methods does not prod¥¢cé) which maxi-
mizesP(X =Y).

1. INTRODUCTION

LetF andG be the distribution functions of the nonnegative random varia¥kasd
Y, assumed to denote life lengths of some objdaterder to reveal properties &f
andG and relations between them by a simulatiwe consider the outcomes atd.
pairs

X, Y) 2 (XY), i=12...n

We shall pay no attention to how a simulation improves @reasesOur con-
cern is rather to study ho(X,Y) should be generated when we know tRas sto-
chastically dominated b@. What use could be made of that qualitative information?

We denote stochastic domination Ey@ G; recall that this means

F(x) = G(x) forallx=0, (1)
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ffou:sffde )

for all increasing and bounded functiohen[0,c0).

Throughoutassumé- 2 G. Itis common knowledge how to achieMe= Y: For
adistribution functioH on[0,00), letH * be the generalized inverse function defined
by

which is equivalent to

H*(u) = inf{s= 0; H(s) = u}

for 0 < u < 1. (Below, we make use once of the obvious extension of this definition
to subprobability distribution functionsLet

X=F*U) and Y=G*U), (3)

whereU is uniformly distributed orf0,1) (U L Uni(0,1)). We getX Z FandYZ G,
and we certainly hav¥ = Y due to(1).

What further use could be made of the inequdﬁtﬁ G? Let us set up alist of
requests o X,Y):

i. We haveX =Y.
ii. In addition to(i), P(X = Y) is maximized
i . Inaddition to(ii ), the pair( X,Y), conditioned thaK < Y, has some desirable
property

We have managed requebt

Section 2 handles requésg). Itis found perhaps surprisinglyhat the maximal
possible value o’ (X = Y) under the conditioiX = Y is the same as the maximum
without that restriction

In Section 3we present a case where requ@sj can be metlf F andG have
densitiesf andg such thatf — g changes sign at most ondéen(X,Y) may be
produced so thaX andY become independertonditioned thaX < Y.

In Section 4we point out that iF andG have failure rate functiorng andr, re-
spectivelysatisfyingr, = r,, then the standard method to produc& F andY £ G
by a thinning of a Poisson process yieKis Yif a common Poisson process is used
but it does not satisfii).

There are several fine accounts on simulatiamong them Devroygl] and
Ripley[4], but surprisingly little attention has been paid to our type of tapgirse
exception is Devroyg2]; in Section 2 of that papgthe problem of how to produce
(X,Y) with P(X = Y) maximized is treatedut with no attention paid to extra con-
ditions such afF £ G.

2. THE MAXIMUM OF P(X=Y)

Let F andG have densitie§ andg, respectivelywith respect to the measuie We
may always take = F + G; the reader who wishes to restrict attentiorFtandG
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with densities with respect to the Lebesque measure does not need to pay attention
to the choice of.

The total variation distandd= — G| betweerF andG s thel* distance between
f andg:

IF-cl=[It-gla @

[it-glar

:f(f—ng)d)H—f(g—ng)d)\

=2<1—ffmgm>. (5)

Now the coupling inequalitycf. Lindvall [3, Sect |.2]) tells us that
IF— G| =2P(X#Y) (6)
for any(X,Y) such that 2 F andY £ G. Hence

We have

P(X=Y)=1—P(X¢Y)sffmgd/\. (7
Denoteff g dA by y. Throughoutwe assume that < 1; sincey = 1 means

F = G, we may exclude that casény coupling(X,Y) satisfying
P(X=Y)=vy (8)

is called ay-coupling(cf. Lindvall [3, Sect |.5], an account in which the definition
of y-coupling is more restrictive than the one hel&/e understand frorfi7) thaty
is the best possible coupling probability

Let H denote the subprobability measure with densifyg with respect to\:

H(A) = f f Ogdx for Borel setsA C [0,00).
A

The total mass dfl is, of coursgequal toy. Without much hesitatiorwe write
H(x) = H[O,x] for x = 0, and we find that in order to generat¥,Y) such that
P(X =Y) = y with the use olU L Uni(0,2), it is crucial that the following hold

if U<1y,thenX=Y=H*U) (9)
and

if U> v, see toittha 2F andY 2 G. (10)
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The last requirement is met hnter alig the following rule
if U> vy, thenX=(F—H)*(U~-1)
and
Y=(G—H)"(U—v). (11)
To verify that let U be defined as the identity mapping é&1) and letl be the
Lebesque measure restricted to that interizal examplefor X given by(10) and
(112), we get for anyx = 0 that
P(X=Xx)=P(H*U)=x,U<y)+P(F—H)*(U—-v)=x,U>v)
= Huu<y,H* (W) =x} + Huu>y,(F—H)*(u—vy)}
=Huu<y,H(UW=x+H{r;0<v<1l-9y,(F-H)"(v)=x}
= H(x) + (F — H)(x) = F(x).

Any simulation satisfyind9) and(10) yields a pair X,Y) such thafP?(X =)
is maximized Now recall requestii). The assumptiorF 2G implies that
F(x) —H(x) = G(x) — H(x) for x= 0, and we getF — H)" = (G — H)" Hence
rule (11) rendersX =Y, and we have managed requést
3. THE THIRD REQUEST

In order to explore the possibilities beyond requéstwe reconsider Eq$9) and
(10). Put

M ={(x,y);0=x=V},
MO = {(X7 y)vo =x< y}7

and letP be the distribution of X,Y) satisfying Eqs(9) and(10). ThatP is a prob-
ability measure o, and its restrictionQ say to A = {(x, X); x = 0} is determined
by (9). We haveQ(A) = y.

