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Abstract. Let ω = [a1, a2, . . .] be the infinite expansion of a continued fraction for an
irrational number ω ∈ (0, 1), and let Rn(ω) (respectively, Rn,k(ω), Rn,k+(ω)) be the
number of distinct partial quotients, each of which appears at least once (respectively,
exactly k times, at least k times) in the sequence a1, . . . , an . In this paper, it is proved
that, for Lebesgue almost all ω ∈ (0, 1) and all k ≥ 1,

lim
n→∞

Rn(ω)
√

n
=

√
π

log 2
, lim

n→∞

Rn,k(ω)

Rn(ω)
=

Ck
2k

(2k − 1) · 4k , lim
n→∞

Rn,k(ω)

Rn,k+(ω)
=

1
2k
.

The Hausdorff dimensions of certain level sets about Rn are discussed.

1. Introduction
In early 2011, a beautiful range-renewal structure in independent and identically
distributed models was found by Chen et al [2]. Among others, the typical main results in
[2] say that, given n samples of a heavy-tailed regular (see [2] for the definition) discrete
distribution π with an intrinsic index γ = γ (π) ∈ (0, 1),

lim
n→∞

Rn

ERn
= 1, (1.1)

lim
n→∞

Rn,k

Rn
= rk (γ ) :=

γ · 0(k − γ )
k! · 0(1− γ )

, (1.2)

lim
n→∞

Rn,k

Rn,k+
=
γ

k
, (1.3)

where Rn (respectively, Rn,k, Rn,k+) stands for the number of distinct sample values, each
of which appears at least once (respectively, exactly k times, at least k times). Also, the
so-called range-renewal speed ERn can be calculated explicitly in n: for instance, if

πx =
C
xα
· [1+ o(1)], x ∈ N
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with 1< α <+∞, then

γ = γ (π) := 1/α and ERn = 0(1− γ ) · (C · n)γ · [1+ o(1)].

Soon after that, it was realized by the second author that the above results should
be somehow universal. In particular, it should be true in the continued fractions system
(equipped with the well-known Gauss measure µ) since this system, in a certain sense, is
stationary and strongly mixing, which means that the system is very nearly an independent
and identically distributed model. Confidence in this was strengthened, in the spring of
2012, after a numerical simulation carried out with the help of Mr. Peng Liu.

Given an irrational number ω ∈ (0, 1), let Rn(ω) (respectively, Rn,k(ω), Rn,k+(ω)) be
the number of distinct partial quotients, each of which appears at least once (respectively,
exactly k times, at least k times) in the first n partial quotients of ω. In this paper, we shall
prove the following interesting result: for Lebesgue almost all ω ∈ (0, 1) and all k ≥ 1

Rn(ω)
√

n
=

√
π

log 2
+ o(1),

Rn,k(ω)

Rn(ω)
=

Ck
2k

(2k − 1) · 4k + o(1) and

Rn,k(ω)

Rn,k+(ω)
=

1
2k
+ o(1)

as n→+∞ (see Theorem 1 for the explicit statement and its proof in §3). Moreover, we
will discuss the Hausdorff dimension of certain level sets (see Theorem 2 and its proof in
§4). As pointed out in Remark 1, although the continued fraction system (equipped with
the Gauss measure µ) is in fact a positive recurrent system, we can observe a certain kind
of escape phenomenon: for any k ∈ N and Lebesgue almost all ω ∈ (0, 1)

lim
n→+∞

Rn,k(ω)

Rn,k+(ω)
=

1
2k
.

In the simple symmetrical random walk model in Zd (with d ≥ 3), the above limited ratio
is always the escape rate γd [4, 5, 25], where Rn (respectively, Rn,k, Rn,k+) is interpreted
as the number of distinct sites visited at least once (respectively, exactly k times, at least k
times) up to time n.

This article contains a combination of pure probability theory, ergodic theory (the proof
of Theorem 1) and fractal theory (the proof of Theorem 2). It is worthwhile to point out
that the ideas in this paper are applicable to other systems to obtain results that are similar
to Theorem 1. In view of the techniques developed in this article, it is also possible to
obtain further results (for example, those in [2]) for the current continued fractions model.

2. Main settings and results
Throughout this paper, the notation y = O(z) implies that there exists some universal
constant C > 0 such that C−1

≤ |y/z| ≤ C ; the notation y = O(z) implies that there exists
some universal constant C > 0 such that |y/z| ≤ C . The notation y = o(z) is understood
in the usual way. We shall use C0 to denote universal constants which may change from
line to line. For two sets A, B, we will write AB := A ∩ B, for simplicity.
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Let X= (0, 1)\Q be the set of irrational numbers in the interval (0, 1). For any ω ∈ X,
let {an = an(ω)}

∞

n=1 be the partial quotients of ω in continued fraction form: that is,

ω = [a1, a2, . . .] :=
1

a1 +
1

a2 +
1
. . .

.

Therefore, for any ω ∈ X, there is a unique (natural) coding (a1, a2, . . .) (still writing ω
for simplicity) in �= NN. Also, the Gauss map T : X→ X

T (ω) :=
1
ω
(mod 1)= [a2, a3, . . .]

induces the natural left-shift map σ :�→�. The Gauss measure µ (which satisfies
dµ(ω)= dω/((log 2) · (1+ ω)) and which is invariant under T ) on (0, 1) naturally
induces a probability measure P on �. For any x ∈ N we know

πx := P(a1 = x)=−log2

[
1−

1
(x + 1)2

]
=

1
(log 2) · (x + 1)2

+ O
(

1
x4

)
(2.1)

as x→+∞. There is a probability measure π = (πx : x ∈ N) on N which also
naturally induces an infinitely independent product measure P̃ := π∞ on �. The
expectation operator of the probability measure P (respectively, P̃) will be denoted by
E (respectively, Ẽ). Also, we have the following commuting graph

(�, P) σ
−→ (�, P)

p ↓ ↓ p

(X, µ) T
−→ (X, µ)

with p being the natural projection

p(a1, a2, . . .) := [a1, a2, . . .].

Due to this obvious identification, we shall not distinguish the spaces� and X= (0, 1)\Q
from here on.

Given ω ∈ X. For any fixed x ∈ N, write

Nn(x)= Nn(x, ω) :=
n∑

k=1

1{ak (ω)=x}, (2.2)

which is the visiting number of the state x by the partial quotients a1(ω), . . . , an(ω).
Define

Rn(ω) :=
∑
x∈N

1{Nn(x,ω)≥1}. (2.3)

This is the number of distinct values of a1(ω), . . . , an(ω): i.e., Rn(ω)= ]{a1(ω), . . . ,

an(ω)}. Also, define, for any k ∈ N,

Rn,k(ω) :=
∑
x∈N

1{Nn(x,ω)=k}. (2.4)

This is the number of distinct partial quotients, each of which appears exactly k times in
the finite sequence a1(ω), . . . , an(ω).
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Our main result is the following theorem.

