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The interactions of upper (lighter) and lower (heavier) gravity currents are closely related
to fluid-phase resource recovery in porous layers and cleaning of confined spaces. The
addition of a second current increases the sweep efficiency of fluid displacement. In
this paper, we first derive two ordinary differential equations to describe the interaction
of gravity currents in the quasi-steady regime. Two asymptotic regimes are identified,
characterised by whether or not the two currents attach to each other, depending on
whether the source fluxes are large enough. In the attached regime, a symmetry condition
is also identified that describes whether or not the pumping and buoyancy forces balance
each other. The model also leads to analytical solutions for the interface shape of the
interacting currents in both the detached and attached regimes and for both symmetric and
asymmetric currents. For symmetric currents, analytical solutions can also be obtained for
the pressure distribution along cap rocks and the sweep efficiency of flooding processes.
A particularly interesting aspect is that the displaced fluid remains quiescent at any steady
state, regardless of whether the currents attach to each other. Correspondingly, the interface
shape of the currents can be described by relatively simple equations and solutions, as if
the currents propagate independently in unconfined porous layers. Time transition towards
quasi-steady solutions is provided, employing time-dependent numerical solutions of two
coupled partial differential equations for dynamic current interaction.

Key words: lubrication theory, gravity currents

1. Introduction

Gravity-driven flow in porous layers is of both fundamental and practical interest and finds
many applications in nature and industry. For example, the invasion of a fluid layer into
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another one with distinct density is a typical situation when a gravity current is generated in
a porous layer. Such a situation occurs when water invades into soils and sands in drainage
and irrigation projects, when supercritical CO2 is injected into saline aquifer layers for
permanent storage, when steam and water are pumped into rock formations for fluid-phase
resource production and when acid gas and waste water are disposed into subsurface rock
layers. The fundamentals of the gravity current spreading problem is the focus of a series
of earlier studies that account for, for example, the influence of fluid drainage due to
incompleteness of cap rocks (e.g. Acton, Huppert & Worster 2001; Pritchard, Woods &
Hogg 2001; Farcas & Woods 2009; Woods & Farcas 2009; Liu, Zheng & Stone 2017)
or existence of edges, geological faults and leaky wells (e.g. Boussinesq 1904; King &
Woods 2003; Neufeld, Vella & Huppert 2009; Hesse & Woods 2010; Gunn & Woods 2012;
Zheng et al. 2013; Kang et al. 2014; Cowton et al. 2016; Momen et al. 2017; Yu, Zheng
& Stone 2017), the influence of flow confinement due to the finite thickness of a porous
layer (e.g. Huppert & Woods 1995; Nordbotten & Celia 2006; Hesse et al. 2007; MacMinn,
Szulczewski & Juanes 2010; Pegler, Huppert & Neufeld 2014; Zheng et al. 2015; Hinton &
Woods 2018; Zheng & Neufeld 2019; Zheng 2023), the influence of wetting and capillary
forces as a current becomes unsaturated (e.g. Golding et al. 2011; Zheng & Neufeld 2019;
Zheng 2022), the influence of radially spreading configuration for fluid injection through
vertical wells (e.g. Pattle 1959; Kochina, Mikhailov & Filinov 1983; Lyle et al. 2005;
Nordbotten & Celia 2006; Guo et al. 2016; Hinton 2020; Hutchinson, Gusinow & Worster
2023) and the influence of a lubricating fluid layer that is related to the grounding line
dynamics between marine ice sheets and shelves (e.g. Pegler & Worster 2013; Pegler et al.
2013; Kowal & Worster 2015, 2019a,b, 2020). A recent review is also available with a
focus on the influence of boundaries on the flow of gravity currents (Zheng & Stone
2022). Another report is available on the influence of inertia (Linden 2012), when the
propagation of a current is typically controlled by a Fr condition at the front. Another
typical situation is when laminar plumes are generated with equally important horizontal
and vertical advective flows. Such flow patterns also broadly appear in near-field regions
of heating sources in geothermal formations and near-field regions of injection points and
geological faults during the disposal and leakage of buoyant fluids (e.g. Wooding 1963;
Hewitt, Peng & Lister 2020).

Among the very many interesting and important topics of gravity-driven flow in porous
layers, we study the interaction of two gravity currents in this paper, as sketched in
figure 1. Such a situation is closely related to the practice of cleaning confined spaces
and enhanced recovery of fluid-phase resources. By introducing a second current, either
heavier or lighter, compared with the ambient fluid, the sweep efficiency (defined later
in (2.38)) of the flooding flow is expected to increase. We are particularly interested in
characterising the interface shape of the two currents and assessing the degree of increase
in sweep efficiency by introducing a second current. Meanwhile, in a broader context,
study of the interaction and coalescence of thin capillary films (e.g. Ristenpart et al. 2006;
Hernandez-Sanchez et al. 2012; Zheng et al. 2018; Kaneelil et al. 2022) and hydraulic
fractures (e.g. O’Keeffe et al. 2018) has also made promising progresses in recent years.

We are aware of a previous work in which two immiscible gravity currents are injected
into an unconfined porous medium, displacing a third ambient fluid (e.g. air) that is lighter
than either of the injected fluids (Woods & Mason 2000). The current work, nevertheless,
investigates a different situation of gravity current interaction, as shown in figure 1. Some
novel aspects of the current work are highlighted as follows:

(i) The two currents are both heavier than the ambient fluid in the earlier work of Woods
& Mason (2000). In the current work, the density of the ambient fluid lies between
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Interaction of gravity currents in a porous layer
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Figure 1. The interaction of gravity currents generated by simultaneous injection of two fluids of distinct
density into a porous layer of permeability k, porosity φ, length xe and thickness h0. A steady state is reached
when the rate of injection equals that of drainage at the edge. Two regimes of quasi-steady interaction naturally
appear: (a) ‘detached’ currents and (b) ‘attached’ currents, including both symmetric and asymmetric currents.
(c) A heavier current of shape h1(x) is injected at area rate q1 and drains also at the same rate q1 at an edge (x =
xe), while a lighter current of shape h2(x) is injected at rate q2 and drains also at rate q2 at x = xe. The density,
viscosity and pressure of the three fluids are denoted by ρi, μi and pi(x, z), respectively, with i = {1, 2, 3}. At
higher injection rates, a detaching location x = xd appears, leading to an attached region (x ∈ [0, xd]) and a
detached region (x ∈ (xd, xe]).

that of the two injected fluids, such that a heavier current is generated and spreads
along the base, while another lighter current is generated and spreads along the top.
This is consistent with the practice of enhancing oil recovery, for example, when
water and CO2 (or steam) currents are injected into a rock formation to displace
oil, simultaneously or alternately, as the density of oil lies between that of CO2 and
water at reservoir conditions, i.e. ρCO2 < ρoil < ρwater (e.g. Lake 1989).

(ii) The porous layer is assumed to be infinitely long in Woods & Mason (2000), so
the two currents interact while continuing to propagate. In the current work, the
porous layer has a finite length, such that both the heavier and lighter currents
reach an edge at a finite location, which mimics the existence of a production well
or geological fault (e.g. Golding et al. 2011; Zheng et al. 2013; Yu et al. 2017).
Accordingly, the flow becomes quasi-steady, when the rate of injection equals the
rate of drainage. This configuration also mimics the core-flooding experimental
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set-up and can possibly provide insights into the fundamentals of multi-phase Darcy
flow in co-flooding situations.

(iii) The porous layer is assumed to be infinitely deep in the model problem of Woods &
Mason (2000), so the propagation of the two currents always remains unconfined. In
the current work, however, the porous layer takes a finite thickness. This is consistent
with many flow situations in sedimentary formations, which naturally exhibit layered
patterns with significant permeability contrasts across layers. Accordingly, the flow
becomes confined, when the currents attach to both the top and base of the porous
layer (e.g. Huppert & Woods 1995; Pegler et al. 2014; Zheng et al. 2015). At higher
injection rates, the currents can also attach to each other and interact.

(iv) The model and solutions turn out to be clean and simple. In the sharp-interface
regime, analytical solutions can be obtained for the interface shape of the interacting
currents, the background pressure distribution along the cap rock and the sweep
efficiency in cleaning and resource recovery applications. This is mainly due to the
fact that the motion of the ambient fluid can still be neglected in these quasi-steady
flow situations, even when the heavier and lighter gravity currents are both confined
in a porous layer with finite thickness.

This paper is structured as follows. A theoretical model is first proposed in § 2
to describe the profile shape of the interacting currents, based on the assumption of
quasi-steady sharp-interface flows. Asymptotic solutions are then provided for the profile
shape of the two currents in both the detached and attached regimes and for both symmetric
and asymmetric currents. For symmetric currents, analytical solutions are also provided for
the background pressure distribution and sweep efficiency of co-flooding flows. Then in
§ 3, time transition towards quasi-steady solutions is provided, employing time-dependent
numerical solutions of two coupled partial differential equations (PDEs) for dynamic
current interaction. We close the paper in § 4 with a brief summary and remarks on model
assumptions and potential implications.

2. Theoretical model

2.1. Governing equations
The model problem is sketched in figure 1: two gravity currents are generated in a porous
layer of finite thickness h0, with the heavier one spreading along the base and lighter one
spreading along the top. A steady state is reached when the rate of fluid injection equals
that of drainage at a finite edge x = xe for both the heavier and lighter gravity currents. The
porous layer is assumed to be horizontal, homogeneous and isotropic, with permeability
and porosity denoted by k and φ, respectively. The viscosity and density of the injecting
fluids 1 and 2 are denoted by μ1, μ2, ρ1 and ρ2, respectively, and for the displaced/ambient
fluid 3, they are denoted by μ3 and ρ3. It is assumed that ρ1 > ρ3 > ρ2, such that a heavier
current is generated between fluids 1 and 3, while a lighter one is generated between fluids
2 and 3, as shown in figure 1. The propagation of the currents is driven by buoyancy, due
to the density difference between the injecting and displaced fluids. We only consider the
Cartesian configuration in this work, recognising that the concept also applies for flow in
the radial configuration.

We focus on the interaction of the heavier and lighter gravity currents. We expect that
they remain separated from each other at lower injection rates, as shown in figure 1(a).
At higher injection rates, in contrast, they attach to each other, when the displaced fluid
3 is completely pushed downstream towards the edge, as shown in figure 1(b). We are
particularly interested in the shape of the fluid–fluid interfaces, which remains an open

970 A37-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

63
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.638


Interaction of gravity currents in a porous layer

question for the theory of gravity-driven flows. It is also of interest to evaluate the amount
of fluid 3 that can be swept out of the porous layer, which is related to the sweep efficiency
in the practice of fluid-phase resource recovery and cleaning of confined spaces.

