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The transport of momentum and heat in the turbulent intermediate wake of a circular
cylinder is inherently three-dimensional (3-D). This work aims to gain new insight
into the 3-D vorticity structure, momentum and heat transport in this flow. All
three components of the velocity and vorticity vectors, along with the fluctuating
temperature, are measured simultaneously, at nominally the same point in the flow,
with a probe consisting of four X-wires and four cold wires. Measurements are
made in the (x, y) or mean shear plane at x/d = 10, 20 and 40 at a Reynolds
number of 2.5× 103 based on the cylinder diameter d and the free-stream velocity. A
phase-averaging technique is developed to separate the large-scale coherent structures
from the remainder of the flow. It is found that the effects of vorticity on heat
transport at x/d = 10 and x/d = 20–40 are distinctly different. At x/d = 10, both
spanwise and streamwise vorticity components account significantly for the heat flux.
At x/d = 20 and 40, the spanwise vortex rollers play a major role in inducing the
coherent components of the heat flux vector, while the ribs are responsible for the
small-scale heat diffusion out of the spanwise vortex rollers. The present data indicate
that, if the spanwise-velocity-related terms are ignored, the estimated values of the
production can have errors of approximately 22 % and 13 % respectively for the
turbulent energy and temperature variance at x/d = 40, and the errors are expected
to further increase downstream. A conceptual model summarizing the 3-D features
of the heat and momentum transports at x/d = 10 is proposed. Compared with the
previous two-dimensional model of Matsumura & Antonia (J. Fluid Mech., vol. 250,
1993, pp. 651–668) or MA, the new model provides a more detailed description of
the role the rib-like structures undertake in transporting heat and momentum, and
also underlines the importance of the upstream half of the spanwise vortex rollers,
instead of only one quadrant of these rollers, as in the MA model, in diffusing heat
out of the vortex.
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1. Introduction
It is of fundamental importance to understand the relationship that exists between

the organized motions of a turbulent flow and its ability to influence the momentum
and heat transfer characteristics of the flow. One flow that has received a great deal
of attention, in the context of both the different types of organizations or coherent
large-scale structures that prevail in different regions of the flow as well as the
contribution these structures make to momentum and heat fluxes, is the turbulent
wake generated by a circular cylinder. In particular, the near (0 < x/d < 10 where
x is the streamwise distance from the cylinder axis and d is the cylinder diameter)
and intermediate (10 . x/d . 100) regions of the wake have been studied extensively
because of the dominance of the Kármán vortex street immediately downstream of
the cylinder, its gradual weakening and eventual disappearance.

Meaningful research into the organized motion first requires the development of a
reliable procedure for identifying this motion and reducing its features (e.g. Cantwell
& Coles 1983; Hayakawa & Hussain 1985, 1989; Hussain & Hayakawa 1987; Kiya
& Matsumura 1988; Matsumura & Antonia 1993; Zhou et al. 2003). We single out
here the work of Hayakawa & Hussain (1989), which confirmed the three-dimensional
(3-D) nature of the organization in the intermediate wake. These authors found that
the typical spanwise extent of two-dimensionality of the primary vortices or spanwise
vortex rollers (hereafter referred to as ‘rollers’) is comparable to the local half-width
of the wake. They were also able to identify the structure of ribs, aligned mainly along
the diverging separatrix, although they could not distinguish unambiguously between
distorted rollers and ribs. Scarano & Poelma (2009) studied the 3-D vorticity patterns
in the near wake of a circular cylinder and captured the ribs in the flow based on
their tomographic particle image velocimetry (PIV) measurements and confirmed that
the Kármán rollers are locally distorted at the inception of the ribs.

The first major investigation into the combined momentum and heat transport
characteristics associated with the organization of the intermediate wake is that of
Matsumura & Antonia (1993), hereafter referred to as MA. A probe consisting of
an X-wire and a cold wire was traversed in the y direction at three x/d locations
in the intermediate wake of a slightly heated circular cylinder. A major conclusion
of the study was that the Kármán vortex street transports heat more effectively
than momentum. In particular, the difference between the contribution from the
coherent motion to the lateral heat flux and Reynolds shear stress was reflected in the
different topologies of the temperature and velocity fields. MA’s study addressed only
two-dimensional (2-D) aspects of the flow, with the authors recognizing that it would
be ‘of interest in the future to examine momentum and heat transfer characteristics
in the context of the three-dimensional organization’. We address this specific issue
here by essentially repeating the MA experiment using a probe that provides all three
components of the velocity and vorticity vectors as well as the temperature derivative
vector, at nominally the same location. Since the probe is only traversed in the y
direction, the flow topology is known only in the (x, y) plane. The topology does,
however, contain information about ωx, ωy and ωz, the components of the vorticity
vector in the x, y and z directions respectively. The information from ωx and ωy
reflects the signatures of the ribs, while ωz is linked primarily to the rollers. In other
words, the topology should now indicate the spatial relationship between the ribs and
rollers, as well as the manner in which the two types of structure are associated with
the Reynolds stresses and the heat flux vector. Specifically, the availability of w, the
spanwise velocity fluctuation, is expected to provide some insight into the motion
induced by the ribs and distorted rollers. Overall, this should lead to a more complete
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Three-dimensional vorticity, momentum and heat transport 137

picture of the way in which the 3-D aspects of the flow affect the momentum and
heat transport than what could possibly be obtained by MA.

This paper is organized as follows. Experimental details are provided in § 2, while
the phase-averaging technique is described briefly in § 3. Conventionally time-averaged
and phase-averaged results are presented in §§ 4 and 5 respectively. Conclusions are
summarized in § 6.

2. Experimental details

Experiments were conducted in an open-loop wind tunnel with a working section of
1.2 m × 0.8 m and 2.0 m long. The free-stream longitudinal turbulence intensity was
less than 0.5 %. A circular stainless steel cylinder with a diameter of d = 12.7 mm
was used to generate the wake. A heating wire with a diameter of approximately
0.5 mm was wrapped and inserted in a ceramic tube, which was placed inside the
stainless steel cylinder as a heating element. The free-stream velocity U1 was 3 m s−1,
corresponding to a Reynolds number Re(≡ U1d/ν) of 2.5 × 103, where ν is the
kinematic viscosity. Measurements were conducted at x/d= 10, 20 and 40. Assuming
symmetry, measurements were made mainly only on one side of the centreline, i.e.
y/d=−0.2 to 2.8 at x/d= 10 and 20 and −0.2 to 4.3 at x/d= 40, with a transverse
measurement increment of approximately 0.2d for all x/d stations, except for the
region near free stream at x/d = 40 where the increment was 0.4d. The coordinate
system and some symbols are defined in figure 1(a). The maximum mean temperature
excess Θ0, relative to the ambient, was approximately 1.6 ◦C, 1.5 ◦C and 1.3 ◦C on
the centreline of the wake for x/d = 10, 20 and 40 respectively. The Richardson
number, Ri (≡ gβΘ0d/U2

1 , where g is the gravitational acceleration, β is the thermal
expansion coefficient, and the other symbols are defined in figure 1a), which reflects
the relative contributions from buoyancy and inertia forces (e.g. Boirlaud, Couton &
Plourde 2012), was estimated to be 7.6 × 10−5 at the centreline for x∗ = 10 of the
present flow, and even smaller for x∗ = 20 and 40. Hereinafter, an asterisk indicates
normalization by U1, d, and Θ0 (see figure 1). This normalization is used only for
convenience since the velocity and temperature fields in the wake region considered
here are not self-preserving. Antonia & Mi (1993) and Antonia & Smalley (2000)
noted that heat may be considered to be a passive scalar when Ri 6 0.003; for the
present flow, the temperature may thus be safely considered as passive.

A probe consisting of four X-wires and four cold wires (figure 1b,c) was used to
measure the velocity and temperature fluctuations simultaneously. Two of the X-wires,
b and d, were aligned in the (x, y) plane and separated by 1z = 2.7 mm in the z
direction; the other two, a and c, were in the (x, z) plane and separated by 1y =
2.0 mm in the y direction. The separation between the two wires of each X-probe
was approximately 0.6 mm. Four cold wires whose diameter dcold was 1.27 µm were
orthogonally orientated to the plane of the cross-wire and placed approximately 1 mm
upstream of the vorticity probe, at approximately 800dcold, which is a sufficiently large
distance to ensure that the influence on the X-wire from the ‘wake’ of the cold wire
is negligible. This was confirmed by the good agreement of the root-mean-square
(r.m.s.) values of the present velocity fluctuations u, v and w at the centreline of
x∗= 10 with those reported in Ong & Wallace (1996) and Zhou et al. (2003) (shown
later in figure 5), which were measured without the cold wires. The separations 1y
and 1z between the opposite cold wires were 2.5 mm and 2.2 mm respectively. The
fluctuations u, v, w and θ captured by this probe may be considered to be obtained
at nominally the same point in space.
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FIGURE 1. (a) Experimental arrangement, coordinate system and definition sketch; (b) and
(c) side and front views of the vorticity probe.

