
J. Fluid Mech. (2021), vol. 917, R1, doi:10.1017/jfm.2021.333

Effects of power-law entrainment on bubble
fragmentation cascades
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We consider the evolution of the bulk bubble-size distribution N(a, t) of large bubbles
(Weber number We � 1) under free-surface entrainment described generally by an
entrainment size distribution I(a) with power-law slope γ and large-radius cutoff amax. Our
main focus is the interaction between turbulence-driven fragmentation and free-surface
entrainment, and, for simplicity, we ignore other mechanisms such as degassing,
coalescence and dissolution. Of special interest are the equilibrium bulk distribution
Neq(a), with local power-law slope β̃eq(a), and the time scale τc to reach this equilibrium
after initiation of entrainment. For bubble radii a � amax, we find two regimes for the
dependence of Neq(a) on the entrainment distribution. There is a weak injection regime
for γ ≥ −4, where β̃eq(a) = −10/3 independent of the entrainment distribution; and a
strong injection regime for γ < −4, where the power-law slope depends on γ and is
given by β̃eq(a) = γ + 2/3. The weak regime provides a general explanation for the
commonly observed −10/3 power law originally proposed by Garrett et al. (J. Phys.
Oceanogr., vol. 30 (9), 2000, pp. 2163–2171), and suggests that different weak entrainment
mechanisms can all lead to this result. For a ∼ amax, we find that Neq(a) exhibits a
steepening deviation from a power law due to fragmentation and entrainment, similar
to what has been observed, but here absent other mechanisms such as degassing. The
evolution of N(a, t) to Neq(a) is characterised by the critical time τc ∝ Cf ε

−1/3amax
2/3,

where ε is the turbulence dissipation rate and Cf is a new constant that quantifies the
dependence on the daughter size distribution in a fragmentation event. For typical breaking
waves, τc can be quite small, limiting the time t � τc when direct measurement of N(a, t)
might provide information about the underlying entrainment size distribution.
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1. Introduction

Air-entraining bubbly flows are relevant to a variety of natural and engineering
applications, including liquid metal fast breeder reactors (Patwardhan et al. 2012),
sea-surface gas exchange due to breaking waves (Thorpe 1982), water quality in lakes and
rivers, and the wake around ships (Castro, Li & Carrica 2016). An important characteristic
of these flows is the size of bubbles within the fluid, as described by the bubble-size
distribution. This distribution is the result of fragmentation, coalescence, dissolution,
entrainment and degassing. There has been significant study of the first three mechanisms,
especially fragmentation (Liao & Lucas 2009; Martínez-Bazán et al. 2010; Qi, Mohammad
Masuk & Ni 2020). In this work, we focus directly on the relationship between turbulent
fragmentation and entrainment, the original source of the bubbles, ignoring coalescence,
dissolution and degassing. Thus the present results would directly apply to flows with
small void fractions (where coalescence is less important), and for relatively short times
(before dissolution and degassing play significant roles). For the more general problem,
our results provide useful insight into the interaction dynamics between entrainment and
fragmentation even in the presence of the other mechanisms.

Direct measurement of entrainment is difficult due to proximity to a necessarily complex
free surface. Thus characteristics of entrainment such as the entrainment size distribution
I(a) are often inferred from the bulk bubble-size distribution N(a, t) (Yu et al. 2019).
(Here the effective bubble radius a is typically defined in terms of the bubble volume V by
a = (3V/4π)1/3.) However, the link between I(a) and the resulting N(a, t) is still not well
understood. Recent work (Yu, Hendrickson & Yue 2020) suggests that entrainment follows
a power-law size distribution I(a) ∝ aγ , contrary to the current simplifying assumption,
I(a) ∝ δ(a − amax) (Garrett, Li & Farmer 2000), where δ is the Dirac delta function. The
objective of the present work is to elucidate the connection between an entrainment process
following a general power-law distribution and the resultant bubble-size distribution. Of
particular interest are the equilibrium bulk bubble-size distribution Neq(a) and the time
scale τc for this equilibrium to be reached after the initiation of entrainment.

