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A capillary surface in or around exotic cylinders cannot locate itself, since the
configurations of the exotic cylinders with a variable radius permit an entire continuum
of equilibrium menisci, all of which have the same potential energy. The ‘exotic’
property indicates that all the menisci have the smallest eigenvalues λ1 = 0 for the
corresponding Sturm–Liouville problems without a volume constraint for stability
analysis. Three types of exotic cylinders are addressed and the Sturm–Liouville
problems with λ = 0 for stability analysis are solved numerically. Notably, the
two-dimensional cases can be solved analytically. In the method of Slobozhanin
& Alexander (Phys. Fluids, vol. 15, 2003, pp. 3532–3545), the stability of the
meniscus is determined by comparing the boundary parameter χ1 and the critical
value χ∗1 , which is derived directly from the solution of the Sturm–Liouville problem
with λ = 0. Results validate that the exotic cylinders have the boundary parameters
χ1 = χ

∗

1 . Motivated by this observation, a new way to determine the critical value
χ∗1 under pressure disturbances for stability analysis is proposed without solving the
Sturm–Liouville problem with λ= 0.

Key words: capillary flows

1. Introduction
Capillary phenomena in and around cylinders are ubiquitous throughout nature and

in engineering processes, such as water transport in trees (Tyree 2003), capture of
seeds by aquatic vegetation (Peruzzo et al. 2013) and measurement of contact angle
(Decker et al. 1999). In each of these examples, the deformed surface (meniscus)
in or around a vertical circular cylinder is determined uniquely by its contact angle
and the cylinder radius (see e.g. White & Tallmadge (1965), Concus (1968), Huh &
Scriven (1969)). However, some examples show that the configuration of a cylinder
with a variable radius may permit two or more equilibrium menisci (Finn 1988). The
uniqueness of the meniscus seems to be the exception rather than the rule (Concus &
Finn 1991).

A striking observation that there exists an entire continuum of equilibrium menisci
in an axisymmetric container for which the energy remains unchanged was first
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made by Gulliver & Hildebrandt (1986), who studied the particular case of zero
gravity and contact angle π/2. The general case was investigated by Finn (1988).
A container with this remarkable property is called an exotic container. Most
interestingly, the families of axisymmetric menisci in exotic containers turn out
to be unstable (Finn 1988; Concus & Finn 1989; Wente 1999). This means that the
menisci with a local minimum of energy are non-axisymmetric in the axisymmetric
exotic containers, confirmed by numerical computations (Callahan, Concus & Finn
1991) and experiments (Concus, Finn & Weislogel 1992, 1999). Wente (2011) made
the extension of the ‘exotic’ property to a capillary tube in an infinite bath, called an
exotic capillary tube. Results showed that any axisymmetric equilibrium meniscus in
an exotic tube is a minimiser of energy and hence has the same potential energy.

For stability analysis, disturbances of the menisci in the exotic container and
the exotic tube are different (see Bostwick & Steen (2015) for a review). Only
volume-preserving variations (called volume disturbances) of the interface are allowed
in the case of an exotic container (because there is a volume constraint) and there
is no volume constraint restricting the variations (called pressure disturbances) when
one considers an exotic tube. For the exotic container, stability analysis predicts
non-axisymmetric menisci (Finn 1988; Concus & Finn 1989; Wente 1999). These
results are closely related to the non-axisymmetric instabilities of an axisymmetric
surface subject to a volume constraint (Slobozhanin & Tyuptsov 1974). Based on the
‘exotic’ property, the second variation of energy in an exotic container is expected
to be zero for axisymmetric perturbations (Wente 1999). Thus, non-axisymmetric
perturbations are the most dangerous (i.e. corresponding to the smallest eigenvalue) in
an exotic container, leading to three non-axisymmetric surface configurations (Concus
et al. 1999). The non-axisymmetric instability can also be observed for an impaled
drop and a liquid bridge when the Steiner limit is exceeded (Gillette & Dyson 1972;
Slobozhanin, Alexander & Resnick 1997). However, the non-axisymmetric instability
will not be observed in an exotic tube, because axisymmetric perturbations without
a fixed volume constraint are more dangerous than non-axisymmetric ones (Myshkis
et al. 1987; Slobozhanin & Alexander 2003). It seems obvious to conclude that any
meniscus in an exotic tube has the smallest eigenvalue λ1 = 0 for the corresponding
Sturm–Liouville problem without a volume constraint, but questions remain about the
mechanism underlying this observation. This may provide us with new insights into
stability analysis.

In this work, we consider the meniscus formed in or around a vertical circular
cylinder partially immersed in an infinite liquid under gravity. Then we unify the three
configurations mentioned above (insets of figure 1) by the signed curvatures of the
cylinder cross-sections and determine three corresponding exotic cylinders, where the
exotic tube has been studied in depth by Wente (2011). The study is then extended to
stability analysis for exotic cylinders. Using the method of Slobozhanin & Alexander
(2003), the stability of the meniscus is determined by comparing the critical value
χ∗1 and the boundary parameter χ1 of the exotic cylinder, where the Sturm–Liouville
problem L0ϕ0=0 is solved for χ∗1 . The spectral parameter power series (SPPS) method
(Kravchenko & Porter 2010) is applied to the problems L0ϕ0= 0 to obtain the contour
lines of χ∗1 for two families of menisci. From the ‘exotic’ property, we expect that the
meniscus in or around the exotic cylinder has the smallest eigenvalue λ1 = 0 for the
corresponding Sturm–Liouville problem without a volume constraint, leading to χ1 =

χ∗1 . This observation will be validated in our numerical experiments. Consideration of
exotic cylinders in different ways will shed light on the physical and mathematical
concepts underlying the ‘exotic’ property.
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FIGURE 1. The influence of the signed curvature kr of the cylinder cross-section on
the contact line height uc for θ = π/6. The following values of parameters are used:
σ = 0.0715 N m−1, g= 9.81 m s−2 and ρ = 1000 kg m−3. The insets in (a–c) show the
configurations of kr =−500, 0 and 500 m−1 (red dots), respectively. In the insets, the red
lines denote the meniscus profiles with u= 0 located at the water line.