It is also assumed that both currents are long and thin, such that the vertical component
of the Darcy velocity is negligible compared with the horizontal component. This is a
typical situation of flow in shallow layers of soils, sands and porous rocks, and is closely
related to the practice of oil and gas recovery, pollutant migration, geological sequestration
of CO2 and drainage and irrigation. This assumption has been employed in earlier studies
of the flow of a single gravity current and verified experimentally based on time-dependent
measurement of the profile shape and frontal location in both Hele-Shaw cells (e.g.
Huppert & Woods 1995; Woods & Mason 2000; King & Woods 2003; Neufeld et al.
2009; Hesse & Woods 2010; Zheng et al. 2013; Zheng, Christov & Stone 2014; Pegler
et al. 2015; Zheng, Ghodgaonkar & Christov 2021) and packed-bead systems (e.g. Pegler
et al. 2014).

Finally, the influence of interfacial tension and fluid mixing is neglected in the current
work, assuming that sharp interfaces are created and maintained between the different
fluids. This assumption has also been verified experimentally in the aforementioned
studies. It is of interest to note that wetting and capillary forces can significantly alter the
behaviour of gravity current flows and lead to gradual change of fluid saturations rather
than to sudden change across sharp interfaces (e.g. Golding et al. 2011; Zheng & Neufeld
2019). Fluid mixing can also alter the behaviour of miscible currents (e.g. Nijjer, Hewitt
& Neufeld 2022), which can be of interest for future investigations.

Under the assumption of quasi-steady one-dimensional sharp-interface flow, the
pressure distribution within the three fluid layers is hydrostatic and follows

p1(x, z) = p0(x)− ρ1gz, for 0 ≤ z < h1(x), (2.1a)

p3(x, z) = p0(x)−�ρ1gh1 − ρ3gz, for h1(x) ≤ z < h0 − h2(x), (2.1b)

p2(x, z) = p0(x)−�ρ1gh1 −�ρ2g(h0 − h2)− ρ2gz, for h0 − h2(x) ≤ z ≤ h0,
(2.1c)

where p0(x) denotes the distribution of the background pressure along the base z = 0 and
the density differences are defined as �ρ1 ≡ ρ1 − ρ3 > 0 and �ρ2 ≡ ρ3 − ρ2 > 0. The
horizontal velocity of the fluids within each layer can then be estimated based on Darcy’s
law:

u1(x) = − k
μ1

∂p1

∂x
= − k

μ1

dp0

dx
, (2.2a)

u3(x) = − k
μ3

∂p3

∂x
= − k

μ3

(
dp0

dx
−�ρ1g

dh1

dx

)
, (2.2b)

u2(x) = − k
μ2

∂p2

∂x
= − k

μ2

(
dp0

dx
−�ρ1g

dh1

dx
+�ρ2g

dh2

dx

)
. (2.2c)

Meanwhile, at any steady state, local continuity requires that

h1u1 = q1 and h2u2 = q2, (2.3a,b)

at any location x, where q1 and q2 denote the (area) rate of accumulation of the heavier
and lighter fluids into the porous layer, respectively. Conservation of volume, in addition,
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requires that
h1u1 + h2u2 + (h0 − h1 − h2)u3 = q1 + q2, (2.4)

for any x. Based on (2.3) and (2.4), we then arrive at

(h0 − h1 − h2)u3 = 0. (2.5)

Physically, (2.5) indicates that the flux of the ambient fluid is zero at steady state, which
also leads to two solution branches of the quasi-steady flow, depending on the profile shape
of the currents:

(i) Branch (i): h0 − h1 − h2 > 0, when the heavier and lighter currents remain
detached, separated by an ambient layer of finite thickness.

(ii) Branch (ii): h0 − h1 − h2 = 0, when the heavier and lighter currents attach to each
other, with the ambient fluid being squeezed downstream during the time transition
(towards quasi-steady states).

2.1.1. Detached region
When the currents are separated (h0 − h1 − h2 > 0), we immediately obtain

u3 = 0 (2.6)

in a detached region where h1 + h2 < h0. This can occur when the currents remain
completely separated within the entire domain at lower injection rates. This can also
occur only in a local region close to the edge of drainage at higher injection rates
(while the currents remain attached in a region close to the inlet). Equation (2.6) is an
interesting and important result, which indicates that the ambient fluid 3 remains quiescent
within the entire domain for these quasi-steady sharp-interface flows. Physically, this is a
consequence when fluid injection and drainage balance each other.

In addition, with (2.2b) and (2.6), the gradient of the background pressure becomes
available as

dp0

dx
= �ρ1g

dh1

dx
, (2.7)

which can be substituted back into (2.2) for the Darcy velocities u1(x) and u2(x):

u1(x) = −�ρ1gk
μ1

dh1

dx
, (2.8a)

u2(x) = −�ρ2gk
μ2

dh2

dx
. (2.8b)

Equations (2.8a,b) can then be substituted into (2.3a,b) for the interface shape h1(x) and
h2(x) as

−�ρ1gk
μ1

h1
dh1

dx
= q1, (2.9a)

−�ρ2gk
μ2

h2
dh2

dx
= q2. (2.9b)

The ordinary differential equations (ODEs) (2.9a,b) can then be solved, together with
appropriate boundary conditions at the location of the edge for both the heavier and lighter
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Interaction of gravity currents in a porous layer

currents, e.g. the zero-thickness condition:

h1(xe) = 0 and h2(xe) = 0. (2.10a,b)

It is suggested based on (2.9a,b) and (2.10a,b) that the interface shape of the heavier
current h1(x) and that of the lighter current h2(x) are independent of each other. Physically,
this is due to the fact that the ambient fluid remains quiescent for such quasi-steady flows,
as indicated by (2.6).

2.1.2. Attached region
When the currents attach to each other (h0 − h1 − h2 = 0), (2.4) reduces to

h1u1 + h2u2 = q1 + q2. (2.11)

Substituting (2.2a,c) into (2.11), we obtain the pressure gradient along the base as

dp0

dx
=
�ρgk
μ2

(h0 − h1)
dh1

dx
− (q1 + q2)

k
μ1

h1 + k
μ2
(h0 − h1)

, (2.12)

where �ρ ≡ �ρ1 +�ρ2 = ρ1 − ρ2 > 0. Equation (2.12) is then substituted back into
(2.2a) and (2.3a) to provide

�ρgk
μ2

h1(h0 − h1)
dh1

dx
+ q1M(h0 − h1)− q2h1 = 0, (2.13)

where M ≡ μ1/μ2 is the viscosity ratio of the two currents. The ODE (2.13) can then be
solved subject to

h1(xd) = hd, (2.14)

for the profile shape of the heavier current h1(x) in the attached region, with (xd, hd)
denoting the location where the three fluids meet and can be obtained by studying the
detached solutions for x ∈ [xd, xe] at higher injection rates (as we show later for the
rescaled system). Once h1(x) is known, the profile shape h2(x) = h0 − h1(x) can also be
obtained for the lighter current in the attached region. We have thus completed the model
for the profile shape of the interacting currents in both the detached and attached regions.

2.2. Non-dimensionalisation
It is standard first to non-dimensionalise the governing equations and conditions before
discussing the solutions. We first study the the detached region (h1 + h2 < h0) and rescale
ODEs (2.9a,b) and boundary conditions (2.10a,b) for the profile shape of the detached
currents. The dimensionless length and height are defined as

x̄ ≡ x/xe, h̄1 ≡ h1/h0 and h̄2 ≡ h2/h0, (2.15a–c)

with characteristic length and height scales chosen as xe and h0, the length and thickness
of the porous layer. Using these scalings, we arrive at the following dimensionless form of
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Parameter Definition Physical description

q̄1 q1μ1xe/�ρ1gkh2
0 Dimensionless injection rate of the heavier fluid

q̄2 q2μ2xe/�ρ2gkh2
0 Dimensionless injection rate of the lighter fluid

G �ρ2/�ρ1 Buoyancy ratio of the two currents
δ h0/xe Aspect ratio of the porous layer

Table 1. Definition and physical description of the dimensionless parameters q̄1, q̄2, G and δ for the
interaction of heavier and lighter gravity currents that also drain at a finite edge.

ODEs (2.9a,b):

−h̄1
dh̄1

dx̄
= q̄1, (2.16a)

−h̄2
dh̄2

dx̄
= q̄2, (2.16b)

where two dimensionless injection rates q̄1 and q̄2 are found to be essential and defined as

q̄1 ≡ q1μ1xe

�ρ1gkh2
0

and q̄2 ≡ q2μ2xe

�ρ2gkh2
0
. (2.17a,b)

Physically, q̄1 and q̄2 also measure the competition between injection-driven and
buoyancy-driven flows in determining the interface shape of the quasi-steady currents.

The dimensionless boundary conditions, meanwhile, can be obtained as

h̄1(1) = 0 and h̄2(1) = 0. (2.18a,b)

We are now ready to discuss the solutions for the interface shape of the heavier and lighter
gravity currents h̄1(x̄) and h̄2(x̄) by solving (2.16a,b), subject to (2.18a,b). The solutions
are under the influence of two dimensionless parameters q̄1 and q̄2, as defined in (2.17a,b)
and summarised in table 1. In particular, we expect that the heavier and lighter currents
remain separated at lower injection rates (to be quantified later), while they approach and
attach to each other at higher injection rates.

Similarly, we can also non-dimensionalise ODEs (2.13) and boundary conditions (2.14)
in the attached region (h1 + h2 = h0) to provide(

1 + 1
G

)
1
q̄2

h̄1(1 − h̄1)
dh̄1

dx̄
+ 1

G
q̄1

q̄2
(1 − h̄1)− h̄1 = 0 (2.19)

and
h̄1(x̄d) = h̄d, (2.20)

where x̄d ≡ xd/xe ∈ [0, 1] and h̄d ≡ hd/h0 ∈ [0, 1]. We expect that (x̄d, h̄d) only depends
on q̄1 and q̄2 based on solutions to ODEs (2.16a,b) in the detached region. Meanwhile, an
extra dimensionless parameter G is identified in (2.19), defined as

G ≡ �ρ2

�ρ1
= ρ3 − ρ2

ρ1 − ρ3
. (2.21)

Physically, G represents the buoyancy ratio of the two currents. It is indicated that solutions
for the profile shape h̄1(x̄) and h̄2(x̄) are under the influence of three dimensionless
parameters, q̄1, q̄2 and G, the physical meanings of which are summarised in table 1.
The aspect ratio δ ≡ h0/xe of the porous layer is also included in table 1, which is related
to the applicability of the one-dimensional flow assumption, as we remark in § 4.1.
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Interaction of gravity currents in a porous layer

2.3. The ‘detached’ and ‘attached’ regimes
We next discuss in detail the asymptotic solutions for the shape of the interacting gravity
currents. Both the ‘detached’ and ‘attached’ regimes are addressed, defined based on
whether the heavier and lighter currents remain separated or attach to each other within
the domain of the porous layer.