A well-established scale in fragmentation is the Hinze scale aH (Hinze 1955), which
delineates the length scale where surface tension prevents fragmentation by local
turbulent velocity fluctuations. For isotropic homogeneous turbulent (IHT) flows, velocity
fluctuations within the Kolmogorov inertial sub-range are described by an energy cascade,
and the turbulent Weber number is given by We = ρ2ε2/3(2a)5/3σ−1, where ρ is the
density of the surrounding fluid, σ is the surface tension coefficient and ε is the turbulent
dissipation rate. The Hinze scale occurs at the critical turbulent Weber number Wec ≈ 4.7
(Lewis & Davidson 1982; Martínez-Bazán, Montañés & Lasheras 1999a). For a � aH
(We � Wec), velocity fluctuations dominate and, assuming IHT, a mechanistic argument
can be used to determine the expected life of a bubble from creation to fragmentation, the
reciprocal of which is the expected breakup frequency (Martínez-Bazán et al. 1999a, 2010;
Garrett et al. 2000):

Ω(a) = CΩε1/3a−2/3. (1.1)

Experiments suggest CΩ ≈ 0.42 (Martínez-Bazán et al. 1999a; Rodríguez-Rodríguez,
Gordillo & Martínez-Bazán 2006).

For bubbles with a > aH , Garrett et al. (2000) developed a fragmentation (only) cascade
model by assuming all bubbles are injected at a single radius amax, I(a) ∝ δ(a − amax),
and fragment into m identical daughter bubbles. Using (1.1), the resulting equilibrium
bubble-size distribution Neq(a) is

Neq(a) ∝ Qε−1/3aβ, β = −10/3, (1.2)
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where Q is the steady volumetric flow rate of air being injected. Bulk bubble-size
distributions reasonably described by a power-law slope around β ≈ −10/3 for a > aH are
observed during entrainment in a variety of air-entraining bubbly flows (Deane & Stokes
2002; Blenkinsopp & Chaplin 2010; Deane, Stokes & Callaghan 2016; Deike, Melville &
Popinet 2016; Wang, Yang & Stern 2016; Hendrickson, Yu & Yue 2020; Yu et al. 2020;
Chan et al. 2021). Droplet equilibrium distributions following a −10/3 power law have
also been observed due to fragmentation and coalescence (without injection) at high void
fractions (Skartlien, Sollum & Schumann 2013; Mukherjee et al. 2019); however, it is not
clear how the effect of coalescence is related to the entrainment we study here.

Recent work by Yu et al. (2020) provides an alternative explanation for β = −10/3.
While studying entraining free-surface turbulence in direct numerical simulations, they
observed bubbles being entrained over a broad range of sizes. Comparing the interfacial
and gravitational potential energy of newly formed bubbles to the kinetic energy available
from nearby turbulence at similar scales, they provide an argument that this entrainment
follows a power-law distribution of slope γ = −10/3 for large (Bond number We/Fr2 �
1) bubbles. This would cause a bulk bubble-size distribution with power-law slope β ≈ γ

during some initial time before the effects of fragmentation and other mechanisms come
into play.

Considering the fragmentation cascade used by Garrett et al. (2000), Deike et al. (2016)
proposed a critical time

τc ∝ cq,mε−1/3amax
2/3 (1.3)

for convergence to the equilibrium described by (1.2), based on the number of identical
fragmentation events q to go from a bubble of radius amax to aH . Recent work by Qi et al.
(2020) (also assuming I(a) ∝ δ(a − amax)) suggests τc should depend on the daughter
bubble-size distribution, and that identical fragmentation only represents a lower bound on
τc. A power-law entrainment distribution I(a) ∝ aγ as suggested by Yu et al. (2020) could
also lead to an equilibrium, but neither the resulting Neq(a) nor τc has been described. By
considering the interaction between power-law entrainment and fragmentation, we are able
to create a general description of Neq(a) and τc, including a quantification of the effects of
different daughter bubble-size distributions.

