ON SIMULATION OF STOCHASTICALLY ORDERED LIFE-LENGTH VARIABLES

TORGNY LINDVALL

Department of Mathematical Statistics University of Göteborg 41296 Göteborg, Sweden E-mail: lindvall@math.chalmers.se

Let *F* and *G* be life-length distributions such that $F \stackrel{\mathcal{D}}{\leq} G$. We solve the following problem: How should (X,Y) be generated in order to maximize $\mathbb{P}(X = Y)$, under the conditions $X \stackrel{\mathcal{D}}{=} F$, $Y \stackrel{\mathcal{D}}{=} G$, and $X \leq Y$? We also find a necessary and sufficient condition for the existence of such a maximal coupling with the property that *X* and *Y* are independent, conditioned that X < Y. It is pointed out that using familiar Poisson process thinning methods does not produce (X,Y) which maximizes $\mathbb{P}(X = Y)$.

1. INTRODUCTION

Let F and G be the distribution functions of the nonnegative random variables X and Y, assumed to denote life lengths of some objects. In order to reveal properties of F and G and relations between them by a simulation, we consider the outcomes of i.i.d. pairs

$$(X_i, Y_i) \stackrel{\mathcal{D}}{=} (X, Y), \qquad i = 1, 2, \dots, n.$$

We shall pay no attention to how a simulation improves as *n* increases. Our concern is rather to study how (X,Y) should be generated when we know that *F* is stochastically dominated by *G*. What use could be made of that qualitative information?

We denote stochastic domination by $F \stackrel{\mathcal{D}}{\leq} G$; recall that this means

$$F(x) \ge G(x) \quad \text{for all } x \ge 0,$$
 (1)

^{© 2000} Cambridge University Press 0269-9648/00 \$12.50

which is equivalent to

$$\int f dF \le \int f dG \tag{2}$$

for all increasing and bounded functions f on $[0,\infty)$.

Throughout, assume $F \stackrel{D}{\leq} G$. It is common knowledge how to achieve $X \leq Y$: For a distribution function H on $[0,\infty)$, let H^* be the generalized inverse function defined by

$$H^*(u) = \inf\{s \ge 0; H(s) \ge u\}$$

for 0 < u < 1. (Below, we make use once of the obvious extension of this definition to subprobability distribution functions.) Let

$$X = F^{*}(U)$$
 and $Y = G^{*}(U)$, (3)

where *U* is uniformly distributed on (0,1) ($U \stackrel{\mathcal{D}}{=} \text{Uni}(0,1)$). We get $X \stackrel{\mathcal{D}}{=} F$ and $Y \stackrel{\mathcal{D}}{=} G$, and we certainly have $X \leq Y$ due to (1).

What further use could be made of the inequality $F \stackrel{\mathcal{D}}{\leq} G$? Let us set up a list of requests on (X, Y):

- i. We have $X \leq Y$.
- ii. In addition to (i), $\mathbb{P}(X = Y)$ is maximized.
- iii. In addition to (ii), the pair (X, Y), conditioned that X < Y, has some desirable property.

We have managed request (i).

Section 2 handles request (ii). It is found, perhaps surprisingly, that the maximal possible value of $\mathbb{P}(X = Y)$ under the condition $X \leq Y$ is the same as the maximum without that restriction.

In Section 3, we present a case where request (iii) can be met: If F and G have densities f and g such that f - g changes sign at most once, then (X, Y) may be produced so that X and Y become independent, conditioned that X < Y.

In Section 4, we point out that if *F* and *G* have failure rate functions r_1 and r_2 , respectively, satisfying $r_1 \ge r_2$, then the standard method to produce $X \stackrel{\mathcal{D}}{=} F$ and $Y \stackrel{\mathcal{D}}{=} G$ by a thinning of a Poisson process yields $X \le Y$ if a common Poisson process is used, but it does not satisfy (ii).

There are several fine accounts on simulation, among them Devroye [1] and Ripley [4], but surprisingly little attention has been paid to our type of topics. One exception is Devroye [2]; in Section 2 of that paper, the problem of how to produce (X,Y) with $\mathbb{P}(X = Y)$ maximized is treated, but with no attention paid to extra conditions, such as $F \stackrel{\geq}{\cong} G$.

2. THE MAXIMUM OF $\mathbb{P}(X = Y)$

Let *F* and *G* have densities *f* and *g*, respectively, with respect to the measure λ . We may always take $\lambda = F + G$; the reader who wishes to restrict attention to *F* and *G*

with densities with respect to the Lebesque measure does not need to pay attention to the choice of λ .