2. Determination of the exotic cylinders
2.1. Axisymmetric menisci in and around a cylinder

Consider a vertical circular cylinder partially immersed in an infinite water bath in
a downward gravity field. The meniscus in or around the cylinder is determined
uniquely by its contact angle θ and the cylinder radius r0, as mentioned above.
The configurations of the tube and cylinder can be unified by the signed curvature
kr ≡ ±1/r0 of the cylinder cross-section, shown by uc(kr) the height of the contact
line as a function of kr (figure 1). It is assumed that kr < 0 (>0) if the cylinder
cross-section is convex towards (away from) the liquid. Therefore, the case of kr = 0
(i.e. r0 → ∞) corresponds to the configuration of a vertical flat plate (inset of
figure 1b). For the vertical flat plate, the meniscus shape is described by (see e.g.
Finn (2010), Bhatnagar & Finn (2016))

u=
2
√
κ

sin
ψ

2
, (2.1a)

x− x0 =
1
√
κ

2 cos
ψ

2
− 2 cos

ψ0

2
+ ln

 tan
ψ

4

tan
ψ0

4


 , (2.1b)

where the subscript ‘0’ indicates quantities evaluated at the plate, ψ is the inclination
angle of the meniscus and κ = ρg/σ is the capillary constant, with density difference
ρ (positive) between gas and liquid, gravitational acceleration g and surface tension
σ of the interface. For kr� 0, the height of the contact line can be given by Jurin’s
law (see the dashed red line in figure 1c):

uc = 2kr cos θ/κ, (2.2)

where uc and kr are proportional. However, uc and kr for kr� 0 (figure 1a) are not
inversely proportional, confirmed by Hildebrand, Hildebrand & Tallmadge (1971).
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These results are calculated numerically, based on the Young–Laplace equation in
cylindrical coordinates (r, u) with the u-axis passing through the axis of the cylinder
and u= 0 located at the undisturbed surface (Concus 1968):[

ru′

(1+ u′2)1/2

]′
= κru, (2.3)

where the prime refers to the derivative with respect to r. The boundary conditions
are

u′ = tan(π/2− θ) at r= 1/kr, (2.4a)
u′ = 0 as r→−∞, for kr < 0, (2.4b)

u′ = 0 at r= 0, for kr > 0. (2.4c)

This is a one-dimensional problem because the meniscus is axisymmetric. For the
convenience of numerical calculation, equation (2.3) is expressed in a dimensionless
parametric form by introducing the inclination angle ψ of the meniscus and using the
dimensionless coordinate system (R, U) (with respect to the capillary length 1/

√
κ).

The dimensionless equations are (Huh & Scriven 1969)

dR
dψ
=

R cosψ
RU − sinψ

,
dU
dψ
=

R sinψ
RU − sinψ

, (2.5a,b)

with the boundary conditions

R= 1/Kr at ψ =π/2− θ, (2.6a)
U→ 0 and R→−∞ as ψ→ 0, for Kr < 0, (2.6b)

R= 0 at ψ = 0, for Kr > 0, (2.6c)

where Kr is the dimensionless curvature kr/
√
κ .

The system of (2.5) with (2.6) can be solved numerically by the shooting method
for solving a boundary-value problem by reducing it to the solution of an initial-value
problem (Concus 1968; Rapacchietta & Neumann 1977). Because of the singularity of
(2.5) at ψ = 0, the asymptotic solutions of the system as ψ→ 0 are taken as the initial
conditions for the numerical integration of (2.5), given by (see Concus 1968; Huh &
Scriven 1969)

U∗ = tanψ∗K0(−R∗)/K1(−R∗), for Kr < 0, (2.7a)
U∗ = tanψ∗I0(R∗)/I1(R∗), for Kr > 0, (2.7b)

where I and K are the modified Bessel functions of the first and second kinds,
respectively. The appropriate value of ψ∗ for (2.7) with a guessed value of R∗ can
be chosen as ±0.01◦, where the upper (lower) sign is taken if θ < π/2 (>π/2).
The Runge–Kutta method for integrating (2.5) and the secant method for adjusting
R∗ are used in the shooting method. Then the meniscus in or around a cylinder is
determined.

2.2. Shapes of the exotic cylinders
Based on the above considerations, a mathematic model is formulated for determining
the exotic cylinder with a given contact angle θ and an initial curvature Kin = Kr
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FIGURE 2. Two families of solution curves for ψ ∈ [−π,π] (see also figure 2 in Huh &
Scriven (1969) and figure 1 in Wente (2011)): (a) Kr < 0 and (b) Kr > 0. The thick red
lines represent the envelopes of the solution curves, which divide the solution curves into
two parts: F(ψ, t) < 0 for generating the shape of the exotic cylinder (solid lines) and
F(ψ, t) > 0 (dashed lines). The dot-dashed lines represent the solution curves of Kr = 0
(i.e. the two-dimensional case), given by the dimensionless form of (2.1) with ψ0 =π.

at U = 0. Wente (2011) has shown that the exotic tube (Kr > 0) can be determined
by integrating the vector field 〈cos(ψ + θ), sin(ψ + θ)〉, constructed from the scalar
field ψ =ψ(R,U) with the Jacobian determinant F(ψ, t) of (R(ψ, t),U(ψ, t)) being
non-zero and remaining the same sign. Substituting (2.5) for the Jacobian determinant
gives

F(ψ, t)=
(−Ṙ sinψ + U̇ cosψ)R

RU − sinψ
, (2.8)

where the overdot refers to the derivative with respect to the parameter t. Two
families of solution curves of (2.5) with (2.6) are defined in parametric form by
(R(ψ, t),U(ψ, t)) (see figure 2). Here the parameter t is chosen as R∗ in (2.7) with
ψ∗ remaining unchanged. The region of ψ(R,U) is bounded by the coordinate axes
and the envelopes of the family curves in the R–U plane. The envelopes are found
by solving F(ψ, t) = 0 numerically. In these cases, the numerical results show that
the Jacobian determinant F(ψ, t) is negative in the region (solid lines in figure 2) for
generating the shape of the exotic cylinder while the Jacobian determinant in Wente
(2011) is positive in the same region, because the parameter t is chosen as R∗ in our
cases while t is U/2 at ψ = 0 in Wente (2011).
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Figure 2 shows two families of solution curves with ψ ∈ [−π,π] for the axi-
symmetric menisci satisfying (2.5) with the conditions (2.6b) and (2.6c), respectively.
In figure 2(a), the axisymmetric menisci with the condition (2.6b) extend outward
to infinity and do not meet the axis of revolution. These menisci are called the
axisymmetric fluid interfaces of unbounded extent by Huh & Scriven (1969). The
envelope in figure 2(a) has a right endpoint (R, U)→ (0, 0) and the height of the
envelope is asymptotic to 2 as R→−∞. The height of the solution curve Kr = 0
equals 2 according to the dimensionless form of (2.1) with ψ0 = π. Therefore, the
envelope appears to transversally cross the curve Kr = 0 for the two-dimensional case
in figure 2(a). In figure 2(b), the axisymmetric menisci with the condition (2.6c)
are simply connected and are perpendicular to the axis of revolution at R = 0. The
envelope in figure 2(b) is asymptotic to RU = 2 as U→+∞ and the height of the
envelope decreases to 2 as R→ +∞ and hence the envelope appears to miss the
curve Kr = 0 in figure 2(b). Both the envelopes divide the solution curves into two
parts: F(ψ, t) < 0 (solid lines) and F(ψ, t) > 0 (dashed lines). The first parts of the
solution curves form the region of ψ(R,U) for generating the shape of the exotic
cylinder.