All three components of the vorticity vector can be calculated using the measured
signals u, v, w from the probe, namely

ωx = ∂w
∂y
− ∂v
∂z
≈ 1w
1y
− 1v
1z
, (2.1)

ωy = ∂u
∂z
− ∂w
∂x
≈ 1u
1z
− 1w
1x

, (2.2)

ωz = ∂v
∂x
− ∂(Ū + u)

∂y
≈ 1v
1x
− 1(Ū + u)

1y
, (2.3)

where u, v and w are the velocity fluctuations in the x, y and z directions respectively.
The symbols 1w and 1u in (2.1) and (2.3) denote the differences in velocities
between cross-wires a and c, and 1ν and 1u in (2.1) and (2.2) are the differences
in velocities between cross-wires b and d. The velocity gradients in the streamwise
direction in (2.2) and (2.3) are obtained by applying a central difference scheme
to the time series of the measured velocity signals. The spatial separation 1x is
inferred from Taylor’s hypothesis, i.e. 1x ≡ −2Uc1t, where Uc is the averaged
convection velocity of vortices (table 1), estimated from Zhou & Antonia (1992),
and 1t= 1/fsamp, where fsamp is the sampling frequency, is the time interval between
consecutive points in the time series of the velocity signals. Previous studies (e.g.
Zaman & Hussain 1981; Mi & Antonia 2010; Geng et al. 2015) have demonstrated
that Taylor’s hypothesis for the transformation between time and space derivatives
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x∗ U∗0 Θ0 (◦C) L∗ L∗θ U∗c
10 0.27 1.6 0.73 1.07 0.87
20 0.22 1.5 1.10 1.90 0.87
40 0.18 1.3 1.87 3.12 0.90

TABLE 1. Maximum mean velocity defect, mean temperature excess, mean velocity
half-width, mean temperature half-width and vortex convection velocity.

x∗ ε̄ (m2 s−3) η (mm) 1x/η 1y/η 1z/η

10 3.33 0.18 11.7 11.2 15.1
20 1.32 0.22 9.3 8.9 12.0
40 0.35 0.31 6.9 6.4 8.6

TABLE 2. The mean energy dissipation rate, the Kolmogorov length scale and the probe
resolution in the context of the vorticity measurements.

works well, especially when the turbulent intensity (urms/U1) is small. In the present
study, the largest urms/U1 (approximately 0.18 at x∗ = 10) is quite comparable to that
(0.16 at x∗ = 10) reported in Mi & Antonia (2010), in which Taylor’s hypothesis
is validated by comparing simultaneously measured temporal and streamwise spatial
derivatives of the temperature fluctuation.

Table 2 provides the information on the separation distances between the hot wires
(1x, 1y, 1z) in terms of the Kolmogorov length scale η ≡ (ν3/ε̄)1/4 at the wake
centreline. The estimation of ε̄, the mean energy dissipation rate, is based on the
assumption of local homogeneity in the transverse plane (equation (9) in Lefeuvre
et al. 2014), which, according to the latter authors, should be more accurate in
the intermediate wake than by assuming isotropy. In order to assess the minimum
resolution of the probe, we compare our ωy and ωz spectra with those in Antonia &
Mi (1998) in figure 2; the spatial resolution of their probe is 1y=1z≈ 8η at x∗= 10,
which is better than ours (11η for 1y and 15η for 1z). The present distributions fall
below those of Antonia & Mi (1998) over the higher-wavenumber range, reflecting
the larger attenuation in our experiment. Nevertheless, scales one order smaller than
that corresponding to the Strouhal number (with a non-dimensional frequency f ∗ of
0.2) can be resolved reliably. Since this work aims to study the spatial structures
of the vorticity, heat and momentum fluxes, which are associated with scales of the
order of the Kármán vortex, the probe resolution should be adequate. In fact, as is
shown in figure 6, the r.m.s. value of the vorticity is comparable to that measured in
previous studies (Mi & Antonia’s (1996) data were corrected for the effect of probe
attenuation). The results indicate that the attenuation in the vorticity measurement
is acceptable even for the vorticity variance, which is equal to the integral of the
vorticity spectrum.

Both the hot and the cold wires were etched from Wollaston (Pt–10 %Rh) wires,
with active lengths of approximately 200dhot and 800dcold respectively, where dhot is the
diameter of the wires, 2.5 µm. The hot wires were operated with constant-temperature
circuits, built in-house, at an overheat ratio of 1.5. The cold wires were operated
with in-house constant-current (0.1 mA) circuits. The hot wires were calibrated at
the centreline of the tunnel using a Pitot static tube connected to an MKS Baratron
pressure transducer. Yaw calibration was performed over ±20◦. The output signals
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FIGURE 2. Comparison between the present spectra (solid lines) of (a) ωz and (b) ωy on
the centreline and those of Antonia & Mi (1998) (dashed lines) at x∗ = 10, where k1 is
the streamwise wavenumber, ‘+’ denotes normalization by the Kolmogorov scale and f ∗
is the non-dimensional frequency.

from the anemometers were passed through buck and gain circuits and low-pass
filtered at a cutoff frequency fc of 1250 Hz at three locations. The filtered signals were
subsequently sampled at a frequency of fsamp= 2fc (2500 Hz) using a 16 bit analogue-
to-digital converter. The duration of each digital record was approximately 45 s.

3. Phase-averaging technique
A phase-averaging technique is used to extract the coherent structures from the flow

field. The technique is an improvement over that used by Zhou, Zhang & Yiu (2002)
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t

FIGURE 3. Comparison of a measured signal v (the thin line) and the shifted filtered
signal ν ′f (the thicker line) at x∗ = 10.

and Zhou & Yiu (2006). Briefly, the transverse velocity fluctuation signals ν from
the probe are filtered using a fourth-order Butterworth filter with the centre frequency
set at the vortex shedding frequency fs, as identified from the most pronounced
peak in the ν spectrum. A cross-correlation between the measured signal ν and the
filtered signal νf is carried out to determine the average phase shift between νf and
the measured ν. This shift is then applied to νf and a new reference signal ν ′f is
formed. A similar technique was also adopted by Li, Balaras & Wallace (2010) in
their phase-average study of a turbulent shear layer. Figure 3 illustrates the ν signals
at three typical lateral locations at x∗ = 10 and the corresponding shifted ν ′f signals.

Two phases of particular interest are identified on ν ′f , namely

phase A: ν ′f = 0 and
dν ′f
dt
> 0 (3.1a,b)

and

phase B: ν ′f = 0 and
dν ′f
dt
< 0. (3.2a,b)

The two phases correspond to instants tA,i and tB,i (figure 3) respectively. The origin of
time is arbitrary. The phase of the measured fluctuation signals is then determined as

φ =π
t− tA,i

tB,i − tA,i
, tA,i < t< tB,i (3.3)
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and

φ =π
t− tB,i

tA,i+1 − tB,i
+π, tB,i < t< tA,i+1. (3.4)

The interval between phases A and B is made equal to 0.5Ts= 0.5/fs by compressing
or stretching and is further divided into 20 equal intervals. Phase averaging is then
applied to the measured rather than the filtered signals. The phase average of an
instantaneous quantity Γ is given by 〈Γ 〉k = (1/N)

∑N
i=1 Γk,i, where k represents the

phase and N is the number of detections, which is approximately 1980, 1700, and
1050 at x∗ = 10, 20 and 40 respectively.

Based on the triple decomposition (Hussain 1983), an instantaneous quantity Γ
may be viewed as the sum of the time-averaged component Γ̄ and the fluctuating
component β, which can be further decomposed into a coherent fluctuation β̃ and a
remainder βr, namely

β = β̃ + βr. (3.5)

The coherent component β̃ ≡ 〈β〉 reflects the effect from the large-scale coherent
structures, while βr is referred to as the remainder fluctuation. After multiplying (3.5)
with γ = γ̃ + γr, we obtain

βγ = β̃γ̃ + β̃γr + γ̃ βr + βrγr. (3.6)

By phase averaging (3.6) and assuming a zero correlation between coherent and
remainder fluctuations, i.e. 〈β̃γr〉 = 0 and 〈γ̃ βr〉 = 0, we obtain

〈βγ 〉 = β̃γ̃ + 〈βrγr〉, (3.7)

where β and γ represent either u, v, w or θ .

4. Time-averaged flow and temperature fields

Distributions of the time-averaged streamwise velocity Ū∗ and temperature Θ̄∗

in the y direction are shown in figure 4. In this paper, a single overbar denotes
conventional time averaging. It should be noted that the imperfect symmetry of
the curve of Ū∗ at x∗ = 40 is mainly caused by the third point, which could be
due to the experimental uncertainty, approximately ±2 % in the mean velocity. For
example, the curve could appear quite symmetrical if this point were adjusted by only
approximately 0.7 %. Table 1 summarizes the maximum mean velocity defect U∗0 , Θ0,
mean velocity half-widths L∗ and mean temperature half-width L∗θ extracted from
figure 4, along with U∗c . The value of U∗c is 0.27, 0.22 and 0.18 at x∗ = 10, 20 and
40 respectively. These values are slightly larger than their counterparts (0.22, 0.19,
0.16) reported by Antonia & Mi (1998) at Re = 3000. The value of Θ0 diminishes
downstream as a result of heat transported from the wake to the free stream. The
value of L∗ is smaller than that of L∗θ , suggesting a more efficient transport of heat
than momentum in the lateral direction. The ratio L∗/L∗θ is 0.68, 0.58 and 0.60 at
x∗ = 10, 20 and 40 respectively, in reasonable agreement with Zhou et al. (2002).