The total variation distance ||F - G|| between *F* and *G* is the L^1 distance between *f* and *g*:

$$\|F - G\| = \int |f - g| \, d\lambda. \tag{4}$$

We have

$$\int |f - g| d\lambda$$

= $\int (f - f \wedge g) d\lambda + \int (g - f \wedge g) d\lambda$
= $2\left(1 - \int f \wedge g d\lambda\right).$ (5)

Now the coupling inequality (cf. Lindvall [3, Sect. I.2]) tells us that

$$\|F - G\| \le 2\mathbb{P}(X \neq Y) \tag{6}$$

for any (X, Y) such that $X \stackrel{\mathcal{D}}{=} F$ and $Y \stackrel{\mathcal{D}}{=} G$. Hence,

$$\mathbb{P}(X=Y) = 1 - \mathbb{P}(X \neq Y) \le \int f \wedge g \, d\lambda.$$
(7)

Denote $\int f \wedge g \, d\lambda$ by γ . Throughout, we assume that $\gamma < 1$; since $\gamma = 1$ means F = G, we may exclude that case. Any coupling (X, Y) satisfying

$$\mathbb{P}(X=Y) = \gamma \tag{8}$$

is called a γ -coupling (cf. Lindvall [3, Sect. I.5], an account in which the definition of γ -coupling is more restrictive than the one here). We understand from (7) that γ is the best possible coupling probability.

Let *H* denote the subprobability measure with density $f \wedge g$ with respect to λ :

$$H(A) = \int_{A} f \wedge g \, d\lambda \quad \text{for Borel sets } A \subset [0,\infty).$$

The total mass of *H* is, of course, equal to γ . Without much hesitation, we write H(x) = H[0, x] for $x \ge 0$, and we find that in order to generate (X, Y) such that $\mathbb{P}(X = Y) = \gamma$ with the use of $U \stackrel{\mathcal{D}}{=} \text{Uni}(0, 1)$, it is crucial that the following hold:

if
$$U < \gamma$$
, then $X = Y = H^*(U)$ (9)

and

if
$$U > \gamma$$
, see to it that $X \stackrel{\mathcal{D}}{=} F$ and $Y \stackrel{\mathcal{D}}{=} G$. (10)

T. Lindvall

The last requirement is met by, inter alia, the following rule:

if $U > \gamma$, then $X = (F - H)^*(U - \gamma)$

and

$$Y = (G - H)^* (U - \gamma).$$
 (11)

To verify that, let *U* be defined as the identity mapping on (0,1) and let *l* be the Lebesque measure restricted to that interval. For example, for *X* given by (10) and (11), we get for any $x \ge 0$ that

$$\mathbb{P}(X \le x) = \mathbb{P}(H^*(U) \le x, U < \gamma) + \mathbb{P}((F - H)^*(U - \gamma) \le x, U > \gamma)$$

= $l\{u; u < \gamma, H^*(u) \le x\} + l\{u; u > \gamma, (F - H)^*(u - \gamma)\}$
= $l\{u; u < \gamma, H^*(u) \le x\} + l\{v; 0 < v < 1 - \gamma, (F - H)^*(v) \le x\}$
= $H(x) + (F - H)(x) = F(x).$

Any simulation satisfying (9) and (10) yields a pair (X,Y) such that $\mathbb{P}(X = Y)$ is maximized. Now recall request (ii). The assumption $F \stackrel{\mathcal{D}}{\leq} G$ implies that $F(x) - H(x) \ge G(x) - H(x)$ for $x \ge 0$, and we get $(F - H)^* \le (G - H)^*$. Hence, rule (11) renders $X \le Y$, and we have managed request (ii).

3. THE THIRD REQUEST

In order to explore the possibilities beyond request (ii), we reconsider Eqs. (9) and (10). Put

$$M = \{(x, y); 0 \le x \le y\},\$$

$$M_0 = \{(x, y); 0 \le x < y\},\$$

and let *P* be the distribution of (X, Y) satisfying Eqs. (9) and (10). That *P* is a probability measure on *M*, and its restriction, *Q* say, to $\Delta = \{(x, x); x \ge 0\}$ is determined by (9). We have $Q(\Delta) = \gamma$.