We make a natural extension of the cases of Kr > 0 studied by Wente (2011) to
Kr < 0, where the menisci are formed around the cylinders. Then the shapes of the
exotic cylinders (see figure 3) can be obtained by the above method of Wente (2011).
The equations for determining the exotic cylinders are

dX
dY
= cot(ψ + θ), (2.9a)

ψ =ψ(X, Y), for F(ψ, R∗) < 0, (2.9b)

with the initial conditions

X =∓R0, ψ = 0 at Y = 0, (2.10a,b)

where the upper (lower) sign is taken if the cylinder cross-section is convex towards
(away from) the liquid, (X(Y), Y) denotes a point on the generatrix of the exotic
cylinder and R0 is the radius of the exotic cylinder at U = 0. As discussed above,
the envelope in figure 2 bounds the region of ψ(R,U) so that the exotic cylinder is
also bounded by the corresponding envelope.

The system of (2.9) with (2.10) is solved numerically to generate the shapes of the
exotic cylinders. The Runge–Kutta method is used to integrate (2.9a). Similar to the
cases shown in figure 1, the interior, planar and exterior cases of the exotic cylinders
shown in figure 3 are classified by the sign of the signed curvature Kin=±1/R0 (with
the same sign rule as Kr) of the cross-section at the height U = 0, where the planar
and exterior cases are new. Figure 3(a) shows three types of exotic cylinders with
θ =π/4 and Kin= 1, 0 and −1, and figure 3(b,c) compares the generatrices of exotic
cylinders for different values of Kin.

For the interior cases (Kin>0), as shown by Wente (2011), the exotic tube (thick red
lines in figure 3) with θ ∈ (0,π/2) has a bottom tip at Y = Ym < 0 and is asymptotic
to XY = 2 cos θ as Y → +∞. For the case of θ = π/2, the tube is asymptotic to
lim XY = 0 as Y→±∞ at both extremes.
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FIGURE 3. (a) Three types of exotic cylinders with θ = π/4 and Kin = 1, 0 and −1
(from left to right), and (b,c) comparison between the shapes of the exotic cylinders with
Kin = 101, 100 and 10−1 for (b) θ = π/4 and (c) θ = π/2. The thick solid red (thin
blue) lines represent cases of Kin > 0 (<0), where the menisci are formed in (around) the
exotic cylinders. In (a), the dotted lines represent the central axes and the dashed red lines
represent the equilibrium menisci. The cases of Kin=0 (dashed black lines) are determined
by (2.12). The abscissa Kin indicates the reciprocal of R0, where the central axis of the
exotic cylinder is located at R= 0. The exotic cylinders with Kin < 0 are bounded by two
horizontal (dot-dashed) lines U = 2 cos (θ/2) and U =−2 sin (θ/2).

For the exterior cases (Kin < 0), the exotic cylinder (thin blue lines in figure 3) is
bounded by two horizontal lines U = 2 cos (θ/2) and U =−2 sin (θ/2), because the
height of the meniscus is asymptotic to 2 sin (ψ/2) as X→−∞ with ψ → π − θ

(−θ) for Y > 0 (<0) at the contact point. Thus, the height of the exotic cylinder with
Kin < 0 is finite, given by H < 2

√
2 sin [(2θ +π)/4].

For the planar cases (Kin = 0), equation (2.9b) is given as ψ = 2 sin−1 (Y/2). Then
the exotic cylinder with Kin = 0 is described by

X(Y)=
∫

cot[2 sin−1(Y/2)+ θ ] dY, (2.11)
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with X(0)=X0. The indefinite integral (2.11) can be given explicitly as (see the dashed
lines in figure 3)

X − X0 =

√
4− Y2 − cos

θ

2
ln

√
4− Y2 + 2 cos

θ

2

2 cos
θ

2
(
√

2− 2 cos θ + Y)

− sin
θ

2
ln

√
4− Y2 + 2 sin

θ

2

2 sin
θ

2
(
√

2+ 2 cos θ − Y)
−G(θ), (2.12)

where

G(θ)= 2− cos
θ

2
ln

1+ cos
θ

2
sin θ

− sin
θ

2
ln

1+ sin
θ

2
sin θ

. (2.13)

In particular for θ =π/2, the exotic wall (i.e. Kin = 0) is described by

X − X0 =

√
4− Y2 −

√
2 ln

√
4− Y2 +

√
2

√
4− 2Y2

−G
(π

2

)
. (2.14)

Additionally, compared to the case of Kin = 0 (dashed black lines), the difference
between the cases of Kin = 0 and Kin 6= 0 becomes less with the decrease of |Kin|.
Because of the symmetry of the solution curves in figure 2 with respect to the water
line, the exotic cylinder with contact angle θ ∈ (π/2,π) is the inverse of that with
contact angle π− θ ∈ (0,π/2) for all Kin. Thus, the exotic cylinder with contact angle
θ = π/2 is symmetric with respect to the R-axis. It is noted that the envelopes in
figure 2 are tangent to all of the solution curves. Therefore, these envelopes can be
regarded as the exotic cylinders with zero contact angle, but they do not intersect with
the R-axis. In summary, we extend the exotic tube (Wente 2011) to the planar and
exterior cases and the three cases are unified by the signed curvatures Kin of their
cross-sections at U = 0, as shown in figure 3.

3. Stability analysis
As discussed in § 1, because of the ‘exotic’ property, the menisci in and around

exotic cylinders are expected to be stable, each of which corresponds to a critical state.
Namely, each of the menisci has the smallest eigenvalue λ1= 0 for the corresponding
Sturm–Liouville problem without a volume constraint. For the interior case, Wente
(2011) used calibrations to prove that all menisci have minimum energy and therefore
are stable. We have known that the profiles of the menisci for the exotic cylinders are
the parts of the solution curves bounded by the envelopes in figure 2. Thus, a stability
analysis for each of the menisci in figure 2 needs to be provided.

