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Abstract
At present, the study on autonomous unmanned ground vehicle navigation in an unstructured environment is still
facing great challenges and is of great significance in scenarios where search and rescue robots, planetary explo-
ration robots, and agricultural robots are needed. In this paper, we proposed an autonomous navigation method
for unstructured environments based on terrain constraints. Efficient path search and trajectory optimization on
octree map are proposed to generate trajectories, which can effectively avoid various obstacles in off-road environ-
ments, such as dynamic obstacles and negative obstacles, to reach the specified destination. We have conducted
empirical experiments in both simulated and real environments, and the results show that our approach achieved
superior performance in dynamic obstacle avoidance tasks and mapless navigation tasks compared to the traditional
2-dimensional or 2.5-dimensional navigation methods.

1. Introduction
In recent years, the positioning and navigation technology of unmanned vehicles in structured environ-
ments has achieved a remarkable result [1]. However, in the scenarios such as planetary exploration,
search and rescue robots, and agricultural robots, the ability to navigate and explore autonomously
in unstructured environments without GPS, road signs, and artificial landmarks is still the key chal-
lenges of field robots [2]. The process from active environment perception and pose estimation back to
autonomous navigation need different technologies. In the environment perception and pose estimation
task, the simultaneous localization and mapping (SLAM) technology is one of the most effective meth-
ods [3], which can be divided into laser-slam [4, 5] and visual-slam [6, 7] according to the difference
of sensors. And three-dimensional (3D) LIDAR such as Velodyne VLP-16 is widely used in outdoor
environments, as it can not only provide an enormous amount of accurate distance data of 360 degrees
around the vehicle, but also is insensitive to the changes in illumination. For autonomous navigation
task, the real-time status of the vehicle including position and pose as well as the surrounding environ-
ment should be considered. The former can be obtained by SLAM algorithm, while the later should be
represented by an appropriate method. Finally, a trajectory planning method is adopted to generate a set
of executable and collision-free motion commands to achieve the predetermined goal.

Several surveys and researches related to the navigation of ground vehicles in the unstructured envi-
ronments have been conducted [8, 9]. As the assumption that robots operate on flat ground is not valid
and the terrain obstacles are difficult to determine clearly, the conventional two-dimensional (2D) navi-
gation approach is not suitable anymore. In the unstructured environment, most studies are based on the
analysis of 2D elevation maps (the so-called 2.5D maps), where 3D information grabbed from stereo
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vision or point clouds is mapped to a 2D occupancy grid map. This approach typically adopted the ter-
rain traversability analysis (TTA) [10] or obstacle avoidance. The TTA refers to how difficulty when a
ground vehicle traverses a certain defined terrain, which is deeply different from the obstacle avoidance
approach. As in most cases, there may have no so-called obstacles, but the robot must choose a feasible
path through the special terrain [11].

Although the TTA based on the 2.5D approach performs well in certain outdoor scenario, the major
limitation of these approaches is related to the need of on-board real-time computing. As each cell of
the map or the local map must be processed in this method, which limits the ability to re-plan the path
to avoid moving obstacles.

Another limitation is the negative obstacles, such as the gentle slope, depression, and holes in the
ground. Because of the limitation of field of view of the sensor, there will be a blind area for observation
in the lower part of the structure. In this case, a conservative or an aggressive navigation approach will
both lead to a failure. The former is prone to fall into false obstacles in the early stages of navigation,
while the latter is prone to navigate into the blind area caused by the negative obstacles [12]. In addition,
some negative obstacles are possible to pass from a certain direction or at a specific velocity due to the
nature of rugged terrain; however, this possibility is ignored in 2D and 2.5D approaches.

To solve the problem mentioned above, this paper proposes an autonomous 3D navigation system
suitable for the off-road environment. In this system, an octomap [13] is used to store and maintain the
environment map. An efficient octree-based terrain constraint analysis module is designed to assist the
sampling-based path search front-end and the passable corridor constraint-based trajectory optimization
back-end. Meanwhile, a local navigation target exploration method suitable for sparse terrain information
is proposed to perform a mapless navigation with negative obstacles.