Since the vorticity components are calculated from velocity fluctuation signals from
the four X-wires, it is important to ensure that the interference between these X-wires
is negligible. Figure 5 compares urms, vrms, wrms and θrms from different X-wires and
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FIGURE 4. Distributions of mean streamwise velocity and temperature at x∗ = 10, 20
and 40.

cold wires at three x∗ locations. The values of urms, vrms and wrms reported in Ong &
Wallace (1996) and Zhou et al. (2003) at x∗ = 10 are also included. The subscript
‘rms’ denotes the r.m.s. value of the fluctuating quantity. Several observations can
be made. First, the values of urms, vrms, wrms and θrms from different wires are in
good agreement with each other, suggesting a negligible interference between wires.
Second, the reasonable agreement between the present data and those of Zhou et al.
(2003) (Re = 2500) and Ong & Wallace (1996) (Re = 3900) is such as to exclude
the possibility that the agreement between the different wires results from similar
interference at each of the four measurement locations. Third, at x∗= 10, v∗rms is larger
than u∗rms, which is larger than w∗rms. This result indicates the strong anisotropy of
the flow, which is attributed to the presence of the Kármán vortices. As x∗ increases,
vrms drops faster than urms and wrms. By x∗ = 40, vrms is approximately equal to wrms
and even smaller than urms. This suggests a preferential transfer of turbulent kinetic
energy to the u component rather than to the v or w components with increasing x∗.
This axisymmetric trend of the streamwise evolution of urms, vrms and wrms was also
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FIGURE 5. (Colour online) Comparison of the r.m.s. values of velocity and temperature
fluctuations from different wires of the probe at x∗ = 10, 20 and 40. Comparison of urms,
vrms and wrms with those from Ong & Wallace (1996) and Zhou et al. (2003) is made at
x∗ = 10.

observed by Djenidi & Antonia (2009) in their direct numerical simulation (DNS)
study of the transitional wake of a heated square cylinder (Re = 200) and by Mi &
Antonia (2010) in their experiment (Re=3000). The lateral position of the peak in θ∗rms
approximately corresponds to the path or most likely position of the Kármán vortices.
This is not unreasonable since heat is mostly retained by the Kármán vortex in the
near and intermediate wake (e.g. MA; Djenidi & Antonia 2009). As x∗ increases, the
peak of θ∗rms drifts away from the centreline towards the free stream, reflecting the
movement of the Kármán vortices. In fact, the peak of θ∗rms is nearer at x∗= 40 to the
free stream than the vortex path; this will be discussed in detail in § 5. In summary,
the above comparison indicates that the measurements of u, v, w and θ are quite
reasonable.

Figure 6 compares (ωx)rms, (ωy)rms and (ωz)rms measured at x∗ = 20 with those
reported by Marasli, Nguyen & Wallace (1993), Mi & Antonia (1996), Zhang, Zhou
& Antonia (2000) and Zhou et al. (2003). The fluctuating vorticity, normalized by L
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FIGURE 6. Comparison of the normalized r.m.s. values of vorticity components between
the present and previously reported measurements at x∗= 20. Here, L is the mean velocity
half-width and U0 is the maximum mean velocity deficit.

and U0, is multiplied by (U0L/ν)−1/2 to account for the Reynolds number effect
(Antonia, Rajagopalan & Zhu 1996). The magnitudes reported by Zhang et al. (2000)
are the smallest, due to the poor spatial resolution (approximately 20 Kolmogorov

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

66
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.664


146 J. G. Chen, Y. Zhou, T. M. Zhou and R. A. Antonia

length scales) of the hot wires. Mi & Antonia (1996) perhaps provide the most
accurate data since they used two X-wire probes with a resolution of approximately
6 Kolmogorov length scales and further applied a spectral correction to account for
the high wavenumber attenuation of vorticity, resulting in larger (ωy)rms and (ωz)rms
than for the present data. The data of Zhou et al. (2003) agree well with the present
values of (ωx)rms and (ωz)rms, but are slightly larger than the present (ωy)rms values.
This may be attributed to the better resolution of the probe used by Zhou et al.
(2003) in the z direction (1z ≈ 1.9 mm in their probe, while 1z ≈ 2.7 mm in our
present probe), which will affect the velocity gradient du/dz (and hence ωy). Marasli
et al. (1993) obtained smaller values of (ωy)rms and (ωz)rms than the present study and
the experiments of Mi & Antonia (1996) and Zhou et al. (2003). It should be noted
that Marasli et al. (1993) measured at x∗ = 30, while all of the other experiments
were at x∗ = 20. Considering that some departure is not unexpected in view of the
different experimental facilities and uncertainties, the comparison in figure 5 can be
considered as providing reasonable validation of the present vorticity data.

5. Phase-averaged flow and temperature field
5.1. Phase-averaged vorticity

Rib-like structures, which are located in the alleyway between successive Kármán
vortices and oriented mostly along the diverging separatrix, have been identified in
both experiments (e.g. Hayakawa & Hussain 1989; Bays-muchmore & Ahmed 1993;
Mi & Antonia 1996; Scarano & Poelma 2009) and numerical simulations (Jeong,
Grinstein & Hussain 1994; Brede, Eckelmann & Rockwell 1996). However, the
streamwise evolution of the ribs, their interaction with the rollers and their effect on
the heat and momentum transport are, probably for the first time, captured in the
present experiment. In this section, the capture of the ribs will be verified in terms
of both the coherent vorticity topology and the spectral correlation of ωx and ωy.
The interaction between ribs and rollers and their effect on the heat and momentum
transport will be discussed in detail in § 5.7.

The isocontours of the three phase-averaged coherent vorticity components, i.e.
ω̃∗x , ω̃∗y and ω̃∗z , are presented in figure 7. The phase φ, ranging from −2π to +2π,
can be interpreted as a longitudinal distance based on Taylor’s hypothesis, φ = 0
to 2π corresponding to the averaged vortex wavelength. To avoid any distortion
of the physical space, the same scales are used in the φ and y∗ directions in this
and subsequent figures. The positions of the centres and saddle points (e.g. Zhou &
Antonia 1994), identified from the phase-averaged sectional streamlines (not shown),
are marked by ‘+’ and ‘×’ respectively. The thicker broken line denotes the outermost
vorticity contour of ω̃∗z , which is approximately 25 % of the maximum magnitude
|ω̃∗z,max|. This contour provides a reference for the periphery of the Kármán vortex.
The broken line passing through the saddle point is the diverging separatrix, i.e. the
braid connecting the consecutive roller structures (Hussain & Hayakawa 1987). The
contours of vorticity are similar to those in Zhou et al. (2003), in which a similar
experimental arrangement was employed. Because of the improved phase-average
method used in this work, the organized motion is more accurately extracted at
all stations, providing a clearer picture of the streamwise evolution of the coherent
structures, especially the rib structures, which could hardly be identified in Zhou
et al. (2003).

The ω̃∗z contours display the well-known Kármán vortex street from x∗ = 10 to 40
(figure 7g–i). The vortices decay rapidly, and the maximum concentration of ω̃∗z at
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FIGURE 7. Phase-averaged vorticity isocontours: (a–c) ω̃∗x , contour increment = 0.042,
0.013 and 0.012 respectively; (d–f ) ω̃∗y , 0.031, 0.020 and 0.016; (g–i) ω̃∗z , 0.102, 0.051 and
0.019. Here and in subsequent figures, upstanding crosses + and × represent the locations
of the vortex centre and saddle points respectively. The thick broken contour corresponds
to the contour of 25 % of the maximum spanwise vorticity and the broken line through
the saddle point indicates the diverging separatrix.

x∗ = 40 drops to only 26 % of that at x∗ = 10. However, its size grows considerably,
and the vortex centre shifts away from the centreline, increasing from y∗ = 0.39 at
x∗ = 10 to y∗ = 1.38 at x∗ = 40. This observation is consistent with the downstream
growth in the wake width. It should be noted that the ω̃∗z concentrations at x∗ = 40
are hardly identifiable in Zhou et al. (2003) but are easily discernible in figure 7(i)
because of the improved phase averaging.