There are two methods to determine the stability of a meniscus: the direct
computation method (see e.g. Myshkis et al. (1987), Slobozhanin et al. (1997), Pesci
et al. (2015)) and the Poincaré–Maddocks method (Maddocks 1987; Lowry & Steen
1995). The former is used to solve the eigenvalue problem associated with the second
variation of the system’s total energy functional, while the latter predicts the stability
changes inferred from turning points and bifurcations in the preferred diagram. In this
work, stability is examined by the direct computation method proposed in Myshkis
et al. (1987).
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3.1. Axisymmetric case
We consider axisymmetric unperturbed menisci (in or around the exotic cylinders with
Kin 6= 0) that can be described by the parametric dimensionless arclength variable S,
which gives a parametric representation R = R(S), U = U(S) for the meniscus. The
above parametric representation can be determined by the integration of (2.5) together
with

dS
dψ
=

R
RU − sinψ

, (3.1)

with the initial conditions (2.7) and S(ψ∗)=0 with ψ∗=0.01◦ (to avoid the singularity
at R= 0). According to the approach of Myshkis et al. (1987), the perturbations are
given by

ϕ = ϕ0(S)+
∞∑

n=1

[ϕn(S) cos nα + φn(S) sin nα]. (3.2)

It is known that axisymmetric perturbations without a fixed volume constraint are
more dangerous than non-axisymmetric ones (Myshkis et al. 1987; Slobozhanin &
Alexander 2003). Because the perturbations for the exotic cylinders are unconstrained,
only the axisymmetric perturbation needs to be analysed in the study of stability,
which leads to an eigenvalue problem (Myshkis et al. 1987)

L0ϕ0 ≡−ϕ
′′

0 −
R′

R
ϕ′0 + a(S)ϕ0 = λϕ0, for 0 6 S 6 S1, (3.3)

ϕ′0(S1)+ χ1ϕ0(S1)= 0, (3.4)

with

a(S)≡ cosψ − K̃2
1 − K̃2

2 and χ1 ≡
K̃1(S1) cos θ − K̄

sin θ
, (3.5a,b)

where the prime refers to the derivative with respect to S and K̄ is the dimensionless
curvature of the generatrix of the exotic cylinder at the contact point (K̄ < 0 if the
solid is convex to the liquid). Here, S= S1 is the arc length of the profile where the
meniscus meets the solid. The two dimensionless principal curvatures K̃1 and K̃2 of
the fluid interface have the forms

K̃1 =
dψ
dS
=U −

sinψ
R

and K̃2 =
sinψ

R
. (3.6a,b)

It is noted that the boundary conditions at S = 0 are not given here, because the
meniscus at S = 0 does not meet a solid. The boundary conditions at S = 0 need to
be determined by the condition that the solution ϕ0 is bounded at the symmetry axis
for the case of Kin > 0 or at infinity for the case of Kin < 0.

The eigenvalues λ1, λ2, λ3, . . . of the Sturm–Liouville problem (3.3)–(3.4) are real
and can be ordered such that λ1 < λ2 < λ3 < · · · < λn < · · · → ∞. The smallest
eigenvalue λ1 of the above problem (3.3) with (3.4) corresponds to the minimum value
of the second variation of the potential energy of the system. Thus the equilibrium is
stable if λ1 > 0, and is unstable if λ1 < 0 (Alexander & Slobozhanin 2004).
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For a fixed meniscus wetting a solid, the smallest eigenvalue λ1 depends only on the
boundary parameter χ1, which is related to the contact angle and the dimensionless
curvature of the generatrix of the solid (3.5b). The function λ1(χ1) is monotonically
increasing (Myshkis et al. 1987). The eigenvalue λn varies monotonically with χ1 for
fixed mode n and this relation between λn and χ1 is called modal monotonicity by
Bostwick & Steen (2015). The value of the boundary parameter χ1 letting λ1(χ1)= 0
is termed the critical value χ∗1 .

Therefore, this problem can be further simplified by solving (3.3) with λ = 0 and
then substituting the solution of the simplified problem L0ϕ0 = 0 into (3.4) to obtain
the critical value χ∗1 =−ϕ

′

0/ϕ0. For the problem L0ϕ0 = 0, the solution ϕ0 also needs
to satisfy the boundary conditions at S = 0 mentioned above. Based on the modal
monotonicity, the equilibrium meniscus under pressure disturbances will be stable if
χ1 > χ

∗

1 , and unstable if χ1 < χ
∗

1 (Slobozhanin & Tyuptsov 1974). The existence of
χ∗1 requires the meniscus (0 6 S 6 S1) to be within the maximal stable profiles (i.e.
S1 < S∗1), where the maximal stable profiles (0 6 S 6 S∗1) denote the maximal possible
profiles of stable equilibrium menisci. This means that a meniscus with S1 > S∗1 is
always unstable under pressure disturbances in any container and at any wetting angle
(Slobozhanin & Alexander 2003).

The Sturm–Liouville problem L0ϕ0 = 0 on a finite interval [0, S1] can be solved
numerically by the SPPS method (Kravchenko & Porter 2010), which expresses the
general solution of the Sturm–Liouville equation as a SPPS. In order to apply this
method, the equation L0ϕ0 = 0 is transformed to the Sturm–Liouville form

(pϕ′0)
′
= rϕ0, (3.7)

where S0 is an arbitrary point in [0, S1], p= exp(
∫ x

S0
(R′/R)dx) and r= p(x)a(x).

We assume that the general solution is ϕ0 = c1ϕ1 + c2ϕ2, where c1 and c2 are
arbitrary constants. Based on the SPPS method, the two linearly independent regular
solutions ϕ1 and ϕ2 can be calculated numerically by

ϕ1 = ϕ00

∞∑
k=0

X̃(2k) and ϕ2 = ϕ00

∞∑
k=0

X(2k+1), (3.8a,b)

with X̃(n) and X(n) being defined by the recursive relations

X̃(0)
≡ 1, X(0)

≡ 1, (3.9a,b)

X̃(n)(S)=


∫ S

S0

X̃(n−1)(x)ϕ2
00(x)r(x) dx, n odd,∫ S

S0

X̃(n−1)(x)
1

ϕ2
00(x)p(x)

dx, n even,

(3.9c)

X(n)(S)=


∫ S

S0

X(n−1)(x)
1

ϕ2
00p(x)

dx, n odd,∫ S

S0

X(n−1)(x)ϕ2
00r(x) dx, n even,

(3.9d)

where ϕ00 is a non-vanishing solution of (pϕ′0)
′
= 0, typically chosen as the constant

function ϕ00 = 1.
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3.1.1. Kin > 0
The stability of an axisymmetric meniscus (simply connected) restricted by a

constant-pressure constraint has been well studied by Slobozhanin & Alexander
(2003). They have shown that the maximal stable profiles with S ∈ [−R∗, S∗1] can be
determined from the first zero point of ϕ0(S), which is the solution of (3.7) with the
condition that ϕ0 is bounded at S = −R∗ (i.e. at the symmetry axis). To obtain the
appropriate coefficients c1 and c2 for ϕ0= c1ϕ1+ c2ϕ2, the initial conditions need to be
given at the point S= 0 corresponding to ψ =ψ∗, because the numerical calculation
is conducted for S ∈ [0, S1]. The initial conditions at S= 0 can be determined by the
asymptotic solution of L0ϕ0 = 0 with S ∈ [−R∗, 0] for small inclination angles.