Let $P_0 = P - Q$. We find that (10) means

the subprobability P_0 on M_0 has to have marginals

with densities $f - f \wedge g$ and $g - f \wedge g$ w.r.t. λ . (12)

For a hint to understand that, let *A* be a Borel set $\subset [0,\infty)$. We get

$$\begin{split} \int_{A} f(x) \, d\lambda(x) &= \mathbb{P}(X \in A) \\ &= \mathbb{P}(X \in A, X = Y) + \mathbb{P}(X \in A, X \neq Y) \\ &= H(A) + \int_{x \in A} dP_0(x, y) \\ &= \int_{A} (f \wedge g)(x) \, d\lambda(x) + \int_{x \in A} dP_0(x, y); \end{split}$$

hence,

$$\int_{x \in A} dP_0(x, y) = \int_A (f - f \wedge g)(x) \, d\lambda(x).$$

Denote the marginals of P_0 by ν and μ . When is it possible to let

 $P_0 = (\nu \times \mu)/(1 - \gamma),$

that is, when can we allow *X* and *Y* to be independent, conditioned that X < Y? Since P_0 is concentrated to M_0 , we have that possibility if and only if $\nu(x,\infty) \cdot \mu[0,x] = 0$ for all $x \ge 0$, and this holds

if and only if there exists an
$$a \ge 0$$
 such that (13)

$$f(x) \ge g(x)$$
 for $x \le a$ and $f(x) \le g(x)$ for $x > a$

due to (12).

We comply with (10) using the rule

if
$$U > \gamma$$
, then $X = K_1^*(U - \gamma)$ and $Y = K_2^*((1 - \gamma) \cdot U')$, (14)

where $K_1(x) = \int_0^x (f - g)^+(s) d\lambda(s)$, $K_2(x) = \int_0^x (g - f)^+(s) d\lambda(s)$, and $U' \stackrel{D}{=} Uni(0,1)$ is independent of U.

In Figure 1a and 1b, we show the outcomes of simulations with $X \stackrel{\mathcal{D}}{=} \text{Uni}(0,1)$ and $Y \stackrel{\mathcal{D}}{=} \text{Uni}(0,1.25)$; n = 20. In Figure 1a, X_i and Y_i are independent; for Figure 1b we used Eq. (3), which renders $Y_i = 1.25 \cdot X_i$. The simulations shown in Figure 1c and 1d demonstrate the γ -coupling. For (c), we used Eq. (11). Condition (13) is satisfied; hence, we may let X_i and Y_i be independent, conditioned that $X_i < Y_i$. Diagram (d) shows the outcome of such a simulation.

4. ON THE METHOD OF POISSON PROCESS THINNING

We are able to be brief in this section concerning the background theory since that is rather well established; for accounts, see Ripley [4, §4.3] and, in particular, Devroye [1, Chap. VI].

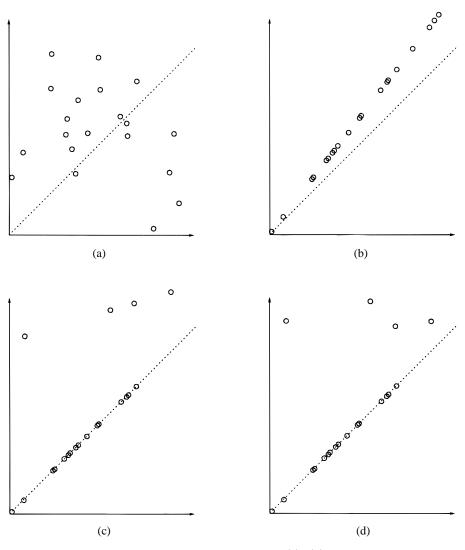
Let \hat{N} be a Poisson process on $[0,\infty)$ with intensity $\lambda > 0$; $\hat{N}(A)$ is the number of points in the Borel set $A \subset [0,\infty)$. With \hat{T}_n denoting the time of the *n*th point, we have $\hat{T}_n = \sum_{i=1}^{n} \hat{X}_i$, where $\hat{X}_1, \hat{X}_2, \ldots$, are i.i.d. and $\text{Exp}(\lambda)$ distributed. To produce another Poisson process \hat{N}' with intensity $\mu < \lambda$, we may use a thinning method. Each point of \hat{N} is saved for \hat{N}' with probability μ/λ , and the trials are independent for the different points. As is standard, let us abbreviate $\hat{N}[0, t]$ and $\hat{N}'[0, t]$ to \hat{N}_t and \hat{N}'_t , respectively. This thinning method yields

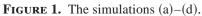
i. $\hat{N}'(A) \leq \hat{N}(A)$ for all $A \subset [0,\infty)$.

ii. For a simulation, the program is very simple.