1.1. Contributions
Compared with previous researches on unmanned vehicles, the contribution of this paper is to propose
a 3D spatial navigation system for unmanned vehicles suitable for complex unstructured terrain envi-
ronments with the aid of an octomap representation, considered with the performance limitations of
unmanned vehicles. This method differs from other 3D navigation and exploration methods in that:

• An efficient front-end path search method and a passable corridor generation method, both of
which based on terrain constraints, are proposed to generate safe trajectories. It is worth noting
that they are specifically optimized for sparse terrain information in the off-road environments
to enable superior dynamic re-planning capability of the proposed navigation method.

• The proposed approach is extended to mapless navigation tasks with negative obstacles by an
efficient local target exploration algorithm.

• Our approach is demonstrated to be superior to traditional 2D or 2.5D navigation methods by
various empirical experiments in simulations and real-world scenarios.

1.2. Organization
The rest of the paper is organized as follows: the navigation approach, the establishment of the navigation
map, and the path planning method are briefly introduced in Section 2. The algorithm architecture and
the composition of the hardware system of this paper are summarized in Section 3. In Section 4 and
Section 5, we introduce in detail the 3D navigation algorithm for unmanned vehicles proposed in this
paper. Experiment and comparison about the proposed framework are presented in Section 6. Finally,
Section 7 presents our conclusions and our plans for future work.
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2. Related work
There are two main broad categories for autonomous navigation in unstructured environments, namely
the sense-plan-act paradigm and end-to-end paradigm [14]. Obviously, these two categories are deeply
different. The end-to-end paradigm directly maps the sensor data and the vehicle state information into
navigation control actions, which integrating perception and control of navigation frameworks. The
deep reinforcement learning method [15] and the deep inverse reinforcement learning method [16]
are the most popular methods in this approach. In this case, the reward function is learned from the
expert demonstrations or defined by humans, which then is used to generate navigation action sequences.
Although this method has many excellent properties, like dealing with negative obstacles [12], they also
have some drawbacks as well. The ability of compute in real time for on-board and the generalization
ability of the model are the major limitations.

In this paper, we mainly focus on the sense-plan-act paradigm, where TTA is the most important
research interest. More specifically, the TTA methods can be divided into two categories: the regression-
based method and the classification-based method [11].

The regression-based TTA focuses on estimating the traversal cost of the terrain area. A method is
adopted by Wulfmeier et al. to learn a function from the actions of the human experts to represent the
traversal cost, which can be optimized by massive well-designed and hand-crafted cost map. However,
it only works well in semi-structured scenarios and meanwhile a person is needed to show and teach in
similar scenarios [17]. Oliveira utilized deep learning method to predict the traversal cost. Here, inertial
measurements gained from IMU and point clouds gained from a 3D LiDAR are used to measure the
navigation cost [18]. But he maps the 3D point clouds directly into a 2D grid, making them lose terrain
features. The probabilistic energy cost map is proposed by Quann et al. to measure the traversal cost [19],
which is built from the pose of robot, the terrain slope, and the satellite imagery. However, this method
relies heavily on the vehicle modeling information, which makes it difficult to perform in different type
of vehicles.

The classification-based TTA aims at classifying terrain areas into several classes. Many machine
learning and deep learning methods are used in this field to perform a binary or multi-classification
task, either through the support vector machine [20] or through the multilayer perception [21], which
can obtain the geometric and visual information from the 3D LIDAR point cloud and RGB images.
Martínez et al. [22] propose traversability classifiers by analyzing several supervised learning methods
to extract the classification information from the 3D point cloud. However, a set of spatial features needs
to be derived from each point of the acquired point cloud in order to perform terrain classification in
those approaches, which makes it time-consuming. Meanwhile, the problem can also be found in terrain
classification through the semantic 3D mapping approach [23].

