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Let F andG be life-length distributions such thatF #
D G+ We solve the following

problem: How should~X,Y! be generated in order to maximizeP~X 5 Y!, under
the conditionsX 5

D F, Y 5
D G, andX # Y? We also find a necessary and suffi-

cient condition for the existence of such a maximal coupling with the property
thatX andY are independent, conditioned thatX , Y+ It is pointed out that using
familiar Poisson process thinning methods does not produce~X,Y! which maxi-
mizesP~X 5 Y!+

1. INTRODUCTION

Let F andG be the distribution functions of the nonnegative random variablesX and
Y, assumed to denote life lengths of some objects+ In order to reveal properties ofF
andGand relations between them by a simulation,we consider the outcomes of i+i+d+
pairs

~Xi ,Yi ! 5
D ~X,Y!, i 5 1,2, + + + ,n+

We shall pay no attention to how a simulation improves asn increases+Our con-
cern is rather to study how~X,Y! should be generated when we know thatF is sto-
chastically dominated byG+What use could be made of that qualitative information?

We denote stochastic domination byF #
D

G; recall that this means

F~x! $ G~x! for all x $ 0, (1)
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which is equivalent to

E f dF # E f dG (2)

for all increasing and bounded functionsf on @0,`!+
Throughout, assumeF #

D
G+ It is common knowledge how to achieveX# Y: For

a distribution functionH on@0,`!, letH * be the generalized inverse function defined
by

H *~u! 5 inf $s$ 0; H~s! $ u%

for 0 , u , 1+ ~Below, we make use once of the obvious extension of this definition
to subprobability distribution functions+! Let

X 5 F *~U ! and Y5 G*~U !, (3)

whereU is uniformly distributed on~0,1! ~U 5
D Uni~0,1!!+We getX 5

D F andY5
D G,

and we certainly haveX # Y due to~1!+
What further use could be made of the inequalityF #

D
G? Let us set up a list of

requests on~X,Y!:

i+ We haveX # Y+
ii + In addition to~i!, P~X 5 Y! is maximized+

iii + In addition to~ii !, the pair~X,Y!, conditioned thatX, Y, has some desirable
property+

We have managed request~i!+
Section 2 handles request~ii !+ It is found, perhaps surprisingly, that the maximal

possible value ofP~X5 Y! under the conditionX # Y is the same as the maximum
without that restriction+

In Section 3, we present a case where request~iii ! can be met: If F andG have
densitiesf andg such thatf 2 g changes sign at most once, then ~X,Y! may be
produced so thatX andY become independent, conditioned thatX , Y+

In Section 4,we point out that ifF andGhave failure rate functionsr1 andr2, re-
spectively, satisfyingr1 $ r2, then the standard method to produceX 5

D F andY5
D G

by a thinning of a Poisson process yieldsX# Y if a common Poisson process is used,
but it does not satisfy~ii !+

There are several fine accounts on simulation, among them Devroye@1# and
Ripley @4# , but surprisingly little attention has been paid to our type of topics+ One
exception is Devroye@2#; in Section 2 of that paper, the problem of how to produce
~X,Y! with P~X5 Y! maximized is treated, but with no attention paid to extra con-
ditions, such asF #

D
G+

2. THE MAXIMUM OF PPP (X 5 Y )

Let F andG have densitiesf andg, respectively, with respect to the measurel+We
may always takel 5 F 1 G; the reader who wishes to restrict attention toF andG
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with densities with respect to the Lebesque measure does not need to pay attention
to the choice ofl+

The total variation distance7F2G7 betweenF andG is theL1 distance between
f andg:

7F 2 G7 5E6 f 2 g6 dl+ (4)

We have

E6 f 2 g6 dl

5E~ f 2 f ∧ g! dl 1E~g 2 f ∧ g! dl

5 2S12E f ∧ g dlD+ (5)

Now the coupling inequality~cf+ Lindvall @3, Sect+ I+2# ! tells us that

7F 2 G7 # 2P~X Þ Y! (6)

for any~X,Y! such thatX 5
D F andY 5

D G+ Hence,

P~X 5 Y! 5 1 2 P~X Þ Y! # E f ∧ g dl+ (7)

Denote* f ∧ g dl by g+ Throughout, we assume thatg , 1; sinceg 51 means
F 5 G, we may exclude that case+ Any coupling~X,Y! satisfying