2.3.1. The ‘detached’ regime
At lower injection rates, defined by (h̄1 + h̄2)|x̄=0 < 1, the heavier and lighter gravity
currents remain separated from each other, which leads to a ‘detached’ regime. Analytical
solutions can be obtained for the shape of the heavier and lighter gravity currents by
solving ODEs (2.16a,b), subject to (2.18a,b), which provides

h̄1(x̄) = [
2q̄1(1 − x̄)

]1/2
, (2.22a)

h̄2(x̄) = [
2q̄2(1 − x̄)

]1/2
. (2.22b)

An equivalent version of this parabolic solution has been derived previously for a single
current that drains at a finite edge and verified experimentally (e.g. Hesse & Woods 2010;
Golding et al. 2011). Correspondingly, the thicknesses of the heavier and lighter currents
at the entrance (x̄ = 0) of the porous layer are

h̄1(0) = (2q̄1)
1/2 and h̄2(0) = (2q̄2)

1/2, (2.23a,b)

respectively.
It is also necessary to verify the requirement of (h̄1 + h̄2)|x̄=0 < 1 for this detached

regime based on (2.23), which leads to

q̄1/2
1 + q̄1/2

2 < 2−1/2. (2.24)

Physically, (2.24) suggests that the detached regime is obtained when the injection rates
are small enough and provides an quantitative description. This regime is allocated in a
regime diagram of figure 2.

2.3.2. The ‘attached’ regime
At higher injection rates, when (h̄1 + h̄2)|x̄=0 = 1, the heavier and lighter currents attach
to each other within the porous layer, corresponding to an ‘attached’ regime. The region of
attachment (x̄ ∈ [0, x̄d]), as defined by where h̄1(x̄)+ h̄2(x̄) = 1, starts from the location
of the entrance (x̄ = 0) and ends at a detaching point (x̄ = x̄d ∈ (0, 1)). Correspondingly,
the thicknesses of the heavier and lighter currents at the detaching point x̄ = x̄d are given
by

h̄1(x̄d) = [
2q̄1(1 − x̄d)

]1/2
, (2.25a)

h̄2(x̄d) = 1 − [
2q̄1(1 − x̄d)

]1/2
, (2.25b)

and, by definition, h̄d ≡ h̄1(x̄d).
Within the detached region x̄ ∈ (x̄d, 1], in contrast, the heavier and lighter gravity

currents remain separated, as sketched in figure 1(b). The shape of the interface h1(x) and
h2(x) can still be described by (2.9a,b), assuming that the location of detachment x = xd is
sufficiently far away from the edge x = xe and the flow is still one-dimensional. It can be
shown that the shape of the heavier and lighter currents in the detached region (x̄ ∈ [x̄d, 1])
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Figure 2. The regime diagram of detached and attached currents, including symmetric and asymmetric
currents, separated by a curve q̄1/2

1 + q̄1/2
2 = 2−1/2 of the injection rates of the heavier and lighter currents.

The corresponding regimes for unconfined and confined single currents are also depicted along the horizontal
and vertical axes as q̄1 → 0+ or as q̄2 → 0+.

can still be described by (2.22); see Appendix A. Correspondingly, the thicknesses of the
heavier and lighter currents at the detaching point x̄ = x̄d become

h̄1(x̄d) = [
2q̄1(1 − x̄d)

]1/2
, (2.26a)

h̄2(x̄d) = [
2q̄2(1 − x̄d)

]1/2
. (2.26b)

Based on (2.25b) and (2.26b), the location of detachment x̄ = x̄d can then be determined
by solving

1 − [
2q̄1(1 − x̄d)

]1/2 = [
2q̄2(1 − x̄d)

]1/2
, (2.27)

which provides

x̄d = 1 − 1
/

2
(

q̄1/2
1 + q̄1/2

2

)2
. (2.28)

The thickness of the currents h̄1(x̄d) and h̄2(x̄d) at the detaching point x̄ = x̄d can also be
calculated from (2.25a,b) or (2.26a,b) as

h̄1(x̄d) = q̄1/2
1

/(
q̄1/2

1 + q̄1/2
2

)
, (2.29a)

h̄2(x̄d) = q̄1/2
2

/(
q̄1/2

1 + q̄1/2
2

)
. (2.29b)

The location of the detaching/attaching point (x̄d, h̄d) hence becomes available, which also
serves as the boundary condition (2.20) to calculate the profile shape of the currents in the
attached region.
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Interaction of gravity currents in a porous layer

Within the attached region x̄ ∈ [0, x̄d], we need to solve ODE (2.19) subject to (2.20) to
determine the profile shape. For convenience, we denote

C1 ≡
(

1 + 1
G

)
1
q̄2

and C2 ≡ 1
G

q̄1

q̄2
, (2.30a,b)

and ODE (2.19) can be rearranged to provide

dh̄1

dx̄
= − (1 + C2)h̄1 − C2

C1h̄1(h̄1 − 1)
, (2.31)

neglecting two irrelevant branches of h̄1(x̄) = 0 and h̄1(x̄) = 1 in the present context of
current interaction (which represents quasi-steady single currents). Further, the form of
ODE (2.31) indicates that two solution branches exist for the profile shape h̄1(x̄) (and
hence h̄2(x̄)):

(i) Solution (i). When (1 + C2)h̄1 − C2 = 0, we obtain a horizontal-line solution in the
form of

h̄1(x̄) = C2

1 + C2
= q̄1

q̄1 + Gq̄2
, (2.32)

for x̄ ∈ [0, x̄d].
(ii) Solution (ii). When (1 + C2)h̄1 − C2 /= 0, in contrast, an implicit expression can be

obtained for the profile shape h̄1(x̄) as

x̄ = x̄d − C1

1 + C2

(
h̄2

1 − h̄2
d

2
− h̄1 − h̄d

1 + C2
− C2

(1 + C2)2
ln
[

h̄1 − C2/(1 + C2)

h̄d − C2/(1 + C2)

])
,

(2.33)
for x̄ ∈ [0, x̄d], with x̄d and h̄d ≡ h̄1(x̄d) already provided in (2.28) and (2.29). In
this case, the profile shape of either the heavier or lighter current no longer remains
monotonic, which is completely different from the behaviour of a single current.

It is expected that the horizontal-line solution (2.32) applies only when (2.32) and
(2.29a) provide the same prediction, which leads to

G = (q̄1/q̄2)
1/2 . (2.34)

Equation (2.34) is named the ‘symmetry condition’ in this work for quasi-steady
‘symmetric’ heavier and lighter currents to appear. Physically, (2.34) indicates a balance
between injection-driven and buoyancy-driven flows. In addition, when the attached region
is a horizontal line under the symmetry condition (2.34), the partition of the inlet heights
can also be determined as

h̄1(0)/h̄2(0) = h̄1(x̄d)/h̄2(x̄d) = (q̄1/q̄2)
1/2. (2.35)

In fact, h̄1(x̄)/h̄2(x̄) = (q̄1/q̄2)
1/2 applies for any location x̄ ∈ [0, x̄d] in the attached region

based on solution (2.32).
It is also of interest to note that, to obtain this attached regime, it is required that the

injection rates are large enough such that (h̄1 + h̄2)|x̄=0 = 1, i.e.

q̄1/2
1 + q̄1/2

2 ≥ 2−1/2. (2.36)

Condition (2.36) is consistent with (2.24) and is not dependent on whether or not the
profile shape in the attached region is a horizontal line. This attached regime is also
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Z. Zheng

allocated in figure 2. It is easy to verify that when (2.36) applies, the location of the
detaching point satisfies x̄d ≥ 0, which is consistent with the physical picture of heavier
and lighter currents that attach to each other, as depicted in figure 1(b).

Finally, it is good to note that the attached regime of heavier and lighter currents also
degenerates into confined regimes of single gravity currents, i.e. as q̄1 → 0+ for a regime
of confined lighter currents, and as q̄2 → 0+ for another regime of confined heavier
currents. The phrase ‘confined’ is employed to describe that the single current attaches to
both the top and bottom boundaries of the porous layer, consistent with a series of earlier
studies (e.g. Huppert & Woods 1995; Gunn & Woods 2012; Pegler et al. 2014; Zheng
et al. 2015; Hinton & Woods 2018; Zheng & Neufeld 2019). Such a feature, nevertheless,
has not been recognised in earlier studies of quasi-steady gravity currents (e.g. Hesse &
Woods 2010; Golding et al. 2011). The asymptotic regimes of confined single currents are
also depicted in figure 2.

2.3.3. The regime diagram
To summarise, (2.24) and (2.36) lead to a diagram of both detached and attached regimes
of interacting gravity currents, as shown in figure 2, depending on the dimensionless
injection rates q̄1 and q̄2. The two distinct flow regimes are separated by a curve

q̄1/2
1 + q̄1/2

2 = 2−1/2, (2.37)

the condition when the inlet heights satisfy (h̄1 + h̄2)|x̄=0 = 1 at the inlet of the porous
layer. The attached regime of heavier and lighter currents also reduces to two (previously
overlooked) confined regimes of single gravity current flows, i.e. a regime for confined
heavier currents as q̄2 → 0+ and another regime for confined lighter currents as q̄1 →
0+. Meanwhile, in the attached region, depending on the symmetry condition (2.34), two
sub-regimes of attached currents can also be defined as (i) symmetric attached currents of
profile shape (2.32) and (ii) asymmetric attached currents of profile shape (2.33). Finally,
the assumption of one-dimensional flow in either the detached or attached regimes of
gravity current interaction is briefly discussed in § 4.1.

2.4. Some key features of symmetric currents
We provide more descriptions of some key features of quasi-steady interacting currents,
such as the sweep efficiency and the distribution of background pressure. We only discuss
symmetric currents in this section that satisfy condition (2.34), when the profile shape
remains a horizontal line in the attached region according to (2.32). In this case, analytical
solutions can be obtained to provide more insights. Similar analysis can also be provided
on asymmetric currents when the profile shape in the attached region is described by
an implicit solution (2.33). Numerical integration will typically be required to obtain the
sweep efficiency of each current in this case and we do not repeat the calculations here.
We do provide a numerical example (case 4 in Appendix B), when we discuss potential
implications in a CO2–water co-flooding project for oil recovery and CO2 sequestration at
the same time.

2.4.1. The sweep efficiency
It is of interest to introduce the ‘sweep efficiency’ (ψ), which is widely employed in
the practice of fluid-phase resource recovery and cleaning processes of confined spaces.
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Interaction of gravity currents in a porous layer

For the sharp-interface gravity current flows considered in the current work, the sweep
efficiency is defined by

ψ ≡ A1 + A2

A1 + A2 + A3
= Ā1 + Ā2

Ā1 + Ā2 + Ā3
= Ā1 + Ā2, (2.38)

where A1, A2 and A3 are the area covered by fluids 1, 2 and 3, Ā1, Ā2 and Ā3 are the
rescaled area based on the total area (A1 + A2 + A3) and, by definition, Ā1 + Ā2 + Ā3 = 1.
The contribution of the heavier current is Ā1, while the contribution of the lighter current
is Ā2. Clearly, the addition of a second current, either heavier or lighter, leads to an
increase in sweep efficiency ψ . We next provide more quantitative descriptions for the
sweep efficiency ψ in the detached and attached regimes. We constrain our efforts to the
symmetric currents in this section, when analytical solutions can be obtained to provide
more insights.