The representation method of the environment is also a research interest in the sense-plan-act
paradigm. Theoretically, various map representation ways and technologies can describe the naviga-
tion map of vehicles. Maturana et al. [24] build a 2.5D grid map to perform the semantic mapping for
automatic off-road driving of all-terrain vehicles, which can provide a richer representation of the envi-
ronment by encoding the sematic and geometry information extracted from 3D point cloud and RGB
images. Noé et al. have used a point cloud to represent navigation maps and have used it for unmanned
vehicle navigation tasks in tunnel scenarios [25]. But this approach can only be used in simulation sce-
narios at present because it cannot solve the interference well because of the disorder of the point cloud
in the real-world scenarios and the huge time consumption of searching the point cloud scene. Fei Gao
et al. directly used the point cloud in the research of the 3D navigation of unmanned aerial vehicle (UAV),
which has made it possible for the use of point cloud in multi-degree-of-freedom navigation [26]. In the
research of Helen et al. [27], an incremental 3D Euclidean signed distance field is used to represent the
navigation map of UAV. Although it has a great obstacle avoidance performance, it is difficult to apply
to the terrain obstacle representation of the unmanned vehicles. Han zhang et al. have used the octree as
the representation of the navigation map and have successfully applied it to the outdoor navigation of
the UAV. However, it used the remote computer to compute the navigation algorithm, which is difficult
to meet the needs of autonomous vehicle navigation task in the field [28].
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To sum up, this paper uses the octree to represent the environment, which was chosen for three
reasons:

• It can effectively avoid noise impact on navigation in real environment.
• It can effectively represent the terrain information of the off-road environment.
• It can run effectively on the devices with limited computing performance such as unmanned

vehicles.

Another important part is the design of the navigation process. In this part, a prevailing idea is to
divide the entire navigation process into the front-end path finding and the back-end trajectory opti-
mization. In recent years, there has been a lot of front-end path searching work. Graph-search-based
algorithms [29] such as A-star and Dijkstra and sampling-based algorithms [30] such as probabilistic
road map and rapidly exploring random tree (RRT) are the two most applicable methods. The method
based on graph search can be applied to the scenes where discrete space can be constructed from the envi-
ronment [31]. In contrast, the sampling-based method can use a set of nodes or other forms to discretely
sample the configuration space of the vehicle, and then randomly sample the environment to obtain the
final path. RRT [30] is an algorithm proposed by Steven M. LaValle and James J. Kuffner Jr to search
quickly non-convex high-dimensional spaces by randomly constructing space filling tree. This algorithm
can easily deal with the scenes that contain obstacles and differential motion constraints, so it is widely
used in various robot motion planning scenarios. In robotics, RRT search based on high-dimensional
space has been widely used [32]. Then, scholars proposed a lot of optimization to RRT. In 2000, Kuffner
et al. proposed RRT-CONNECT [33], which is a two-way RRT search process whose speed and effi-
ciency have been greatly improved. Long Chen et al. proposed double-tree RRT∗ [34], through which
the path can be found more quickly, meanwhile its optimality is ensured compared with RRT.

Back-end trajectory optimization has also been widely studied in recent years. Although the front-
end pathfinding algorithm can find a set of collision-free waypoints to the target point, it is difficult
to perform on robots such as unmanned vehicles. Therefore, it is necessary to generate a smoother,
safer trajectory which is a path-time sequence and should conform to the kinematics constraints of the
unmanned vehicle based on the path found. Many methods are designed to optimize the trajectory,
including the representation of trajectory and the design of the optimization objective function. Moritz
[35] is the first to propose the method of representing the trajectory of the Frenet coordinate system,
which simplifies the representation style of polynomial trajectories. W. Ding et al. used B-spline curve
to represent the trajectory, well using the locality of the spline curve to complete real-time re-planning
of the trajectory [36]. Ding et al. proposed a trajectory representation method, which uses the convex
hull of the Bernstein polynomial to ensure the safety of the trajectory [37]. In the design of the optimiza-
tion objective function, the gradient-based method [38] transforms the trajectory optimization problem
into a nonlinear optimization problem affected by safety and smoothness. Mellinger et al. proposed the
minimum snap trajectory optimization method for the first time and adopted a polynomial trajectory
expression to convert the planning problem into a quadratic programming problem [39].