THEOREM 1. For Lebesgue almost all ω ∈ (0, 1),

lim
n→∞

Rn(ω)
√

n
=

√
π

log 2
. (2.5)

Furthermore, for any k ≥ 1,

lim
n→∞

Rn,k(ω)

Rn(ω)
=

Ck
2k

(2k − 1) · 4k =: rk , (2.6)

where Cm
n := n!/(m!(n − m)!) and

∑
∞

k=1 rk = 1.

Remark 1. The above theorem leads to the following.
(1) As k→∞, rk = 1/(2

√
π) · k−3/2

+ O(k−5/2), which is a power law with index
3/2.

(2) Let

Rn,k+(ω) :=

n∑
`=k

Rn,`(ω). (2.7)

Then for Lebesgue almost all ω ∈ (0, 1)

lim
n→+∞

Rn,k(ω)

Rn,k+(ω)
=

1
2k
, (2.8)

which can be interpreted as an average escape rate at the level k ≥ 1, although the
model itself is in fact positive recurrent. This result can be seen as the following. Put,
for k ≥ 2,

rk+ = 2k · rk =
2k

2k − 1
·

Ck
2k

4k =

k−1∏
j=1

(
1−

1
2 j

)
and r1+ = 1. Obviously,

rk+ − r
(k+1)+ = rk+ − rk+ ·

(
1−

1
2k

)
=

1
2k
· rk+ = rk , k ≥ 1.

Thus rk+ =
∑
`≥k r

`
. Then the result follows from Theorem 1.

(3) We could recall a standard result in the field of the simple symmetrical random walk
(SSRW) on Zd (with d ≥ 3), although it was not expressed explicitly in [5] (but
nearly explicitly in [25, p. 220, Theorem 20.11]). It says that the limited ratio in
(2.8) is always γd , the usual escape rate of the random walk. The proof of this result
has only several lines using a subadditive ergodic theorem [13–15] (essentially the
argument of Derriennic [3]) which we would like to list as the following. In a SSRW
on Zd (with d ≥ 3), Rn, Rn,k− := Rn − Rn,(k+1)+ are all subadditive. Hence

lim
n→+∞

Rn

n
= lim

n→+∞

ERn

n
= γd ,

lim
n→+∞

Rn,k−

n
= lim

n→+∞

ERn,k−

n
= γd · [1− (1− γd)

k
].

(Cf. [31] for more detailed calculations.) The result follows. This is a different
approach compared with Dvoretzky and Erdös’ result [4] for d ≥ 3; the variation
estimations are not needed in this proof.
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Remark 2. In view of Corollary 4, the result in the above theorem can be strengthened as
follows. For any fixed k ≥ 1,

Rn(ω)
√

n
=

√
π

log 2
+ o

(
1

n0.0698

)
, (2.9)

Rn,k(ω)

Rn(ω)
=

Ck
2k

(2k − 1) · 4k + o
(

1
n0.0698

)
, (2.10)

Rn,k(ω)

Rn,k+(ω)
=

1
2k
+ o

(
1

n0.0698

)
(2.11)

almost surely, since 1/(6(1+ 2 log 2))= 0.069843 . . . .

Put c > 0. Then, for any β ≥ 0,

E(β, c) :=
{
ω ∈ (0, 1)\Q : lim

n→+∞

Rn(ω)

nβ
= c

}
.

The above theorem implies that

dimH E(β, c)= 1 for β =
1
2

and c =
√

π

log 2
.

One may wonder what happens for other choices of (β, c).
Let

dH (β) := dimH

{
ω ∈ (0, 1)\Q : 0< lim

n→+∞

Rn(ω)

nβ
<+∞

}
.

The above theorem proves that dH (
1
2 )= 1. The classical result of Jarnı́k (see [10]) implies

that dH (0)= 1. Therefore a natural conjecture seems to be

dH (β)= 1 for all β ∈ [0, 1).

In fact we have the following result.

THEOREM 2. Let E(β, c) be defined as above and put F(c)= E(1, c): that is,

E(β, c) :=
{
ω ∈ [0, 1) : lim

n→∞

Rn(ω)

nβ
= c

}
,

F(c) :=
{
ω ∈ [0, 1) : lim

n→∞

Rn(ω)

n
= c

}
.

Then:
(1) for any β ∈ (0, 1) and c > 0,

dimH E(β, c)= 1; and (2.12)

(2) for any c ∈ (0, 1],
dimH F(c)= 1

2 . (2.13)

Remark 3. Actually, the proof of Theorem 2 in §4 can be modified to prove the following,
more general, result. For any smooth functionψ withψ(n)↗∞, ψ(n)/n↘ 0 as n→∞,
the set

Eψ :=
{
ω ∈ [0, 1) : lim

n→+∞

Rn(ω)

ψ(n)
= 1

}
is always of Hausdorff dimension one.
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It is interesting to point out that e − 2= 0.71828 . . . ∈ F( 1
3 ), due to Euler (cf. [9,

p. 12]). The authors guess that π − 3= 0.14159 . . . satisfies the conclusions of Theorem 1.

The above results in Theorem 2 and in Remark 3 fall into the so-called fractional
dimensional theory. This theory has attracted much attention in the study of the exceptional
sets arising from the metrical theory of continued fractions. It seems that the first published
work in this area was a paper by Jarnı́k [10]. Later on, Good [6] gave an overall
investigation of sets, with some restrictions on their partial quotients. For more results
in this area, one can refer to the work of Hirst [7], Lúczak [20], Mauldin and Urbánski
[21, 22], Pollicott and Weiss [23], Wang and Wu [27], Li et al [19] and references therein.

3. Proof of Theorem 1
The proof essentially follows the main strategy of [4]. The main tool used is the one
developed in [2] (also, in a sense, traced back to [4]). As it is a straightforward application
of Borel–Cantelli’s lemma, we restate it here, without proof.