Section 2 develops a population balance model describing realistic steady injection of
bubbles following a power law I(a) ∝ aγ and fragmentation for a > aH , which allows
us to study the interaction between power-law entrainment, such as that proposed by
Yu et al. (2020), and fragmentation. Section 3 determines the resulting Neq(a) with
its local slope β̃eq(a) dependent on γ in two regimes, providing insight into what
observations of β ≈ −10/3 tell us about I(a). Section 4 determines the critical time scale
τc for convergence to Neq(a) under power-law injection, including a quantification of its
dependence upon the distribution of daughter bubbles. Simulations show the effect of
fragmentation quickly becomes important, even at times t � τc. Finally, § 5 shows that the
interaction between a realistic entrainment distribution and fragmentation (alone) results
in steepening of the bubble-size distribution similar to what has been observed in the
literature.

2. Describing injection-driven fragmentation cascades

We consider the population density function n(a, x, t) (dimension L−4) where
n(a, x, t)δaδx is the number of bubbles of radius a < a′ < a + δa in a volume δx around
a specified location x at time t. A Boltzmann-type population balance model describes the
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evolution of n (Williams 1985, chap. 11):

∂n/∂t + ∇ · (v̄n) = sd + sb + sc, (2.1)

where v̄ is the mean velocity of bubbles of the given radii, and sd, sb and sc are
respectively the movement of air between bubble sizes due to dissolution, fragmentation
and coalescence. For locally uniform flows, integrating n(a, x, t) over the domain, we
define the bulk bubble-size distribution N(a, t), of dimension L−1. Integrating sb over
the domain yields the bulk fragmentation contribution Sb:

Sb(a, t) = −Ω(a)N(a, t) +
∫ ∞

a
m(a′)f (a; a′)Ω(a′)N(a′, t) da′, (2.2)

where m(a′) is the number of daughter bubbles created during the breakup of a parent of
radius a′ and f (a; a′) is the radius-based probability density function (p.d.f.) describing the
radius a of daughter bubbles created by that breakup (Liao & Lucas 2009; Martínez-Bazán
et al. 2010).

For simplicity, we focus on the relationship between entrainment and fragmentation,
ignoring coalescence, dissolution and degassing. Thus,

∂N/∂t(a, t) = Sb(a, t) + I(a) (2.3)

defines the population balance model for an injection-driven fragmentation cascade with
I(a) the (steady) inflow of bubbles into the domain due to entrainment. Our interest
is for a > aH , and, as modelled, N(a, t) depends only on scales larger than a; thus,
sub-Hinze-scale mechanisms can be ignored.

2.1. A simple population balance model (S-PBM) for fragmentation cascades
An analytic solution to N(a, t) requires a simplified description of Sb. To satisfy
volume conservation and the definition of a p.d.f., f (a′; a) must satisfy the following
(Martínez-Bazán et al. 2010):

m(a)

∫ a

0
(a′/a)3f (a′; a) da′ = 1,

∫ a

0
f (a′; a) da′ = 1. (2.4a,b)

For simplicity, we assume a bubble breaks up into m (independent of a) identical bubbles
(Garrett et al. 2000). Satisfying (2.4a,b) produces the identical daughter distribution
(Valentas, Bilous & Amundson 1966)

f (a′; a) = δ(a′ − am−1/3). (2.5)

Equation (2.5) makes analytic evaluation in §§ 2.2 and 3.1 possible. §§ 3.2 and 4 consider
more realistic daughter distributions from literature. Combining (2.2) and (2.5), and upon
integration with a change of variable for the delta function, we obtain

Sb(a, t) = −Ω(a)N(a, t) + m1/3[mΩ(m1/3a)N(m1/3a, t)]. (2.6)

Using (1.1) and (2.6), we simplify (2.3) and define the simple population balance model
(S-PBM) as