This paper uses the point cloud map and the real-time positioning information generated by the laser
SLAM algorithm. In the process of navigation, the environment representation based on the octree
map and the front-end path search method based on sampling are adopted. In the process of ran-
dom sampling of the octree space, the TTA methods are considered. Differently, when using TTA,
we do not process each map cell, but only a certain domain of the map cells sampled in the previ-
ous step which makes our method highly efficient in planning and re-planning process. Similarly, in
the back-end optimization process, a traversable corridor is generated using a local TTA. A high-order
Bezier curve is used to characterize the trajectory of the vehicle, as the trajectory can be constrained
to a safe area using the convex hull properties of the Bezier curve and the traversable corridor. This
method can realize an efficient and autonomous 3D navigation for unmanned vehicles on rugged
terrain.
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Figure 1. Architecture of the autonomous navigation system.

3. Hardware platform and system architecture
The architecture of our system is shown in Fig. 1. First, an optimized laser-slam – LOAM algorithm [40]
is used for six-dimensional pose estimation and sparse point cloud map construction. In this method,
a loop detection method based on location [41] and based on scanning context [42] is combined with
the LOAM algorithms to reduce the mapping and the pose estimation error of the vehicle. Then, the
navigation process is divided into front-end path search and back-end trajectory optimization. The
planner module manages the entire system, whose function includes data reception, task allocation,
corridor generation, trajectory inspection, and re-planning. It receives the environment navigation maps
and the pose estimation from the vehicle as well as the goal given by the mission planner. Then it
assigns the calculation task to the path finder module and Bezier optimization module. After that, it
analyzes the calculation results and passes them to the trajectory server module.

The path finder module is responsible for searching front-end paths and mapless navigation strategies.
This part will be introduced in detail in Section 4. The Bezier optimization module will complete the
trajectory optimization process based on the results of the front-end search and the constraints given by
the planner module, which will be introduced in detail in Section 5.

The functional module terrain analysis handles the ground state analysis of the entire system and is
referenced in the above three modules. This part will be described in detail in Section 4.2.

The architecture of the unmanned vehicle system is shown in Fig. 2. The system uses a four-wheel
differential drive unmanned vehicle, which has individual wheel suspension system with good outdoor
off-road capabilities and shock absorption performance. The 3D LIDAR Velodyne VLP-16 is used for
real-time pose estimation and map construction of the vehicle. And a NVIDIA Xavier processor is used
for positioning, mapping, navigation, and control algorithm. In addition, for safety in testing task, the
depth camera Azure Kinect is used in this system as an emergency obstacle avoidance sensor.

4. Path planning method based on terrain constraints
4.1. Sampling space configuration
This paper uses the sampling method in octree space so that a high operation efficiency can be gained in
embedded devices. Different from the path planning of drones or robotic arms, it is difficult for us to plan
the movement of the vehicle on the z-axis in the path planning task in the rugged ground. However, this
kind of movement is critical based on the analysis above. In this paper, we adopted a random sampling
strategy to find a feasible front-end path for the ground vehicle in the octomap. The sampling space is
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Figure 2. Overview of the unmanned vehicle system. The platform uses a Velodyne LIDAR (Velodyne
VLP-16) for localizing itself and mapping the environment. The Laser-SLAM module, motion planning
module, and controller are all running on the NVIDIA Xavier. And a camera (Azure Kinect) is used to
avoidance in an emergency.

set as the section of the initial height of the vehicle in the octomap instead of the entire octree space.
The terrain constraints are introduced into the sampling process, including ground search and the TTA.
For each sample point, a ray is used by the algorithm to project upward or downward to find the ground.
This method greatly reduces the sampling time and avoids the loss of terrain information in 2D planning
at the same time. ⎧⎨

⎩
Nodex,y,z = �(px,y), if �(px,y) true

None = �(px,y), if �(px,y) false
(1)

where Nodex,y,z is the final sampled point. px,y is the random sampling point on the initial height section
of the vehicle, and � means the mapping of ground search. If the search is successful, it returns the Node
value, otherwise it returns None.