In the detached regime at lower injection rates, i.e. q̄1/2
1 + q̄1/2

2 < 2−1/2, it can be shown
that

Ā1 ≡
∫ 1

0
h̄1(x̄) dx̄ = 23/2

3
q̄1/2

1 , (2.39a)

Ā2 ≡
∫ 1

0
h̄2(x̄) dx̄ = 23/2

3
q̄1/2

2 , (2.39b)

based on solution (2.22) for the profile shape of the heavier and lighter currents. Therefore,
the sweep efficiency is

ψ = 23/2

3

(
q̄1/2

1 + q̄1/2
2

)
∈ (0, 2/3), (2.40)

which is shown in figure 3. The upper limit ψ = 2/3 is reached when the heavier and
lighter currents right attach to each other at the inlet of the porous layer, when the injection
rate q̄1 or q̄2 increases such that q̄1/2

1 + q̄1/2
2 → 2−1/2.

In contrast, in the attached regime at higher injection rates, i.e. q̄1/2
1 + q̄1/2

2 ≥ 2−1/2, Ā1

and Ā2 are calculated based on different profile shapes in the attached (x̄ ∈ [0, x̄d]) and
detached (x̄ ∈ (x̄d, 1]) regions. It can be shown that for symmetric currents

Ā1 = q̄1/2
1

q̄1/2
1 + q̄1/2

2

− q̄1/2
1

6
(

q̄1/2
1 + q̄1/2

2

)3 , (2.41a)

Ā2 = q̄1/2
2

q̄1/2
1 + q̄1/2

2

− q̄1/2
2

6
(

q̄1/2
1 + q̄1/2

2

)3 , (2.41b)

for the contribution of the heavier and lighter currents, and, correspondingly, the sweep
efficiency becomes

ψ = 1 − 1
6

(
q̄1/2

1 + q̄1/2
2

)−2 ∈ [2/3, 1), (2.42)

which is also shown in figure 3. The lower limit ψ = 2/3 is reached when the heavier
and lighter currents right detach from each other at the inlet of the porous layer, when the
injection rate q̄1 or q̄2 decreases such that q̄1/2

1 + q̄1/2
2 → 2−1/2. In fact, it is convenient to

show that (2.42) applies for both symmetric and asymmetric currents.
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Figure 3. The sweep efficiency ψ as a function of q̄1/2
1 + q̄1/2

2 according to (2.40) and (2.42), when injection
rates vary. The value q̄1/2

1 + q̄1/2
2 = 2−1/2 distinguishes the detached and attached regimes for the interaction

of heavier and lighter currents, when the sweep efficiency is ψ = 2/3.

2.4.2. The background pressure
We can also briefly remark on the background pressure p0(x) along the base of the porous
layer (i.e. the cap rock along z = 0), which might find applications for monitoring purposes
in the field, in particular. Based on (2.7), once the profile shape of the heavier current h1(x)
is known, the pressure distribution p0(x) can be obtained after an integration. Specifically,
if we define dimensionless pressure p̄0(x̄) ≡ p0(x)/�ρ1gh0, (2.7) leads to

dp̄0

dx̄
= dh̄1

dx̄
. (2.43)

The pressure drop�p0(x) ≡ p0(0)− p0(x) ≥ 0 between the injection point x = 0 and any
downstream location x of interest can then be estimated, providing h̄1(x̄). In particular, in
the detached regime (q̄1/2

1 + q̄1/2
2 < 2−1/2), we obtain

�p̄0(x̄)
(2q̄1)1/2

= 1 − (1 − x̄)1/2, (2.44)

for 0 ≤ x̄ ≤ 1. In the attached regime (q̄1/2
1 + q̄1/2

2 ≥ 2−1/2), in contrast, we obtain

�p̄0(x̄)
(2q̄1)1/2

=
⎧⎨
⎩

0, 0 ≤ x̄ ≤ x̄d,[
21/2

(
q̄1/2

1 + q̄1/2
2

)]−1 − (1 − x̄)1/2, x̄d < x̄ ≤ 1,
(2.45)

where the location of detachment x̄d = 1 − 1
/

2(q̄1/2
1 + q̄1/2

2 )2 ∈ [0, 1) , already given by

(2.28). Meanwhile, solution (2.45) reduces to (2.44) when q̄1/2
1 + q̄1/2

2 = 2−1/2. Solutions
(2.44) and (2.45) are both nonlinear in x̄, and the (dimensionless) pressure drop �p̄0(x̄) is
plotted in figure 4 for both the detached and attached regimes.
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Interaction of gravity currents in a porous layer
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�

p̄ 0
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q̄ 1
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Figure 4. The background pressure drop �p̄0(x̄) along the cap rock z = 0 in both the detached and attached
regimes of gravity current interaction. The solid curve is based on (2.44) for the detached regime, while the
dashed curve is based on (2.45) for the attached regime. We have imposed q̄1/2

1 + q̄1/2
2 = 1 in (2.45) for the

dashed curve in this example, such that x̄d = 1/2.

We also note that, based on (2.44) and (2.45), the background pressure drop �p̄01 ≡
p̄0(0)− p̄0(1) between the injection point (x̄ = 0) and the edge (x̄ = 1) becomes

�p̄01 =
⎧⎨
⎩
(2q̄1)

1/2 , q̄1/2
1 + q̄1/2

2 < 2−1/2,

q̄1/2
1

/(
q̄1/2

1 + q̄1/2
2

)
, q̄1/2

1 + q̄1/2
2 ≥ 2−1/2.

(2.46)

Such a result can be more convenient to be compared with field data (without the
requirement for additional monitoring wells).

Finally, the background pressure distribution along the top of the porous layer (i.e. the
cap rock along z = h0), denoted by ph0(x) here, can also be obtained in a similar way.
Specifically, if ph0(x) is rescaled according to p̄h0(x̄) ≡ ph0(x)/�ρ2gh0, (2.1c) and (2.7)
then lead to

dp̄h0

dx̄
= dh̄2

dx̄
. (2.47)

It is convenient to prove that, at any horizontal location x̄ of interest, the pressure drop
�p̄h0(x̄) ≡ p̄h0(0)− p̄h0(x̄) satisfies

�p̄h0(x̄) = (q̄2/q̄1)
1/2�p̄0(x̄) (2.48)

in both the detached and attached regimes. With �p̄0(x̄) already provided by (2.44) in
the detached regime and (2.45) in the attached regime, one can obtain the pressure drop
�p̄h0(x̄) long the top of the porous layer at z = h0 simply by multiplying a prefactor
(q̄2/q̄1)

1/2. Finally, it is important to note that p0(x) and ph0(x) are rescaled differently
on the basis of the buoyancy effects of the heavier and lighter currents, respectively.

3. Time transition towards quasi-steady solutions

We have provided a theoretical model in § 2 to describe the quasi-steady interacting
currents, which led to the ‘detached’ and ‘attached’ regimes of interacting gravity currents,
depending on whether or not the injection rates are high enough. The discussions also led
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to symmetric and asymmetric sub-regimes when the currents are attached, depending on
whether or not the injection-driven and buoyancy-driven flows balance each other (such
that the profile shape remains a horizontal line in the attached region). In this section, we
provide brief remarks on the time transition towards the quasi-steady solutions obtained in
§ 2 for the interaction of heavier and lighter currents.

3.1. Time-dependent model of dynamic interaction
To illustrate the time transition towards the quasi-steady solutions, we must start from the
time-dependent problem of gravity current interaction in confined porous layers of infinite
length, which is the focus of a separate study (Yang & Zheng 2023). Compared with the
problem of quasi-steady interaction due to drainage at a finite edge, dynamic interaction
occurs before injection and drainage reach an equilibrium. The pressure distribution is
assumed to remain hydrostatic, analogous to (2.1), and the form of horizontal velocities is
also analogous to (2.2) based on Darcy’s law. However, local continuity, in this case, leads
to time-dependent balance

φ
∂h1

∂t
+ ∂(h1u1)

∂x
= 0 and φ

∂h2

∂t
+ ∂(h2u2)

∂x
= 0 (3.1a,b)

for the heavier and lighter currents, respectively, rather than the quasi-steady balance
(2.3a,b). One can show, after some rearrangements, that the background pressure gradient
along the cap rock (z = 0) is given by

∂p0

∂x
=

−μ1

k
q +�ρ1g [N(h0 − h1 − h2)+ Mh2]

∂h1

∂x
−�ρ2gMh2

∂h2

∂x
h1 + N(h0 − h1 − h2)+ Mh2

, (3.2)

and the time evolution of the profile shapes h1(x, t) and h2(x, t) is governed by two coupled
PDEs:

φ
∂h1

∂t
+ ∂

∂x

⎡
⎢⎢⎣

qh1 − �ρ1gk
μ1

[N(h0 − h1 − h2)+ Mh2]h1
∂h1

∂x
+ �ρ2gk

μ2
h1h2

∂h2

∂x
h1 + N(h0 − h1 − h2)+ Mh2

⎤
⎥⎥⎦ = 0,

(3.3a)

φ
∂h2

∂t
+ ∂

∂x

⎡
⎢⎢⎣

Mqh2 + �ρ1gk
μ1

Mh1h2
∂h1

∂x
− �ρ2gk

μ2
[N(h0 − h1 − h2)+ h1]h2

∂h2

∂x
h1 + N(h0 − h1 − h2)+ Mh2

⎤
⎥⎥⎦ = 0,

(3.3b)

where q ≡ q1 + q2 denotes the total area injection rate and M ≡ μ1/μ2 and N ≡ μ1/μ3
denote the viscosity ratios between the injecting and displaced fluids, reorganised based
on the notation of the current paper, as shown in figure 1, which is slightly different from
the notation in Yang & Zheng (2023). In particular, h2(x, t) is denoted by ĥ2(x, t), M is
denoted by M3 and N is denoted by M2 in Yang & Zheng (2023).

The form of the coupled PDEs (3.3a,b) indicates that the profile shape evolution of
the interacting currents is under the influence of three types of flow: (i) injection-driven
flow due to pumping (∝ q), (ii) buoyancy-driven flow of the heavier current (∝ �ρ1g)

970 A37-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

63
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.638


Interaction of gravity currents in a porous layer

and (iii) buoyancy-driven flow of the lighter current (∝ �ρ2g). Accordingly, the motion
of the ambient/displaced fluid cannot be neglected during dynamic interaction, which is
completely different from that during quasi-steady interaction, when the ambient fluid
always remains quiescent (i.e. u2 = 0, always).