LEMMA 3. Let {Yn}
∞

1 be a sequence of non-negative random variables in a probability
space (�, P). Let Sn :=

∑n
k=1 Yn . Suppose limn→+∞ ESn =+∞, sup{EYn : n ≥ 1}<

+∞ and
Var(Sn)≤ C · (ESn)

2−δ (3.1)

for some δ > 0, C > 0 and all sufficiently large n. Then

lim
n→∞

Sn

ESn
= 1 (3.2)

holds true almost surely. The condition (3.1) can even be weakened to

Var(Sn)≤ C · (ESn)
2/(log ESn)

1+δ. (3.3)

COROLLARY 4. The conclusion of the above lemma can be strengthened as follows. For
any fixed β ∈ (0, δ/3),

Sn

ESn
= 1+ Ō

(
1

(ESn)β

)
(3.4)

holds true almost surely if condition (3.1) holds. If condition (3.3) holds instead of (3.1),
then

Sn

ESn
= 1+ Ō

(
1

(log ESn)β

)
. (3.5)

For the convenience of the reader, we translate the main results in [2] for the probability
measure P̃ induced by independent and identical distribution (πx , x ∈ N) (see (2.1) for the
definition) as shown below. This is, in fact, also the motivation of the current paper. Such
a result is obtained by careful calculations in view of (2.1). We omit the proof here, since
the calculations involved are somewhat tedious but routine; interested readers can follow
the ideas in [2] for the calculations.

LEMMA 5. We have the following estimations for the measure P̃ as n→+∞.

(1) ẼRn =

∞∑
x=1

[1− (1− πx )
n
] =

√
πn

log 2
+ O(1), VarP̃(Rn)≤ ẼRn .
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(2) For any fixed k ≥ 1,

ẼRn,k =

∞∑
x=1

Ck
n · π

k
x · (1− πx )

n−k
=

√
πn

log 2
· rk + O(1),

VarP̃(Rn,k)≤ [1+ o(1)] · ẼRn,k,

where rk is defined in Theorem 1. Let rk+ :=
∑
∞

`=k r
`
= 1−

∑k−1
`=1 r

`
, then

ẼRn,k+ =

√
πn

log 2
· rk+ + O(1).

(3) For P̃-almost every ω and all k ≥ 1, lim
n→+∞

Rn(ω)

ẼRn
= 1, lim

n→+∞

Rn,k(ω)

Rn(ω)
= rk .

In order to prove Theorem 1, in view of Lemma 3, we should try to obtain suitable
estimations for ERn and Var(Rn) (respectively, for ERn,k+ and Var(Rn,k+)), which are
presented in the following subsections.

3.1. Estimating ERn . In this part, we shall estimate ERn by proving the following
lemma.

LEMMA 6. For sufficiently large n, |ERn − ẼRn| ≤ O(n0.2905). Also, by Lemma 5,

ERn =

√
πn

log 2
+ O(n0.2905).

For this purpose, we need to estimate the probability

P(Nn(x)≥ 1)= P(ak(ω)= x for some 1≤ k ≤ n)

for any x ∈ N, in view of (2.3): this could be done by comparing P(Nn(x)≥ 1) with
P̃(Nn(x)≥ 1). Actually, we will start by doing such estimations for large enough x : that
is, for

x > x∗n :=
⌊√

Cn
log n

⌋
, (3.6)

with C > 0 to be determined later (here bac denotes the integer part of a real number a).
From here on, we will always write

NA = NA(ω) :=

n∑
k=1

1Ak (ω), Ai1,...,ik :=

k⋂
r=1

Air (3.7)

for a sequence A = {Ak}
n
1 of measurable sets. The basic idea for the estimation of

probability P(Nn(x)≥ 1) is to exploit the following standard result in probability theory.

LEMMA 7. Let {Ak}
n
1 be a sequence of measurable sets in a probability space (�, F , P).

Then

P(NA ≥ 1)=
n∑

k=1

(−1)k−1
∑

1≤i1<···<ik≤n

P(Ai1,...,ik ). (3.8)
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Equation (3.8) is just a direct application of the following standard fact about indicator
functions: that is

1{NA≥1} =

n∑
k=1

(−1)k−1
∑

1≤i1<···<ik≤n

1Ai1,...,ik
. (3.9)

Obviously, in order to estimate P(Nn(x)≥ 1) by exploiting the formula (3.8), one has
to take into account the strong mixing property of the model under investigation. Therefore
we will introduce this property into the subsequent work.

For any n ≥ 1 and (a1, . . . , an) ∈ Nn , call

I (a1, . . . , an)=


[

pn

qn
,

pn + pn−1

qn + qn−1

)
when n is even,(

pn + pn−1

qn + qn−1
,

pn

qn

]
when n is odd,

an nth order cylinder, where {pk , qk }
n
k=1 are determined by the following recursive

relations

pk = ak · pk−1 + pk−2 , qk = ak · qk−1 + qk−2 , 1≤ k ≤ n, (3.10)

with the conventions that p
−1 = 1, p0 = 0, q

−1 = 0, q0 = 1. It is well known (see [11]),
that I (a1, . . . , an) just represents the set of points in [0, 1) which have a continued
fraction expansion beginning with a1, . . . , an .

PROPOSITION 8. [11] For any n ≥ 1 and (a1, . . . , an) ∈ Nn ,

|I (a1, . . . , an)| =
1

qn(qn + qn−1)
, (3.11)

where |I (a1, . . . , an)| denotes the length of I (a1, . . . , an).

The following lemma is a standard result in the continued fraction model, and is our
desired mixing property.

PROPOSITION 9. (See [1] or [9, Corollary 1.3.15]) In the continued fraction model,∣∣∣∣µ(I (x̃)⋂ T−(m+L) I (ỹ))
µ(I (x̃)) · µ(I (ỹ))

− 1
∣∣∣∣≤ O(q L) (3.12)

for some q ∈ (0, 1), all (fixed) x̃ = (x1, . . . , xm), ỹ = (y1, . . . , yn) and sufficiently
large L.

The first contributor to the mixing property of continued fractions was Kuzmin [16]
(see also [11, 12]), who proved a sub-exponential decay rate when solving Gauss’s
conjecture on continued fractions. Lévy [17] (see also [18, Ch. IX]) independently proved
the exponential decay rate with q = 3.5− 2

√
2= 0.67157 . . . , also solving Gauss’s

conjecture. Using Kuzmin’s approach, Szűsz [26] claimed to have lowered the Lévy
estimate for q to 0.4. However, his argument yields q = 0.485 rather than q = 0.4. The
optimal value of q = 0.30366300289873265859 . . . was determined by Wirsing [29].