4.2. Path planning method
Because of the sparsity of the octomap, for each sampling point collected by the planner, the local octree
nodes in a certain area around it will be analyzed, which can be a sphere, a cube, or a polygonal cylinder.
Considering the shape of the vehicle, a cube is adopted as the candidate area. The parameters box(x,y,z)
are related to the size of the vehicle. The search set � of the sampling point px,y can be written as follows:

� =

⎧⎪⎨
⎪⎩

�
(
pi,j

)
x − boxx

/
2 − padding ≤ i ≤ x + boxx

/
2 + padding

y − boxy

/
2 − padding ≤ j ≤ y + boxy

/
2 + padding

⎫⎪⎬
⎪⎭ (2)

Terrain reliability analysis: Generally, in the search set � around the sampling point, the more
octree nodes with ground elevation information there are, the higher reliability of the sampling point at
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the ground and the higher accuracy of the ground height calculation are. So the reliability of the terrain
is calculated as follows:

η = nnode

/
nmax

nmax = card(�)

nnode = card( {x |x ∈ �, x �= None } )

(3)

where nmax is the number of all the nodes in the search set �, and nnode is the number of nodes with
ground elevation information.

Terrain flatness analysis: According to the analysis above, in the path planning task of the vehicle, it
is important to analyze the ruggedness of the terrain. We use the elevation variance of the ground nodes
to describe the terrain flatness:

mean =∑
Nodez

/
nnode, Node ∈ �

stddev = ‖Nodez − mean‖2

/
(nnode − 1), Nodez ∈ � and Node �= None

(4)

Terrain slope analysis: In the calculation of slope, it will take a lot of time to calculate the global
gradient directly, as the constructed octomap may be discontinuous, which is determined by the sparsity
of the 3D LIDAR. Furthermore, both the 2D and 2.5D methods have the gradient calculation along with
the x and y direction of the navigation map, which makes traverse from a certain direction impossible
when the negative obstacles exist. This paper calculates the terrain slope between the new node that
is added to the path and its parent-node, instead of analyzing the terrain slope of each sampling node.
In this way, it will not only reduce the cost of calculation but also provide the possibility of traversing
negative obstacles from a certain direction.

θ = ac sin

( ∣∣Nodenewz − Nodenearstz

∣∣
‖Nodenew − Nodenearst‖2

)
(5)

A cost function is designed to evaluate whether a new node can be added to the path and whether the
relationship of path node should be changed. In this paper, we can assume that the cost function for each
node can be expressed as a weighted linear combination of a set of weights and some terrain feature
functions. And it can be defined as:

c(Noden) = ω1

n∑
i=0

∥∥Nodei − Nodefather

∥∥
2
+ ω2

n∑
i=0

θi (6)

Therefore, the steps of the 3D path sampling algorithm in octomap space based on the terrain analysis
are shown in Algorithm 1.

4.3. Extension to mapless navigation
The autonomous navigation without a prepared map is crucial. As in most of the off-road unmanned
vehicle navigation scenarios, there is no priori map information. In the case of mapless navigation, the
terrain information around the navigation target point is unknown, and the map information observed
in the early stage is very sparse, which is determined by the sparsity of the LiDAR point cloud and the
occlusion relationship of the off-road terrain. To implement the proposed method to mapless navigation
tasks, we keep exploring toward the target by selecting suitable local target points among the existing
sampling points based on the Algorithm 1. Due to the number of sampling points during the path finder
process may be large and only the outermost of them are beneficial for the task of exploration toward
the target. Therefore, in order to avoid unnecessary calculations and select suitable local target points,
we propose the following approach as shown in Algorithm 2 and Fig. 3.
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Figure 3. Local target point selection.