The PDEs (3.3a,b) are ready to be solved subject to appropriate initial and boundary
conditions:

h1(x, 0) = 0, h2(x, 0) = 0 (3.4a,b)

and

h1(xf 1(t), t) = 0, (3.5a)

h2(xf 2(t), t) = 0, (3.5b)

qh1 − �ρ1gk
μ1

[N(h0 − h1 − h2)+ Mh2]h1
dh1

dx
+ �ρ2gk

μ2
h1h2

dh2

dx
h1 + N(h0 − h1 − h2)+ Mh2

∣∣∣∣∣∣∣∣
x=0

= q1, (3.5c)

Mqh2 + �ρ1gk
μ1

Mh1h2
dh1

dx
− �ρ2gk

μ2
[N(h0 − h1 − h2)+ h1]h2

dh2

dx
h1 + N(h0 − h1 − h2)+ Mh2

∣∣∣∣∣∣∣∣
x=0

= q2. (3.5d)

In boundary conditions (3.5a,b), frontal conditions are employed at the location of the
propagating front x = xf 1(t) for the heavier current and x = xf 2(t) for the lighter current.
In boundary conditions (3.5c,d), flux conditions are employed at the inlet of the porous
layer x = 0, and it is also assumed that injection proceeds at constant area rates q1 and q2
in this example, similar to what we assumed in § 2.

It is important to note that when the currents arrive at the edge x = xe and start to
drain, the frontal conditions (3.5a,b) should be modified appropriately, for example, to
flux conditions at the edge, which is completely different from the propagation problem
studied in Yang & Zheng (2023) in infinitely long porous layers. In this work, we assume
that the following flux conditions apply:

qh1 − �ρ1gk
μ1

[N(h0 − h1 − h2)+ Mh2]h1
dh1

dx
+ �ρ2gk

μ2
h1h2

dh2

dx
h1 + N(h0 − h1 − h2)+ Mh2

∣∣∣∣∣∣∣∣
x=xe

= q1, (3.6a)

Mqh2 + �ρ1gk
μ1

Mh1h2
dh1

dx
− �ρ2gk

μ2
[N(h0 − h1 − h2)+ h1]h2

dh2

dx
h1 + N(h0 − h1 − h2)+ Mh2

∣∣∣∣∣∣∣∣
x=xe

= q2, (3.6b)

once the current arrives at the edge and drainage starts. Knowing that the heavier and
lighter currents can arrive at the edge at different times, the flux conditions (3.6a,b) at the
edge should also be imposed at different times, accordingly. That said, one needs to track
the frontal location and make justifications in a numerical scheme to solve the coupled
PDEs (3.3a,b).
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Parameter Definition Physical description

M μ1/μ2 Viscosity ratio of the two injected fluids
N μ1/μ3 Viscosity ratio of the injected heavier and ambient fluids
G �ρ2/�ρ1 Buoyancy ratio of the two currents
Q q1/(q1 + q2) Partition of flow rates of the heavier current
x̂e μ1q xe/�ρ1gkh2

0 Dimensionless location of the edge

Table 2. Definition and physical description of the dimensionless parameters M, N, G, Q and x̂e for the
time-dependent problem during the transition towards quasi-steady solutions.

3.2. Dimensionless PDEs and initial and boundary conditions
An interested reader can refer to Yang & Zheng (2023) for time-dependent behaviours of
interacting gravity currents in an infinitely long porous layer of finite depth, which includes
eight different regimes of dynamic interaction under the influence of four dimension
parameters:

M ≡ μ1

μ2
, N ≡ μ1

μ3
, G ≡ �ρ2

�ρ1
and Q ≡ q1

q1 + q2
. (3.7a–d)

The physical meaning of M, N, G and Q is summarised in table 2. In particular, after
rescaling x, t, h1 and h2 appropriately based on

h̄1 ≡ h1

h0
, h̄2 ≡ h2

h0
, x̂ ≡ μ1qx

�ρ1gkh2
0

and t̄ ≡ μ1q2t

�ρ1gkh3
0φ
, (3.8a–d)

we arrive at the dimensionless form of the coupled PDEs:

∂ h̄1

∂ t̄
+ ∂

∂ x̂

⎡
⎢⎢⎣

h̄1 − [N(1 − h̄1 − h̄2)+ Mh̄2]h̄1
∂ h̄1

∂ x̂
+ GMh̄1h̄2

∂ h̄2

∂ x̂
h̄1 + N(1 − h̄1 − h̄2)+ Mh̄2

⎤
⎥⎥⎦ = 0, (3.9a)

∂ h̄2

∂ t̄
+ ∂

∂ x̂

⎡
⎢⎢⎣

Mh̄2 − [N(1 − h̄1 − h̄2)+ h̄1]GMh̄2
∂ h̄2

∂ x̂
+ Mh̄1h̄2

∂ h̄1

∂ x̂
h̄1 + N(1 − h̄1 − h̄2)+ Mh̄2

⎤
⎥⎥⎦ = 0, (3.9b)

which are ready to be solved subject to rescaled initial conditions

h̄1(x̂, 0) = 0 and h̄2(x̂, 0) = 0, (3.10a,b)

970 A37-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

63
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.638


Interaction of gravity currents in a porous layer

and rescaled boundary conditions

h̄1(x̂f 1(t̄), t̄) = 0, (3.11a)

h̄2(x̂f 2(t̄), t̄) = 0, (3.11b)

h̄1 − [N(1 − h̄1 − h̄2)+ Mh̄2]h̄1
dh̄1

dx̂
+ GMh̄1h̄2

dh̄2

dx̂
h̄1 + N(1 − h̄1 − h̄2)+ Mh̄2

∣∣∣∣∣∣∣∣
x̂=0

= Q, (3.11c)

Mh̄2 − [N(1 − h̄1 − h̄2)+ h̄1]GMh̄2
dh̄2

dx̂
+ Mh̄1h̄2

dh̄1

dx̂
h̄1 + N(1 − h̄1 − h̄2)+ Mh̄2

∣∣∣∣∣∣∣∣
x̂=0

= 1 − Q. (3.11d)

The roles of the four dimensionless control parameters are also illustrated in the form of
the rescaled PDEs and initial and boundary conditions.

As mentioned before, for the edge drainage problem, once the currents arrive at the edge
(i.e. when x̂f 1(t̄) = x̂e, or when x̂f 2(t̄) = x̂e), with

x̂e ≡ μ1q xe

�ρ1gkh2
0
, (3.12)

the boundary conditions (3.11) should be modified to flux conditions:

h̄1 − [N(1 − h̄1 − h̄2)+ Mh̄2]h̄1
dh̄1

dx̂
+ GMh̄1h̄2

dh̄2

dx̂
h̄1 + N(1 − h̄1 − h̄2)+ Mh̄2

∣∣∣∣∣∣∣∣
x̂=x̂e

= Q, (3.13a)

Mh̄2 − [N(1 − h̄1 − h̄2)+ h̄1]GMh̄2
dh̄2

dx̂
+ Mh̄1h̄2

dh̄1

dx̂
h̄1 + N(1 − h̄1 − h̄2)+ Mh̄2

∣∣∣∣∣∣∣∣
x̂=x̂e

= 1 − Q, (3.13b)

h̄1 − [N(1 − h̄1 − h̄2)+ Mh̄2]h̄1
dh̄1

dx̂
+ GMh̄1h̄2

dh̄2

dx̂
h̄1 + N(1 − h̄1 − h̄2)+ Mh̄2

∣∣∣∣∣∣∣∣
x̂=0

= Q, (3.13c)

Mh̄2 − [N(1 − h̄1 − h̄2)+ h̄1]GMh̄2
dh̄2

dx̂
+ Mh̄1h̄2

dh̄1

dx̂
h̄1 + N(1 − h̄1 − h̄2)+ Mh̄2

∣∣∣∣∣∣∣∣
x̂=0

= 1 − Q. (3.13d)

That said, the time-dependent behaviour of edge drainage, in principle, is also under the
influence of the dimensionless edge location x̂e, as summarised in table 2. It is of interest
to note that, by definition,

q̄1 = Qx̂e and q̄2 = (1 − Q)x̂e

MG
, (3.14a,b)

which is useful during the comparison between the time-dependent solutions of PDEs
(3.9a,b) and the quasi-steady solutions (2.22a,b), (2.32) and (2.33). It is also of interest to
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Z. Zheng

note that when x̂e = 1, by definition, we must also have x̄ ≡ x̂/x̂e = x̂, which makes it more
convenient to compare the solutions of PDEs (3.9a,b) with the quasi-steady solutions.

3.3. Example calculations and discussions
Example calculations of the coupled PDEs (3.9a,b) subject to initial conditions (3.10a,b)
and boundary conditions (3.11a–d) without edge drainage, or boundary conditions
(3.13a–d) with edge drainage, are provided in this section to demonstrate the time
transition towards the quasi-steady states of gravity current interactions. A finite volume
scheme has been employed to solve the coupled PDEs (3.9a,b), with detailed descriptions
provided in the Appendix of Yang & Zheng (2023) on the dynamic interaction of gravity
currents. As mentioned before, compared with the spreading problem (Yang & Zheng
2023), one needs to track the location of the propagating fronts in a numerical scheme and
make necessary justifications as to which (appropriate) boundary conditions to impose
at the location of the edge. More than 1000 grids have been employed in the numerical
scheme for the profile shapes we show in this paper, and it has been verified that the
scheme is stable and no significant difference is observed subject to grid refinement.