For S ∈ [−R∗, 0], L0ϕ0 = 0 simplifies to

ϕ′′0 +
1

S+ R∗
ϕ′0 +

(
U∗2

2
− 1
)
ϕ0 = 0 (3.10)

using the relations R′/R≈ 1/(S+ R∗) and a≈ c= 1−U∗2/2 at small inclination angles,
where U∗ is given by (2.7). Equation (3.10) has the solution

ϕ0 = I0((S+ R∗)
√

c), for U∗2 < 2, (3.11a)
ϕ0 = 1, for U∗2 = 2, (3.11b)

ϕ0 = J0((S+ R∗)
√
−c), for U∗2 > 2, (3.11c)

which satisfies the condition that ϕ0 is bounded at S = −R∗, where J is the Bessel
function of the first kind. Differentiating (3.8) gives the expressions of ϕ′1 and ϕ′2:

ϕ′1 =
1
p

∞∑
k=1

X̃(2k−1) and ϕ′2 =
1
p

∞∑
k=0

X(2k). (3.12a,b)

If S0 = 0 is chosen for (3.9), from the definitions of ϕ1 and ϕ2 we have ϕ1(0) = 1,
ϕ′1(0)= 0, ϕ2(0)= 0 and ϕ′2(0)= 1. Then the coefficients c1 and c2 can be given by
c1 = ϕ0(0) and c2 = ϕ

′

0(0), both of which are determined by (3.11). Last, the critical
values χ∗1 (S) within the maximal stable profiles can be calculated by (3.4) together
with (3.8) and (3.12), and further the stability of the meniscus is determined.

3.1.2. Kin < 0
Because the solution curves for Kin < 0 are infinitely long, the solution curves are

divided into two parts: S ∈ (−∞, 0] and S ∈ (0, S∗1]. The point S = 0 corresponds
to the initial conditions (2.7a) for the integration of (2.5). The part S ∈ (−∞, 0] is
solved asymptotically due to small inclination angles, and the part S∈ (0, S∗1] is solved
numerically by integrating (2.5) with (2.7a). Two linearly independent solutions ϕ1 and
ϕ2 for S ∈ (0, S∗1] are determined by the mathematical model described in § 3.1. This
model is suitable for both the axisymmetric cases Kin > 0 and Kin < 0.

Similar to the case of Kin > 0, the coefficients c1 and c2 for ϕ0 = c1ϕ1 + c2ϕ2 also
need to be determined from the conditions ϕ0(0) and ϕ′0(0), which are determined by
the asymptotic solution for S ∈ (−∞, 0]. The only difference is that the meniscus is
formed around the cylinder and thus the condition for the solution of (3.7) is that
ϕ0 is bounded at S→−∞ (i.e. at R→−∞). For S ∈ (−∞, 0], the Sturm–Liouville
problem L0ϕ0= 0 simplifies to ϕ′′0 + ϕ

′

0/(S+ R∗)− ϕ0= 0 due to the small inclination
angles. This equation has the solution

ϕ0 =K0(−S− R∗), (3.13)
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which satisfies the condition that ϕ0 is bounded at S→−∞. Then c1 = ϕ0(0) and
c2 = ϕ

′

0(0) are determined by (3.13) and the appropriate solution ϕ0 = c1ϕ1 + c2ϕ2
is obtained. Finally, the critical values χ∗1 (S) within the maximal stable profiles are
calculated by χ∗1 = −ϕ

′

0/ϕ0 and further the determination of stability is the same as
before.

3.1.3. Numerical results
Using the SPPS method, the two linearly independent regular solutions ϕ1 and ϕ2

of the equation L0ϕ0= 0 are determined. The appropriate solution is ϕ0= c1ϕ1+ c2ϕ2,
where the coefficients c1 and c2 need to be determined. Then, the asymptotic solution
of L0ϕ0= 0 is determined by the condition that the appropriate solution ϕ0 is bounded
at the symmetry axis for the case of Kin > 0 or at infinity for the case of Kin < 0, and
the initial conditions at S = 0 (i.e. ϕ0(0) and ϕ′0(0)) can be given by the asymptotic
solution. The coefficients c1 and c2 are determined from the initial conditions ϕ0(0)
and ϕ′0(0). Finally, the appropriate solution ϕ0 = c1ϕ1 + c2ϕ2 is determined.

After determining the appropriate solutions ϕ0 of (3.7) for different values of R∗,
the critical values χ∗1 within the maximal stable profiles can be easily determined, as
shown in figure 4. In figure 4(a), we reproduce the diagram of stability to pressure
disturbances by fixing the left-hand tip points of the meniscus profiles to the origin
(see also figure 3 in Slobozhanin & Alexander (2003)). In these cases, the value of
meniscus height at the axis of symmetry is approximately equal to U∗ because of the
small value ψ∗ = 0.01◦.

To clearly illustrate the stability diagrams, two families of solution curves (figure 2)
are contoured with a set of values of χ∗1 , as shown in figure 4(b,c). Figures 4(b)
and 4(c) give the critical values χ∗1 for the two families of solution curves in
figures 2(b) and 2(a), respectively. As mentioned above, the equilibrium meniscus
under pressure disturbances will be stable if χ1 >χ

∗

1 , and unstable if χ1 <χ
∗

1 , where
χ1 is the boundary parameter related to the contact angle and the dimensionless
curvature of the generatrix of the solid (3.5b). Any meniscus for the exotic cylinders
has an end point (R,U) and the critical value χ∗1 at (R,U) in figure 4 is applied for
the stability analysis. The contour lines χ∗1 =∞ divide the solution curves (figure 2)
into two parts, and only the lower curves corresponding to the maximal stable profiles
(thick black lines in figure 4) are plotted.

