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We consider the quasi-periodic solutions bifurcated from a degenerate homoclinic
solution. Assume that the unperturbed system has a homoclinic solution and a
hyperbolic fixed point. The bifurcation function for the existence of a quasi-periodic
solution of the perturbed system is obtained by functional analysis methods. The
zeros of the bifurcation function correspond to the existence of the quasi-periodic
solution at the non-zero parameter values. Some solvable conditions of the bifurcation
equations are investigated. Two examples are given to illustrate the results.
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1. Introduction

Homoclinic bifurcations are interesting topics in dynamics because they are related
to many important dynamical behaviours, such as subharmonic bifurcations and
chaotic motions. The problem of determining the parameter values for which the
perturbed system undergoes subharmonic or homoclinic bifurcations arises in a
variety of applications. Some of these are predator—prey models [5,7], climate sys-
tems [18], travelling waves in neurons and Nagumo equations [4,11,14] and chemical
stirred tank reactors [1,12].

Various techniques have been used to study homoclinic bifurcations. From a geo-
metrical viewpoint, Melnikov [15] investigated the persistence of homoclinic solu-
tions in R%. Mock [16] used the topological degree. By using functional analysis
methods Chow et al. [6] considered the homoclinic and subharmonic bifurcations
of Duffing’s equation under damping and excitation. Palmer [17] generalized the
methods in [6] to RY. Under the assumption that the unperturbed system had a
homoclinic solution and a hyperbolic equilibrium, Palmer [17] obtained some condi-
tions for which the perturbed system possessed a homoclinic solution. Note that the
homoclinic solution for the unperturbed system is an orbit of the intersection of the
stable and unstable manifolds for the hyperbolic equilibrium. When the dimension
of the intersection is 1, the homoclinic solution is called non-degenerate. Other-
wise, it is called degenerate. Generally, the homoclinic solution is non-degenerate
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in R? or R3 since the dimension of the intersection is always 1. In §4, we give an
example in R®, which illustrates that the dimension of the intersection is 3. Hence,
the dimension can be as much as [N/2] in RY. From the late 1980s onwards, many
authors have studied degenerate homoclinic bifurcations [3,8-10,21]. In [9], Gru-
endler studied the persistence of the degenerate homoclinic solution for the system
in RY with two parameters, 1 and us. By the methods of functional analysis,
he obtained some curves that passed through the origin in the (y1, ug)-plane. The
perturbed system had a homoclinic solution when the parameters were on these
curves.

The subharmonic bifurcations have been studied extensively in [2,8,13,19-21].
In [2], Battelli and Feckan investigated the subharmonic bifurcations for the singular
system

ex = f(x) +eglx, t,e), (1.1)

where € RY and g is periodic in t. By assuming that the system @ = f(z) had a
non-degenerate homoclinic solution, Battelli and Feckan obtained some conditions
to ensure the persistence of the subharmonic orbit for system (1.1). The subhar-
monic bifurcations from a degenerate homoclinic orbit for system (1.1) were studied
by Feckan and Gruendler [8].

In [6,8,17,19] and references therein the persistence of the homoclinics and sub-
harmonics bifurcated from non-degenerate or degenerate homoclinic solutions were
considered. In this paper, we investigate the existence of a quasi-periodic solution
near a degenerate homoclinic solution. When the parameter values are zero, the
system has a hyperbolic equilibrium and a known degenerate homoclinic solution.
We obtain some criteria for which the quasi-periodic solution persists for small
non-zero parameter values. Precisely, we consider the system

#(t) = f(x(t) + eg(z(t), 1, 2), (1.2)
where z € RN, ¢ € R and g is periodic in . We make the following assumptions.
(H1) f(0) =0, where the eigenvalues of Df(0) lie off the imaginary axis.

(H2) The unperturbed system
it) = f(z(1)) (13)

has a bounded solution « that is homoclinic to 0. That is, there is a differen-
tiable function v(t) satisfying ¥(t) = f(v(t)) and lim};_,o v(t) = 0.

(H3) ¢(0,t,e) =0 and g(z,t+ T,¢) = g(x,t,c) for some T > 0.

Assumption (H1) implies that 0 is a hyperbolic equilibrium of (1.3). In [8,9,21],
the homoclinics and subharmonics bifurcated from a known homoclinic are exten-
sively studied. By methods of functional analysis, we investigate the appearance
of quasi-periodic solutions near a homoclinic under the assumptions (H1)—(H3).
Using a variant of the Lyapunov—-Schmidt reduction, the bifurcation functions for
the existence of quasi-periodic solutions are obtained. Some criteria for the solvabil-
ity of the bifurcation function are given. When ~ is a non-degenerate or degenerate
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homoclinic, some examples are provided to illustrate our results. Hence, the the-
orem for the existence of quasi-periodic solutions is valid for both non-degenerate
and degenerate homoclinics.

2. Preliminaries and main result

Let D;h denote the first derivative of h with respect to the ith variable, and let
D;jh denote the second derivative of h with respect to the ith and jth variables.
By (H2), (1.3) has a homoclinic solution, . The linear variational equation of (1.3)
along v is

u(t) = Df(y(t))ult). (2.1)

Let W*® and W' denote the stable and unstable manifolds of the origin, and let dg
and d, denote their corresponding dimensions, respectively. Since 0 is a hyperbolic
fixed point and + is homoclinic to 0, v must approach origin exponentially along
W?s as t — oo, and along W" as t — —oo. Hence, v C W* N W". Note that
Df(y(t)) = Df(0) as t — o0, giving a hyperbolic N x N matrix. By the roughness
of exponential dichotomy, (2.1) has exponential dichotomies both in R* and in R™.
Feckan and Gruendler [8] obtained two solutions for (2.1): one for ¢ > 0 and one for
t < 0. The two solutions match at ¢ = 0. For the solutions of (2.1), the following
lemma holds.