The above equations alone are not sufficient. We need the following observation, the
proof of which is omitted since it is somewhat routine.
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LEMMA 10. For any m, n ≥ 1 and x̃ = (x1, . . . , xm) ∈ Nm, ỹ = (y1, . . . , yn) ∈ Nn

K ′ := log 2≤
µ(I (x̃, ỹ))

µ(I (x̃)) · µ(I (ỹ))
≤ K := 2 log 2. (3.13)

The bounds in the above lemma are optimal; we will only use the bound K later. One
can compare (3.13) with the standard result that

1
2
≤
|I (x̃, ỹ)|
|I (x̃)| · |I (ỹ)|

≤ 2, (3.14)

both bounds of which are also optimal. This can easily be proved in view of Proposition 8.
Now, for a fixed integer x > x∗n , we put, for i = 1, . . . , n,

Ai = Ax
i := {ω : ai (ω)= x}, (3.15)

in equation (3.8). We also put

Ax
i1,...,ik

:=

k⋂
r=1

Ax
ir = {ω : air (ω)= x, r = 1, . . . , k}. (3.16)

Noting that P(Ax
i )= P̃(Ax

i )= πx ,

1(x) := |P(Nn(x)≥ 1)− P̃(Nn(x)≥ 1)|

≤

n∑
k=2

∑
1≤i1<···<ik≤n

|P(Ax
i1,...,ik

)− P̃(Ax
i1,...,ik

)|.

We choose an integer
Kn := bC1 · log nc

for some sufficiently large C1 (to be determined later). Consider the sum

11(x) :=
n∑

k=Kn+1

∑
1≤i1<···<ik≤n

|P(Ax
i1,...,ik

)− P̃(Ax
i1,...,ik

)|. (3.17)

Clearly, P̃(Ax
i1,...,ik

)= πk
x and, in view of Lemma 10,

11(x)≤
n∑

k=Kn+1

Ck
n · 2 · K

k−1
· πk

x .

Since πx ≤ 1/(log 2) · x−2,∑
x>x∗n

11(x) ≤
n∑

k=Kn+1

Ck
n · 2 · K

k−1
∑
x>x∗n

πk
x

≤

n∑
k=Kn+1

Ck
n · 2 · K

k−1
· C0 ·

(
1

log 2

)k

·
1

2k − 1
· (x∗n )

−(2k−1)

≤

n∑
k=Kn+1

nk

k!
·

(
K

log 2

)k

· C0 ·
1
k

(
log n
Cn

)k−1/2

≤

√
n

log n
· C0 ·

n∑
k=Kn+1

1
(k + 1)!

·

(
K

C log 2
· log n

)k

,
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where the C0 are universal constants which may change from line to line, as explained at
the beginning of §2. Let α := K/(C log 2)= 2/C . By Stirling’s formula, we see that if
C1 · C > 4e2

≈ 29.55 . . . , then

log(Kn !)− Kn log(α log n) = log
√

2πKn + Kn log Kn − Kn + o(1)− Kn log(α log n)

= log
√

2πKn + Kn log
Kn

e · α log n
+ o(1)

≥ C1 log n

for sufficiently large n. Also,

α log n
k

<
1
2

for all k > Kn .

Therefore, if C1 ≥ 5 and C ≥ 6,

∑
x>x∗n

11(x) ≤
√

n
log n

· C0 ·

n−Kn∑
`=1

(α · log n)Kn

Kn !
·

(
1
2

)`
≤ C0 · n−(C1−1/2)

≤ O(n−4).

Now choose a number C2 ≥ 4 and put

λ0 := −log q > 0, Ln :=

⌊
C2

λ0
log n

⌋
+ 1. (3.18)

We want to estimate

12(x) :=
Kn∑

k=2

∑
∗

|P(Ax
i1,...,ik

)− P̃(Ax
i1,...,ik

)| (3.19)

and

13(x) :=
Kn∑

k=2

∑
∗∗

|P(Ax
i1,...,ik

)− P̃(Ax
i1,...,ik

)|, (3.20)

where the sum
∑
∗

is over all 1≤ i1 < · · ·< ik ≤ n with iu+1 − iu > Ln, u = 1, . . . ,
k − 1, and the sum

∑
∗∗

is over the rest 1≤ i1 < · · ·< ik ≤ n.
In view of Proposition 9,

k−1∏
`=1

(1− C0q i`+1−i`)≤
P(Ax

i1,...,ik
)

P̃(Ax
i1,...,ik

)
≤

k−1∏
`=1

(1+ C0q i`+1−i`).

Hence, for sufficiently large n (noting that C2 ≥ 4 and i`+1 − i` ≥ Ln, q Ln ≤ n−C2 ),

12(x) ≤
Kn∑

k=2

Ck
n−(k−1)Ln

·max[(1+ C0q Ln )k−1
− 1, 1− (1− C0q Ln )k−1

] · πk
x

≤

Kn∑
k=2

nk

k!
·

C0

n3 · π
k
x .
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Thus, if C ≥ 6> 2/(log 2)= 2.88539 . . . , then∑
x>x∗n

12(x) ≤ C0 ·

Kn∑
k=2

nk−3

k!
·

∑
x>x∗n

πk
x

≤ C0 ·

Kn∑
k=2

nk−3

k!
·

(
1

log 2

)k

·
1

2k − 1
·

(
log n
Cn

)k−1/2

≤ C0 · n−5/2
Kn∑

k=2

1
(k + 1)!

·

(
log n

C log 2

)k

≤ C0 · n−5/2
· n1/(C log 2)

≤ C0 · n−2.

Now we estimate 13(x). Clearly,

Ck
n − Ck

n−(k−1)Ln
≤ C0 ·

nk−1

k!
· k2
· Ln .

Therefore

13(x)≤ C0 ·

Kn∑
k=2

nk−1

k!
· k2
· Ln · 2K k−1

· πk
x .

From here on we take
C := 4+

2
log 2

= 6.88539 . . . (3.21)

Then α := K/(C log 2)= (log 2)/(1+ 2 log 2)= 0.290470 . . . . For sufficiently large n,∑
x>x∗n

13(x) ≤
Kn∑

k=2

C0 ·
nk−1

k!
· k2
· Ln ·

(
K

log 2

)k

·
1

2k − 1
·

(
log n
Cn

)k−1/2

≤ C0 ·
Ln√

n · log n
·

Kn∑
k=2

1
(k − 1)!

·

(
K

C log 2
· log n

)k

≤ C0 ·
(log n)1.5
√

n
· nα

= O
(
(log n)1.5

nε0

)
with ε0 :=

1
2(1+ 2 log 2)

= 0.209529 . . . .

A direct, but similar, calculation of 11(x∗n ), 12(x∗n ), 12(x∗n ) reveals

|P(Nn(x∗n )≥ 1)− [1− (1− πx∗n )
n
]| ≤ O

(
(log n)3

n0.5+ε0

)
.

By combining the above results and noting that P̃(Nn(x)≥ 1)= 1− (1− πx )
n ,

we have proved the following lemma.