Let $\hat{T}'_n = \sum_{i=1}^{n} \hat{Y}'_i$ be the time of the *n*th point of \hat{N}' . Writing $\hat{X} = \hat{X}_1$ and $\hat{Y} = \hat{Y}_1$ for convenience, we have $\mathbb{P}(\hat{X} = \hat{Y}) = \mu/\lambda$. However, if we had used a γ -coupling to

(15)





produce (X, Y), where $X \stackrel{\mathcal{D}}{=} \operatorname{Exp}(\lambda)$ and $Y \stackrel{\mathcal{D}}{=} \operatorname{Exp}(\mu)$, then we would get a larger probability. Indeed,

$$\mathbb{P}(X=Y)=\gamma=\int_0^\infty\min(\lambda e^{-\lambda x},\mu e^{-\lambda x})\,dx>\mu/\lambda,$$

because $\min(\lambda e^{-\lambda x}, \mu e^{-\lambda x}) < (\mu/\lambda)\lambda e^{-\lambda x}$ for all x > 0, which is easily seen.

ABLES

Let (X_i, Y_i) , i = 1, 2, ..., be i.i.d. γ -coupled pairs with $X_i \stackrel{\mathcal{D}}{=} \exp(\lambda)$ and $Y_i \stackrel{\mathcal{D}}{=} \exp(\mu)$; we notice that (13) holds, so we may let X_i and Y_i be independent, conditioned that $X_i < Y_i$.

We have found that natural requests on a simulation of a pair of Poisson processes are incompatible: If we prefer to use *N* and *N'*, we lose 15(i) (but we still have that $N'_t \le N_t$ for all $t \ge 0$). Also, effort is needed for the programming.

Now, let *F* and *G* be life-length distributions with failure rate functions r_1 and r_2 , respectively, satisfying $r_1(x) \ge r_2(x)$ for $x \ge 0$. Write $R_i(x) = \int_0^x r_i(s) ds$ for i = 1 and 2.

Using a well-known relation, we find that $F \stackrel{\mathcal{D}}{\leq} G$:

$$F[x,\infty) = \exp(-R_1(x))$$

$$\leq \exp(-R_2(x)) = G[x,\infty) \quad \text{for } x \ge 0.$$

For simplicity, let r_1 be bounded, and put $A = \sup_{x \ge 0} r_1(x)$. A well-established method to produce an $X \stackrel{\mathcal{D}}{=} F$ is as follows: Let $(T_i)_{i=1}^{\infty}$ be the points of a Poisson process with intensity A, and $(Z_i)_{i=1}^{\infty}$ a sequence of i.i.d. Uni(0, A) variables, also independent of $(T_i)_{i=1}^{\infty}$. If we let

$$\hat{X} = \min\{T_i; Z_i \le r_1(T_i)\},$$
(16)

then indeed $\hat{X} \stackrel{\mathcal{D}}{=} F$. Using (16), but with r_1 replaced by r_2 , we get a $\hat{Y} \stackrel{\mathcal{D}}{=} G$ and, certainly, $\hat{X} \leq \hat{Y}$. By using a Poisson point process in $[0,\infty)^2$, a similar technique works for unbounded failure rate functions (cf. Lindvall [3, Sect. V.17]).

But in general this method does not maximize $\mathbb{P}(X = Y)$ among couplings such that $X \leq Y$. We have understood that for exponentially distributed variables. Write $R_i(x) = \int_0^x r_i(s) ds$ for i = 1 and 2. For $r_1 \geq r_2$ and $r_1 \neq r_2$ we get

$$\mathbb{P}(\hat{X} = \hat{Y}) = \int_0^\infty r_2(x) e^{-R_1(x)} dx$$

and this probability is strictly smaller than that of a γ -coupling (X, Y). Indeed,

$$\mathbb{P}(X = Y) = \int_0^\infty \min(r_1(x)e^{-R_1(x)}, r_2(x)e^{-R_2(x)}) dx$$

$$\ge \int_0^\infty \min(r_1(x)e^{-R_1(x)}, r_2(x)e^{-R_1(x)}) dx$$

$$> \int_0^\infty r_2(x)e^{-R_1(x)} dx.$$

References

- 1. Devroye, L. (1986). Non-uniform random variate generation. New York: Springer-Verlag.
- 2. Devroye, L. (1990). Coupled samples in simulation. Operations Research 38(1): 115-126.
- 3. Lindvall, T. (1992). Lectures on the coupling method. New York: Wiley.
- 4. Ripley, B. (1987). Stochastic simulation. New York: Wiley.