LEMMA 2.1 (Feckan and Gruendler [8]). There exist a fundamental solution, U, of
(2.1) along with a non-singular matriz C, constants « > 0, M > 0 and four
projections, Pss, Pus, Psu and Py, such that Pss + Puys + Psy + Pouw = I and the
following properties hold:

(1) |U(t)(Pas + Pus)U(5)71 < Me?*0 for 0 < s < t;
(ii) |U(#)(Pay + Pau)U(s)71 < Me?2(=2) for 0 <t < s;
(iil) |U(t)(Pss + Po)U ()7 < Me?*(=5) for t < s < 0;

(®)(

(iv) |U(t)(Pus + Pan)U(8) 7Y < Me?*(5=) for s <t <0;

)
)
)
)

sup
t>0

U(t)(P& + Pus)U(t)71 —-C <IOS 0) 071

(vi)

sup
t>0

U(t)(Pau + Pa)U(8) " — C (0 f) o

(vii)

)
(viii)
o)
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where Is and I, are ds X ds and d,, X d, identity matrices, respectively. In addition,
rank Py = rank Py,.

Let u; denote the ith column of U. By (ii), (iv) and (i), (iii) of lemma 2.1,
respectively, we know that

lim w;(t) =00 if u; € PyU, lim w;(t) =0 if u; € PsU.

[t]|—o0 [t]—o0

Let d := rank Ps. Renumbering if necessary, we can take Py and Py, such that

I, 0 0 04 0 0
Pu=|0 04 0|, Ps=[0 1, 0],
0 0 0 0 0 0

where I; and 04 are d x d identity and zero matrices. Hence, we have

lim wu;(t) =00, lim ugy;(t) =0, i=1,2,...,d.
[t|—o0 [t]—o0

Let u;- be defined such that (uj-,u;) = &;j, i,j = 1,...,d, the Kronecker delta.
The vectors u;- can be computed as follows. Let U+ be a matrix such that u;-
is its ith column. Then UU = I, the identity matrix. Differentiating the equa-
tion, we get UMU + UMU = 0. Hence, Ut = —UHUU~' = ~UDf(y). Then
Ut = —Df(y)!U*, which implies that U~ is the adjoint of U.

We introduce some notation. For ¢ =1,...,d, let

d—1
M;(B,¢e) = % > XijrBiB + emi, (22)

G.k=1
where

Nk =2 [ DG shuar(s) s,

m=2 [t e)ar(s).5,0) ds.

Define M: R?* ! x R — R by
M(ﬂ76):(Ml(ﬁ,s)v"'aMd(ﬂag))‘ (23)

The following is the main result of the paper.

THEOREM 2.2. Assume that (H1)-(HS3) hold. If there exist some (3*,e*) € R4™1 x
R such that M(3*,e*) = 0 and D )M (5*,€*) is non-singular d x d matriz, then
there exist sg > 0, pg > 0 and a C-function p*: (—sq, s0) X (po,0) — R such
that (1.2) with e = s%*(e* + ¢*(s,p)) has a quasi-periodic solution for (s,p) €

((—s0,50)/{0}) x (po, 00).

If d = 1, the homoclinic solution 7 is non-degenerate. This is a special case of
theorem 2.2. Then (2.1) has only one bounded solution. Hence, the adjoint equa-
tion of (2.1) also has only one bounded solution, say u'. For the non-degenerate
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homoclinic bifurcation, there is no § in M. That is
M(e) = ne,

where

n=2 /00 (ul(s),g('y(s), 5,0))ds.

— 00

Then we have the following corollary.

COROLLARY 2.3. Assume that d = 1 and (H1)-(H3) hold. If n # 0, then there exist
s0 >0, po > 0 and a C'-function p*: (—sq,s0) X (po,0) — R such that (1.2) with
e = s%¢*(s,p) has a quasi-periodic solution for (s,p) € ((—so,50)/{0}) x (po, ).

At the end of the paper, we give some examples to illustrate our results. Exam-
ple 4.1 is for the bifurcation of the non-degenerate homoclinic solution. This illus-
trates corollary 2.3. Example 4.2 considers the bifurcation of the degenerate homo-
clinic solution. It shows that the dimension of the intersection of stable and unstable
manifolds can be as high as [N/2]. Theorem 2.2 is applied for the degenerate case.

3. The proof of theorem 2.2

To prove theorem 2.2, our strategy is to construct a quasi-periodic solution of (1.2),
which is formed by two periodic functions with rationally independent periods. We
define some Banach spaces. For each p > 0, let

X, =C%(-p.p)RY), X, ={v€X,|z(-p)=2()}

For x € X,,, it is clear that x is a periodic function with period 2p.
Consider a non-homogeneous equation

£=Df(v)z+p, (3.1)

where p € X,.
We define an operator K,: X, — C°((—p,0) U (0,p), RY) by

U(t)Psuar + U(t)(Pus + Pa)U ™' (—p)b1
LU / (P + Pa)U (), pu(s)) ds
LU / ((Pas + Pun)U™4(5), p(5)) ds, ¢ € (~p,0),
(Kpp)(t) = N (32)

U (t) Pusaz + U ()(Psu + Puu) UL (p)b2

+U(H) / (P + Pus)U~(5), p(s)) s

~ue) [ (Pas 4 Pan)U A (s), () ds, 1 € (0.p),

where a;,b; € RV, i = 1,2, are unknowns.
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It is easy to check that (K,u) is a solution of (3.1) on (—p,0)U(0, p). If there exist

some a; and b; such that (K,u)(07) = (Kpu)(0F) and (K, )( p) = (Kpp)(p ) then
(Kpp) € X, is a periodic solution of (3.1). Asin [8], if (K,u)(07) = (K,u)(0T) and
(Kpp)(—p) = (Kpp)(p), then there exist b} (p, ) satlsfylng |bX (p, )| = |u\0( —op)
such that

/_p (PuaU ™ (), 1(3)) ds + PouU ™ (=p)05 (p, 1) = PuuU ™ (p)3(p, 12) = 0

for ;1 € X,,. Define the operator £,: X, — RY by

L) = U~ (=p)bi(p, ) = U~ ()05 (p, 1)
Clearly, |£,(1)| = |p|O(e™P).
Using L,,, we define a subset of X, by

P

X, = {z €X, (PauU1(5), 2(5)) ds 4+ PauLy(2) = o}.