LEMMA 11. Let x∗n = b
√
(Cn)/(log n)c with C = 4+ 2/(log 2). Then∑

x>x∗n

|P(Nn(x)≥ 1)− [1− (1− πx )
n
]| ≤ O(n−0.2095),

|P(Nn(x∗n )≥ 1)− [1− (1− πx∗n )
n
]| ≤ O(n−0.7095).
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Now it is natural to see what happens for |P(Nn(x)≥ 1)− [1− (1− πx )
n
]| with

x ≤ x∗n . The inequality 0≤ P(Nn(x)≥ 1)≤ 1 is surely not sufficient for our purpose, in
view of Lemma 3. Intuitively, we should have the following result.

LEMMA 12. f (x) := P(Nn(x)≥ 1) is decreasing in x.

But a mathematically rigorous proof is not so obvious. We will postpone it until later.
From Lemma 12,

f (x∗n )≤ f (x)≤ 1 for x = 1, 2, . . . , x∗n .

We already know, from Lemma 11, that

f (x∗n )≥ 1− (1− πx∗n )
n
− O(n−0.7095).

Since 1/(C log 2)= 1/(2+ 4 log 2)= ε0 = 0.209529 . . . , for sufficiently large n,

f (x∗n )≥ 1− C0 · n−0.2095,

which implies the following lemma.

LEMMA 13. Let x∗n be defined as above. Then for sufficiently large n,

|P(Nn(x)≥ 1)− [1− (1− πx )
n
]| ≤ C0 · n−0.2095, x = 1, 2, . . . , x∗n .

In order to prove Lemma 12, we observe the following important fact.

LEMMA 14. (Comparison lemma for continued fractions) Given two sequences of
natural numbers x̃ = (xk : 1≤ k ≤ n) and ỹ = (yk : 1≤ k ≤ n). Suppose xk ≥ yk for
k = 1, . . . , n. Then µ(I (x̃))≤ µ(I (ỹ)).

Proof. Let pk/qk = [x1, . . . , xk], p̄k/q̄k = [y1, . . . , yk] be irreducible fractions. Then

µ(I (x̃))=
∫ 1

0

dω
(log 2) · (qn + ωqn−1) · [pn + qn + ω(pn−1 + qn−1)]

=:

∫ 1

0
ρ(ω; x̃) dω

and a similar equation holds for µ(I (ỹ)). Then the condition in the lemma implies

pn−1 ≥ p̄n−1, qn−1 ≥ q̄n−1, pn ≥ p̄n, qn ≥ q̄n .

Therefore the densities satisfy ρ(ω; x̃)≤ ρ(ω; ỹ), which implies µ(I (x̃))≤ µ(I (ỹ)). �

Remark 4. The proof of Lemma 14 says more. Let x̃ = (x1, . . . , xm), ỹ = (y1, . . . , yn)

be two natural number tuples which may be of different length. Let

pm

qm
:= [x1, . . . , xm],

p̄n

q̄n
:= [y1, . . . , ym]

be irreducible fractions. If[
pm−1 pm

qm−1 qm

]
≥

[
p̄n−1 p̄n

q̄n−1 q̄n

]
(in element-by-element sense),

then µ(I (x̃))≤ µ(I (ỹ)).
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Proof of Lemma 12. For any x < y, we would prove that f (x)≥ f (y). Noting that

f (x) := P(Nn(x)≥ 1)= P(Nn(x)≥ 1, Nn(y)= 0)+ P(Nn(x)≥ 1, Nn(y)≥ 1),

we only need to prove that, for any k = 1, 2, . . . , n,

P(Nn(x)= k, Nn(y)= 0)≥ P(Nn(y)= k, Nn(x)= 0).

But this is obvious, in view of Lemma 14, since

P(Nn(x)= k, Nn(y)= 0)=
∑
∗∗∗

µ(I (x1, . . . , xn)),

where
∑
∗∗∗

is over all tuples (x1, . . . , xn) ∈ Nn with xi 6= y, for all i and
∑n

i=1 1{xi=x}

= k. �

Summing the above estimations in Lemmas 11–13 together, we have proved Lemma 6.

3.2. Estimating Var(Rn). The main result of this subsection is the following lemma.

LEMMA 15. For sufficiently large n, Var(Rn)≤ O(n0.7905), and hence

Var(Rn)≤ C0 · (ERn)
2−δ with δ = 0.4190 and large constant C0.

In order to prove the above lemma, noting that

E(R2
n − Rn)=

∑
x 6=y

P(Nn(x)≥ 1, Nn(y)≥ 1),

we would need to estimate the probability

P(Nn(x)≥ 1, Nn(y)≥ 1) for all x 6= y.

As in the above subsection, we need the following elemental fact.

LEMMA 16. Let {Ak}
n
1, {Bk}

n
1 be two sequences of measurable sets in a probability space

(�, F , P) which satisfies Ak ∩ Bk = ∅, k = 1, . . . , n. Then

P(NA ≥ 1, NB ≥ 1)=
n∑

k=2

(−1)k
∑

r+s=k
1≤r<k

∑
i1,...,ir
j1,..., js

P(Ai1,...,ir B j1,..., js ), (3.22)

where, in the above summation, the indices i1, . . . , ir and j1, . . . , js are all distinct and
both groups of indices are in increasing order.

One can prove equation (3.22) directly using equation (3.9).
Then we immediately derive (see (3.15) and (3.16) for the involved notation)

1(x, y) := |P(Nn(x)≥ 1, Nn(y)≥ 1)− P̃(Nn(x)≥ 1, Nn(y)≥ 1)|

≤

n∑
k=2

∑
r+s=k

1≤r<k

∑
i1,...,ir
j1,..., js

|P(Ax
i1,...,ir Ay

j1,..., js )− P̃(Ax
i1,...,ir Ay

j1,..., js )|. (3.23)

First, we make the estimation for x > y ≥ x∗n . A similar calculation yields the following
lemma.
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LEMMA 17. For sufficiently large n,
∑

x>y≥x∗n
1(x, y)≤ O(

√
n).

For x < y ≤ x∗n ,

P(Nn(x)≥ 1, Nn(y)≥ 1)− P̃(Nn(x)≥ 1, Nn(y)≥ 1)

≤ |P(Nn(y)≥ 1)− P̃(Nn(y)≥ 1)| + P̃(Nn(y)≥ 1)− P̃(Nn(x)≥ 1, Nn(y)≥ 1)

= |P(Nn(y)≥ 1)− P̃(Nn(y)≥ 1)| + P̃(Nn(x)= 0, Nn(y)≥ 1)

≤ O(n−0.2095)+ P̃(Nn(x)= 0)= O(n−0.2095)+ (1− πx )
n

≤ O(n−0.2095)+ (1− πx∗n )
n
= O(n−0.2095). (3.24)

Hence we have the following lemma.