∂N∗/∂t∗(a∗, t∗) = a∗−2/3[−N∗(a∗, t∗) + m10/9N∗(m1/3a∗, t∗)] + I∗(a∗), (2.7)

where ·∗ denotes nondimensionalisation using the characteristic bubble radius L = amax

and time T = Ω(amax)
−1.
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2.2. Scale-invariant solutions to S-PBM
We consider solutions to (2.7) where N∗(a∗, t∗) = a∗βg(t∗) for all a ∈ (0, ∞), defining
g(t∗) to be only a function of time. Substituting into (2.7) gives

dg/dt∗ = ga∗−2/3
(−1 + mβ/3+10/9) + a∗−βI∗(a∗). (2.8)

For g(t∗) to be independent of a∗ and injection to be non-trivial, I∗ must also be
scale-invariant: I∗(a) = ha∗γ for all a ∈ (0, ∞), where h is a constant, and the power-law
slope is γ . There are only two admissible solutions for the form of N∗ we consider.
The first is a transient solution in which β = γ = −10/3 and dg/dt∗ = h, resulting in
Sb = 0. This (Sb = 0) is equivalent to the condition imposed by Garrett et al. (2000)
to represent an equilibrium for their fragmentation cascade. The second solution is a
steady-state solution in which β = γ + 2/3 and dg/dt∗ = 0. Both admissible solutions
have physical limitations. To describe the commonly observed β = −10/3, they would
suggest γ = −10/3 or γ = −4; however, γ ≥ −4 implies an infinite rate of volume
injection.

3. Equilibrium solutions for cutoff spectral injection

Based on the mechanistic energy argument by Yu et al. (2020) and § 2.2, we assume an
entrainment size distribution described by a power law of slope γ . To ensure a finite rate
of volume injection, we introduce a cutoff radius amax above which there is no bubble
injection. In addition to ensuring finite injected volume if γ ≥ −4, physical limits of a
flow will necessarily impose some amax. For example, Yu et al. (2020) proposed an amax
for entraining free-surface turbulence based on bubble Froude number. The cutoff spectral
injection model (SIM) is thus

I∗ = h(a∗)γH(1 − a∗), (3.1)

where H is the Heaviside step function. Note that (3.1) is a generalization of Garrett et al.
(2000), which corresponds to γ → ∞ (all bubbles injected at a = amax). In § 4, we show
that under SIM, N(a, t) approaches an equilibrium Neq(a) in a time scale given by τc.

SIM allows us to define a new global condition for equilibrium: the volume flux of air
injected as bubbles larger than a must be equal to the volume flux of air from bubbles
larger than a to bubbles smaller than a due to fragmentation; i.e.,

∫ ∞

a∗
I∗(r)r3 dr =

∫ ∞

a∗
N∗

eq(r)Ω
∗(r)m

∫ a∗

0
r′3f ∗(r′; r) dr′ dr, (3.2)

where the integration variables r and r′ are dimensionless (scaled by amax).

3.1. Local power-law slope of the equilibrium bulk bubble-size distribution
Rather than assuming a strict power-law relationship as in § 2.2, we allow the power-law
slope to vary continuously with radius, described by β̃(a∗). We define a local
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approximation

N∗
eq(r) ≈ g̃eq(a∗)rβ̃eq(a∗) for r ∼ a∗. (3.3)

Applying this as well as (1.1) and (3.1) to (3.2) produces

h
∫ 1

a∗
rγ+3 dr = g̃eq(a∗)

∫ 1

a∗
rβ̃eq(a∗)−2/3m

∫ a∗

0
r′3f ∗(r′; r) dr′ dr. (3.4)

We note that for a∗γ+4 � 1, the left side of (3.4) approaches the (non-dimensionalised)
steady volumetric flow rate of air being injected, Q∗. As g̃eq(a∗) is a measure of the
magnitude of N∗

eq(a
∗), and it will be shown in § 4 that g̃eq(a∗ � 1) is independent of a∗,

we recover the linear proportionality between Neq(a) and Q given by (1.2) for a � amax.
To further simplify (3.4), we assume identical fragmentation (2.5). Noting that in this

case the inner integral on the right side of (3.4) is only non-zero for r < a∗m1/3, we change
the upper limit of integration on the outer integral to a∗m1/3 and obtain

h(γ + 4)−1[1 − a∗γ+4] = g̃eq(a∗)
a∗β̃eq(a∗)+10/3

β̃eq(a∗) + 10/3
[mβ̃eq(a∗)/3+10/9 − 1]. (3.5)