-p
From the above discussions, we know that (3.1) has a periodic solution (K,u) with
period 2p if p € Xp. Thus, Kj: Xp = X

Let b: R — [0,00) be a smooth function with compact support and supp(b) C
(—2,2). For each a > 2,

/_aa b(s)ds = /_j b(s)ds + /_22 b(s)ds + /; b(s)ds = /_22 b(s) ds.

Let
(1) = 2
S, b(s)ds
For a > 2, it is clear that
’ C(s)ds=1

Define a matrix

Ap = (aij(p))axa
where a;;(p) = (LpCuj)i, 4,5 = 1,...,d. Clearly, a;;(p) = O(e™*?). Then |4,| =
O(e™“P). Hence, there exists p; > 0 such that the matrix (I + A,) is invertible for
p € (p1,00). Define a vector V: X, — R by

V(z) = ((I+A,)  (2),0,...,00T := (Vi(2),...,Va(2),0,...,0)T, (3.3)
where v(2) = (v1(2),...,v4(2))T and
w2 = [ 0 (0) () s+ (69) (3.0
Note that (I + A,)"' =1 — A, + A2 — .- and |Ay| = O(e™*?). We get V(z) =
v;(z) + O(e=?P). Define a map II,,: X, — X, by
(Ipz)(t) = C(H) Pl U )V (2) = i((t)ui(t)vi(z)'
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With a proof similar to that in [8], we get that IT,, is a projection and Im(I —IT,,) C
X, for p > 2.

Since K,: X, — X, and Im(I — II,) C X, K,(I — IT,)(12) is a periodic solution
of period 2p. We want to construct another periodic solution with period 2v/2p. For
each p > 0, let

X5 = CO=V2, V) RY), X 5, ={z € X s, | 2(=V2p) = 2(V2p)}.

Forz € X J3p- it 1s obvious that z is a periodic function with period 2v/2p. Now we
return to considering the solutions of (3.1) with p € X 5.
As in (3.2), we define an operator K 5,: X 5, = ((—=v2p,0) U (0,4/2p), RN) by

U(t)Powds + U(t)(Pus + Pua) U~ (—v2p)by
LU / (P + Pa)U™2(5), u(s)) ds

+U(t)/_ﬁ (Pos + Pa)U=1(s), p(s)) ds, ¢ € (—v/2p,0),

(K pi)(t) = ~
v : U(t)PusaQ + U(t)(Pbu + Puu)U_l(\/ip)bQ

+ U(t) /O ((Pss + Pus)U_1(5)7 M(S)) ds

V2p
~U() / (Pas + Pun)U™N(s), () ds, £ € (0,v2p),
(3.5)

where a;, b; € RN, i = 1,2, are unknowns.
It is clear that (K 5, u) is a solution of (3.1) with p € X 5, on (—v/2p,0) U
(0,+/2p). If

(K i) (07) = (K 5,1)(0%) and (Kﬂpu)(—‘/ip) = (Kﬁpu)(\@p)

for some @; and b;, then (K /3,1) is a periodic solution of (3.1) with period 2v/2p.
Assume that

(K ) (07) = (K ) (0F) and (K y5,0) (—V2p) = (K y3,1) (V2p).

Following the proofs in [8], we find that there exist b = 5;‘ (p, p) satisfying

16 (. )| = | O(e™)

and

V2p - ~
/_ﬁ (PaU (), u(5)) ds + PuuUH(=V2p)b7 (p, 1) — PuU 1 (V2p)03(p, 1) = 0

for p € X s5,. Define a map L s, Xﬁp—HRN by

L s5,(1) = U™ (=V2p)bj (p, 1) — U~ (V2p)b5 (p, ).
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Then | /5, (1) = |p|O(e™P). Let

V2p .
/ N (]DuuU (5)7 Z(S)) ds + Puuﬁ\/ﬁp(z) = O}

—V2p

X\/ﬁp = {Z € Xz

It is clear that (K g u) is a periodic solution of (3.1) with period 2v/2p for p €
X /5y This implies that the map K 5, X 5, = X5,
Using £ aps We define a matrix

Ayzp = (@i (V2p))axd »
where &;;(v/2p) = (L 5,¢u5)i 4,5 =1,...,d. Tt is obvious that
|ai;(V2p)| = O(e™*?),

and hence [A 5,| = O(e”*P). Then, there exists po > 0 such that the matrix
(I +A,z,) is invertible for p € (ps, 00). Define a vector W: X 5, — RY by

W(z)=(I+ Aﬁp)_lw(z)ﬂ, 0T = (W (2), . Wy(2),0,...,00T, (3.6)

where w(z) = (w1(2),...,wq(z))T and

V2p
wi(z) = / (), 2(8) ds (£,

Since (I + A 5,) ' =1 —A 5, + A?/ip + -+, we know that
Wi(z) = wi(z) + O(e™ ")
for 2 € X 5, and p € (p2,00). Define a map 15, X5, = X 3, by

d

(1T,/3,2)(t) = C(OPuU (W (2) = Y C(#)us()Wi(2).

i=1
Similarly to [8], we get that II s, is a projection, and
Im(I — 1T s5,) C X s5, forp>2.

Hence, K s5,(I — II /5,)(1) is a periodic solution of period 2v/2p.
Let IT, 5, = 5(IT, + II s3,) be defined by (II, 5,)(z) = 3(IT,(2) + II s5,(2))
for 2 € X 5,

LEMMA 3.1. Hp7\/§p 18 a projection.

Proof. Let W(z) = (W1i(2),...,Wy(2)) for z € Xy /3, Where the W;(z) are defined
in (3.6). For z € X 5, we get from (3.4) and the definition of II 5, that

vi(I f5,2) = /p (ui(s), (I s5,2)(s)) ds + (Lp(II, /5,2))s

- / T (5), C(5) PanlU (5)W(2)) s + (£C(5) PanU ()W (2):

= (W) + (AW ()i = ([ + A)W(=)); fori=1,....d.
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Hence, we obtain that

(Il 3,2) = (11(I /3,%), -, Va

By (3.7) and the definition of IT,, we have
(I 5,2) (1) = )

t) PuU ()
(t)
(t)
WWHW(2) =

which implies that IT,(II, 5,2) =

Similarly, we can obtain II s, (II,z) = 1I,

For z € X s5,, we obtain that

Hsfp( z) = 1, fp(Hp fp(z))

l
2

N PN T T e V) i M
'@m 'Um[o 'G:I *@m
—_~ o~ /—\

t|

= 5(

which implies that I, s, is a projection.