LEMMA 18. For sufficiently large n,∑
x<y≤x∗n

[P(Nn(x)≥ 1, Nn(y)≥ 1)− P̃(Nn(x)≥ 1, Nn(y)≥ 1)] ≤ O(n0.7905).

Similarly, for x < x∗n ≤ y, noting equation (3.24),

P(Nn(x)≥ 1, Nn(y)≥ 1)− P̃(Nn(x)≥ 1, Nn(y)≥ 1)

≤ |P(Nn(y)≥ 1)− P̃(Nn(y)≥ 1)| + P̃(Nn(x)= 0, Nn(y)≥ 1)

≤ |P(Nn(y)≥ 1)− P̃(Nn(y)≥ 1)| + [(1− πx )
n
− (1− πx − πy)

n
]

which implies∑
x<x∗n≤y

[P(Nn(x)≥ 1, Nn(y)≥ 1)− P̃(Nn(x)≥ 1, Nn(y)≥ 1)]

≤ O
(√

n
log n

)
· O(n−0.2095)+

∑
x<x∗n≤y

[(1− πx )
n
− (1− πx − πy)

n
]

≤ O(n0.2905)+
∑
x<x∗n

(1− πx )
n
·

∑
y≥x∗n

[
1−

(
1−

πy

1− πx

)n]
≤ O(n0.2905)+

∑
x<x∗n

(1− πx )
n
·

∑
y≥x∗n

[1− (1− 2 · πy)
n
]

(noting πx ≤ π1 = 0.4150 . . .)

= O(n0.2905)+
∑
x<x∗n

(1− πx )
n
· O(
√

n) (∗)

≤ O(n0.2905)+ O(
√

n) · O
(√

n
log n

)
· O(n−0.2095...) (∗∗)

≤ O(n0.7905).

We note here that, in the step (∗), we have exploited the estimating technique developed
in [2]. Alternatively, one can compute directly that∑

y≥x∗n

[1− (1− 2 · πy)
n
] ≤ C0 ·

√
n.

In the step (∗∗), we should note that (1− πx )
n
≤ (1− πx∗n )

n
= O(n−0.2095) and x∗n =

O(
√

n).
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From the above, we have proved the following lemma.

LEMMA 19. For sufficiently large n,∑
x<x∗n≤y

[P(Nn(x)≥ 1, Nn(y)≥ 1)− P̃(Nn(x)≥ 1, Nn(y)≥ 1)] ≤ O(n0.7905).

Note that, by Lemma 5,

VarP̃(Rn)≤ ẼRn = O(
√

n)

and, in view of the above estimations,

Var(Rn)− VarP̃(Rn) = ER2
n − ẼR2

n + (ẼRn)
2
− (ERn)

2

= [ERn − ẼRn] + [(ẼRn)
2
− (ERn)

2
]

+ 2
∑
x<y

[P(Nn(x)≥ 1, Nn(y)≥ 1)− P̃(Nn(x)≥ 1, Nn(y)≥ 1)]

≤ O(n0.2905)+ O(n0.2905
·
√

n)+ O(n0.7905)= O(n0.7905),

which proves Lemma 15.
Now, by Lemma 3, for µ-almost every (and hence for Lebesgue almost all) ω ∈ (0, 1)

limn→+∞ (Rn(ω))/(ERn)= 1: that is,

lim
n→+∞

Rn(ω)
√

n
=

√
π

log 2
.

3.3. More estimations for Rn,k+ with k ≥ 2. The estimation of ERn,k+ and Var(Rn,k+)

follows almost the same line as in the previous subsections except that we need some
additional treatments.

First, we would need new equations in place of equations (3.8) and (3.22), which we
state as the following lemmas without proof.

LEMMA 20. Let {Ai }
n
1 be a sequence of measurable sets in a probability space (�, F , P).

Then, for any 1≤ k ≤ n,

P(NA ≥ k)=
n∑

r=k

(−1)r−k
· Ck−1

r−1 ·
∑

1≤i1<···<ir≤n

P(Ai1,...,ir ).

LEMMA 21. Let {Ai }
n
1, {Bi }

n
1 be two sequences of measurable sets in a probability space

(�, F , P) such that Ai ∩ Bi = ∅ for all i . Then, for any 1≤ k ≤ n,

P(NA ≥ k, NB ≥ k)=
n∑

r=2k

(−1)r ·
∑

a+b=r
a,b≥k

Ck−1
a−1 · C

k−1
b−1 ·

∑
i1,...,ia
j1,..., jb

P(Ai1,...,ia ∩ B j1,..., jb ),

where, in the above summation, the two group of indices i1, . . . , ia and j1, . . . , jb are all
distinct and are both in increasing order.

We believe that there is monotonicity in the function

fk(x) := P(Nn(x)≥ k) (3.25)

for all (fixed) n ≥ k ≥ 2 as Lemma 12 states, but we cannot give a rigorous and relatively
easy proof for such result. Therefore we present an alternative treatment here.
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LEMMA 22. For all 1≤ x ≤ x∗n and sufficiently large n, P(Nn(x)≥ k)≥ 1+ O(n−0.2095).
Hence

|P(Nn(x)≥ k)− P̃(Nn(x)≥ k)| ≤ O(n−0.2095).

Proof. Assume k ≥ 2. Let Ln be defined as above and let s1 := 0. Put

An :=

⌊
n − (k − 1) · Ln

k

⌋
,

t j := ( j − 1) · Ln + j · An, s j+1 = j · (Ln + An), j = 1, . . . , k.

Clearly, tk ≤ n and 0= s1 < t1 < s2 < t2 < · · ·< sk < tk ≤ n. We will write

Nx (1) :=
∑
i∈1

1{ai (ω)=x}

for any interval 1⊂ N, which is the visiting number at x with times n ∈1 such that
an(ω)= x . Then, obviously,

P(Nn(x)≥ k)≥ P(Nx ((s j , t j ])≥ 1 for j = 1, . . . , k).

Hence

P(Nn(x)≥ k) ≥ (1− C0q Ln )k−1
·

k∏
j=1

P(Nx ((s j , t j ])≥ 1)

= (1− C0q Ln )k−1
· [P(Nx ((0, An])≥ 1)]k

≥ [1− C0 · n−4
]
k−1
· [1− C0 · n−0.2095

]
k

≥ 1− C0 · n−0.2095.

We have the same bound for P̃(Nn(x)≥ k). �

With the help of the above lemmas, one can prove that

lim
n→+∞

Rn,k+(ω)

ERn,k+
= 1,

following the same method indicated above; the details are omitted here. By Lemma 5,

lim
n→+∞

ERn,k+

ERn
= rk+ for all k ≥ 1.