P~X 5 Y! 5 g (8)

is called ag-coupling~cf+ Lindvall @3, Sect+ I+5# , an account in which the definition
of g-coupling is more restrictive than the one here!+We understand from~7! thatg
is the best possible coupling probability+

Let H denote the subprobability measure with densityf ∧ g with respect tol:

H~A! 5E
A

f ∧ g dl for Borel setsA , @0,`!+

The total mass ofH is, of course, equal tog+Without much hesitation, we write
H~x! 5 H @0, x# for x $ 0, and we find that in order to generate~X,Y! such that
P~X 5 Y! 5 g with the use ofU 5

D Uni~0,1!, it is crucial that the following hold:

if U , g, thenX 5 Y5 H *~U ! (9)

and

if U . g, see to it thatX 5
D F andY 5

D G+ (10)
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The last requirement is met by, inter alia, the following rule:

if U . g, thenX 5 ~F 2 H !*~U 2 g!

and

Y 5 ~G 2 H !*~U 2 g!+ (11)

To verify that, let U be defined as the identity mapping on~0,1! and let l be the
Lebesque measure restricted to that interval+ For example, for X given by~10! and
~11!, we get for anyx $ 0 that

P~X # x! 5 P~H *~U ! # x,U , g! 1 P~~F 2 H !*~U 2 g! # x,U . g!

5 l $u;u , g,H *~u! # x% 1 l $u;u . g,~F 2 H !*~u 2 g!%

5 l $u;u , g,H *~u! # x% 1 l $v;0 , v , 12 g,~F 2 H !*~v! # x%

5 H~x! 1 ~F 2 H !~x! 5 F~x!+

Any simulation satisfying~9! and~10! yields a pair~X,Y! such thatP~X 5 Y!
is maximized+ Now recall request~ii !+ The assumptionF #

D
G implies that

F~x! 2 H~x! $ G~x! 2 H~x! for x $ 0, and we get~F 2 H !* # ~G 2 H !*+ Hence,
rule ~11! rendersX # Y, and we have managed request~ii !+

3. THE THIRD REQUEST

In order to explore the possibilities beyond request~ii !, we reconsider Eqs+ ~9! and
~10!+ Put

M 5 $~x, y!;0 # x # y%,

M0 5 $~x, y!;0 # x , y%,

and letP be the distribution of~X,Y! satisfying Eqs+ ~9! and~10!+ ThatP is a prob-
ability measure onM, and its restriction, Q say, to D 5 $~x, x!;x $ 0% is determined
by ~9!+We haveQ~D! 5 g+

Let P0 5 P 2 Q+We find that~10! means

the subprobabilityP0 on M0 has to have marginals

with densitiesf 2 f ∧ g andg 2 f ∧ g w+r+t+ l+ (12)

For a hint to understand that, let A be a Borel set,@0,`!+We get

E
A

f ~x! dl~x! 5 P~X [ A!

5 P~X [ A,X 5 Y! 1 P~X [ A,X Þ Y!

5 H~A! 1E
x[A

dP0~x, y!

5E
A

~ f ∧ g!~x! dl~x! 1E
x[A

dP0~x, y!;
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hence,

E
x[A

dP0~x, y! 5E
A

~ f 2 f ∧ g!~x! dl~x!+

Denote the marginals ofP0 by n andµ+When is it possible to let

P0 5 ~n 3 µ!0~12 g!,

that is,when can we allowX andY to be independent, conditioned thatX , Y? Since
P0 is concentrated toM0, we have that possibility if and only ifn~x,`!{µ@0, x# 5 0
for all x $ 0, and this holds

if and only if there exists ana $ 0 such that

f ~x! $ g~x! for x # a andf ~x! # g~x! for x . a
(13)

due to~12!+
We comply with~10! using the rule

if U . g, thenX 5 K1
*~U 2 g! andY5 K2

*~~12 g!{U ' !, (14)

where K1~x! 5 *0
x~ f 2 g!1~s! dl~s!, K2~x! 5 *0

x~g 2 f !1~s! dl~s!, and U ' 5
D

Uni~0,1! is independent ofU+
In Figure 1a and 1b, we show the outcomes of simulations withX 5