P

REMARK 3.2. By the proof of lemma 3.1, we know that Hp(ﬂﬁp)

1 /5, (11,) = II,,. Hence, we obtain that

(I = 1I,) 11 P2
p,V2p

p,\/ﬁp o

Hp,\/ip -
—1II Vap = 0.

PV2p
Similarly, we have (I — II, 5,)I1, s, =0.

Let K, 5,: X 5, = X /3, be defined by

Kp’\/ﬁp(z)
where 2z € X 5. Note that K,(I —

solution.
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(11, +Ufp)( 1, /3,(2))

vap(2) + I 5, (1L, /5,(2))]
( ( 2) + 11 5,(2)) + I 5, (5 (11,
2) + LI 5 (2) + 11 5,

2) + I 5, (2) + 1 (2) + 11 /5, (2)]
z) + 11 f5,(2)) = 11

p\/ﬁpi

1099

(I + A)W(2). (3.7)

v(Il 3,2),0...,0)"
(I + A(p)W(2)),0...
Wa(2),0...,0)T

,0))"

2(2) + 1T g, (2)))]
1,(=) + 1%, (2)]

,\/ip(’z)’

O

= Hﬁp and

fp
7]7 »(Ip +pr)

ST} + IT,IT /5,
(I, + 11,

p,

= K,(I = II,)(2) + K s5,(I = I 3,)(2),

II,)(z) and K s5,(I — pr)( z) are periodic
solutions with period 2p and 2\[ 2p, respectively. Then, K

».v/3p(2) I8 a quasi-periodic
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For each a > 0, let

d—1
$(8,a) = v(—a) = y(a) + Y Bj(tar;(—a) — tar;(a)),

Jj=1

where 8 = (f1,...,84-1) and §; € R. Since v is a homoclinic solution and uq;,
j=1,...,d—1, are bounded solutions, we know that |¢(3, a)| = O(e~**) for large a.
Introduce a transformation

d—1
B o 9(8,p), | $(8,V2p)
z(t) =5(t) + ;ﬁjudﬂ () +=(0) + =p =i+ ==t (38)
where z € X 5 .
By substituting (3.8) into (1.2), we obtain
£(t) = DF(1(1)2(1) + by (2, B, 1), (3.9)

where z € X V3p and

d—1
(2 B,e.) = f(7<t)+z Bt ()4 2(t) 4 202, 4 96 ﬁp)t>

j=1 4p 4v/2p
_ _ _¢(B,p) (5, v2p)
f(v(#)) = Df(v(t))2(t) I NGR

d—1
3" BDF( B 1

o), . (b(ﬁ’\/ép)t,t,g).

d—1
#2930+ X Arnars ) +2(0) + 20+ 202

Define a map hy: X 5, x R xR — X /3, by hy(z, B,€)(t) = Bp(z,ﬂ,s,t). Then
(3.9) is
2=Df(y)z+ hy(z, B, ¢). (3.10)

Since ¢(B,a) = O(e™“®), there exists py > 0 such that ¢(5,p) = O(e™*P) and
(B,v2p) = O(e™P) for p € (p4,00). Hence, we get that

d—1 d—1
ol .2) = (v + X Byuass + ) = 1) = DF)z = 3 A0S (s
j=1

j=1
d—1

+eg (7 + Z Bijudt; + z,t, 5) + O(e™P).
j=1

https://doi.org/10.1017/50308210515000189 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210515000189

From homoclinics to quasi-periodic solutions for ODEs 1101
Through direct computations, the function h, has the following properties.
|hp(0,0,0)] = O(e™P), |hp(0,0,€)] = O(le]) + O(e™P),
[D1hp(0,0,€)| = O(Je]) + O(e™),

Oy oh,
a5, " O)’ Ole™), 27-(0,0,)| = O(e]) + O(e™ ),
9B; aB; .
82
‘aﬂjaﬁk (O 0 0)‘ = D2f(7)ud+jud+k + O<efoép)7
68h (0,0, 0)’ = g(7,t,0) + O(e™°P).

Our goal is to solve (3.10) for z = 2*(B,¢,p) in X s5,. Note that II, 5 and
(I — 1, s5,) are projections. By (3.10), if we can solve

5= D)z + (I~ 10, 5, (2 B.2) (3.12)
for z = 2*(8, &, p), then we can get the bifurcation equation

0= 11, /3,hp(z" (B, €, p), B €). (3.13)

If there are some parameters (3,e,p) € R?™! x R x R satisfying (3.13), then
z*(B,¢€,p) is a solution of (3.10).

LEMMA 3.3. There exist a neighbourhood 2 C R and constants 1 > 0 and
ps > 0 such that (3.12) has a solution, z = z* (B, €,p), for (8,e,p) € 2x (—e1,€1) X
(ps, 00) satisfying |27(0,0,p)| = O(e™"7).

Proof. We define amap F, 5 : X 5 xR xR = X 5 by

Fyvap(2,8,6) = K, g (I = 1T, /5,) (2, B, €). (3.14)

Clearly, the fixed points of F,,  5,(-,,¢) are solutions of (3.12). By the definition
of K, /3, and remark 3.2, we have

K, vy =11, s3,)hp(2,5,¢€)
:Kp(ffﬂp)(f 11, 3,)hp(z,8,¢€)
+K\/§p(I—H\fp)(I 1, ) »(2,0,¢€)
=Kp[(I —1I) — (I — II) pfp] »(2,B,¢€)
+ K gl =1 5,)I = 1T, /5,)1hp(2, B, €)
= Ky(I = I)hy(2,8,¢) + K f5,(I = 11 3,)hp(2, B, €).

Then, we have

F, ap(2:8,6) = Kyp(I — I,)hy(z, B,€) + K 5,1 = I s5,)hp(2, B, €).