Therefore our main theorem follows.

4. Proof of Theorem 2
4.1. Some elementary facts on continued fractions. In this subsection, we collect some
elementary properties shared by continued fractions that will be used later.

For any n ≥ 1 and (a1, a2, . . . , an) ∈ Nn , let qn(a1, a2, . . . , an)= qn be defined by
(3.10). Then we have the following proposition.

PROPOSITION 23. [30] For any n ≥ 1 and 1≤ k ≤ n,

ak + 1
2
≤

qn(a1, a2, . . . , an)

qn−1(a1, . . . , ak−1, ak+1, . . . , an)
≤ ak + 1. (4.1)

https://doi.org/10.1017/etds.2015.91 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2015.91


Range-renewal structure in continued fractions 1339

For any positive integer B ≥ 2, let EB be the set of continued fractions with partial
quotients between 1 and B: that is,

EB = {ω ∈ [0, 1) : 1≤ an(ω)≤ B, ∀n ≥ 1}.

Good [6] proved the following result.

PROPOSITION 24. [6] For any n ≥ 1, let σn be the unique root of∑
1≤a1,a2,...,an≤B

1
qn(a1, a2, . . . , an)2s = 1.

Then
dimH EB = lim

n→∞
σn .

Moreover, limB→∞ dimH EB = 1.

4.2. Non-autonomous conformal iterated function systems. In this part, we present the
construction and some basic properties of a non-autonomous conformal iterated function
system (IFS) which was introduced quite recently by Rempe-Gillen and Urbanski in [24].
It is a variant of the construction studied in [8, 28].

Fix a compact set X ⊂ Rd with int(X)= X such that ∂X is smooth or X is convex.
Given a conformal map ϕ : X→ X , we denote the derivative of ϕ at x by Dϕ(x) and the
operator norm of the differential by |Dϕ(x)|. Put

‖Dϕ‖ = sup{|Dϕ(x)| : x ∈ X}, ‖|Dϕ‖| = inf{|Dϕ(x)| : x ∈ X}.

For any n ≥ 1, let I (n) be a (finite or countable infinite) index set. For each i ∈ I (n),
there is a conformal map ϕ(n)i : X→ X , and we can write 8(n) = {ϕ(n)i : i ∈ I (n)}.

Definition 4.1. We call 8= {8(1), 8(2), 8(3) . . .} a non-autonomous conformal IFS on
the set X if the following conditions hold.
(a) Open set condition: we have

ϕ
(n)
i (int(X)) ∩ ϕ(n)j (int(X))= ∅

for all n ∈ N and all distinct indices i, j ∈ I (n).
(b) Conformality: there exists an open connected set V ⊃ X such that for each n ≥ 1

and i ∈ I (n), ϕ(n)i can be extended to a C1 conformal diffeomorphism of V into V .
(c) Bounded distortion: there exists a constant K ≥ 1 such that, for any k ≤ l and any

ik, ik+1, . . . , il with i j ∈ I ( j), the map ϕ = ϕ(k)ik
◦ · · · ◦ ϕ

(l)
il satisfies

|Dϕ(x)| ≤ K |Dϕ(y)|

for all x, y ∈ V .
(d) Uniform contraction: there exists a constant η < 1 such that

|Dϕ(x)| ≤ ηm

for all sufficiently large m, all x ∈ X and all ϕ = ϕ( j)
i j
◦ · · · ◦ ϕ

( j+m)
i j+m

, where j ≥ 1

and ik ∈ I (k).
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For any 0< m ≤ n <∞, write

I n
:=

n∏
j=1

I ( j), I∞ :=
∞∏
j=1

I ( j), I m,n
:=

n∏
j=m

I ( j) and I m,∞
:=

∞∏
j=m

I ( j).

If ĩ = im im+1 · · · in ∈ I m,n , write ϕ
m,n
ĩ
= ϕ

(m)
i1
◦ · · · ◦ ϕ

(n)
in

. When m = 1, we also

abbreviate ϕĩ := ϕ
n
ĩ
:= ϕ

1,n
ĩ

.
For any n ≥ 1 and i ∈ I n , let X i = ϕi (X). The limit set (or attractor) of 8 is defined as

J := J (8) :=
∞⋂

n=1

⋃
i∈I n

X i . (4.2)

Definition 4.2. For any t ≥ 0 and n ∈ N, we define

Zn(t)=
∑
i∈I n

‖Dϕi‖
t ,

and the upper and lower pressure functions are defined as

P(t)= lim
n→∞

1
n

log Zn(t), P(t)= lim
n→∞

1
n

log Zn(t).

Rempe-Gillen and Urbanski [24] proved the following results.

PROPOSITION 25. If limn→∞ (1/n) log ]I (n) = 0, then

dimH J = sup{t ≥ 0 : P(t) > 0} = inf{t ≥ 0 : P(t) < 0}

= sup{t ≥ 0 : Zn(t)→∞}.

PROPOSITION 26. Suppose that both limits

a =: lim
n→∞

1
n

log ]I (n)

and

b =: lim
n→∞, j∈I (n)

1
n

log
(

1

‖Dϕ(n)j ‖

)
exist and are positive finite. Then dimH J = a/b.

4.3. Proof of equations (2.12) and (2.13).

Proof of Equation (2.12). Put γ := 1/β > 1. We only prove that, for c = 1, E(β) :=
E(β, c) is of Hausdorff dimension one; results for other values of c can be proved in
the same way (the only modifications would be changing terms like kγ into terms like
(k/c)γ and taking such changes into account in related calculations).

For any ε > 0, by Proposition 24, we can find a positive integer B with dim EB >

1− ε/4, and an integer N0 > 0 such that σn > 1− ε/2 for any n ≥ N0.
Define a subset EB(β) of E(β) as

EB(β)= {ω ∈ [0, 1) : a
bkγ c(ω)= k ∀k ≥ 1, and 1≤ an(ω)≤ B, ∀ other n ≥ 1}.
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It is direct to check that
EB(β)⊂ E(β).

Define8= {8(1), 8(2), . . .} as follows. For any n ≥ 1, choose k ≥ 1 such that bkγ c ≤
n < b(k + 1)γ c. If n = bkγ c for some k ≥ 1, let 8(n) = {ϕ(n)k (x) := 1/(x + k)}; for other
n let 8(n) = {ϕ(n)j := 1/(x + j) : j = 1, . . . , B}. Functions { f j (x) := 1/(x + j) : j ∈ N}
on interval (0, 1) are C1 conformal contractions and fi (0, 1) ∩ f j (0, 1)= ∅ for all i 6= j .
Also,

|D fi (x)| =
1

(x + j)2
∈

(
1

( j + 1)2
,

1
j2

)
,

which implies

‖D f j‖ ≤
1
j2 ≤ 1 and

‖D f j‖

‖|D f j‖|
≤
( j + 1)2

j2 ≤ 4.