In figure 7(a–f ), the contours of ω̃∗x and ω̃∗y display concentrations along the
diverging separatrix and wrap around the consecutive opposite-signed rollers, as also
observed in Williamson (1996) and Scarano & Poelma (2009), thus highlighting the
signature of the rib-like structures. The organized structures at x∗ = 10 are more
complicated than and quite different from those at x∗ = 20 and 40. As shown in
figure 7(g), rollers of opposite sign are closely arranged near the centreline, resulting
in the vigorous vorticity transport between them (this is discussed in the next section)
and subsequently causing the rollers to contort, as delineated by the opposite-signed
ω̃∗z contours that lean against each other. The deformed rollers can make an extra
contribution to ωx and ωy in addition to that resulting from the rib structures, which
is why both the ω̃∗x and ω̃∗y contours within the Kármán vortex (figure 7a,d) exhibit
a similarity to those of ω̃∗z . The concentration of ω̃∗x within the vortex at x∗ = 10 is
much larger than that of ω̃∗y (figure 7a,d), indicating that the interactions between the
opposite-signed vortices occur mostly in the streamwise direction, as observed from
the instantaneous isocontours of ωz from the DNS data of Djenidi & Antonia (2009)
(their figure 17c). At x∗ = 10, the additional ω̃∗x from the deformed rollers smears
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FIGURE 8. Cospectral density functions of ωx and ωy at (a) x∗= 20, y∗= 0.79 and (c) 40,
1.38, i.e. the most likely positions of vortex centres, and (b) 20, 1.38 and (d) 40, 1.77,
i.e. the most likely positions of saddle points.

the ω̃∗x contours linked to the ribs. As a result, the ω̃∗x contours are not concentrated
along the diverging separatrix (figure 7a). At x∗ = 20 and 40, the opposite-signed
vortices drift away from the centreline, and the braid region between them expands.
Consequently, both ω̃∗x and ω̃∗y resulting from the longitudinal rib structures show
comparable maximum concentrations in the braid region. As such, although the roller
distortion may be further enhanced by the spanwise instability (Williamson 1996), the
presence of the ribs is clearly identifiable from the distributions of ω̃∗x and ω̃∗y along
the diverging separatrix. The capture of the ribs is further confirmed by comparing the
cospectra between ωx and ωy at the centre and saddle point locations at x∗ = 20 and
40 (figure 8). The cospectra corresponding to the saddle point display a pronounced
peak at St(≡ fd/U1) = 0.2, indicating a strong correlation between ωx and ωy at fs,
which is expected given the presence of the rib-like structures. On the other hand,
such a peak is absent in the cospectra corresponding to the vortex centre at x∗ = 20
and 40, as ωx and ωy are unlikely to be correlated within the spanwise vortices. The
same sign of ω̃∗x and ω̃∗y as ω̃∗z within the spanwise vortex is connected to how the
rollers are distorted in the (x, z) and (y, z) planes, which will be discussed in § 5.3.

5.2. Vorticity transport
As discussed in § 5.1, the vigorous interactions between the neighbouring opposite-
signed vortices may be responsible for the distortion of the spanwise rollers at x∗= 10.
One way to evaluate the interactions between the vortices is to examine the turbulent
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FIGURE 9. The vorticity flux density vector J (Jx, Jy) at (a,b) x∗ = 10 and (c,d) 20. The
vectors in (a,c) are calculated from the 3-D data with the w component included, and
those in (b,d) from the 2-D data without w.

vorticity flux density vector, J = (Jx, Jy), which provides a measure for the transport
of vorticity, as defined by (Kolar, Lyn & Rodi 1997)

Jx = ∂

∂y

[ 〈v2
r 〉 − 〈u2

r 〉 − 〈w2
r 〉

2

]
+ ∂

∂x
〈urvr〉, (5.1)

Jy = ∂

∂x

[ 〈v2
r 〉 − 〈u2

r 〉 + 〈w2
r 〉

2

]
− ∂

∂y
〈urvr〉. (5.2)

The magnitude of the vector reflects the strength of the vorticity flux density (Kolar
et al. 1997; Zhou et al. 2002). The vector is generally directed from higher to lower
vorticity concentration regions. Most previous studies (e.g. Kolar et al. 1997; Zhou &
Yiu 2006) of the vorticity flux were based on the 2-D data, i.e. without the information
on the gradient of 〈w2

r 〉 in (5.1) and (5.2), since the spanwise velocity component was
not measured. In fact, Kolar et al. (1997) noted that the ‘total’ turbulent vorticity flux
should include gradients in 〈w2

r 〉. The present data, which include all of the terms in
(5.1) and (5.2), should lead to a more accurate picture of the vorticity transport. The
full flux density vector has been calculated and compared with the estimation from
the 2-D data in figure 9. The correspondence between the magnitude and length of
the vectors is given in the upper left corner of each plot. In the 2-D case (figure 9b,d
and also figure 18b in Kolar et al. (1997)), the vorticity transport appears to be very
weak especially at x∗ = 20 in the downstream half, away from the centreline, of the
spanwise roller at φ = 0. However, the full flux density vectors (figure 9a,c) show
an unequivocally strong activity. There is another important difference that emerges
from the comparison. While the vectors calculated from the 2-D data appear to
cross the border downstream of the vortex, implying a vorticity exchange or vorticity
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FIGURE 10. Isocontours of phase-averaged velocity and temperature fluctuations at
x∗ = 10, 20 and 40: (a–c) contour intervals = 0.020, 0.008, 0.004; (d–f ) 0.041, 0.017,
0.007; (g–i) 0.0066, 0.0038, 0.0052; ( j–l) 0.089, 0.018, 0.020.

cancellation between neighbouring opposite-signed vortices, this is not the case if
the vectors are calculated from the 3-D data. Instead, the vorticity flux vectors are
now predominantly linked to the rotational motion of the vortex. That is, the 2-D
data could be misleading. A close examination of figure 9(a,c) points to the vorticity
transport between the neighbouring vortices on the downstream side of the vortex
(φ = 0) being ‘blocked’, at least partially, by the engulfed non-turbulent fluid from
the free stream immediately downstream of the rollers. This inference is corroborated
by the maximum negative concentrations of θ̃∗ in figure 10( j,k), i.e. the engulfed
non-turbulent cold fluid from the free stream, which occurs downstream close to the
vortex at φ = 0. Consequently, the intense vorticity exchange or cancellation between
neighbouring vortices occurs mostly on the upstream half of the vortex (φ = 0) and
below the diverging separatrix. One should note the small magnitude of the negative
θ̃∗ contours below the diverging separatrix between φ = 1 and 0 in figure 10( j,k).

Previous studies (Cantwell & Coles 1983; Hussain & Hayakawa 1987; Williamson
1996) have highlighted the importance, in the context of the flow dynamics, of the
saddle region where turbulence production occurs and the contact region between the
ribs and the spanwise rollers where turbulent mixing takes place. The present data
shown in figure 9(a,c) point to the fact that the upstream half of the vortex is also
of great importance, as it is where most of the vorticity cancellation occurs, thus
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contributing greatly to the decay of the vortex strength, at least in the near wake
(x∗ 6 20). At x∗ = 40 (not shown), this vorticity cancellation becomes quite weak,
mainly due to the consecutive positive and negative vortices drifting away from each
other. As a result, the vorticity decay downstream is mainly dominated by the vortex
breakdown process (Hussain & Hayakawa 1987).

5.3. Phase-averaged velocity and temperature fluctuations
All three phase-averaged components, ũ∗, ṽ∗ and w̃∗, of the velocity fluctuation
and their evolution from x∗ = 10 to 40 are presented in figure 10, along with the
phase-averaged temperature fluctuation θ̃∗. In contrast, MA showed only ũ∗, ṽ∗ and
θ̃∗ at x∗ = 10. The contours of ũ∗, ṽ∗ and θ̃∗ at x∗ = 10 resemble those in MA. For
example, the ũ∗ contours display approximate up–down antisymmetry about the vortex
centre, while the ṽ∗ contours are antisymmetric about φ = 0, the maximum occurring
in the alleyways between opposite-signed vortices. The positive contours of θ̃∗ show
a concentric distribution within the spanwise roller and the negative contours occur
between adjacent rollers, indicating that heat is contained within the Kármán vortex
and cold fluid is entrained from free stream into the wake. The resemblance between
the two sets of data provides a validation for the present phase-averaged results.