Applying the local equilibrium condition ∂Neq(a)/∂t = 0, (2.7) gives

a∗−2/3[m10/9N∗
eq(a

∗m1/3) − N∗
eq(a

∗)] + ha∗γ = 0. (3.6)

Using the local approximation (3.3) about a∗ to approximate N∗
eq(a

∗m1/3) gives

g̃eq(a∗)a∗β̃eq(a∗)−2/3
(mβ̃eq(a∗)/3+10/9 − 1) + ha∗γ = 0. (3.7)

Combining (3.5) and (3.7), we determine the relationship between β̃eq(a) and the injection
power-law slope γ :

β̃eq(a) = γ + 4
1 − (amax/a)γ+4 − 10/3. (3.8)

We note that as a → amax, β̃eq(a) becomes more negative; the equilibrium slope becomes
steeper for the largest bubbles. We revisit this point in § 5.

When aH � amax, most of the bubble-size distribution will follow a single power law
β = β̃eq(a � amax). There are two distinct regimes, which are similar to those in § 2.2.
The weak injection regime (γ ≥ −4) has injected volume concentrated at large bubbles,
and as a result the fragmentation term dominates the injection term of (2.3) at equilibrium.
Here, the equilibrium slope is β̃eq(a � amax) = −10/3, independent of γ . We note that
we can recover Garrett et al. (2000): when γ = ∞, β̃eq(a) = −10/3 for all a < amax.
The strong injection regime (γ < −4) has injected volume concentrated at small bubbles,
and the injection term dominates (2.3) at equilibrium. Yet fragmentation still modifies
the equilibrium slope and β̃eq(a � amax) = γ + 2/3. In both regimes, β̃eq(a) ≤ −10/3,
making it the upper limit of the power-law slope. We conclude by noting that in the
weak regime, because β̃eq(a) is independent of γ , the equilibrium bubble-size distribution
cannot be used to infer information on the underlying entrainment distribution.
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Case Daughter distribution m f ∗
V (V∗) Cf

A S-PBM 2 δ(V∗ − 1/2) 1
B Martínez-Bazán et al. (1999b) 2 (V∗)2/9(1 − V∗)2/9 1.314
C Tsouris & Tavlarides (1994) 2 21/3 − (V∗)2/3 − (1 − V∗)2/3 2.255
D Martínez-Bazán et al. (2010) 2 (V∗)−4/9(1 − V∗)−4/9 1.712
E Diemer & Olson (2002) 3 (V∗)1/4(1 − V∗)3/2 1.253
F Diemer & Olson (2002) 4 (V∗)1/2(1 − V∗)7/2 1.185

Table 1. Volume-based p.d.f.s, f ∗
V (V∗), of daughter distributions used in simulations and corresponding time

scaling constant Cf calculated using (4.4). Note that a constant to ensure
∫

f ∗
V (V∗) dV∗ = 1 is omitted for

brevity.

3.2. The influence of fragmentation daughter distribution models
We consider here the effect of daughter distributions more realistic than the identical
distribution used in § 3.1. Phenomenological daughter distributions are typically
categorised as bell-shaped, U-shaped or M-shaped (Liao & Lucas 2009). We consider a
binary-fragmentation (m = 2) daughter distribution from each category and a daughter
distribution proposed by Diemer & Olson (2002) for m /= 2. We assume We = ∞, so
there is no minimum daughter-bubble radius and the daughter distributions become
scale-invariant. We describe these daughter distributions using the volume-based p.d.f.
f ∗
V (V∗) based on the relative volume V∗ = (a′/a)3, which is related to the radius-based

p.d.f. by af (a′; a) = 3V∗2/3f ∗
V (V∗) (Martínez-Bazán et al. 2010). Table 1 gives the

volume-based p.d.f. for each daughter distribution considered.
To confirm the validity of (3.8) for general daughter distributions, we perform two types