Outermost sampling points set: we define di as the distance between ith point(Pi) in � and the
start point, and the D as the distance between the closest point to the end point and the start point. The
outermost sampling points set can be written as follows:

�outer = {Pi|Pi ⊂ �, 0.8 < di/D < 1} (7)

Points clustering: We perform clustering of the outermost sampling points using a method similar to
that in ref. [25], which can divide the outermost region into several independent regions. As mentioned
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in Section 4.2, the sampled points are the points that meet the TTA. Therefore, a region with more
sampling points has better traversability, where the candidate local target point should also come from.

The local target point: In order to avoid local target points guiding the vehicle away from the direc-
tion of the final target, we finally select three sets in �cluster with the largest number of sampled points
to form the final target candidate points set �CandiPts. And a cost function is set to select the final local
target point in the set of candidate target points. We seek for a point which can minimize the function
as shown in the following equation:

PlocalGoal = argmin(‖Pi − Pgoal‖2 + c(Pi)), Pi ⊂ �CandiPts (8)

where c(Pi) is the cost of the point Pi to start point defined in Eq. (6).

5. Path optimization method
Although the path finder module can get a path to the target in real time, the kinematics and the dynamics
models of the vehicle are not considered in the planning process, which makes the planned path difficult
to execute for vehicles in real environment. Based on the analysis above, there has been a lot of research
on the trajectory optimization in structured scenarios. This paper focuses on the trajectory optimization
methods in the unstructured and rugged terrain. We take the minimum snap as the objective function to
generate a smooth trajectory and build a corridor based on the terrain to constrain the final optimized
trajectory.

5.1 Traversable corridor generation
Based on the waypoints obtained in Section 4, we analyze the traversable state of the area around the way-
points to determine whether there are steep slopes and pits around the sampling point, thereby providing
reasonable constraints for trajectory optimization. According to the searched waypoints, we initialize a
cube which is based on the size of the vehicle and then expand the cube in the order of X-Y-Z with a fixed
step ε. The expansion scales of εx, εy are equal, but the expansion in the z direction εz is far less than
the εx, εy. This is because it is primarily designed to eliminate collisions between the vehicle and obsta-
cles on the Z-axis caused by the undulations of the terrain. Then it maximizes the cube by analyzing
the collision in Z direction and the corresponding terrain state information in X and Y directions. The
TTA method is similar to that in Section 4.2. After that, we reduce the number of traversable corridors
by merging overlapping areas to reduce the computational burden of back-end optimization. And the
traversable corridor generation is shown in Algorithm 3.

5.2. Trajectory optimization
In this paper, the trajectory will be expressed using a Bernstein polynomial [43], which can be written
as follows:

Pj(t) =
n∑

i=0

pi,j · Bi,n(t), t ∈ [0, 1]

Bi,n(t) = Cj
n · ti · (1 − t)n−i = n!

i!(n−i)! · ti · (1 − t)n−i, i = 0, 1, 2, ....n
(9)

where pi,j is the ith control point of the jth Bezier curve, and n is the order of Bezier curve. The trajectory
is divided into m segments according to the number of corridors in Section 5.1. Since the time period
of the Bezier curve is [0, 1], a time scale factor r needs to be set to realize any time allocation of this
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segment of the curve. And the piecewise Bezier curve can be represented using the following equation:

Pμ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 ·
n∑

i=0

pμ

i,1Bi,n(
t−T0

r1
), t ∈ [T0, T1]

r2 ·
n∑

i=0

pμ

i,2Bi,n(
t−T1

r2
), t ∈ [T1, T2]

...

rm ·
n∑

i=0

pμ

i,mBi,n( t−Tm−1

rm
), t ∈ [Tm−1, Tm]

(10)

where T1, T2, . . . Tm is the end time of each segment trajectory. pμ

i,m is the ith control point of the mth
segment. And μ is one of the three dimensions of X, Y , Z . r1, r2, . . . rm represents the time scale factor
of each segment (ri = Ti − Ti−1, i = 0, 1, 2, ...m), which scales the segment time from [Ti−1, Ti] to [0, 1].