We found that there are two regions −1 < χ∗1 < 0 and χ∗1 > 0 separated by the
contour line χ∗1 = 0 in figure 4(b). The line χ∗1 = 0 only intersects with the solution
curves with U∗2 6 2 and there is only one intersection point for each of the solution
curves. In the region −1 < χ∗1 < 0, the contour line intersects with the abscissa at
(Rc, 0) which satisfies the relation (Slobozhanin & Alexander 2003)

χ∗1 =−I1(Rc)/I0(Rc). (3.14)

We can see that χ∗1 →−1 as Rc→∞. In the region χ∗1 > 0, the contour lines will
intersect with all solution curves, and there is only one intersection point for each of
the solution curves. In particular, the line χ∗1 =∞ is the boundary line of the maximal
stable profiles. In figure 4(c), the stability diagram is also divided into two regions
χ∗1 >−1 and χ∗1 <−1 by the contour line χ∗1 =−1. In the region χ∗1 <−1, the contour
line intersects with the abscissa at (R̄c, 0) which satisfies the relation

χ∗1 =−K1(−R̄c)/K0(−R̄c). (3.15)

Most interestingly, the numerical results show that the contour lines χ∗1 = ∞
(figure 4b,c) are in good agreement with the envelopes of solution curves (figure 2).
We will discuss these results in § 3.3.
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FIGURE 4. Stability to pressure disturbances for axisymmetric menisci: (a) the solution
curves fixed at the origin for Kin > 0 (see also figure 3 in Slobozhanin & Alexander
(2003)) and (b,c) the solution curves with U= 0 located at the water line for (b) Kin > 0
and (c) Kin < 0. Panel (b) is essentially the same as panel (a) except for the different
choices of the ordinates. The thick black lines denote the maximal stable profiles to
pressure disturbances and the thin red lines denote the contour lines of χ∗1 . The end point
of the maximal stable profile corresponds to χ∗1 =∞. In these calculations, the order k
for (3.8) is given as k= 12.
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3.2. Two-dimensional case
Similar to the approach taken for the stability for Kin 6= 0, the stability of the two-
dimensional meniscus (Kin = 0) can be determined by solving the problem

L0ϕ0 ≡−ϕ
′′

0 + a(S)ϕ0 = 0, for 0 6 S 6 S1, (3.16)

where a(S) = 3 cos ψ − 2 is derived from (3.5a). We assume S = 0 at a small
inclination angle ψ0 = 0.01◦. Then the parametric representation S(ψ) is given by

S(ψ)=
∫ ψ

ψ0

1
U(ψ)

dψ = ln
(

tan
ψ

4

/
tan

ψ0

4

)
. (3.17)

The inverse of (3.17) is

ψ(S)= 4 tan−1(exp(S+ S0)), (3.18)

where S0 = ln(tan(ψ0/4)). Then

a(S)=
exp(4S+ 4S0)− 22 exp(2S+ 2S0)+ 1
exp(4S+ 4S0)+ 2 exp(2S+ 2S0)+ 1

. (3.19)

To apply the SPPS method to this problem, equation (3.16) is transformed to the
form of (pϕ′0)

′
= rϕ0, where p= 1 and r = a(S). Then two independent solutions ϕ1

and ϕ2 are given by (3.8). The boundary condition at S = 0 can be obtained from
the solution of ϕ′′0 = aϕ0 for S 6 0 (corresponding to ψ ∈ (0, ψ0]), where a ≈ 1 at
small inclination angles or a = 1 for flat menisci. The solution that satisfies that ϕ0
is bounded as S→−∞ is exp(S). Thus the conditions at S = 0 are ϕ0(0) = 1 and
ϕ′0(0) = 1, and hence ϕ0 = ϕ1 + ϕ2 with S0 = 0. Then the critical values χ∗1 are
determined.

Figure 5(a) shows the numerical solution ϕ0 calculated by the SPPS method, where
the boundary conditions at S= 0 are given by the solution ϕ0 = exp(S) (see the left-
hand inset). The first zero point of ϕ0 (the yellow point) corresponds to the maximal
stable profile, as shown in the right-hand inset. The numerical result indicates that the
end point of the maximal stable profile is the point with U≈ 2 (|U − 2|= 4.3× 10−10),
corresponding to an inclination angle ψ = π, where the order of the SPPS method
is k = 12. Similar to the axisymmetric case, the stability can be determined by the
critical values χ∗1 , as shown in figure 5(b). The critical values χ∗1 can be uniquely
determined by the inclination angle ψ . It is known that this meniscus is invariant
under translation in R. Thus the contour lines for χ∗1 are the horizontal straight lines.
Specifically, the lines U =±2 are the contour lines χ∗1 =∞, and also the envelopes
of the two-dimensional menisci.

3.3. Stability analysis of exotic cylinders and ‘exotic’ property
The profiles of the menisci in or around the exotic cylinder are the parts of the
solution curves in figure 4(b,c), each of which meets the exotic cylinder at a
prescribed contact angle θ . Then, the stabilities of the menisci are determined by
comparing the boundary parameters χ1 of the exotic cylinder and the critical values
χ∗1 . The meniscus under pressure disturbances will be stable if χ1 >χ

∗

1 , and unstable
if χ1 <χ

∗

1 .
For the exotic cylinders with Kin>0, Wente (2011) has shown that any (equilibrium)

meniscus in the exotic cylinder is a minimiser of energy. This means that the second
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FIGURE 5. (a) Numerical result of (3.16) calculated by the SPPS method and (b) relation
between χ∗1 and ψ .
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FIGURE 6. Comparison between the critical values χ∗1 and the boundary parameters of χ1
of the exotic cylinders with contact angle θ =π/2 and parameters Kin = 1 (a), 0 (b) and
−1 (c). The abscissa Y denotes the height of the exotic cylinder.

variation of energy is zero to pressure disturbances. This case can be extended to the
cases of Kin < 0 and Kin = 0 (see appendix A). Therefore, the boundary parameter χ1
of the exotic cylinder is expected to be equal to the critical value χ∗1 . This observation
is validated in our numerical experiments. Figure 6 shows that, as expected, there is a
good agreement between the critical values χ∗1 and the boundary parameters χ1 of the
exotic cylinders for Kin= 1, 0 and −1. This means that the smallest eigenvalue of the
Sturm–Liouville problem for the meniscus in or around the exotic cylinders is equal
to zero under pressure disturbances. Although these results may seem not surprising
at first, they provide another way to determine stability, because the critical values χ∗1
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are equal to the boundary parameters χ1 of the exotic cylinders. Namely, the critical
values χ∗1 can be determined by calculating the boundary parameters χ1 of the exotic
cylinders by (3.5b), not by solving the Sturm–Liouville problem L0ϕ0 = 0.