3.3.1. The attached regime
We first consider the attached regime of gravity current interactions. Following the
discussions in Yang & Zheng (2023), there are eight (or eleven) regimes of dynamic
interaction in infinitely long porous layers, depending on the viscosity ratios M and N
between the injecting and displaced fluids, whether or not the pumping and buoyancy
forces balance each other in regimes 1 and 2 (such that the currents are symmetric),
and whether or not the heavier currents attach at the top boundary in regime 5. In this
section, we provide PDE numerical solutions that demonstrate whether the time-dependent
solutions approach the quasi-steady solutions obtained in § 2, as summarised in table 3. It
is assumed that initially there is only the ambient fluid within the porous layer. It is also
assumed that the dimensionless location of the edge is assigned at x̂e = 1 (such that x̂ ≡ x̄)
in all cases considered here for the attached regime. The time-dependent PDE solutions
are taken at t̄ = 0.0278 × {1 − 12} in all figures, and, eventually, the profile shapes are
no longer observed to evolve in all of the example calculations. We only need to consider
the PDE solutions with N ≤ 1, since when N > 1, the shapes of the currents are simply
flipped (i.e. h̄1(x̄, t̄) = h̄∗

2(x̄
∗, t̄∗) and h̄2(x̄, t̄) = h̄∗

1(x̄
∗, t̄∗)) from a corresponding situation

with N < 1, subject to the following transform:

N∗ = N
M
, M∗ = 1

M
, G∗ = 1

G
, Q∗ = 1 − Q (3.15a–d)

and

X∗ = X
GM

, T∗ = T
GM

. (3.16a,b)

See also lemma 2 in Yang & Zheng (2023).
Key observations in each of the eight/eleven regimes of dynamic interaction are

summarised as follows, with an emphasis on the comparison between the PDE (numerical)
solutions and ODE (analytical) solutions at quasi-steady states:

(i) Regime 1a, when N = M = 1 and 1/Q − 1/G = 1. The interacting currents are
symmetric and self-similar without edge drainage at intermediate times, subject
to similarity transform η ≡ (x̂ − t̄)/t̄1/2. With edge drainage, the time-dependent
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Interaction of gravity currents in a porous layer

Regime Definition {N,M,G,Q} Plots Quasi-steady solutions

Regime 1a N = M = 1 and {1, 1, 2, 2/3} Figure 5(a) (2.22a) �
1/Q − 1/G = 1 — — (2.22b) �

— — — (2.32) �
Regime 1b N = M = 1 and {1, 1, 2, 2/5} Figure 5(b) (2.22a) �

1/Q − 1/G /= 1 — — (2.22b) �
— — — (2.33) �

Regime 2a M = 1 < N and {6/5, 1, 2, 2/3} Figure 5(c) (2.22a) �
1/Q − 1/G = 1 — — (2.22b) �

— — — (2.32) �
Regime 2b M = 1 < N and {6/5, 1, 1, 2/3} Figure 5(d) (2.22a) �

1/Q − 1/G /= 1 — — (2.22b) �
— — — (2.33) �

Regime 3 M < 1 < N {6/5, 1/2, 2, 3/5} Figure 6(a) (2.22a) ✗
— — — (2.22b) �
— — — (2.33) ✗

Regime 4 M < N = 1 {1, 1/2, 2, 3/5} Figure 6(b) (2.22a) ✗
— — — (2.22b) �
— — — (2.33) ✗

Regime 5a M < N < 1 and {4/5, 1/2, 2, 1/5} Figure 6(c) (2.22a) �
Q < (1 − N)/(1 − M) — — (2.22b) �

— — — (2.33) �
Regime 5b M < N < 1 and {4/5, 1/2, 2, 4/5} Figure 6(d) (2.22a) ✗

Q ≥ (1 − N)/(1 − M) — — (2.22b) �
— — — (2.33) ✗

Regime 6 N = M < 1 {1/2, 1/2, 2, 1/2} Figure 7(a) (2.22a) �
— — — (2.22b) �
— — — (2.33) �

Regime 7 N < M < 1 {1/2, 4/5, 1/5, 2/5} Figure 7(b) (2.22a) �
— — — (2.22b) �
— — — (2.33) �

Regime 8 N < M = 1 {1/2, 1, 1/5, 1/6} Figure 7(c) (2.22a) �
— — — (2.22b) �
— — — (2.32) �

Table 3. Example calculations of the time transition towards quasi-steady solutions in eight (or eleven)
different regimes of dynamic current interactions in an infinitely long porous layer from numerically solving the
coupled PDEs (3.9a,b), depending on the viscosity ratios M and N between the injecting and displaced fluids
and whether or not the pumping and buoyancy forces balance each other, following the definition in Yang &
Zheng (2023). The ‘�’ mark indicates that a quasi-steady solution is approached by the time-dependent PDE
solutions, while the ‘✗’ mark indicates that a quasi-steady solution is not approached eventually.

numerical solutions of the coupled PDEs (3.9a,b) eventually approach the prediction
of the quasi-steady symmetric solutions (2.22a,b) and (2.32), as shown in figure 5(a),
imposing {N,M,G,Q} = {1, 1, 2, 2/3} as an example.

(ii) Regime 1b, when N = M = 1 and 1/Q − 1/G /= 1. The currents are asymmetric
and self-similar without edge drainage at late times, subject to similarity transform
η ≡ (x̂ − t̄)/t̄1/2. As shown in figure 5(b), the time-dependent numerical solutions of
the coupled PDEs (3.9a,b), in this case, approach the prediction of the quasi-steady
asymmetric solutions (2.22a,b) and (2.33), imposing {N,M,G,Q} = {1, 1, 2, 2/5}
as an example.

(iii) Regime 2a, when M = 1 < N and 1/Q − 1/G = 1. The currents are symmetric and
self-similar without edge drainage at late times, subject to travelling-wave transform
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Figure 5. Time transition towards the quasi-steady solutions (QSS) in regimes 1 and 2: (a) regime 1a,
{N,M,G,Q} = {1, 1, 2, 2/3}, (b) regime 1b, {N,M,G,Q} = {1, 1, 2, 2/5}, (c) regime 2a, {N,M,G,Q} =
{6/5, 1, 2, 2/3} and (d) regime 2b, {N,M,G,Q} = {6/5, 1, 1, 2/3}. Here, x̂e = 1 is imposed. The
time-dependent solutions are taken at t̄ = 0.0278 × {1 − 12} in all panels, which approach the (quasi-steady)
analytical solutions shown as the dotted curves.
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Interaction of gravity currents in a porous layer

η ≡ x̂ − t̄. With edge drainage, the time-dependent solutions of the coupled PDEs
(3.9a,b) for the profile shape of the currents approach the quasi-steady symmetric
solutions (2.22a,b) and (2.32), as shown in figure 5(c), imposing {N,M,G,Q} =
{6/5, 1, 2, 2/3} in the example calculations.

(iv) Regime 2b, when M = 1 < N and 1/Q − 1/G /= 1. The currents are asymmetric
and self-similar without edge drainage at late times, subject to travelling-wave
transform η ≡ x̂ − t̄. With edge drainage, the time-dependent numerical solutions
of PDEs (3.9a,b) for the profile shape of the currents are also found to approach the
quasi-steady asymmetric solutions (2.22a,b) and (2.33), as shown in figure 5(d), in
the example calculations with {N,M,G,Q} = {6/5, 1, 1, 2/3}.

(v) Regime 3, when M < 1 < N. Without drainage the currents are self-similar at late
times, subject to travelling-wave transforms η = x̂ − t̄ and ξ = x̂ − [1 − (1 − M)Q]t̄
for shape evolution of the heavier and lighter currents, respectively. With edge
drainage, numerical solutions of the coupled PDEs (3.9a,b), as shown in figure 6(a),
indicate that the profile shape of the lighter current approaches the quasi-steady
solution (2.22b) as time progresses. Nevertheless, the shape of the heavier current
first approaches the quasi-steady solution (2.22a) before departing from it eventually.
It is suggested that the shape of the heavier current approaches another quasi-steady
solution with finite thickness at the edge. The parameters imposed in the example
calculations are {N,M,G,Q} = {6/5, 1/2, 2, 3/5}.

(vi) Regime 4, when M < N = 1. The currents are self-similar without edge drainage
at late times, subject to transforms η = (x̂ − t̄)/t̄1/2 and ξ = x̂ − [1 − (1 − M)Q]t̄
for the shape evolution of the heavier and lighter currents, respectively. Similar to
regime 3, with edge drainage, time-dependent numerical solutions of the coupled
PDEs (3.9a,b) indicate that the shape of the lighter current eventually approaches
the quasi-steady solution (2.22b), while that of the heavier current first approaches
before departing from solution (2.22a), as shown in figure 6(b). It is also suggested
that the shape of the heavier current eventually approaches another quasi-steady
solution with finite thickness at the edge. The parameters imposed in the example
calculations are {N,M,G,Q} = {1, 1/2, 2, 3/5}.

(vii) Regime 5a, when M < N < 1 and Q < (1 − N)/(1 − M). Without edge drainage,
the interacting currents are self-similar subject to transforms η = x̂/t̄ and ξ =
x̂ − [1 − (1 − M)Q]t̄ for the heavier and lighter currents, respectively. With
edge drainage, numerical solutions of the coupled PDEs (3.9a,b) show that
the time-dependent profile shapes of both currents eventually approach the
prediction of the quasi-steady solutions (2.22a,b) and (2.33), as shown in
figure 6(c). The parameters imposed in the example calculations are {N,M,G,Q} =
{4/5, 1/2, 2, 1/5}.

(viii) Regime 5b, when M < N < 1 and Q ≥ (1 − N)/(1 − M). Without edge drainage,
the currents are self-similar subject to transforms η = x̂/t̄ and ξ = x̂ − [1 − (1 −
M)Q]t̄ for the heavier and lighter currents, respectively. Similar to regime 5a, with
edge drainage, the PDE numerical solutions indicate that the shape of the lighter
current evolves towards the prediction of the quasi-steady solution (2.22b), while the
shape of the heavier current first approaches before departing from the prediction
of the quasi-steady solution (2.22a), as shown in figure 6(d). Similarly, the shape
of the heavier current is found to approach another quasi-steady solution with finite
thickness at the edge eventually. The parameters imposed in the example calculations
are {N,M,G,Q} = {4/5, 1/2, 2, 4/5}.
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Figure 6. Time transition towards the quasi-steady solutions (QSS) in regimes 3, 4 and 5: (a) regime 3,
{N,M,G,Q} = {6/5, 1/2, 2, 3/5}, (b) regime 4, {N,M,G,Q} = {1, 1/2, 2, 3/5}, (c) regime 5a,
{N,M,G,Q} = {4/5, 1/2, 2, 1/5} and (d) regime 5b, {N,M,G,Q} = {4/5, 1/2, 2, 4/5}. Here, x̂e = 1
is imposed. The time-dependent solutions are taken at t̄ = 0.0278 × {1 − 12} in all panels, while the
(quasi-steady) analytical solutions are shown as the dotted curves. Only in regime 5a do the PDE solutions
approach the quasi-steady solutions eventually. In regimes 3, 4 and 5b, instead, the PDE solutions bypass the
quasi-steady solutions obtained in § 2 and approach another set of quasi-steady solutions proposed in § 3.4.
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Figure 7. Time transition towards the quasi-steady solutions (QSS) in regimes 6, 7 and 8: (a) regime
6, {N,M,G,Q} = {1/2, 1/2, 2, 1/2}, (b) regime 7, {N,M,G,Q} = {1/2, 4/5, 1/5, 2/5} and (c) regime 8,
{N,M,G,Q} = {1/2, 1, 1/5, 1/6}. Here, x̂e = 1 is imposed. The time-dependent solutions are taken at t̄ =
0.0278 × {1 − 12} in all panels, which approach the (quasi-steady) analytical solutions shown as the dotted
curves.