Hence, the fixed points of £ ( B, ¢e) are quasi-periodic solutions.
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Note that K, 5, and (I —II, s,) are uniformly bounded in p. By (3.11) and
(3.14), we have

1Fpv2p(0,0,0)] = O(e™),
1Fpv2p(0,0,8)| = O(le]) + O(e™),
O(lel) + 0O

|D1F, 3,(0,0,¢)] = (e™P), (3.15)
oF
1 8200,0,0)| = O) + Ofe7)

Let B1(0,71) C X 5, and B2(0,712) C R9=1 be balls centred at the origin with
radius r1 > 0 and ro > 0, respectively. By (3.15), there exist sufficiently small
r1 >0, 7y >0 (r1 > 12), €11 > 0 and large ps; > 0 such that

F, 5, (0,0,6) < 371, |DiF, f5,(2,8,6) < 5, |D2F, s5,(28,6) < 3
(3.16)

for (z,0,e,p) € B1(0,71) x Ba(0,72) X (—€11,€11) X (P51, 00).

For (2, 3,¢,p) € Bl(o 71) X B2(0,72) X (—€11,€11) X (P51, 00), let p1: [0,1] = X 5,
be defined by p1(7) = E, (tz,70,¢). By the smoothness of F, s, n (8,¢), we
see that p1 is C! in (3,¢). Hence, we have

Fp,\/ip(zaﬂa 5)

td
—nO)+ [ Lo
0 T
1
=F, s35,(0,0,¢) +/ [D1F, 5,(72,7B,€)2 + D2F, 5 (T2,706,€)3]dr
0

Taking norms, we have

|F, /5,(2,8.€)
1
< |F (0,0 &) +/ [|D1Fp’\/§p(7'z,7'ﬁ,€)||z| + |D2Fp’ﬁp(7'z,rﬁ,€)\|ﬁ|]d7'
1
<im —|—/0 [Ar1 4 ra]dr < rq,
where we have used (3.16). Thus, F, 5,(+,3,€): B1(0,71) — B1(0,71) for (8,¢,p) €
B5(0,72) X (—€11,€11) X (P51,00
For 21,20 € B1(0,71), (8,¢,p) € B2(0,72) x (—€11,€11) X (p51,00), define

P2 [071] _>X\/§p

by pa(7) = F, 5,(721 + (1 — 7)22, B, ). Clearly, ps is C!. Then there exists 79 €
(0,1) such that

Fp’\/ﬁp(zhﬁﬂ 5) - Fp,\/ﬁp(z27ﬁ75> = p2(1) - pQ(O) = pIQ(TO)
= Dle7\/§p(T02’1 + (1 — To)ZQ,Tﬂ,E)(Zl — ZQ),
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which implies that
\E, ap(21,8,€) = F, 5,(22,8,€)| = |D1F,  s5,(Toz1 + (1 — 7o) 22, 7, €)[|21 — 22
< %\Zl — 2|,

where (3.16) is used. Hence, F, 5 (-, 3,¢) is a uniformly contractive map. By the
uniformly contractive pr1nc1p1e there exist a neighbourhood 0 € 2 C R4~!, con-
stants €1 > 0 (g1 < €11) and p5s > 0 (ps > ps1) such that F ( B,e): B1(0,11) —
B1(0,71) has a unique fixed point z = 2*(8,¢,p) satlsfylng

Z*(ﬂ,{f,p) = Fp7\/§p(2*(6,5ap)vﬂ7€) for (ﬂvg’p) € 2 x (751351) X (pSaOO)-
(3.17)

By the definition of F,, 5, (3.14) and (3.17), we have
Z*(ﬁ,&',p):Kp fp(I_H )h’p(’z*7575)
= Kp(I = Iy)hyp (27, B,6) + K 5,(I = I 5, )hp (27, B,6). (3.18)
From (3.17), we have
2"(0,0,p) = F, s5,(27(0,0,p),0,0). (3.19)
Define a map p3: [0,1] = X 5, by p3(7) = F, s5,(727(0,0,p),0,0). Then we obtain
Fp,\/ip(z*(ovoap)vovo)

=p3(0)+/0 ps(T)dr

1
= F,v3,(0,0,0)+ /0 D1F, /5,(727(0,0,p),0,0)2*(0,0,p) dr.
Taking norms, we get from (3.16) and (3.19) that
12°(0,0,p)| = |F}, 2, (2(0,0,p),0,0)]

<|F fp(ooou/ ID1E, 5, (72°(0,0,p),0,0)| |2*(0,0,p)| dr

<IF, 15,(0,0 o>|+/ 1122(0,0,p)) dr
=|F fp(O 0,0)| + 3|z (0,0,p)|. (3.20)

By (3.15), |F, 3,(0,0,0)] = O(e™?). Hence, (3.20) implies that [2*(0,0,p)| =
O(e™?P). O

From lemma 3.3, we see that z = 2*(3, &, p) is a solution of (3.12). By substituting
z = z* into (3.13), we get the bifurcation equation,

d

I, o, hp (2", B,6) = 3C(1) Y wit)[Vilhy (2", B,€)) + Wihy (2", B,¢))] =

i=1

https://doi.org/10.1017/50308210515000189 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210515000189

1104 C. Zhu

By the linear independence of w1, ..., uq, the bifurcation function is equivalent to
the system

(ﬂagp) ( ( 6a )) ( p(z*7ﬂ7€))207 Zzlaad
It is obvious that z = z* is a solution of (3.10) if H;(8,e,p) =0,¢=1,...,d, for
some (0, ¢,p). Since V;(z) = v;(2) + O(e~*?) and W;(z) = w;(2) + O(e™*?) by (3.3)
and (3.6), the bifurcation equations are
Hi(ﬁ767p)
= v;(hp(2", 8,€)) + wi(hy (2", B,€)) + O(e™*P)

= [ 9.l Bu0)6)) s+ (L7,

ﬁp n h * d E h * O —ap
+/_\/§p(ui (s), hp(2*, B,€)(s)) ds + ( N »(2%,08,€))i + O(e™P)
V2p

= [ BN s+ [ )yl 525D ds + O )
—p —V2p

Since hy(z, 8,¢)(t) = ﬁp(z,ﬂ,s, t), by the definition of ﬁp in (3.9), we have

Hi(ﬁagap)
V2p

= [ s s+ [ )Tyl B ) ds + 0
-p —V2p

d—1
Y iy, B:p) (B, V2p)
= [ (0 (50 + X B+ 570+ 2l 20

j=1
- 7)) ~ D)= (s) - A2 - ¢(f;/}/§p)

d—1

= BiDf(v(s))uar;(s)