of simulations over a broad range of γ and amax/a: (a) direct numerical simulations of the
S-PBM (2.7); and (b) Monte Carlo (MC) simulations where fragmentation following (1.1)
and injection following SIM are modelled as Poisson processes over each fixed Δt. Direct
simulation of (2.7) is inexpensive because it is deterministic, but it is applicable only
for identical daughter distributions (case A in table 1 for m = 2). In these simulations,
discretisation of radius is done on a logarithmic scale and Heun’s method is used
for time marching. MC simulations are computationally more expensive, but capture
the stochastic nature of fragmentation and entrainment and are applicable for general
daughter distributions. MC simulations are performed for cases in table 1 where the
daughter bubbles from each fragmentation event are chosen using random sampling of
the respective distributions. Due to the power-law nature of bubble-size distributions, the
simulated distributions are averaged over logarithmic intervals based on m1/3:

〈N(a)〉m = (a(m1/3 − 1))−1
∫ a m1/3

a
N(a′) da′, (3.9a)

〈β̃(a)〉m = 3 ln(〈N(a)〉m/〈N(a m−1/3)〉m)/ ln(m). (3.9b)

We establish convergence for both simulation types with Ω(a)Δt = 1/100 and 30 bins
per m1/3 interval for the radius discretisation of S-PBM. The results of the S-PBM and
MC simulations are compared to (3.8) in figure 1 and show good agreement. These
simulations demonstrate that the equilibrium slope predicted by (3.8), although based on
the simplifying assumption of identical fragmentation, is, in fact, applicable to general
daughter distributions. This is consistent with the observation by Qi et al. (2020) that
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Figure 1. Comparison of equilibrium local power-law slopes resulting from SIM with a range of injection
power-law slopes γ , as modelled by (3.8) (—–); case A (•); case B (+, blue); case C (×, yellow); case D
(�, red); case E (◦, green); case F (◦, purple). Case A is calculated using direct numerical simulations, cases
B–F using MC simulations. The value of amax/a for the reported 〈β̃eq(a)〉m is indicated below each data set.
For the MC simulations, the inset shows the equilibrium bubble-size distributions for γ = −10/3 compared to
∝ a−10/3 (- - - -).

the choice of daughter distribution has no effect on the equilibrium power-law slope for
fragmentation cascades.

4. Time scale of convergence to the equilibrium distribution

We investigate the convergence time τ such that N(a, t > t0 + τ) ≈ Neq(a), where
N(a, t0) = 0. First, we revisit the global equilibrium condition (3.4). Rewriting it in terms
of f ∗

V , we have

h
∫ 1

a∗
rγ+3 dr = g̃eq(a∗)

m
3

a∗β̃eq(a∗)+10/3
∫ 1

a∗3
u−β̃eq(a∗)/3−19/9

∫ u

0
vf ∗

V (v) dv du. (4.1)

For weak injection, we consider the limiting case a∗ → 0. By (3.8), β̃eq(a∗) = −10/3 and
we can simplify (4.1):

h
γ + 4

= g̃eq(a∗ � 1)
m
3

∫ 1

0
u−1

∫ u

0
vf ∗

V (v) dv du. (4.2)

Rearranging (4.2), we define a new constant Cf to quantify the effect of f ∗
V on g̃eq and scale

Cf so that for an identical daughter distribution, (2.5), it has a value of unity:

g̃eq(a∗ � 1) = 3
ln(m)

h
γ + 4

Cf ; Cf = ln(m)/m∫ 1

0

∫ 1

0
uwf ∗

V (uw) dw du

. (4.3a,b)

Table 1 shows the numerically calculated values of Cf .
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Figure 2. Evolution of bubble-size distribution N (b and d) and local power-law slope β̃ (a and c) as measured
at amax/a = 3 (a and b) and amax/a = 10 (c and d). Numerical simulations of case A (- - - -) and MC
simulations (——–) of cases B–F (cf. table 1). Colours based on γ : green, γ = −5; red, γ = −10/3; blue,
γ = −5/3; magenta, γ = 0; black, γ = ∞ (single-radius injection). Note that β̃(t � τc) is not reported for
MC simulations of γ = ∞ due to significant noise.