It is w̃∗, missing in MA, that is most interesting in the evolving coherent velocity
fluctuations. At x∗ = 10, the contours of w̃∗ (figure 10g) exhibit markedly different
features from those of either ũ∗ or ṽ∗, with the opposite-signed contours almost
evenly distributed along the two sides of the diverging separatrix. At x∗ = 20 and
40, however, the contours of w̃∗ evolve into a distribution similar to those of ṽ∗.
The distinct behaviours of w̃∗ at x∗ = 10 from those at x∗ = 20 and 40 imply that
the mechanism of inducing w̃∗ changes from x∗ = 10 to x∗ = 20 and 40. Djenidi
& Antonia (2009) studied the momentum and heat transport in a transitional wake
(Re= 200) via DNS. They found that, while the structures of u and v are both related
with the spanwise rollers, the structures of w result from the induction of ribs as well
as the contorted rollers. The present distribution of w̃∗ along the diverging separatrix
at x∗ = 10, also observed by Djenidi & Antonia (2009), is clearly a signature of ribs,
with a caveat that the small w̃∗ concentrations near the vortex centre should result
from the distorted rollers. With increasing x∗, the ribs decay rapidly, as is evident in
figure 7 and also in previous measurements, e.g. Brede et al. (1996) and Huang, Zhou
& Zhou (2006); also, the distortion of the spanwise rollers is enhanced (Williamson
1996; Zdravkovich 1997). A possible scenario of the distorted spanwise rollers is
sketched in figure 11. Without distortion (figure 11a), the measurement plane (x, y) is
perpendicular to the axis of the rollers, and the coherent velocities ṽ1 and ṽ2 induced
by rollers will stay in the measurement plane, making no contribution to the spanwise
velocity component. However, in reality, the spanwise rollers are in general distorted.
One possible scenario for the distortion is illustrated in figure 11(b): the axis of the
roller is non-perpendicular to the measurement plane, ṽ1 and ṽ2 producing velocity
components in both the y and z directions. Specifically, ṽ1 can be decomposed into
a positive lateral component ṽm

+ and a negative spanwise component w̃m
−, where the

superscript m denotes measured quantities and the subscript ‘+’ or ‘−’ indicates
the sign of the measured quantities. The scenario is consistent with the positive ṽ∗
and negative w̃∗ contours between φ = 1 and 0 at x∗ = 20 and 40 (figure 10e, f,h,i).
Further, ṽ2 can be decomposed into a negative lateral component ṽm

− and a positive
spanwise component w̃m

+, which is in agreement with the negative ṽ∗ and positive w̃∗
contours between φ = 0 and −1 in figure 10(e, f,h,i). All of the observations point
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FIGURE 11. (Colour online) Sketch of (a) non-distorted and (b) distorted spanwise vortex
rollers in the y–z plane. Superscript ‘m’ denotes the measured velocity and subscripts ‘+’
and ‘−’ indicate the positive and negative signs respectively of the measured quantities;
‘A–A’ and ‘B–B’ represent the sectional views of the vortex roller.

to the strong likelihood that w̃∗ results mainly from the distorted spanwise rollers at
x∗ = 20 and 40. It should be noted that the roller in figure 11(b) can also result in
a negative lateral vorticity component (ω̃y < 0) within the roller, as evidenced by the
negative ω̃∗y contours within the spanwise vortex in figure 7(e, f ).

The evolution of the θ̃∗ contours exhibits a close correlation with the variation
in the strength of the spanwise vortex. At x∗ = 10 and 20, the positive contours of
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FIGURE 12. Isocontours of phase-averaged coherent momentum and heat fluxes. Contour
intervals: (a–c) 0.0026, 0.0005, 0.00016; (d–f ) 0.0076, 0.0006, 0.00047; (g–i) 0.015,
0.0016, 0.00088; ( j–l) 0.0015, 0.0005, 0.00034.

θ̃∗ due to heat separated along with the vortex from the electrically heated cylinder
coincide well with the ω̃∗z concentrations, indicating that the Kármán vortex retains
heat effectively with its strong rotational motion. This changes dramatically at x∗= 40.
Heat is transferred out of the periphery of the vortex, the main trend being towards
the free stream. This is directly connected to the fact that the spanwise vortex
becomes quite weak at x∗= 40, with its maximum magnitude of ω̃∗z dropping to only
approximately 26 % of that at x∗ = 10 (figure 7g,i), and hence cannot retain heat as
effectively as at x∗ = 10 and 20.

5.4. Coherent momentum and heat fluxes and remainders
The topologies of the heat and momentum transport are examined in this section,
including both large-scale coherent quantities and relatively small-scale remainders. In
contrast to only two components (uθ and vθ ) available in MA, all three components
(uθ , vθ , wθ ) of the heat flux vector are examined here, thus providing a more
complete picture of 3-D momentum and heat transport.

Figure 12 presents the coherent Reynolds shear stress ũ∗ṽ∗ and the three
components, i.e. ũ∗θ̃∗, ṽ∗θ̃∗ and w̃∗θ̃∗, of the heat flux vector at the three stations.
The structures of ũ∗ṽ∗, ũ∗θ̃∗ and ṽ∗θ̃∗ are similar to those reported by MA, and need
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not be discussed individually. Similarly to the behaviours of w̃∗, the w̃∗θ̃∗ contours
exhibit quite different features between x∗ = 10 and the other two x∗ positions. At
x∗ = 10, the oppositely signed w̃∗θ̃∗ concentrations occur on the two sides of the
diverging separatrix, opposite to each other, apparently resulting from the motion
of ribs. It should be noted that, due to the high concentration of θ̃∗ within the
roller, a high concentration of w̃∗θ̃∗ occurs near the vortex centre, though with a
weak w̃∗ (figure 10g), at x∗ = 10. At x∗ = 20 and 40, the high-level contours of
w̃∗θ̃∗ do not seem to show any correlation with the diverging separatrix and, instead,
exhibit a great resemblance to those of ṽ∗θ̃∗ at the same x∗. This difference in w̃∗θ̃∗
is consistent with that in w̃∗ (figure 10g–i) between x∗ = 10 and the other two x∗

positions. The similarity between the contours of w̃∗θ̃∗ and ṽ∗θ̃∗ at x∗= 20 and 40 is
connected to that between the contours of w̃∗ and ṽ∗ (figure 10e,h, f,i). The ṽθ̃ and
w̃θ̃ contours are of opposite sign, as are the ṽ and ω̃ contours, due to the spatial
contortion of the spanwise rollers as seen in figure 11. The evolution of w̃∗θ̃∗ reflects
the fact that both rollers and ribs influence the coherent part of the heat transport at
x∗ = 10. However, the ribs appear to be weakened at x∗ = 20 and 40; so does their
ability to induce the spanwise motion and heat flux. Consequently, the coherent heat
transport is overwhelmingly dominated by the distorted spanwise rollers at x∗ = 20
and 40. The result is in agreement with the observation of Huang et al. (2006), from
PIV data (Re = 2000), that the ribs become weak and less organized from x∗ = 4
to 12.

Interestingly, the ribs seem to play a role that is increasingly important downstream
in both momentum and heat flux of the remainders (figure 13). At x∗ = 10,
the high-level 〈u∗rv∗r 〉 contours tend to run along the diverging separatrix. The
concentration of positive 〈u∗rv∗r 〉 near the vortex centre is the footprint of the shear
stress that is associated with the diverging separatrix below the centreline (y∗ < 0).
Because the positive and negative vortices are close to each other near the centreline
at x∗ = 10, the contours of the shear stress generated in the saddle region have
actually protruded into the Kármán vortex on the other side of the centreline, as also
observed by Hussain & Hayakawa (1987) and Matsumura & Antonia (1993). As x∗
increases, the maximum of 〈u∗rv∗r 〉 is gradually shifted to the saddle point. This change
is correlated with the observation that the vortices drift away from the centreline. It
should be noted that the saddle region at y∗ > 0 corresponds laterally to the positive
vortex roller at y∗< 0. As a result, the influence of the rollers at y∗< 0 on the saddle
region at y∗ > 0 diminishes as both positive and negative vortices move away from
the centreline and the contours of 〈u∗rv∗r 〉 are predominantly concentrated along the
diverging separatrix, with a maximum at the saddle point at x∗ = 40 (figure 13c).
Hussain & Hayakawa (1987) observed that the turbulent production occurs mostly
at approximately the same location as the peak of 〈u∗rv∗r 〉. The shift of the location
in the maximum 〈u∗rv∗r 〉 implies the improved importance of the saddle region in the
turbulence production. On the other hand, while the maximum 〈v∗r θ∗r 〉 is also near the
vortex centre at x∗ = 10, the 〈w∗r θ∗r 〉 concentrations occur between spanwise vortices.
However, at x∗= 20 and 40 the concentrations of both 〈v∗r θ∗r 〉 and 〈w∗r θ∗r 〉 occur about
the diverging separatrix. Hussain & Hayakawa (1987) asserted, without providing the
experimental evidence, that the most effective turbulence mixing occurs where ribs
and spanwise vortices are in contact with each other as a result of the small-scale
fluctuations produced by the direct interaction between the streamwise vorticity and
the spanwise vorticity. The present observation from the 〈v∗r θ∗r 〉 and 〈w∗r θ∗r 〉 contours
at x∗ = 20 and 40 (figure 13h,i,k,l) seems consistent with their assertion, given that
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FIGURE 13. Isocontours of momentum and heat fluxes associated with the remainder
motion. Contour intervals: (a–c) 0.001, 0.0007, 0.00034; (d–f ) 0.0048, 0.0021, 0.0029;
(g–i) 0.0037, 0.0015, 0.0015; ( j–l) 0.0014, 0.0011, 0.0013.

the remainder is composed mainly of small scales responsible for turbulent diffusion
and mixing (Tennekes & Lumley 1972). Generally, 〈u∗r θ∗r 〉 and 〈v∗r θ∗r 〉 are of opposite
sign above the centreline, reflecting the negative correlation between u and v in
the region where dŪ/dy > 0 (e.g. Li et al. 2010, also figure 13c). The interesting
exception is that the 〈w∗r θ∗r 〉 concentrations are of opposite sign on either side of the
diverging separatrix at x∗ = 20 and 40 (figure 13k,l), again confirming the claim that
the ribs are dynamically important in these x∗ positions.