1
d—1
AUgyi(s) + 2" (s ¢(ﬁ’p)s (8, \/ip)s s s
+€g<7(s)+;ﬂ] a+j(s) +27(s) + 1 + o 76>)d

V2 d—1
’ v SBp) | $(8,V2p)
Jr/ﬁp ”f(s)’f(V(S)Jr;ﬂjudﬂ(S)+Z (s) + e i )

d—1
6Br) _ 90 N

= f(4(s)) =Df(v(s))z"(s) — ™ NS 5))udrj(s)
d—1
+eg( )+ Biuari(s) +2%(s)
" o(8,p)  d(8,v2p) —ap
+ 1 s+ Vo s,s,s))ds-ﬁ-O(e )
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-/ (uﬂsx / (v(s) - iﬂjudms) " z*<s>) — F(5) = DF ()" (5)
- gﬁij(’Y(S))Udﬂ( )+ 69( )+ Zﬂjudﬂ 2*(s), s,s)) ds

i /_ Z (ug(s), f(y(s) + dzl Bjua+;(s) + z*(s)) = f(y(s))
d—1

DA ()2 (s) — 3 B D () s )
d—1
+ ¢ s)+ Biudyj(s) +2%(s),s,e | | ds+ O(e™
g(w); i (5) + 2 (5) )) (&)
Jo%S) d—1
= [ (@ (56 X Brans 6+ 27(9)) = F0(5) = DI )
d—1 "~ d—1
=3 BDF(H($)) s (5) + g (ws) +3 Biuans(s) + ()5 )) s
j=1 j=1

+ /_ O; (uﬂs),f(v(s) - gﬁj“dﬂ‘(s) i Z*(S)>

<.
Il

— f(7(s)) = Df(~ Z@Df $))uart;(s)

rea(20)+ dz Bjuans(s) +2°(9).5. ) ) ds + Ofe™™).

Then we obtain
. d-1
mGen =2 [ (wt.5(56)+ X Buans(s)+26) )=o)

d—1
—f(y(s)) =D = Z BiDf(v(s))uar;(s)

+eg(109)+ S Bty (s) 4 (o). ) ) as+ o)

j=1
_9 /_ Wk (s), hy (%, B, )(s)) ds + O(e=7), (3.21)

Let H(B,e,p) = (H1(B,¢,p),...,Hi(B,e,p)). Through direct calculations, by (3.11)
and lemma 3.3, we get the following lemma.
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LEMMA 3.4. Fori=1,...,dand j,k=1,...,d—1, H;(B,e,p) satisfy the following
properties:

(1) z=z*(B,¢e,p) is a solution of (3.10) if H(B,e,p) = 0 for some (B,¢,p);
(2) H;(0,0,p) = O(e™?) and

gimm4»=0@‘wx
®)
5o 00 =2 [ LD () uses (s () s + 0 )
= )\ijk + O(e_ap);
(@)

T2 0.0 =2 [~ (9.9 ().5.0)) ds + 0™ = i+ 0(e )

here Aiji and m; are defined in (2.2).

By (3.21), lemma 3.4 and the notation of M(f,¢) defined in (2.3), we see that
M (B, ¢) is the main part of H(f3,¢,p). Thus,

H(B,e,p) = M(0,¢) + higher-order terms.

LEMMA 3.5. If there exist some (3*,¢*) € R4~ x R such that M(3*,*) = 0, and
Dg,o)M(3*,€*) is a non-singular d x d matriz, then there exist so > 0, pg > 0
and the Ct-functions 1*: (—sg,s0) x (pe, 00) — RI™L ©*: (=50, 50) X (pg,0) — R
such that z = z*(8,e,p) is a solution of (3.10), where 5 = s(8* + ¥*(s,p)) and
e =s%(e" +¢*(s,p)), for (s,p) € (=50, 50) X (ps,00).

Proof. Define a map H: (R¥™! x R) x R x R — R? by
1 * *
LHEE 40,8 o)), s 0,

H((¢,¢),p,5) =
M(B* 4+ ), e* + ), s=0.

For s # 0, it is clear that H((1, ¢),p,s) = 0 iff H(s(8* + 1), s%(e* + ¢),p) = 0.
Define a function G: R4~ x R — R% by

G(ﬂ,f‘:) = (‘[.—:’1(/6'76)7 R aHd(/B;E))v
where H;(83,¢) = lim,, . H;(8,¢,p). We define a map G: (R4~! x R) x R — R¢ by

LG5 +0), 2=+ 9)), s A,
G((%%@)as) = 5
M(B* 4+ o, e* + ), s =0.
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It is easy to check that
G((0,0),0) =0, Dy G((0,0),0) = Dy M(53*,").
Since M := Dy, ,)M(5*,€*) is non-singular, M~ is bounded. Let

H((wa‘p)v‘SJQ) = (7/%90) - M_IH(('LZJ,QO),S,]D),
G((.0),8) = (b, 0) = MTIG((¥, ¢). 5).

Tt is clear that the fixed points of H(, s,p) are zeros of H (-, s,p).
By the formula for G((¢, ¢), ), we obtain that

G((0,0),0) =0, D(w,@)g(<070)7 0) =0. (3.22)

Let r > 0, and let B(0,7) C R4~ x R be a ball with radius 7 centred at the origin.
By (3.22), there exist r; > 0 and s; > 0 such that

1G((, ), 8)l < 3 Diw,yG((¥,9),5) < 3 (3.23)

for (¢, ) € B(0,71) and s € (—s1, 81).
Note that

H((1/)7<P)vp73)—g((¢790)»3)
o {;[ms(ﬂ*w»s%*+@>,p>—c<sw*+w>,s2<5*+@>>], 40,

0, s=0

and

Dy, H((,9),5,0) = Dy, )G (¥, ), 5)

1
2 Pwp Hs(0" +9), s*(e" + ¢).p)

=M =Dy, ) G(s(B* + 1), s*(* + )], s#0,
0, s=0.