3.3.1. Two-dimensional case
For Kin=0, substituting (2.11) into K̄=−X′′/(1+X

′2)3/2 with Y=2 sin (ψ/2) gives

K̄ =
sin(ψ + θ)

cos
ψ

2

, (3.20)

where K̄ is the signed curvature of the exotic cylinder. Substituting (3.20) into (3.5b)
with K̃1 = 2 sin (ψ/2) and χ∗1 = χ1, we have

χ∗1 =−
cosψ

cos
ψ

2

. (3.21)

To verify this equation, substituting (3.21) into (3.4) gives

ϕ′0 =
cosψ

cos
ψ

2

ϕ0. (3.22)

Then the differential equation (3.22) is solved using the ‘dsolve’ program in MATLAB
for the analytical solution

ϕ0 =
exp(S)[exp(2S+ 2S0)− 1]
[exp(2S+ 2S0)+ 1]2

, (3.23)

which satisfies (3.16). Thus (3.21) is verified and provides an analytical expression for
the critical value χ∗1 for the two-dimensional meniscus.

Interestingly, the property of the exotic cylinder is related to the floating pheno-
menon. It is known that the meridional curvature of the exotic cylinder with Kin = 0
is given by (3.20). This expression can also be deduced from the relation between the
variations δH and δU (see appendix B in Zhang, Zhou & Zhu (2018)):[

cos
ψ

2
−

1
K̄

sin(ψ + θ)
]
δU = cos

ψ

2
δH, (3.24)

where all the quantities are dimensionless, K̄ denotes the curvature of solid at
the contact point, ψ denotes the inclination angle of the meniscus at the contact
point and δU and δH denote the variations of the contact point height and
the vertical displacement of floating body, respectively. This equation provides
quantitative relations between the infinitesimal vertical displacement δH of a
two-dimensional floating body and the change δU of the contact point height.
This means that in response to an infinitesimal vertical displacement δH of the
floating body, the equilibrium meniscus will adjust itself, leading to a change of
the contact point height δU. For the exotic cylinders with Kin = 0, the coefficient
[cos (ψ/2)− (1/K̄) sin(ψ + θ)] for δU will be zero, because δU can be arbitrary
when the exotic cylinder is fixed (δH= 0). Then (3.20) is derived. This finding seems
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to provide a useful way to calculate the curvature of the exotic cylinder and then to
determine stability without solving the Sturm–Liouville problem L0ϕ0 = 0.

Additionally, it is noted that the envelopes can be regarded as exotic cylinders with
θ = 0, because the envelopes are tangent to all menisci. Seen from (3.5b), we have
χ1 =∞ for the exotic cylinders with θ = 0. Therefore, it is not surprising that the
envelopes are in good agreement with the contour lines χ∗1 =∞ in figure 4. Therefore,
the maximal stable profiles can be determined by solving F(ψ, t)= 0.

3.3.2. Axisymmetric case
The exotic cylinder with Kin<0 can also be regarded as a special floating body with

a fixed position in which the contact point is allowed to move continuously on the
solid. This idea also applies to the case of Kin > 0. Suppose that U(R, ψ) determines
the families of curves in figure 2. Then the signed curvature of the generatrix of the
exotic cylinder at the contact point satisfies the relation

K̄ ≡
dψ̄
dS̄

∣∣∣∣
S

=
sin ψ̄
dU
dψ

∣∣∣∣
S

, (3.25)

where the inclination angle of the solid satisfies ψ̄ = ψ + θ (the ‘exotic’ property),
S̄ denotes the arc length of the solid and the subscript ‘S’ denotes that the total
derivative is constrained to the solid. Then we obtain

dU
dψ

∣∣∣∣
S

=
∂U
∂ψ
+
∂U
∂R

dR
dU

∣∣∣∣
S

dU
dψ

∣∣∣∣
S

, (3.26)

where dR/dU|S = cot ψ̄ . This gives

K̄ =
sin ψ̄
∂U
∂ψ

(
1− cot ψ̄

∂U
∂R

)
. (3.27)

It is noted that another expression for K̄ has been proposed in Huh & Mason (1974)
using the relation between δH and δU, similar to (3.24). For the curvature of the
meniscus at the contact point, a similar derivation gives

K̃1 =
sinψ
∂U
∂ψ

(
1− cotψ

∂U
∂R

)
. (3.28)

The curvature of the meniscus is also represented by (3.6a), and therefore the relation
between ∂U/∂ψ and ∂U/∂R is

∂U
∂ψ
=

R sinψ
RU − sinψ

(
1− cotψ

∂U
∂R

)
. (3.29)

Then substituting (3.27), (3.28) and (3.29) into (3.5b) gives the boundary parameter
of the exotic cylinder:

χ1 = χ
∗

1 =−

(RU − sinψ)
(

cosψ + sinψ
∂U
∂R

)
R
(

sinψ − cosψ
∂U
∂R

) , (3.30)
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which is independent of θ . The critical value χ∗1 can be determined as long as ∂U/∂R
is determined. The partial derivative ∂U/∂R can be determined by integrating (2.5)
together with

d(∂U/∂R)
dψ

=
∂(∂U/∂R)

∂ψ
+
∂(∂U/∂R)

∂R
dR
dψ
. (3.31)

Suppose that U is a new variable. We have

d(dU/dψ)
dR

∣∣∣∣
ψ=const.

=
∂(dU/dψ)

∂R
+
∂(dU/dψ)

∂U
∂U
∂R
, (3.32)

where ∂(dU/dψ)/∂R and ∂(dU/dψ)/∂U are the partial derivatives of (2.5). On the
other hand, (3.32) can also be written as

d(dU/dψ)
dR

∣∣∣∣
ψ=const.

=
∂(∂U/∂R)

∂R
dR
dψ
+
∂(∂U/∂ψ)

∂R

+

[
∂(dR/dψ)

∂R
+
∂(dR/dψ)

∂U
∂U
∂R

]
∂U
∂R
, (3.33)

where ∂(dR/dψ)/∂R and ∂(dR/dψ)/∂U are the partial derivatives of (2.5). Comparing
(3.31), (3.32) and (3.33), we find

d(∂U/∂R)
dψ

=
∂(dU/dψ)

∂R
+
∂(dU/dψ)

∂U
∂U
∂R

−

[
∂(dR/dψ)

∂R
+
∂(dR/dψ)

∂U
∂U
∂R

]
∂U
∂R
. (3.34)

By integrating (3.34) together with (2.5) and then substituting the value of ∂U/∂R
for (3.30), the critical value χ∗1 is obtained, where the initial condition for ∂U/∂R is
given by the partial derivatives of (2.7). Figure 7 shows a good agreement between the
contour lines χ∗1 = 0 calculated by solving the Sturm–Liouville problem L0ϕ0= 0 and
by (3.30). Thus, by utilising the property of the exotic cylinder we find a convenient
alternative for calculating the critical value χ∗1 and then determining the stability of
the axisymmetric meniscus under pressure disturbances.