(ix) Regime 6, when N = M < 1. The currents are self-similar at late times without edge
drainage, subject to transforms η = x̂/t̄ and ξ = (x̂ − [1 − (1 − M)Q]t̄)/t̄1/2 for the
heavier and lighter currents, respectively. With edge drainage, the time-dependent
numerical solutions of the coupled PDEs (3.9a,b) for the profile shape of the two
currents both approach the prediction of the asymmetric quasi-steady solutions
(2.22a,b) and (2.33), as shown in figure 7(a). The parameters imposed in the example
calculations are {N,M,G,Q} = {1/2, 1/2, 2, 1/2}.
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(x) Regime 7, when N < M < 1. The currents are self-similar at late times without
edge drainage, subject to similarity transform η = x̂/t̄. With edge drainage,
similar to regime 6, the time-dependent numerical solutions of the coupled PDEs
(3.9a,b) indicate that the profile shapes of both currents evolve towards the
prediction of quasi-steady asymmetric solutions (2.22a,b) and (2.33), as shown in
figure 7(b). The parameters imposed in the example calculations are {N,M,G,Q} =
{1/2, 4/5, 1/5, 2/5}.

(xi) Regime 8, when N < M = 1. The currents are symmetric and self-similar at late
times without edge drainage, subject to similarity transform η = x̂/t̄. With edge
drainage, similar to regime 7, the time-dependent numerical solutions of the coupled
PDEs (3.9a,b) indicate that the profile shapes of the heavier and lighter currents both
evolve towards the prediction of the quasi-steady symmetric solutions (2.22a,b) and
(2.32), as shown in figure 7(c). The parameters imposed in the example calculations
are {N,M,G,Q} = {1/2, 1, 1/5, 1/6}.

3.3.2. The detached regime
Up till now, we have demonstrated the time transition towards quasi-steady solutions in the
attached regime of gravity current interaction, imposing x̂e = 1 in all example calculations.
To demonstrate the time transition in the detached regime, we next impose an edge location
x̂e = 1/20, corresponding to lower injection rates of the currents (by definition), when we
solve the coupled PDEs (3.3a,b) numerically. Typical results are shown in figure 8(a,b),
when we impose {N,M,G,Q} = {1, 1, 2, 2/3} (corresponding to regime 1a at higher
injection rates) and {N,M,G,Q} = {1/2, 1, 1/5, 1/6} (corresponding to regime 8
at higher injection rates) in the example calculations. It is observed that the prediction
of the ODEs (2.9a,b) for unconfined currents at quasi-steady states is approached in both
cases as time proceeds.

3.4. Remarks

3.4.1. Alternative way to derive ODEs (2.9a,b) and (2.13)
It is of interest to note that ODEs (2.9a,b) and (2.13) for the quasi-steady profile shapes
h1(x) and h2(x) of the interacting currents can also be derived from PDEs (3.3a,b), starting
by setting ∂h1/∂t = ∂h2/∂t = 0. Specifically, employing the flux boundary conditions
(3.5c,d) for the heavier and lighter currents, PDEs (3.3a,b) reduce to two coupled ODEs
at any quasi-steady state:

qh1 − �ρ1gk
μ1

[N(h0 − h1 − h2)+ Mh2]h1
dh1

dx
+ �ρ2gk

μ2
h1h2

dh2

dx
h1 + N(h0 − h1 − h2)+ Mh2

= q1, (3.17a)

Mqh2 + �ρ1gk
μ1

Mh1h2
dh1

dx
− �ρ2gk

μ2
[N(h0 − h1 − h2)+ h1]h2

dh2

dx
h1 + N(h0 − h1 − h2)+ Mh2

= q2. (3.17b)

It is convenient to show that when h1 + h2 = h0, both (3.17a) and (3.17b) can be rearranged
to recover ODE (2.13) for the profile shape of the currents in the attached region. When
h1 + h2 < h0, in contrast, (3.17a,b) can be rearranged to recover ODEs (2.9a,b) for the
profile shape of the currents in the detached region.
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Figure 8. Time transition towards the quasi-steady solutions (QSS) in the detached regime at lower injection
rates, when we impose x̂e = 1/20: (a) {N,M,G,Q} = {1, 1, 2, 2/3}, corresponding to regime 1a at higher
injection rates, and (b) {N,M,G,Q} = {1/2, 1, 1/5, 1/6}, corresponding to regime 8 at higher injection rates.
The time-dependent solutions are taken at t̄ = 0.00278 × {1 − 12} in (a) and t̄ = 0.0111 × {1 − 12} in (b),
which approach the (quasi-steady) analytical solutions shown as the dotted curves.

3.4.2. Quasi-steady solutions with finite edge thickness
The next question is how we explain the quasi-steady profile shape of the heavier current in
regimes 3, 4 and 5b. Heuristically, we now impose a finite thickness h̄e at the edge for the
heavier current, as observed in the PDE numerical solutions. We then solve ODE (2.16a),
subject to

h̄1(1) = h̄e, (3.18)

rather than the zero-thickness condition (2.18a), which provides an alternative analytical
solution for the quasi-steady profile shape of the heavier current in the detached region as

h̄1(x̄) =
[
h̄2

e + 2q̄1(1 − x̄)
]1/2

, (3.19)

rather than (2.22a) (which is equivalent to (3.19) with h̄e = 0). Correspondingly, imposing
the alternative solution (3.19) for the shape of the heavier current, the location of the
detaching point (x̄d, h̄d) now becomes

x̄d = 1 −
([

q̄1 − (q̄1 − q̄2) h̄2
e

]1/2 − q̄1/2
2

)2
/

2 (q̄1 − q̄2)
2 , (3.20a)

h̄d =
[

h̄2
e + 2q̄1

([
q̄1 − (q̄1 − q̄2) h̄2

e

]1/2 − q̄1/2
2

)2
/

2 (q̄1 − q̄2)
2

]1/2

, (3.20b)
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Figure 9. Time transition towards the quasi-steady solutions (QSS) with finite edge thickness h̄e for
the heavier current in regimes 3, 4 and 5b: (a) regime 3, {N,M,G,Q} = {6/5, 1/2, 2, 3/5}, (b) regime
4, {N,M,G,Q} = {1, 1/2, 2, 3/5} and (c) regime 5b, {N,M,G,Q} = {4/5, 1/2, 2, 4/5}. Here, x̂e = 1 is
imposed. The time-dependent solutions are taken at t̄ = 0.0278 × {1 − 12} in all panels, while the quasi-steady
analytical solutions with finite edge thickness (obtained in § 3.4.2) are shown as the dotted curves.

rather than (2.28) and (2.29) (which are equivalent to (3.20a,b) with h̄e = 0). The profile
shape in the attached region can then be obtained by feeding (3.20a,b), rather than (2.28)
and (2.29), into the implicit solution (2.33).

To verify the alternative solutions obtained here, we impose the value of the edge
thickness h̄1(1) = h̄e for the heavier current based on the PDE numerical solutions in
regimes 3, 4 and 5b, heuristically, and very good agreement now appears with the
quasi-steady profile shapes from numerically solving the coupled PDEs (3.3a,b), as shown
in figure 9 and summarised in table 4. The remaining question is what determines the
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Regime Definition {N,M,G,Q} Plots Quasi-steady solutions

Regime 3 M < 1 < N {6/5, 1/2, 2, 3/5} Figure 9(a) (3.19) �
— — — (2.22b) �
— — — (2.33) s.t. (3.20) �

Regime 4 M < N = 1 {1, 1/2, 2, 3/5} Figure 9(b) (3.19) �
— — — (2.22b) �
— — — (2.33) s.t. (3.20) �

Regime 5b M < N < 1 and {4/5, 1/2, 2, 4/5} Figure 9(c) (3.19) �
Q ≥ (1 − N)/(1 − M) — — (2.22b) �

— — — (2.33) s.t. (3.20) �

Table 4. Time transition towards quasi-steady solutions with finite edge thickness h̄1(1) = h̄e > 0 in regimes
3, 4 and 5b. The ‘�’ mark indicates that a quasi-steady solution is approached by the time-dependent PDE
solutions eventually.

exact value of the finite edge thickness h̄1(1) = h̄e for the heavier current. Equivalently,
it remains yet to understand the departure from (or, bypass of) the quasi-steady solution
(2.22a) with zero edge thickness, or, the selection criterion to approach the alternative
solution (3.19) with finite edge thickness for the heavier current. A conjecture is that
solution (2.22a) is unstable in the flow situations considered in regimes 3, 4 and 5b.

4. Summary and final remarks

4.1. The one-dimensional flow assumption
It is good to remark on the assumption of one-dimensional flow in both the detached
and attached regimes of interacting gravity currents. In principle, it is required that
the aspect ratio of the currents is negligibly small, which is expected to be related to
δ ≡ h0/xe, the aspect ratio of the porous layer. Then, based on volume conservation for
incompressible fluid flow, the vertical velocity component becomes negligible, compared
with the horizontal component.

At lower injection rates q̄1/2
1 + q̄1/2

2 < 2−1/2, the heavier and lighter currents remain
separated from each other. It is hence required that h1(0)/xe 	 1 and h2(0)/xe 	 1 for
the one-dimensional flow assumption to apply. Based on solution (2.23a,b) for the inlet
height of the detached currents,

δ (2q̄1)
1/2 	 1 and δ (2q̄2)

1/2 	 1, (4.1a,b)

where δ enters conditions (4.1a,b).
In contrast, at higher injection rates q̄1/2

1 + q̄1/2
2 ≥ 2−1/2, the heavier and lighter currents

attach to each other, and a detaching location x = xd naturally appears for the profile of the
currents. We then look into the aspect ratio of the detached region x ∈ (xd, xe) for both the
heavier and lighter currents, and it is required that h1(xd)/(xe − xd) 	 1 and h2(xd)/(xe −
xd) 	 1 for the assumption of one-dimensional flow to apply. Based on solutions (2.28)
and (2.29), this then leads to

2δ q̄1/2
1

(
q̄1/2

1 + q̄1/2
2

)
	 1 and 2δ q̄1/2

2

(
q̄1/2

1 + q̄1/2
2

)
	 1. (4.2a,b)

Again, the aspect ratio δ of the porous layer enters conditions (4.2a,b), which applies for
both symmetric and asymmetric currents.
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4.2. Summary
We have studied the interaction of heavier and lighter gravity currents in a porous layer
with a finite edge. When the rate of injection equals the rate of drainage at the edge, a
steady state is reached. For these quasi-steady gravity current flows, the heavier and lighter
currents either attach to each other (at higher rates) or remain separated (at lower rates),
which defines the ‘detached’ and ‘attached’ regimes of gravity current interaction. These
two regimes are summarised in a regime diagram (figure 2), and separated by a curve of
rescaled injection rates (q̄1/2

1 + q̄1/2
2 = 2−1/2).