5.5. Productions of turbulent kinetic energy and temperature variance
The turbulence energy production 〈Pe〉∗ plays the role of an energy sink for the mean
flow and an energy source for the fluctuating velocities, defined by (e.g. Cantwell &
Coles 1983; Pope 2001)

〈Pe〉∗ = −〈uirujr〉∗ ∂〈Ūi + ũi〉∗
∂x∗j

= −〈u2
r 〉∗
∂〈Ū + ũ〉∗
∂x∗

− 〈v2
r 〉∗
∂〈V̄ + ṽ〉∗
∂y∗
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−〈w2
r 〉∗
∂〈W̄ + w̃〉∗

∂z∗
− 〈urvr〉∗

(
∂〈Ū + ũ〉∗
∂y∗

+ ∂〈V̄ + ṽ〉
∗

∂x∗

)
−〈urwr〉∗

(
∂〈Ū + ũ〉∗
∂z∗

+ ∂〈W̄ + w̃〉∗
∂x∗

)
− 〈vrwr〉∗

(
∂〈V̄ + ṽ〉∗
∂z∗

+ ∂〈W̄ + w̃〉∗
∂y∗

)
≈ −〈u2

r 〉∗
∂〈Ū + ũ〉∗
∂x∗

− 〈v2
r 〉∗
∂〈ṽ〉∗
∂y∗
− 〈urvr〉∗

(
∂〈Ū + ũ〉∗
∂y∗

+ ∂〈ṽ〉
∗

∂x∗

)
︸ ︷︷ ︸

I

−〈w2
r 〉∗
∂〈w̃〉∗
∂z∗
− 〈urwr〉∗

(
∂〈Ū + ũ〉∗
∂z∗

+ ∂〈w̃〉
∗

∂x∗

)
− 〈vrwr〉∗

(
∂〈ṽ〉∗
∂z∗
+ ∂〈w̃〉

∗

∂y∗

)
︸ ︷︷ ︸

II

.

(5.3)

Previous calculations (e.g. Cantwell & Coles 1983; Antonia et al. 1987; Hussain &
Hayakawa 1987) of 〈Pe〉∗ were based on only u and v, so that only part I in (5.3)
was estimated. However, even in the intermediate wake, the three-dimensionality of
the flow (e.g. Williamson 1996) cannot be ignored. Here, both parts I and II in (5.3)
are measured directly with the vorticity probe, thus providing a more complete picture
of the turbulence energy production and its streamwise evolution.

Figure 14 shows the isocontours of 〈Pe〉∗ at x∗ = 10 and 40. For comparison,
both part I and parts I + II in (5.3) are presented. The topological features of
part I (figure 14a,b) resemble, in general, those reported in Hussain & Hayakawa
(1987), who studied 〈Pe〉∗ in a turbulent intermediate wake (x∗ = 10 and 40) at
Re = 1.3 × 104. For example, the concentrations of 〈Pe〉∗ at both x∗ = 10 and 40
occur largely in the saddle region and along the divergent separatrix; there are
insignificant negative concentrations mainly within the vortex. These similarities
provide a validation of the present data. Not surprisingly, the isocontours of parts I +
II of 〈Pe〉∗ (figure 14c,d) exhibit a similar pattern to part I (figure 14a,b). However,
the maximum concentrations of parts I + II at x∗ = 10 and 40 are 16 % and 22 %
larger than their counterparts of part I respectively; that is, the contribution from part
II cannot be neglected especially at x∗ = 40. The larger contribution from part II to
the full 〈Pe〉∗ at x∗ = 40 is associated with the more pronounced three-dimensionality
of the flow than at x∗ = 10. One can expect that the contribution from part II to the
full quantity of 〈Pe〉∗ will increase further downstream where the three-dimensionality
of the flow will be enhanced with increasing x∗ (e.g. Williamson 1996).

It is worth noting that the negative concentration of parts I + II (figure 14c,d) is
much larger than that of part I (figure 14a,b). An examination of the contours of
the individual terms of part I and part II (not shown) indicates that this negative
production is mainly from the contribution of the normal stress terms, i.e. the terms
related to 〈u2

r 〉∗, 〈v2
r 〉∗ and 〈w2

r 〉∗. Both Antonia et al. (1987) and Hussain & Hayakawa
(1987) also noted, based on 2-D data, the small negative concentrations of 〈Pe〉∗ within
the vortex, as figure 14(a,b) indicates; Hussain & Hayakawa (1987) confirmed that the
negative contribution to the production is from the normal stress terms by studying the
normal stress and shear stress terms separately. The present data further reveal that this
contribution to the full 〈Pe〉∗ comes mainly from the spanwise normal stress.

The production of the temperature variance associated with small-scale motions,
〈Pθ 〉∗, is given by (Tennekes & Lumley 1972; Antonia et al. 1987)

〈Pθ 〉∗ =−〈urθr〉∗ ∂〈Θ̄ + θ̃〉
∗

∂x∗
− 〈vrθr〉∗ ∂〈Θ̄ + θ̃〉

∗

∂y∗
− 〈wrθr〉∗ ∂〈Θ̄ + θ̃〉

∗

∂z∗
. (5.4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

66
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.664


Three-dimensional vorticity, momentum and heat transport 157

5

0

1

2

3

4

5

0

1

2

3

4

1 –1 –2

–0.00067

–0.00006

–0.00270.0079

0.00045

0.0068

0.00037

–0.00020

02 1 –1 –202

(a) (b)

(c) (d)

FIGURE 14. Isocontours of the production 〈Pe〉∗ of turbulent kinetic energies: (a,b) part I
in (5.3), i.e. without w-related terms; (c,d) parts I + II. Contour intervals: (a) 0.00083,
(b) 0.000033, (c) 0.00107, (d) 0.000054.

To the best of our knowledge, no attempt has yet been made to determine the
topological features of 〈Pθ 〉∗ in the intermediate wake. The isocontours of 〈Pθ 〉∗ at all
three x∗ stations are shown in figure 15. The contours of the three individual terms on
the right-hand side of (5.4) are also studied, though not shown. At x∗ = 10, the first
two terms occur mainly within the Kármán vortex and make a dominant contribution
to 〈Pθ 〉∗; on the other hand, the third term occurs mostly between neighbouring
vortices with a maximum concentration of approximately 7 % of the total 〈Pθ 〉∗, i.e.
the sum of all three terms. That is, 〈Pθ 〉∗ at x∗= 10 is mainly due to the contribution
from the first two terms. This is also reflected in the relatively low magnitudes of the
〈wrθ〉∗ contours compared with those of 〈urθ〉∗ and 〈vrθ〉∗ at x∗ = 10 (figure 13d,g,j).
However, as x∗ increases, the third term gradually increases in magnitude. At x∗= 40,
the maximum contour levels of the three terms are quite comparable, along with the
topological similarity in the contours of 〈urθr〉∗, 〈vrθr〉∗ and 〈wrθ〉∗ (figure 13f,i,l).
The maximum concentration of the w-related term is 13 % of that of the total 〈Pθ 〉∗.
The w-related term is expected to contribute more to 〈Pθ 〉∗ beyond x∗ = 40 as the
flow and hence heat transport become more 3-D.

5.6. Evolution of the heat flux components
Since the instantaneous heat transport is highly 3-D and wθ plays a role in
transporting heat, it is of fundamental interest to understand the streamwise evolution
characteristics of the three components of the heat flux vector. Figure 16 compares
the distributions of (u∗θ∗)rms, (v∗θ∗)rms and (w∗θ∗)rms across the wake for the three
stations. At x∗= 10, (v∗θ∗)rms is the largest of the three and (w∗θ∗)rms is the smallest.
The difference is especially evident for y∗ < 1. Nonetheless, (u∗θ∗)rms, (v∗θ∗)rms
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FIGURE 15. Isocontours of the production of temperature variance associated with the
small-scale motions: (a) x∗= 10, (b) 20, (c) 40. Contour intervals: (a) 0.0039, (b) 0.00051,
(c) 0.00049.

and (w∗θ∗)rms are certainly of comparable magnitude. The magnitude of (v∗θ∗)rms
drops rapidly with increasing x∗, as does (u∗θ∗)rms. These decreases are correlated
with the rapidly decaying spanwise vortices (figure 7). On the other hand, (w∗θ∗)rms
declines slowly even though the rib structures also decay downstream. As a result,
the difference between (u∗θ∗)rms, (v∗θ∗)rms and (w∗θ∗)rms shrinks. As a matter of fact,
by x∗= 40, (w∗θ∗)rms even exceeds (v∗θ∗)rms, and (u∗θ∗)rms is now slightly larger than
the other two components. Further, the downstream evolution of (u∗θ∗)rms, (v∗θ∗)rms
and (w∗θ∗)rms suggests an approach to axisymmetry of the flow. Mi & Antonia (2010)
observed that both global and local axisymmetry, i.e. the axisymmetry of large and
small scales respectively, is approximately satisfied at x∗ = 40. It should be noted
that axisymmetry implies invariance of properties with respect to rotation about a
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FIGURE 16. Distributions of the r.m.s. values of the three components of the heat flux
vector across the wake: (a) x∗ = 10, (b) 20, (c) 40. The symbol α denotes u, v or w.
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FIGURE 17. Phase-averaged vorticity, coherent and incoherent heat flux vectors. In (a–c),
ω̃∗ : (ω̃∗x : ω̃∗y ) is given by vectors and ω̃∗z is given by the isocontours; in (d–f ), q̃∗:
(ũ∗θ̃∗, ṽ∗θ̃∗) is given by vectors and w̃∗θ̃∗ is given by the isocontours; in (g–i), 〈q∗r 〉:
(〈u∗r θ∗r 〉, 〈v∗r θ∗r 〉) is given by vectors and 〈w∗r θ∗r 〉 is given by the isocontours.