Then we have

|%<<o,o>,s,p>g<<o,o>,s>|{?'S'”O(e_”)’ RANCED
and
|D<w,w>%<<o,o>,s,p>Dw,@g((o,oxsn{O“S'”O(e_ap)’ T (3a)

By (3.24) and (3.25), there exist small r9, 5o > 0 and large pg; > 0 such that

H((¥, ), 8,0) = G((¥, ), 8)| < L}

! (3.26)
ID(p o) H((¥5 ), 8,0) = Dy, ) G((10, ), 8)| < 5
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for ((v, ), s,p) € B(0,r2) X (—s2,52) X (pe1,00). By (3.23) and (3.26), we have
ID o) H((¥, ), 8,0)| < [D(yp, ) H(¥, ©), 8, 0) — Dy, ) G(¥, ©), 8]

+ D(w,<ﬂ)g((¢»90)»5)|
<i+i=1 (3.27)

Let ro = min{ry,r2}. Then, (3.22) and (3.24) imply that there exist small s3 > 0
and large pga > 0 such that

|g((0a0)58)|<ir0} f ( )e( )x( )
or (s,p —83,8 Pe2, 00).
[H((0,0),5,p) = G((0,0), )| < § e
Thus, we get
[H((0,0), 5,p)] < [H((0,0),5,p) — G((0,0), 5)| +]G((0,0),5)| < 3r0.  (3.28)
Let §o = min{s1, s2, s3}, s = max{pe1,pe2}- By (3.28) and (3.27), we have
|H((O70)757p)| < %To, |D(w,¢)7‘l((¢7¢)asyp)| < % (329)

for ((v, ), s,p) € B(0,19) X (—80,50) X (Dg, 00).
For ((¢, ¢), s,p) € B(0,70) x (=30, 30) X (Pg, o0), define & : [0,1] — R by & (1) =
H(T(1, @), s,p). Then

1
?ww@@m:a@+ﬁavm7

=mwm@m+ﬁszwa@@mw&m1

Hence,

1
[H((4, ©), s,p)| < 370 +/ irgdr = 1o, (3.30)
0

where we have used (3.29).

For (wla Sol)a (,(/127 @2) S B(O7 T0)7 <S7p) S (_g()a gO)X <ﬁ67 00)7 define 62: [0; 1] — Rd
by &(7) = H(T(¥1,01) + (1 — 7) (b2, ¢2), 8, p). Then & is C. Hence, there exists
70 € (0,1) such that

H((1, 1), 8,p) — H((Y2, 92), 5,p)
= &(1) = &(0) = & (7o)
= Dy, H(10(¥1,01) + (1 = 70)(¥2, 02), 5, p) ((¥1, 01) — (Y2, 2)).

Taking norms, we get from (3.29) that

[H((¢1,1),5,p) — H((¥2,02), 5, p)| < 31(¢1,01) — (2, 02)|. (3.31)

By (3.30) and (3.31), H(-,s,p): B(0,179) — B(0,7¢) is a uniformly contractive
map on (—3§g, 8o) X (Pg,00). This implies that there exist s4 > 0, pgs > 0 and the
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functions 1*: (—s4,54) X (Pe3,00) = RI™L *: (—s4,54) X (pe3, 00) — R such that
H(-, s,p) has a fixed point,

(¥, ) = (" (s,p), 9" (s,p)) for (s,p) € (—54,84) X (p3,00).

Let so = min{sy, s2, $3, 84} and pg = min{pg1, pez, Pe3 }- By the definitions of H, H
and H, we obtain

H(s(B8" + 4" (s,p)), 8*(e" + 9" (s,p)),p) = 0

for (s,p) € ((—s0,0) U (0,50)) x (pg,00). Since the bifurcation functions H vanish,
we know from property (1) of lemma 3.4 that z = z*(s(8* + ¥*(s,p)), s2(e* +
©*(s,p)),p) is a solution of (3.10) for (s,p) € ((—s0,0) U (0, s0)) X (pg, ). O

Let po = max{2,p1,...,ps}. For (s,p) € ((—s0,0) U (0,50)) x (pg,0), from
transformation (3.8), system (1.2) with ¢ = s?(¢* + ¢*(s,p)) has a solution given

by
d—1
() =700+ 3 Apuass )+ (3.2 0)+ LR+ WA, )

where [ = (3(6f + 1/’?(5717))’ .- ~,5(5§71 + 1/’271(5,1)))),5 = 52(5* + ﬁP*(S,p)), B* =
(Bt,...,05_1), ¥*, " are given in lemma 3.5, z* is given in lemma 3.3. By (3.18),
(3.32) can be written as

d—1
" (t) =7(t)+25jud+j(t)+Kp,¢§p(I pvap) (27,8, €) (1)
L 9B.p), 6, V2p),
4p 4/2p
=y (t) + x3(t),
where
w1 (t) = 37(t) + Z Mudﬂ'(t)
(1 = 0y (= pre) (o) + LT D),
d-1 s(B3* (s,
ri() = 1) + Y DD, )
+ K gy (T — I g (2", B, ) (1) + ¢(8(ﬁ*+;ﬁ\"/(2fl;p)),\/§p)t.
Since( )Xp—>X and K,: X, — X,, we have K,(I — IT,): X, — X,.
Thus, K,(I — Iy)h, (2%, 5,¢€) € Xp, and hence K p(I — Ip)hy(2*, B, €) is a periodic
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function with period 2p. From the formula for ¢(3,p) we obtain that

23 (=p) = 57(—p) + Z 38(0; + 05 (8,p))uas; (—p) + Kp(I — )by (2", B,€)(—p)

d—1
= 37(-p) + ' 55(67 + 5 (s,p))uar;(—p) + Kp(I = ITp)hy (2", B,€)(—p)
1 " d—1
(50 =20+ X5+ 56 s () — s )

j=1
1

d—1
= {0+ X5+ 5 o) s ) — s )}
j=1

+ Kp(I — 1p)hy(2%, B,€)(—p)
= z1(p).
Thus, z7 is a periodic function with period 2p. Similarly, we have that x% is a
periodic function with period 2v/2p. Hence, z* = % +23 is a quasi-periodic function
and hence a quasi-periodic solution of (1.2) with e = s2(¢* + ¢*(s,p)) for (s,p) €
((=s0,50)/{0}) x (po, 00).
4. Examples
We now give some examples to conclude the paper.
ExaMpPLE 4.1. Consider the system
& = @9 + e(a? + x3),
By =1 — 225 + (1 + x2), (4.1)
T3 = 2r3 + 5(331582 —+ x9 COS 27Tt).