Therefore 8 is a non-autonomous conformal IFS, and EB(β) is the associated limit
set. I (n) = {k}, if n = bkγ c for some k ≥ 1, and I (n) = {1, 2, . . . , B} otherwise. Thus
]I (n) = 1, if n = bkγ c for some k ≥ 1, and ]I (n) = B otherwise. By Proposition 25,

dim EB(β)= sup{t ≥ 0 : Zn(t)→∞}.

We will compute Zn(t) below.
Now for any n ≥ 1, assume k ≥ 1 is such that bkγ c ≤ n < b(k + 1)γ c. We know that, for

any conformal interval maps f, g, ‖D( f ◦ g)‖ = ‖D f · Dg‖ ≥ ‖|D f ‖| · ‖|Dg‖|. Therefore

Zn(1− ε) =
∑
ĩ∈I n

‖Dϕĩ‖
(1−ε)

≥

k−1∏
j=1

( ∑
ĩ∈I b jγ c,b( j+1)γ c−1

‖|Dϕb jγ c,b( j+1)γ c−1
ĩ

‖|
1−ε

)
·

∑
ĩ∈I bkγ c,n

‖|Dϕbk
γ
c,n

ĩ
‖|

1−ε.

For any j ≥ 1, write l( j)= b( j + 1)γ c − b jγ c. Notice that when j is large enough such
that l( j)− 1≥ N0,∑
ĩ∈I b jγ c,b( j+1)γ c−1

‖|Dϕb jγ c,b( j+1)γ c−1
ĩ

‖|
1−ε

=

∑
1≤a1,a2,...,al( j)−1≤B

(
1

ql( j)( j, a1, a2, . . . , al( j)−1)+ql( j)−1( j, a1, a2, . . . , al( j)−2)

)2(1−ε)

≥
1

22(1−ε)

∑
1≤a1,a2,...,al( j)−1≤B

(
1

ql( j)( j, a1, a2, . . . , al( j)−1)

)2(1−ε)

≥
1

(2( j + 1))2(1−ε)
∑

1≤a1,a2,...,al( j)−1≤B

(
1

ql( j)−1(a1, a2, . . . , al( j)−1)

)2(1−ε)

(noting (4.1))

≥
1

(2( j + 1))2(1−ε)
∑

1≤a1,a2,...,al( j)−1≤B

(
1

ql( j)−1(a1, a2, . . . , al( j)−1)

)2σl( j)−1−ε

≥
1

(2( j + 1))2(1−ε)
· 2((l( j)−1)/2)ε

≥
1

(2( j + 1))2
· 2((( j+1)γ− jγ−3)/2)ε. (4.3)
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In a similar way (taking j = k and changing the term b( j + 1)γ c − 1 into n in the above
equations), if n − bkγ c − 1≥ N0,∑

ĩ∈I bkγ c,n

‖|Dϕbk
γ
c,n

ĩ
‖|

1−ε
≥

1
(2(k + 1))2

· 2((n−kγ−2)/2)ε. (4.4)

If n − [kγ ] − 1< N0,∑
ĩ∈I [kγ ],n

‖|Dϕ[k
γ
],n

ĩ
‖|

1−ε
≥

1
(2(k + 1))2

·
1

(B + 1)N0
. (4.5)

Combining (4.3)–(4.5), we have limn→∞ Zn(1− ε)=∞. This implies dim EB(β)≥

1− ε. Since ε is arbitrary, we finish the proof of equation (2.12). �

Proof of equation (2.13). We divide the proof into two parts.

Upper bound: for any n ≥ 1 and (a1, . . . , an) ∈ Nn , let Rn(a1, a2, . . . , an) be the
number of distinct ones among a1, a2, . . . , an .

For any 0< ε < c, let t = 1
2 + ε and s = 1

2 + ε/2. For any n ≥ 1, let

3n = {(a1, . . . , an) ∈ Nn
: Rn(a1, a2, . . . , an)≥ (c − ε)n}.

Then

F(c)⊂
∞⋃

N=1

∞⋂
n=N

⋃
(a1,...,an)∈3n

I (a1, . . . , an).

For any N ≥ 1,

H t
( ∞⋂

n=N

⋃
(a1,...,an)∈3n

I (a1, . . . , an)

)
≤ lim

n→∞

∑
(a1,...,an)∈3n

|I (a1, . . . , an)|
t

≤ lim
n→∞

∑
(a1,...,an)∈3n

(a1 · a2 · · · an)
−2t

≤ lim
n→∞

1
(b(c − ε)nc!)ε

∑
(a1,...,an)∈3n

(a1 · a2 · · · an)
−2s

≤ lim
n→∞

1
(b(c − ε)nc!)ε

∑
(a1,...,an)∈Nn

(a1 · a2 · · · an)
−2s

= lim
n→∞

1
(b(c − ε)nc!)ε

· [ζ(1+ ε)]n (where ζ(·) is Riemann’s zeta function)

= 0.

This finishes the proof of the upper bound.

Lower bound: for any given c ∈ (0, 1], let

G := {ω ∈ [0, 1) : 2n
≤ ak(ω) < 2n+1 if k = bn/cc for some n ≥ 1,

and for other k, ak(ω)= 1}.
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It is direct to check that
G ⊂ F(c).

Define 8= {8(1), 8(2), . . .} as follows. For any n ≥ 1, let Kn = bn/cc, K ′n =
b(n + 1)/cc and put

8(n) = {ϕ
(n)
1···1k(x) := [1, . . . , 1, k + x] : 2n

≤ k < 2n+1
},

where the 1s in the continued fractional function formula [1, . . . , 1, k + x] appear exactly
K ′n − Kn − 1 (possibly K ′n − Kn − 1= 0) times. Then8 is a non-autonomous conformal
IFS, and G is the associated limit set. It is easy to check that

lim
n→∞

1
n

log ]I (n) = log 2

and

lim
n→∞, j∈I (n)

1
n

log
(

1

‖Dϕ(n)j ‖

)
= 2 log 2.

By Proposition 26, we have
dimH G = 1

2 ,

and this finishes the proof of the lower bound. �
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[24] L. Rempe-Gillen and M. Urbański. Non-autonomous conformal iterated function systems and Moran-set
constructions. Preprint, 2012, arXiv:1210.7469, Trans. Amer. Math. Soc., to appear.

[25] P. Revesz. Random Walk in Random and Non-Random Environments, 2nd edn. World Scientific,
Hackensack, NJ, 2005, pp. xvi+380.
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