preferred axis; it is therefore much less constraining than isotropy, which implies
spherical symmetry. George & Hussein (1991) examined previously discussed data
and found that local axisymmetry was more adequate than local isotropy in many
turbulent shear flows, including the turbulent jet, the far wake and also regions of
the boundary layer. A possible explanation for the onset of axisymmetry at x∗ > 40
is that the coherent structures are quite weak in this region and the strong directional
characteristics of the mean flow dominate. As such, the turbulent kinetic energy
extracted from the mean flow is preferentially allocated to the streamwise velocity
fluctuation. The similar behaviour of the r.m.s. values of the fluctuating velocity and
heat flux indicates a close association between (u∗θ∗)rms, (v∗θ∗)rms, (w∗θ∗)rms and the
corresponding relative behaviour of the fluctuating velocity components.

5.7. Discussion: topologies of heat transport and production
The characteristics of heat transport can be examined by means of the coherent heat
flux vectors q̃∗≡ (ũ∗θ̃∗, ṽ∗θ̃∗, w̃∗θ̃∗) and the remainder vectors 〈q∗r 〉 ≡ (〈u∗r θ∗r 〉, 〈v∗r θ∗r 〉,〈w∗r θ∗r 〉), along with the phase-averaged vorticity vector ω̃∗ ≡ (ω̃∗x , ω̃∗y , ω̃∗z ), as shown
in figure 17. The 3-D vectors are presented in terms of 2-D vectors (streamwise
and lateral components) and the isocontours of the spanwise component, which are
represented by colour for clarity.

At x∗ = 10, the vorticity vectors (ω̃∗x , ω̃
∗
y ) of relatively large magnitude occur

largely within the spanwise vortices and appear to be nearly parallel to the centreline
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(figure 17a). Presumably, the opposite-signed spanwise rollers are closely separated
with respect to each other such that the deformation of the rollers in the (x, z)
plane can lead to additionally produced ω̃∗x in addition to ω̃∗x originated from the
predominantly longitudinal rib-like structures (cf. § 5.1 and also Hayakawa & Hussain
1989; Hammache & Gharib 1991). The ensuing ω̃∗x is naturally substantially larger
than the lateral component ω̃∗y , resulting in almost horizontally oriented vectors
(ω̃∗x , ω̃

∗
y ) within the Kármán vortex. With increasing x∗, the opposite-signed rollers drift

away from the centreline and hence from each other, and the braid region between
two neighbouring rollers grows so that the ribs are more readily identifiable with the
vectors (ω̃∗x , ω̃

∗
y ), which are oriented along the diverging separatrix (figure 17b,c).

The coherent heat flux vectors q̃∗ exhibit a marked change from x∗ = 10 to the
other two x∗ positions. At x∗= 10, the vectors (ũ∗θ̃∗, ṽ∗θ̃∗) within the spanwise rollers
indicate unambiguously the rotational motion about the vortex centre. The vectors
immediately downstream of the negative rollers point upwards, almost perpendicularly
to the centreline, reflecting the arrival of cooler fluid engulfed from the free stream.
The concentration of the w̃∗θ̃∗ contours on one side of the diverging separatrix is
opposite in sign to that on the other side of the separatrix. The observation that the
maximum w̃∗θ̃∗ occurs at a location different from that of the maximum magnitude
of (ũ∗θ̃∗, ṽ∗θ̃∗) corroborates the conclusion in § 5.4, i.e. the coherent flow structures
that induce the heat fluxes (ũ∗θ̃∗, ṽ∗θ̃∗) are different from those responsible for w̃∗θ̃∗.
While (ũ∗θ̃∗, ṽ∗θ̃∗) result mainly from the spanwise vortices, w̃∗θ̃∗ is mostly attributed
to the predominantly longitudinal ribs. In contrast, at x∗ = 20 and 40, the maximum
concentration of w̃∗θ̃∗ occurs at almost the same location as that of ũ∗θ̃∗ and ṽ∗θ̃∗,
an indication that the same coherent structures, i.e. the contorted spanwise rollers (cf.
§ 5.4), account for (ũ∗θ̃∗, ṽ∗θ̃∗) and w̃∗θ̃∗. It should be noted that at x∗=40, the vectors
(ũ∗θ̃∗, ṽ∗θ̃∗) no longer show any rotational motion within the spanwise vortex; rather,
they appear to drift out of the periphery of the vortex, moving towards the free stream.
The result reflects the greatly weakened strength, due to decaying and breaking up, of
the spanwise vortices. The weakened vortices are unable to retain heat as well as at
x∗ = 10 and 20.

The behaviour of 〈q∗r 〉 differs markedly from that of q̃∗. The vectors (〈u∗r θ∗r 〉,〈v∗r θ∗r 〉) point, in general, upstream and are characterized by a large magnitude at the
upstream half of the rollers near the centreline. Concentrations of 〈w∗r θ∗r 〉 occur mostly
between neighbouring rollers, where the ribs are connected to the spanwise rollers
(figure 13j–l). They result from direct interactions between the ribs and the rollers,
which act to produce large random velocity fluctuations (Hussain & Hayakawa 1987).

Knowing all three components of the vorticity and heat flux vectors, we can now
propose a 3-D picture of the heat and momentum transport. The conceptual sketch in
figure 18(a) is based on the present experimental data at x∗= 10. Compared with the
2-D model (see the inset of figure 18) in MA, the present model highlights the roles
played by the rib structures in transporting heat and momentum in the braid region
and also the vorticity flux density between neighbouring opposite-signed rollers. This
model also underlines the importance of the upstream half of the spanwise rollers,
rather than only one quadrant of the roller, as in the MA model, in diffusing heat
out of the vortex. For simplicity, the spanwise rollers are drawn as 2-D structures, i.e.
the spanwise contortion of the rollers is not shown. This simplification is reasonable
since the roller at the beginning of the intermediate wake is less distorted compared
with that downstream (Williamson 1996; Zdravkovich 1997). The ribs are drawn
conceptually as counter-rotating longitudinal vortices, which wrap around the spanwise
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FIGURE 18. (Colour online) (a) Conceptual model of momentum and 3-D heat transport
at x∗ = 10; the 2-D model of Matsumura & Antonia (1993) (MA) is shown in the inset
to the figure. Thick and thin red arrows denote the coherent and remainder heat fluxes
respectively. (b) Evolution of the topological features of turbulent energy and temperature
variance productions from x∗ = 10 to 40 (structures are not to scale).

vortices on the basis of the present coherent vorticity data (figures 7a–f and 17a–c)
and previous reports (e.g. Brede et al. 1996; Huang et al. 2006).

For clarity, we consider only one vortex shedding period. The cooler fluid from the
free stream engulfed by the Kármán vortex can be largely divided into three parts.
The first is entrained immediately downstream of vortex A towards the centreline,
resulting in a strong heat transport from the centreline to the free stream, as indicated
by the large arrows between φ=−1 and 0 in figure 17(d). The second is drawn into
the saddle region between vortices B and C and further bifurcated into two branches,
due to the combined induced motion of the adjacent opposite-signed rolls, which lead
to the opposite-signed spanwise velocities (figure 10g) and heat fluxes (figure 12j) on
the two sides of the diverging separatrix. Although only one branch of the bifurcated
flow is detected, the existence of the bifurcated flow near the saddle region has been
demonstrated by the observation of Wu et al. (1996) from the PIV data. The third
(and last) part of the entrained flow is engulfed into the wake by vortex C. While
the heat flux associated with the first part of the engulfed flow, as in the MA model,
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occurs mainly in the (x–y) plane and makes a predominant contribution to heat
transport from the wake region to the free stream, the heat flux due to the second
part should generally account for the heat transport in the spanwise direction.