For (3.30), we make the following simple observations. (i) For χ∗1 → ∞ (i.e.
sinψ − cosψ(∂U/∂R)= 0), this equation determines the maximal stable profiles (see
figure 4), and also the envelopes of menisci (see figure 2), and therefore the equation
is equivalent to F(ψ, t)= 0 when t is chosen as R with ψ held constant. (ii) Equation
(3.30) can be written in a generalised form:

χ1 = χ
∗

1 =−

cosψ + sinψ
∂U
∂R

∂U
∂ψ

, (3.35)

which can degenerate to (3.21) when U = 2 sin (ψ/2) for the two-dimensional case.
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1.50 L0Ç0 = 0
(3.30)
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0
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0 1 2 3 4 -5 -4 -3 -2 -1 0

FIGURE 7. Comparison between the contour lines χ∗1 = 0 by solving the Sturm–Liouville
problem L0ϕ0 = 0 and by (3.30) for (a) Kin > 0 and (b) Kin < 0.

4. Conclusions
In this paper, we have investigated three types of exotic cylinders classified by

the signed curvatures Kin of their cross-sections at U = 0, where the interior case
Kin> 0 has been studied in depth by Wente (2011). Three types of exotic cylinders are
determined by integrating the vector field 〈cos(ψ + θ), sin(ψ + θ)〉. Different from the
interior case Kin > 0, the exotic cylinder for the exterior case Kin < 0 is bounded by
two horizontal lines U= 2 cos (θ/2) and U=−2 sin (θ/2). Specifically, the analytical
expression (2.12) for the planar case Kin = 0 is obtained. Interestingly, the envelope
of the menisci can be regarded as a special exotic cylinder with θ = 0, because the
envelope is tangent to all menisci.

The study is then extended to examine the stabilities of menisci in and around the
exotic cylinders. In the method of Slobozhanin & Alexander (2003), the stability of
the meniscus to pressure disturbances is determined by comparing the critical value
χ∗1 and the boundary parameter χ1, where the Sturm–Liouville problem L0ϕ0 = 0 is
solved for χ∗1 . The meniscus under pressure disturbances will be stable if χ1 > χ

∗

1 ,
and unstable if χ1 < χ

∗

1 . The SPPS method is applied to the problems L0ϕ0 = 0 to
obtain the contour lines of χ∗1 for two families of menisci, as shown in figure 4. For
the two-dimensional case, χ∗1 only depends on the inclination angle of the meniscus
(see figure 5b). Based on the ‘exotic’ property (Wente 2011), one would expect that
each of the menisci has the smallest eigenvalue λ1 = 0 for the corresponding Sturm–
Liouville problem without a volume constraint. Thus, the boundary parameters χ1 of
the exotic cylinders are expected to be equal to χ∗1 , validated with three test cases in
figure 6.

This finding tells us that the critical value χ∗1 can be obtained from the shape of
the exotic cylinder without solving L0ϕ0 = 0. The property of the exotic cylinder is
also closely related to the floating phenomenon. For the two-dimensional case, the
analytical expression (3.21) for χ∗1 can be obtained from the relation between the
variations δH and δU. A different point of view is provided when the exotic cylinder
is regarded as a special floating body with a fixed position in which the contact point
is allowed to move continuously on the solid. From this perspective, the formula
(3.30) for calculating χ∗1 directly is proposed. Additionally, the formula (3.30) can also
be applied to the determination of the maximal stable profile. Results show that the
critical values χ∗1 calculated by solving L0ϕ0= 0 and by (3.30) agree very well. These
promising results may reveal new insights into stability analysis.
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Ø1-≈

Σ1,Ø
T1,Ø

Ø√

n

FIGURE 8. Comparison of Ω and Ω1 for Kin 6 0. Here Σ1,Ω is the part of Σ between
Ω and Ω1, and T1,Ω is the region bounded by Ω1, Σ1,Ω and Ω . The dashed line is the
water line. Menisci Ω and Ω1 are asymptotic to the water line at infinity. Vectors ν, n
and −ξ are the outward unit normal vectors on Ω , Σ1,Ω and Ω1, respectively.
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Appendix A
Wente (2011) has shown that any equilibrium meniscus is a minimiser of energy for

the interior case Kin> 0. Following Wente (2011), we extend this result to the exterior
and planar cases Kin 6 0. Let Σ be an exotic cylinder with Kin 6 0, {Ωt} be a family
of equilibrium menisci each of which meets Σ at a constant angle θ and T be the
region bounded above by Ω , on the sides by Σ and below by a fixed equilibrium
meniscus Ω0. The potential energy (dimensionless) is given by (Wente 2011)

E(Ω)= |Ω| +
∫

T
UdV − cos θ |Σ ′|, (A 1)

where Ω is an arbitrary admissible meniscus, |Ω| denotes the surface area of Ω and
Σ ′ is the wetted part of Σ between Ω and Ω0. We let ξ = ξ(x) denote the upward-
pointing unit normal vector field to {Ωt}. We have (see Wente 2011)

∇ · ξ =−U in T, (A 2)
n · ξ =− cos θ on Σ. (A 3)

By comparing the energies of an admissible meniscus Ω and an equilibrium meniscus
Ω1 (figure 8), we have

E(Ω)− E(Ω1)= lim
Rb→−∞

(|Ω| − |Ω1|)+

∫
T1,Ω

UdV − cos θ |Σ1,Ω |, (A 4)

where the left-hand points on the boundaries of Ω and Ω1 are both located at
Rb→−∞ because Ω and Ω1 extend to infinity for Kin 6 0. Applying the divergence
theorem on the region T1,Ω using the vector field ξ , we find

−

∫
T1,Ω

UdV =
∫
Ω

(ξ · ν − 1) dS+ lim
Rb→−∞

(|Ω| − |Ω1|)− cos θ |Σ1,Ω |. (A 5)
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Substituting (A 5) into (A 4), we obtain

E(Ω)− E(Ω1)=

∫
Ω

(1− ξ · ν) dS. (A 6)

If Ω =Ωt is an equilibrium meniscus belonging to the family {Ωt}, then E(Ωt)=
E(Ω1). Furthermore, if Ω does not belong to {Ωt}, we have E(Ω) > E(Ω1). Thus,
any equilibrium meniscus around the exotic cylinder with Kin 6 0 is a minimiser of
energy.
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