We write the varying power-law slope description of the bubble-size distribution
Neq from § 3.1, now as a function of time: N∗(a∗, t∗) ≈ g̃(a∗, t∗)a∗β̃(a∗,t∗). With the
dependence on a∗ omitted for clarity, g̃(t) has a Taylor approximation to first order:

ĝ(t) = g̃(t0) + (t − t0)g̃′(t0). Using (2.3) and g̃(t0) = 0, we obtain g̃′(t0) = ha∗γ−β̃(a∗,t0).
Note that we neglected the time dependence of β̃(a∗, t) (cf. figure 2), making ĝ(t) a
poor description of the general evolution of N∗(a∗, t∗). However for the special case
γ = −10/3 and a∗ � 1, β̃(a∗, t) = γ and we can define a critical time τc such that
ĝ(t0 + τc) = g̃eq(a∗ � 1):

τc = (9/2)(ln m)−1(Cf /CΩ)ε−1/3amax
2/3. (4.4)

Despite the special case used in deriving (4.4), numerical simulations of S-PBM and MC
simulations of realistic daughter distributions (cf. § 3.2) show that τc provides a general
time scaling, with equilibrium reached at τ ≈ 2τc for weak injection and τ � τc for strong
injection. Figure 2 shows results from simulations of amax/a = 3 and amax/a = 10. The
S-PBM simulations of larger amax/a (not shown) demonstrate similar behaviour for weak
injection, with τ/τc becoming smaller for strong injection. Figure 2 provides a direct
means to validate (4.4) experimentally if the relevant underlying parameters are known or
can be measured; and an indirect means to deduce the shape of the daughter distribution
if the evolution of the bubble-size distributions can be quantitatively obtained.

We make two comments on (4.4). First, although we consider power-law injection
rather than single-radius injection, the dependence of τc on m (disregarding Cf ) is
similar to the equation (1.3) proposed by Deike et al. (2016). For We = ∞ and small m,
c∞,m = 1 − 1/(m−1/3 − 1) ∼ (9/2)(ln m)−1. Considering a more typical aH/amax ≈ 10,
for binary breakup (m = 2) the coefficient for τc in (4.4) is (9/2)(ln 2)−1 ≈ 6.5, and for
tertiary breakup (m = 3) the coefficient is (9/2)(ln 3)−1 ≈ 4.1. These values compare
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10–2
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 (
a m

ax
/2

)

a/amax
Figure 3. Comparison of Neq prediction from (3.8) (γ = −10/3) (——-) with existing theories: - - -, equation
(3.7) of Deike et al. (2016); · · · · · ·, ∝ a−16/3 (Garrett et al. 2000). Experiments: (i) � (blue), figure 5 of
Deane et al. (2016), case A. Simulations: (ii) � (red), figure 7(e) of Deike et al. (2016); (iii) � (magenta),
figure 8 of Hendrickson et al. (2020), Fr = 0.192; (iv) ◦ (green), figure 4d of Chan et al. (2021). Values for
aH/amax are approximately 0.35, 0.15, 0, 0.15 respectively for (i), (ii), (iii), (iv).

well with those obtained from the simulations of Deike et al. (2016). Second, the value
of Cf provides a new quantification of the dependence of τc on f ∗

V first described by Qi
et al. (2020): the closer a daughter distribution is to identical fragmentation, the faster
the convergence to equilibrium. Through Cf , observed convergence times now provide a
mechanism to evaluate daughter distributions.