The coherent motions play an important role in large-scale heat and momentum
transport by entraining the cooler potential fluid from the free stream to the heated
turbulent wake, while the small-scale random motions are crucial for heat diffusion
and mixing between the warm wake and entrained cooler fluid. At x∗ = 10, heat is
mostly contained within the Kármán vortex (figure 10j). Both the present (figure 17g)
and the MA results indicate that the remainder heat flux occurs mostly in quadrant
II of vortex B and quadrant III of vortex C. The vectors pointing in the upstream
centrifugal direction suggest that the remainder heat flux (〈u∗r θ∗r 〉, 〈v∗r θ∗r 〉) serves to
diffuse heat out of the vortex. However, what is overlooked by MA is the importance
of quadrant II of vortex C (also quadrant III of vortex B), which contains the contact
region between the rib and the roller, where effective turbulent mixing occurs (Hussain
& Hayakawa 1987). The heat flux 〈v∗r θ∗r 〉 in quadrant II of vortex C is opposite in sign
to 〈v∗r θ∗r 〉 in quadrant III and points in the centrifugal direction (figure 17g), implying
a heat transport out of the vortex. Although relatively small at x∗ = 10 compared
with that in quadrant III, the heat flux (〈u∗r θ∗r 〉, 〈v∗r θ∗r 〉) in quadrant II of vortex C
gains importance and in fact overwhelms that of quadrant III at x∗ = 20–40 where
the maximum 〈v∗r θ∗r 〉 (and also 〈w∗r θ∗r 〉 at x∗ = 40) is shifted towards quadrant II (cf.
figure 13h,i,l).

Some comments regarding the downstream evolution of the proposed model are
appropriate. As the rib structures decay and the distortion of the spanwise rollers
intensifies with increasing x∗, the large-scale heat and momentum transport is caused
predominantly by the deformed rollers. This is why the coherent momentum flux
and three heat fluxes are characterized by almost the same topologies at x∗ = 40
(figure 12c, f,i,l). On the other hand, the most important heat diffusion region is
gradually shifted from quadrant III to quadrant II of vortex C. This is consistent
with the observations by Cantwell & Coles (1983) and Hussain (1986) that the
saddle region becomes more important as x∗ increases. Although based on the data
at x∗ = 10, the model is certainly expected to apply upstream of this location where
the ribs are greater in strength and more organized (Huang et al. 2006).

Figure 18(b) compares the streamwise evolution of the topologies associated with
〈Pe〉∗ and 〈Pθ 〉∗. While Hussain & Hayakawa (1987) have shown the typical topology
of the turbulence production for x∗ = 10–40 based on their 2-D data, the topology
of the temperature variance and a comparison with that of the turbulent energy
production have not been reported hitherto. As indicated in figure 14(c), 〈Pe〉∗ at
x∗ = 10 is largely concentrated along the diverging separatrix below the saddle
point; while exhibiting a similar distribution to 〈Pe〉∗, 〈Pθ 〉∗ occurs nearer to the
centreline (figure 15a). At x∗ = 40, 〈Pe〉∗ spreads along the diverging separatrix and
has a maximum overlap with the saddle point (figure 14d), but the concentration
of 〈Pθ 〉∗ is located further away from the centreline than 〈Pe〉∗ with a maximum
above the saddle point. The more rapid lateral shift exhibited by 〈Pθ 〉∗ than by 〈Pe〉∗
as x∗ increases is quite similar to the difference between 〈vrθr〉∗ (figure 13g–i) and
〈urvr〉∗ (figure 12a–c). This is reasonable since 〈vrθr〉∗ and 〈urvr〉∗ together with their
interactions with the temperature and velocity gradients are the dominant terms of
〈Pθ 〉∗ and 〈Pe〉∗ respectively.

6. Conclusions
The transport of momentum and heat has been experimentally investigated in

a slightly heated turbulent wake based on data captured from a three-component
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vorticity probe combined with four cold wires. Compared with MA, the present
study provides a more complete and systematic study of the vorticity, momentum
and heat transport in the turbulent intermediate wake. Apart from the kinematic
topological features, this work also examines the vorticity dynamics (e.g. transport and
cancellation), production of the turbulent energy and temperature variance, interactions
between vorticity and momentum flux or heat flux, and the streamwise evolution of
these dynamical processes, none of which were studied by MA. As a matter of
fact, many physical aspects such as the vorticity flux density vector, the production
of turbulence energy and temperature variance are, to the best of our knowledge,
studied for the first time with the most complete set of experimental data. Five major
conclusions can be drawn from this study.

(1) Both rollers and predominantly streamwise rib structures are captured by the
present probe. The former are represented by ω̃∗z , while the latter are associated
with ω̃∗x and ω̃∗y . The presence of ribs is confirmed both in the flow structures of
the coherent ω̃∗x and ω̃∗y and in the cospectra between ωx and ωy. Both ω̃∗x and ω̃∗y
exhibit distributions along the diverging separatrix at all x∗ positions, except for ω̃∗x at
x∗= 10 due to the smearing of the ω̃∗x from the deformed rollers. The capture of ribs
at x∗= 20 and 40 is also indirectly corroborated by the observation that the cospectra
between ωx and ωy at the saddle points show an evident peak at St= 0.2. This peak
is absent in the cospectra at the vortex centres of the corresponding x∗ positions.
Vorticity transport between neighbouring vortices can be partly responsible for the
distortion of the rollers, especially for x∗ 6 20. The vorticity flux density vectors are
for the first time determined experimentally from all three velocity components. It is
found that information on vectors extracted from the 2-D data can be misleading in
the downstream half of the vortices where vorticity transport between neighbouring
vortices is interrupted by the engulfed non-turbulent fluid from the free stream, and
vorticity cancellation takes place mainly on the upstream side of the vortices below
the divergent separatrix.

(2) The streamwise evolutions of the coherent velocity fluctuations ũ∗, ṽ∗ and w̃∗
exhibit quite different characteristics. The concentrations of ũ∗ and ṽ∗ are always
linked to the spanwise rollers, while that of w̃∗ may be associated with both rollers
and ribs. It is found that w̃∗ is mostly induced by the ribs at x∗ = 10 but results
mainly from the deformation of the spanwise rollers in the (y–z) plane at x∗= 20 and
40, where the ribs become weak. Consequently, the w̃∗ contours resemble those of ṽ∗
at x∗ = 20 and 40. The contours of ũ∗, ṽ∗ and w̃∗ are quite similar to each other at
x∗ = 40, implying an enhanced distortion of the spanwise rollers. The concentrations
of θ̃∗ coincide well with those of ω̃∗z at x∗ = 10 and 20, indicating that heat is
contained within the periphery of the spanwise vortex. However, at x∗ = 40, the
vortices are greatly weakened, releasing heat to the free stream. Consequently, the
high-level θ̃∗ contours move out of the periphery of the spanwise vortex and drift to
larger y∗.

(3) In the context of the production of both turbulent kinetic energy and temperature
variance associated with the small-scale motions, the present results demonstrate
unequivocally that the quantitative contribution from the w-related terms to the total
〈Pe〉∗ cannot be neglected, especially at x∗= 40 where the maximum concentration of
the full 〈Pe〉∗ is approximately 22 % larger than that calculated based only on the 2-D
data. It is further found that the negative concentration of the production at the vortex
centre is mainly from the contribution of the spanwise normal stress. The contribution
to 〈Pθ 〉∗ at x∗ = 10 comes largely from the u- and v-related terms in (5.4). However,
the w-related term becomes significant downstream. At x∗ = 40, the maximum
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concentration of the w-related term is 13 % of that of the total 〈Pθ 〉∗. It is expected
that the significance of the terms related to the spanwise velocity in both 〈Pe〉∗ and
〈Pθ 〉∗ will continue to increase further downstream, as the three-dimensionality of
the flow is more prominent, and thus the heat transport should also be enhanced
with increasing x∗. A comparison between the topologies of 〈Pe〉∗ and 〈Pθ 〉∗ reveals
that 〈Pθ 〉∗ drifts laterally away from the centreline more rapidly than 〈Pe〉∗, which is
closely linked to the behaviours of 〈vrθr〉∗ and 〈urvr〉∗.

(4) The evolution of both momentum and heat fluxes is closely associated with the
evolution of the vorticity structures (spanwise vortices and ribs) for both the coherent
structures and the remainder motion. At x∗ = 10, w̃∗θ̃∗ is mostly due to the ribs,
whereas ũ∗θ̃∗ and ṽ∗θ̃∗ are induced by the spanwise rollers. A conceptual model is
proposed, which summarizes the 3-D features of the heat and momentum transport
at this x∗ location. Compared with that proposed in MA, this model provides more
details on the role the rib structures play in transporting the heat and momentum and
also highlights the importance of the upstream half of the spanwise rollers, instead of
only one quadrant of the rollers as in the MA model, in terms of diffusion heat out of
the vortex. At x∗= 20 and 40, the strength of the ribs decreases. At the same time, the
deformation of the spanwise rollers is intensified. Consequently, the distortion of the
rollers becomes exceedingly important in inducing w̃∗θ̃∗, as well as ũ∗θ̃∗ and ṽ∗θ̃∗,
and the remainder motions undertake a more important role in diffusing heat out
of the Kármán vortices. One very important feature of the remainder motion is that
the predominant heat diffusion is gradually shifted from the upstream near-centreline
quadrant of the spanwise rollers to the region where the ribs wrap around the rollers.
This is essentially a reflection of the improved importance of the saddle region with
increasing x∗ (Cantwell & Coles 1983).

(5) The present study contains a rather complete set of experimental data for the
turbulent cylinder wake, including the simultaneously measured three components
of the velocity vector, the three components of the vorticity vector and the three
components of the heat flux vector, which may be used for validating numerical
codes as well as gaining insight into various aspects of the flow.
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