D Uni~0,1!
andY5

D Uni~0,1+25!; n5 20+ In Figure 1a, Xi andYi are independent; for Figure 1b
we used Eq+ ~3!,which rendersYi 51+25{Xi +The simulations shown in Figure 1c and
1d demonstrate theg-coupling+ For~c!,we used Eq+ ~11!+Condition~13! is satisfied;
hence, we may letXi andYi be independent, conditioned thatXi , Yi + Diagram~d!
shows the outcome of such a simulation+

4. ON THE METHOD OF POISSON PROCESS THINNING

We are able to be brief in this section concerning the background theory since that is
rather well established; for accounts, see Ripley@4, §4+3# and, in particular,Devroye
@1, Chap+ VI # +

Let ZN be a Poisson process on@0,`! with intensityl . 0; ZN~A! is the number of
points in the Borel setA , @0,`!+With ZTn denoting the time of thenth point,we have
ZTn 5 (1

n ZXi , where ZX1, ZX2, + + + , are i+i+d+ and Exp~l! distributed+ To produce another
Poisson processZN ' with intensityµ , l, we may use a thinning method+ Each point
of ZN is saved for ZN ' with probability µ0l, and the trials are independent for the
different points+ As is standard, let us abbreviateZN @0, t# and ZN ' @0, t# to ZNt and ZNt

' ,
respectively+ This thinning method yields

i+ ZN '~A! # ZN~A! for all A , @0,`!+
ii + For a simulation, the program is very simple+ (15)

Let ZTn
' 5 (1

n ZYi
' be the time of thenth point of ZN '+ Writing ZX 5 ZX1 and ZY5 ZY1 for

convenience, we haveP~ ZX 5 ZY! 5 µ0l+ However, if we had used ag-coupling to
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produce~X,Y!, whereX 5
D Exp~l! andY 5

D Exp~µ!, then we would get a larger
probability+ Indeed,

P~X 5 Y! 5 g 5E
0

`

min~le2lx,µe2lx ! dx . µ0l,

because min~le2lx,µe2lx! , ~µ0l!le2lx for all x . 0, which is easily seen+

(a) (b)

(d)(c)

Figure 1. The simulations~a!–~d!+
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Let ~Xi ,Yi !, i 5 1,2, + + + , be i+i+d+ g-coupled pairs withXi 5
D exp~l! andYi 5

D

exp~µ!; we notice that~13! holds, so we may letXi andYi be independent, condi-
tioned thatXi , Yi +

We have found that natural requests on a simulation of a pair of Poisson pro-
cesses are incompatible: If we prefer to useN andN ',we lose 15~i! ~but we still have
thatNt

'# Nt for all t $ 0!+ Also, effort is needed for the programming+
Now, let F andG be life-length distributions with failure rate functionsr1 and

r2, respectively, satisfyingr1~x! $ r2~x! for x $ 0+ Write Ri ~x! 5 *0
x ri ~s! ds for

i 5 1 and 2+
Using a well-known relation, we find thatF #

D
G:

F @x,`! 5 exp~2R1~x!!

# exp~2R2~x!! 5 G@x,`! for x $ 0+

For simplicity, let r1 be bounded, and putA5supx$0r1~x!+Awell-established method
to produce anX 5

D F is as follows: Let ~Ti !i51
` be the points of a Poisson process with

intensity A, and~Zi !i51
` a sequence of i+i+d+ Uni~0,A! variables, also independent of

~Ti !i51
` + If we let

ZX 5 min$Ti ;Zi # r1~Ti !%, (16)

then indeed ZX 5
D F+ Using ~16!, but with r1 replaced byr2, we get a ZY 5

D G and,
certainly, ZX # ZY+ By using a Poisson point process in@0,`!2, a similar technique
works for unbounded failure rate functions~cf+ Lindvall @3, Sect+ V+17# !+

But in general this method does not maximizeP~X5 Y! among couplings such
thatX # Y+We have understood that for exponentially distributed variables+Write
Ri ~x! 5 *0

x ri ~s! ds for i 5 1 and 2+ For r1 $ r2 andr1 Ó r2 we get

P~ ZX 5 ZY! 5E
0

`

r2~x!e2R1~x! dx

and this probability is strictly smaller than that of ag-coupling~X,Y!+ Indeed,

P~X 5 Y! 5E
0

`

min~r1~x!e2R1~x!, r2~x!e2R2~x! ! dx

$ E
0

`

min~r1~x!e2R1~x!, r2~x!e2R1~x! ! dx

. E
0

`

r2~x!e2R1~x! dx+
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