We compare τc to the time scale of entrainment by breaking waves. In laboratory
experiments by Deane & Stokes (2002), ε ≈ 13W kg−1 and amax ≈ 10 mm. The reported
time period for entrainment was TE ≈ 1 s. For illustration, using Cf = 1.5 and m = 2
yields τc ≈ 0.5 s, and thus TE/τc ≈ 2. This suggests the bulk bubble-size distribution
observed by Deane & Stokes (2002) at the end of TE would have approached Neq.
The fast convergence of N and β̃ demonstrates that fragmentation quickly obscures the
effect of entrainment. In fact, although initially β̃(a, 0) = γ , β̃(a, t) approaches β̃eq(a)

approximately exponentially. Thus, even for t � τc, β̃(a, t) does not give a reliable
measure of γ . Therefore, the commonly observed β ≈ −10/3 for a > aH should only be
considered evidence of γ ≥ −4, not of γ = −10/3 (Yu et al. 2020). As neither β̃eq(a) (cf.
§ 3) nor β̃(a, t) provides reliable insight into γ for weak injection, further investigation
of I(a) will likely require new experimental and computational techniques near the free
surface to allow direct identification and measurement of entraining bubbles.

5. Steepening of size distribution due to fragmentation and entrainment

It has been previously noted (Deike et al. 2016) that bubble-size distributions deviate
from a power law and become steeper for a around amax. Figure 3 shows bubble-size
distributions from experiments and computational fluid dynamics simulations (scaled by
amax) of different entraining flows that exhibit such steepening. The distributions generally
agree for a � amax, but are not expected to be good for a near aH (different values of
aH/amax for the data are listed in the figure caption). As large bubbles rise faster (Thorpe
1982), the steepening for a around amax has generally been attributed to degassing (Deike
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et al. 2016; Chan et al. 2021). Garrett et al. (2000) and Deike et al. (2016) provided models
for steepening due to degassing, also shown in figure 3.

Because of the fast convergence discussed in § 4, we expect to observe β̃eq(a) given
by (3.8) during active entrainment. In figure 3, we include β̃eq(a) using γ = −10/3 (Yu
et al. 2020). Note that the shape does not change significantly with moderate variation of
γ . From figure 3, we see that (3.8) exhibits the steepening of the bubble-size distribution
for a ∼ amax, somewhat corroborated by existing measurements and simulations. Since
(3.8) accounts only for fragmentation and cutoff power-law entrainment, this reveals a new
mechanism for steepening deviation from a power law independent of other mechanisms
such as degassing. The relative importance of these different mechanisms is a subject of
current research.

6. Conclusion

We have developed a population balance model for a fragmentation cascade driven by
steady injection I(a), described by power-law slope γ and large-radius cutoff amax. Where
previous work has either considered fragmentation (Garrett et al. 2000) or power-law
entrainment (Yu et al. 2020), this approach allows us to study the interaction between
the two and its effect on the equilibrium and evolution of bulk bubble-size distributions
for large bubbles in air-entraining bubbly flow.

We first seek the equilibrium bulk bubble-size distribution Neq(a). We describe its
shape using a local power-law slope β̃eq(a), which we find is dependent on amax and
γ . As previously observed (Qi et al. 2020), β̃eq(a) does not depend on the choice
of fragmentation daughter distribution. We identify two regimes of injection: weak
injection for γ ≥ −4, with β̃eq(a � amax) = −10/3, and strong injection for γ < −4,
with β̃eq(a � amax) = γ + 2/3. For weak injection, β̃eq = −10/3 agrees with power-law
slope β = −10/3 commonly observed for a > aH , providing a generalized explanation
which builds on that proposed by Garrett et al. (2000). The independence of β̃eq on γ

in the weak regime suggests that the observed (equilibrium) slope β = −10/3 may result
from different underlying (weak) entrainment mechanisms.

We show that the time scale to reach the equilibrium distribution Neq(a) (after initiation
of entrainment) is given by τc ∝ Cf ε−1/3amax

2/3, where Cf is a constant expressing the
effect of the fragmentation daughter distribution. The latter can thus be elucidated by
quantifying τc (using figure 2, for example). For small τc, the bulk bubble-size distribution
rapidly evolves away from the initial distribution N(a, 0) ∝ I(a); thus the mechanism
of the entrainment itself might not be accessible from bulk measurements. Finally, we
show that the reported steepening deviation of Neq(a) from a power law for a around
amax happens due to interaction between entrainment and fragmentation alone, even in the
absence of mechanisms such as degassing.
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