Let P, = P — Q. We find that(10) means

the subprobability?, on M, has to have marginals

with densitied — f [lgandg — f Ogw.r.t. A. (12)
For a hint to understand thadet A be a Borel seC[0,00). We get

f f(x)dA(X) = P(XE A)

=P(XEAX=Y)+P(XEAX#Y)

“HA+ [ dRxy)
XEA

=fA(f Dg)(X)dA(X)-i-f A0|Po(X,Y);
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hence

f AdPo(x,y) = fA(f —f Og)(x) dA(x).

Denote the marginals ¢, by » andy. When is it possible to let

Po= (v X W/(1-y),

that is when can we allowX andY to be independentonditioned thaK < Y? Since
Py is concentrated t,, we have that possibility if and only if(x,00) - y[0,x] = 0
for all x = 0, and this holds

if and only if there exists an = 0 such that

f(x) = g(x) for x=aandf(x) = g(x) forx>a (13)
due to(12).
We comply with(10) using the rule
if U>v,thenX=K;U —vy)andY=K;((1—-vy)-U"), (14)

whereKy(x) = [3(f — @) (s)dA(S), Ka(x) = [2(g — f)*(s)dA(s), andU’ £
Uni(0,1) is independent ob.

In Figure 1a and lbwve show the outcomes of simulations wih2 Uni(0,1)
andY 2 Uni(0,1.25); n = 20. In Figure 1aX; andY; are independentor Figure 1b
we used Eq(3), which render¥; = 1.25. X;. The simulations shown in Figure 1c and
1d demonstrate the-coupling For(c), we used Eg(11). Condition(13) is satisfied
hencewe may letX; andY; be independentonditioned thaX; < Y;. Diagram(d)
shows the outcome of such a simulation

4. ON THE METHOD OF POISSON PROCESS THINNING

We are able to be brief in this section concerning the background theory since that is
rather well establishedor accountssee Ripley4, §84.3] and in particulay Devroye
[1, Chap VI].

LetN be a Poisson process f)oo) with intensityA > 0; N(A) is the number of
points in the Borel seA C [0,00). With T, denoting the time of theth point we have
T, = 31X, whereXy, X,, ..., are ii.d. and ExfA) distributed To produce another
Poisson proceds’ with intensityp < A, we may use a thinning methoach point
of N is saved forN’ with probability u/A, and the trials are independent for the
different pointsAs is standardlet us abbreviat&l[0,t] andN’[0,t] to N, and N/,
respectivelyThis thinning method yields

i. N’(A) = N(A) for all A C [0,00).
ii. For a simulationthe program is very simple (15)

Let Ty = 1V’ be the time of theith point of N'. Writing X = X; andY = V; for
conveniencewe haveP(X = Y) = u/A. However if we had used a&-coupling to
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Ficure 1. The simulationga)—(d).

produce(X,Y), whereX £ Exp(A) andY 2 Exp(), then we would get a larger
probability Indeed

P(X=Y)=vy =J min(Ae~ " ue ) dx > /A,
0]

because mime > ue ) < (u/A) e for all x > 0, which is easily seen
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D

Let (X;,Y)),i =1,2,..., be ii.d. y-coupled pairs withX; = exp(A) and; L
exp(p); we notice that13) holds so we may leX; andY; be independentondi-
tioned thatx; < Y,.

We have found that natural requests on a simulation of a pair of Poisson pro-
cesses are incompatibléwe prefer to uséN andN’, we lose 15i) (but we still have
thatN; = N, for all t = 0). Also, effort is needed for the programming

Now, let F andG be life-length distributions with failure rate functionsand
r,, respectively satisfyingri(x) = r,(x) for x = 0. Write Ri(x) = [;r;(s) ds for
i=1and?2

Using a well-known relationwe find thatF 2G:

F[x,00) = exp(—Ry(x))
= exp(—Ry(X)) = G[x,00) forx=0.

For simplicity letr, be boundegand putA = sup-or1(X). Awell-established method
to produce aix L Fis as follows Let (T;)iZ, be the points of a Poisson process with
intensity A and(Z;);~, a sequence ofiid. Uni(0, A) variablesalso independent of
()i, If we let

X = min{T;;Z; = ry(T)}, (16)

then indeedX 2 F. Using (16), but with r, replaced byr,, we get a¥ 2 G and
certainly X = Y. By using a Poisson point process[oo)?2 a similar technique
works for unbounded failure rate functiofef. Lindvall [3, Sect V.17]).

But in general this method does not maximizex = Y) among couplings such
thatX = Y. We have understood that for exponentially distributed variaMége
Ri(x) = fari(s)dsfori =1and 2Forr, = r,andr; # r, we get

oo

P(X=Y) :f ro(x)e R dx

0

and this probability is strictly smaller than that ofecoupling(X,Y). Indeed

o

P(X=Y) =f min(ry(x)e~ "™, ry(x)e e ) dx

0

o0}
Zf min(ry(x)e R, r,(x)e R dx
0

> f ro(x)e R dx.
0
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