Let r(t) = secht. The unperturbed system

jjl = T2,
By = m1 — 2273, (4.2)
.’kg = 21’3

has a homoclinic solution y = (r,7,0). The linear variational equation of (4.2) along

v is
Uy 0 1 0 Uy
’112 = 1—-6r 0 O (15} . (43)
’[L3 0 0 2 us

Let P be a differentiable function satisfying P72 = 1. Through direct calculation,
we see that (4.3) has the following fundamental solution:

uy = (Pr, (Pr)’,0), ug = (#,%,0), us = (0,0,e?).
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Clearly,
lim |uy(t)] = oo,
[t]—o0
lim |us(t)] =0,
[t]—o0

tlizgo ‘U3(t)| = 00,

Jim (1) = 0.

Hence, d = 1. Let u{ = (—#,7,0). u{ is the bounded solution of the adjoint
equation of (4.3). Note that d = 1. There is no § in M. We compute 7 as follows:

n= /OO (u1(s)*, g(7(s), 5,0)) ds

— 00

= /OO ((—#(s),7(s),0),col(r(s)?,7(s) 4+ 7(s), r(s)(s) + 7(s) cos(27s))) ds

— 00

=— /00 #(s)r(s)® — 7(s)r(s) —7(s)? ds

— 00

= /00 3r(s)°r(s)® +7(s)*ds = 2 # 0.

— 00

By corollary 2.2, there exist so > 0, pg > 0 and a function ¢*: (—sg, sg) X (pg, 00) —
R such that system (4.1) with e = s2p*(s,p) has a quasi-periodic solution for

(s,2) € ((=50,50)/{0}) x (po, o0).

In example 4.1, the homoclinic solution of the unperturbed system is non-de-
generate. We use an example with degenerate homoclinic solution to illustrate the-
orem 2.2.

EXAMPLE 4.2. Consider the system
1 = x9 +e(x1 + 23 + x5 8in t),
By = a1 — 2m122 + 22 + (21 + 12),
T3 = X4 — ET5SINT,
Ty = T3 — 2x3x§ + xoxy + e(x122 + €22 COST),

@5 = x6 + 3224 COS t,

Tg = Ty — 23:% + x3x4 + (129 — ix5 sint).
Let

x = (x1,22,...,%6),

2 2 2 2
f(@) = (x9, 21 — 2x125 + 25, T4, T3 — 2T3X5 + ToZy, Te, T5 — 225 + T3Tyg)

and

g(x,t,e) = (x1 + 23 + x5 sint, 1 + x9, —x5 sint,

T1To + ETg cOSt, 36Xy COST, L1 T2 — ix5 sint).
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Then (4.4) falls in the form (1.2). Clearly, f(0) = 0 and Df(0) has six eigenval-
ues: —1,—1,—1,1,1,1. Hence, (H1) holds. Through direct calculations, we see that
9(0,t,e) = 0 and g(x,t + 2m,e) = g(z,t,e), which imply (H3). The unperturbed

system of (4.4),
&= f(x),

has a homoclinic solution v = (0,0, 0,0, r, 7). Thus, (H2) holds.

The linear variational equation of (4.5) along ~ is

i 0 1 0
& 1-2r2 0 0
s | o 0 o0
| ] 0 0 1-—22
& 0 0 0
i 0 0 0

0

o O o oo

1—6r

o= O O O O

(4.5)

(4.6)

Let @ be a differentiable function satisfying Qr? = 1. It is easy to obtain the

dichotomous fundamental solution of (4.6):

u; = (Qr, (Qr),0,0,0,0), wuz = (0,0,Qr,(Qr),0,0),

Uqg = (Ta 72) 07 07 Oa 0)7

Us = (07 07 T, 72) 07 0)7

uz = (0,0,0,0, Pr, (Pr)"),
ug = (0,0,0,0,7, 7).

It is clear that uq, us, uz are unbounded solutions and uy, us, ug are bounded ones.

Correspondingly, the adjoint equation of (4.6) has bounded solutions

ui = (—#,7,0,0,0,0),  uy = (0,0,—%,7,0,0),

In the notation of theorem 2.2, we obtain

iy =2 / " (), D F () ua () (s)) ds

—00

— 00

= 4/Oo r(s)i?(s)ds = 4

— 00

2

2 / " (u (5), col(0, 27%(s), 0,0, 0,0)) ds

UIJS_ = (07 Ov 07 03 7’;7 T)

Similarly, we have )\212 = )\221 = )\322 = %TF and /\112 = )\121 = )\122 = )\211 =

A222 = A311 = Az12 = A301 = 0.

We compute 7;. By the formulae for n;, we get

m=z " (), g(1(5), 5, 0)) ds

— 00

(o)
=2 / (ui (s), col(r(s)sins, 0, —r(s)sin s, 0,0, —1r(s)sins))ds

— 00

= —2/ i(s)r(s) sin s ds = —27 cosech 1.

— 00

Similarly, we have 7y = 27 and cosech %ﬂ', N3 = —%w cosech %7‘(. Hence, we obtain

that

M(ﬁa 5) = (Ml(ﬁa 5)’M2(/856)5M3(/87€))7
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where
M;(B,¢) = 2B} — 27 cosech L7,
Ms(B,¢e) = %ﬂ'ﬁlﬂg + 27 cosech %7?5,
M;(B,e) = +m35 — 47 cosech Sme.
Take 8 =2, 55 = —1 and ¢* = %Sinh %71’. Through direct computation, we obtain

M(B*,e*) = 0 and |D(g 0 M|(8*,e*) = mcosech 37 # 0. Note that (H1)-(H3)
hold. Hence, theorem 2.2 can be applied. There exist sg > 0, pg > 0 and a function
©*: (=50,50) X (po,0) — R such that system (4.4) with e = s?(¢* + ¢*(s,p)) has
a quasi-periodic solution for (s,p) € ((—so, s0)/{0}) x (po, 00).
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