Interestingly, it has been shown in § 2 that the ambient fluid remains quiescent at any
steady state. Correspondingly, the interaction of steady-state currents turns out to be rather
different from the dynamic interaction of propagating currents, as described in § 3 to
illustrate the time transition towards quasi-steady solutions. For example, the viscosity
ratio between the injecting and displaced fluids does not enter the problem statement as
a dimensionless control parameter, compared with the full dynamic problem of gravity
current interaction.

The quasi-steady gravity current interaction problem is now under the influence of two
dimensionless parameters q̄1, q̄2, the rescaled injection rates, in the detached region, and
also a third parameter G, the buoyancy ratio, in the attached region, as summarised in
table 1. Meanwhile, the model led to analytical solutions for the interface shape of the
heavier and lighter currents in both the detached and attached regimes and in both the
symmetric and asymmetric regimes. In particular, a symmetry condition (2.34) is derived
that describes whether or not there is a balance between the pumping and buoyancy forces.

The model also led to analytical solutions for the sweep efficiency ψ of flooding flows
(figure 3) and the background pressure distribution along a cap rock (figure 4) when
the currents are symmetric. The model and solutions might be of interest to the practice
of fluid-phase resource recovery and cleaning of confined spaces, subject to appropriate
extension to account for the influence of wetting and capillary forces and fluid mixing. The
addition of a second current increases the sweep efficiency, in principle, the contribution
of which can also be calculated. In the case of CO2–water co-flooding, a certain amount
of CO2 is also sequestered, as briefly discussed in Appendix B.

Finally, the time transition towards the quasi-steady solutions has also been briefly
addressed in § 3. This is made possible by considering the full dynamic problem of gravity
current interaction, when the profile shapes of the interacting currents are described by
PDEs rather than ODEs. Our example calculations (figures 5–8) indicate that, for the
lighter current, the PDE numerical solutions approach the quasi-steady solution (2.9a)
at late times in all eight/eleven regimes of dynamic interaction. Nevertheless, for the
heavier current, in three regimes of dynamic interaction (regimes 3, 4 and 5b), the PDE
solutions first approach before departing from the quasi-steady solution (2.9b) eventually.
Alternative solutions with finite edge thickness are provided, which explains the collapsed
PDE solutions at late times in regimes 3, 4 and 5b (figure 9).
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Appendix A. The detached region in the attached regime

Within the attached regime at higher injection rates, the heavier and lighter gravity currents
remain detached for x ∈ (xd, xe], as sketched in figure 1(b). Correspondingly, the shape of
the interface h1(x) and h2(x) can still be described by (2.9a,b), assuming that the location
of detachment (x = xd) is sufficiently far away from the edge (x = xe) and the flow remains
one-dimensional. We then rescale x based on characteristic length scale (xe − xd), rather
than length xe of the entire domain, and define

x̃ ≡ (x − xd)/(xe − xd). (A1)

Based on this definition, the attached region x̄ ∈ [x̄d, 1] also corresponds to x̃ ∈ [0, 1]. In
addition, one can show that x̃ = (x̄ − x̄d)/(1 − x̄d) and d/dx̃ = (1 − x̄d) d/dx̄.

Meanwhile, ODEs (2.9a,b) for the interface shape of the heavier and lighter currents
can then be rearranged to provide

h̄1
dh̄1

dx̃
= q̄1(1 − x̄d), (A2a)

h̄2
dh̄2

dx̃
= q̄2(1 − x̄d). (A2b)

The zero thickness boundary conditions at the edge (2.10a,b) remain unchanged. We then
solve (A2a,b) subject to (2.10a,b) for the shape of the interface in the detached region
x̄ ∈ [x̄d, 1], i.e. x̃ ∈ [0, 1], as

h̄1(x̃) = [
2q̄1(1 − x̄d)(1 − x̃)

]1/2
, (A3a)

h̄2(x̃) = [
2q̄2(1 − x̄d)(1 − x̃)

]1/2
. (A3b)

Recalling that x̃ = (x̄ − x̄d)/(1 − x̄d), solution (A3) can also be rewritten in terms of
h̄(x̄) as

h̄1(x̄) = [
2q̄1(1 − x̄)

]1/2
, (A4a)

h̄2(x̄) = [
2q̄2(1 − x̄)

]1/2
, (A4b)

which recovers exactly solution (2.22), but now for x̄ ∈ [x̄d, 1]. The conclusion that the
interface shape h̄1(x̄) and h̄2(x̄) can still be described by (2.22) even in the attached
regime is due to the fact that the displaced fluid 3 remains quiescent for these quasi-steady
one-dimensional flows. This is not a model assumption, but rather a consequence of mass
and momentum balance in the quasi-steady flow situation.

Appendix B. Potential implications

It is also of interest to briefly remark on the potential implications of this work before we
close the paper. Based on the discussions in § 2.4.1, it is shown that by introducing an
additional current, either heavier or lighter, the sweep efficiency can improve significantly.
For example, in the practice of enhanced oil recovery, at reservoir condition (typically
1 km or more below the surface), typical densities of the fluids are ρwater ≈ 994 kgm−3,
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Description Parameter Unit Case 1 Case 2 Case 3 Case 4

Viscosity of water μ1 (mPa s) 0.445 0.445 0.445 0.445
Viscosity of CO2 μ2 (mPa s) 0.062 0.062 0.062 0.062
Viscosity of oil μ3 (mPa s) 0.35 0.35 0.35 0.35
Density of water ρ1 (kg m−3) 994 994 994 994
Density of CO2 ρ2 (kg m−3) 670 670 670 670
Density of oil ρ3 (kg m−3) 818 818 818 818
Gravitational

acceleration
g (m s−2) 9.8 9.8 9.8 9.8

Permeability k (mD) 19.4 19.4 19.4 19.4
Porosity φ (–) 0.04 0.04 0.04 0.04
Length of porous

layer
xe (km) 14.2 14.2 14.2 14.2

Thickness of porous
layer

h0 (m) 81 81 81 81

Depth of porous
layer

d (km) 14.2 14.2 14.2 14.2

Volumetric rate of
water

V̇1 (m3 s−1) 3.6 × 10−6 7.2 × 10−6 3.6 × 10−6 7.2 × 10−6

Volumetric rate of
CO2

V̇2 (m3 s−1) 0 0 3.6 × 10−6 7.2 × 10−6

Area rate of water q1 (m2 s−1) 6.3 × 10−9 1.3 × 10−8 6.3 × 10−9 1.3 × 10−8

Area rate of CO2 q2 (m2 s−1) 0 0 6.3 × 10−9 1.3 × 10−8

Characteristic
length scale

xc (km) 78 38 38 19

Characteristic time
scale

tc (s) 4.0 × 1013 9.5 × 1012 9.5 × 1012 2.4 × 1012

Rescaled area rate
of water

q̄1 (–) 0.18 0.37 0.18 0.37

Rescaled area rate
of CO2

q̄2 (–) 0 0 0.030 0.061

Viscosity ratio M (–) 7.2 7.2 7.2 7.2
Viscosity ratio N (–) 1.3 1.3 1.3 1.3
Buoyancy ratio G (–) 0.84 0.84 0.84 0.84
Flow rate partition Q (–) 1 1 1/2 1/2
Edge location x̄e (–) 0.18 0.37 0.37 0.75
Aspect ratio δ (–) 0.013 0.013 0.013 0.013
Area covered by

water
Ā1 (%) 40 57 40 56

Area covered by
CO2

Ā2 (%) 0 0 16 21

Sweep efficiency ψ (%) 40 57 56 77
Sum of injection

rates
q̄1/2

1 + q̄1/2
2 (–) 0.43 0.60 0.60 0.85

Flow regime — — Single
gravity
current

Single
gravity
current

Detached
gravity
currents

Attached
gravity
currents

(unconfined) (unconfined) (asymmetric)

Table 5. Potential implications in CO2 enhanced oil recovery practice. Cases 1 and 2, water flooding; cases
3 and 4, CO2–water co-flooding. The geophysical and operational parameters are estimated based on earlier
reports of Kane (1979) and Guo et al. (2016). The area injection rates of CO2 and water are estimated based on
q = V̇/dφ.
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Figure 10. Potential implications in CO2–water co-flooding projects: (a) case 1, water flooding, (b) case 2,
water flooding, (c) case 3, CO2–water co-flooding and (d) case 4, CO2–water co-flooding. The time-dependent
PDE solutions are shown as solid curves, while the (quasi-steady) analytical solutions (QSS) are shown as
dotted curves. The characteristic time scales in each case are provided in table 5.
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ρCO2 ≈ 670 kg m−3 and ρoil ≈ 818 kg m−3 (e.g. Kane 1979; Guo et al. 2016). Thus, on
the basis of water flooding (which potentially forms a heavier current), by introducing
an additional current of steam or CO2 (which is lighter than oil at reservoir condition),
in principle, it is possible to increase the efficiency of oil recovery. In the case of CO2
flooding, an equal amount of CO2 is also sequestered in the rock formation at the same
time, compared with the increase in oil production.

We then take the geophysical and operational data from a CO2–water enhanced
oil recovery project at SACROC Unit, Kelly-Snyder Field (TX, USA) for an example
calculation, as summarised in table 5. The base case only employs water flooding, and the
sweep efficiency is ψ = 40 % due to the intrusion of a single water current. By doubling
the injection rate of the water current, the sweep efficiency increases from ψ = 40 %
in case 1 to ψ = 57 % in case 2. Meanwhile, employing CO2–water co-flooding, by
introducing a lighter CO2 current at the same rate, the sweep efficiency increases from
ψ = 40 % in case 1 toψ = 56 % in case 3. The CO2 and water currents remain detached in
this case, which is consistent with condition (2.24). Finally, by doubling the injection rates
of both the water and CO2 currents, the sweep efficiency further increases to ψ = 77 % in
case 4, when the CO2 and water currents attach to each other. The advantage of employing
co-flooding of heavier and lighter currents is hence demonstrated, making full use of
buoyancy. Meanwhile, with CO2–water co-flooding, the amount of CO2 sequestered is
demonstrated by the cross-sectional area Ā2, covered by the lighter current of CO2. Both
the time-dependent solutions from solving PDEs (3.3a,b) and the analytical solutions at
quasi-steady states are also shown in figure 10(a–d) to further illustrate the flooding flows
in these four cases.

It should also be noted that in steam flooding, the flow can become significantly
unsaturated, while in CO2 flooding, the influence of mixing (of CO2 and oil) can also
become non-negligible (leading to variations in density and viscosity of the fluids). In
both situations, the sharp-interface assumption can possibly fail, and the model developed
here needs to be extended to account appropriately for influence of wetting and capillary
forces and/or fluid mixing. Future investigations are hence motivated. The sweep efficiency
ψ in the sharp-interface regime, nevertheless, can still be understood as an important
reference for the ‘recoverable’ amount of oil in a reservoir. In particular, the influence
of residual oil saturation Soil can be absorbed into the definition of an effective porosity,
φeff ≡ (1 − Soil)φ.
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