Based on the analysis, this paper uses the minimum snap trajectory optimization method, and the
cost function of the optimization can be written as:

C =
∑

μ∈{x,y}

∫ T

0

(
d4Pμ(t)

dt4

)2

dt (11)
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Figure 4. The simulation UGV and the simulation sensors. In our experiment, a simulation Velodyne
VLP-16 and a simulation depth camera whose data format is same as that of the real sensors are used
(in order to better represent the pose between the sensors, the connection between them is hidden in the
simulation).

(a) (b) (c)

Figure 5. Off-road environment built in gazebo.

It can be represented as a quadratic matrix of PTQ0P, where P is the vector composed of all control
points, and Q0 is the Hessian matrix of the objective function. It can be proved that Q0 is a positive
semi-definite matrix, so the trajectory optimization problem can be transformed into a convex quadratic
programming problem.

min PTQ0P
s.t. AeqP = beq

AieqP ≤ bieq

(12)

For each segment of the Bezier curve, we must set a series of constraints to ensure the safety and
feasibility of the optimized trajectory.

Position constraints: The optimized trajectories must pass through some specific points whose posi-
tions, velocities, and accelerations are known during the planning process, such as the start point and the
goal point. According to the properties of the Bezier curve, the coefficients of the high-order derivative
can be composed of the coefficients of the lower-order derivative. Take the Bezier curve in a certain
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Figure 6. Unknown area, negative obstacle rejection.

dimension of a certain segment as an example:

a(0)

i = pi

a(l)
i = n!

(n−l)! · (a(l−1)
i+1 − a(l−1)

i )
(13)

where l is the order of derivative of the Bernstein basis. Therefore, in a certain dimension of a certain
segment, the position constraint can be represented as:

a(l)
i · r(1−l) = γ (l) (14)

where γ (l) can be the position, velocity, or acceleration of a specific waypoint.

Continuity constraints: Continuity constraints are mainly required for the connection points of each
segment trajectory. In order to ensure the smoothness of the trajectory and the continuity of the move-
ment, it is necessary to ensure that the l-order derivative of the connection point is continuous, where
0 ≤ l ≤ k − 1. For the jth and (j + 1)th segment trajectories, the last control point of the jth segment is
continuous with the first control point of the (j + 1)th segment in the lth order derivative.

a(l)
n,j · r(1−l)

j = a(l)
0,j+1 · r(1−l)

j+1

a(0)
i,j = p(0)

i,j

(15)

Corridor constraints: In the unmanned vehicle trajectory optimization, it is necessary to ensure
the safety and feasibility of the optimized trajectory. The usual approach is to process the optimized
trajectory for trajectory checking and impose additional constraints on waypoints that do not meet the
safety or enforceability requirement. The trajectory optimization and trajectory check process are then
repeated until all waypoints on the trajectory meet safety and enforceability requirements [44]. This
paper uses the convex hull property of the Bezier curve to enforce all the control points of the trajec-
tory to be constrained within the boundaries of each direction of the corridor which is mentioned in
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Figure 7. Result of different path-expansion boundaries and cost functions.

Section 5.1. For example, for the jth trajectory:

χ
μ−
i,j ≤ pμ

i,j ≤ χ
μ+
i,j , μ ∈ {x, y, z} , i = 0, 1, 2...n (16)

where χ
μ−
i,j , χμ+

i,j are the upper and lower boundary of the jth corridor in a certain dimension of x, y, z.

Kinematic constraints: Generally, considering the feasibility of the unmanned vehicle movement,
its speed and acceleration need to be constrained within a certain workable interval. For the ith control
point:

Based on the property of the Bezier curve: a(l)
i = n!

(n−l)! · (a(l−1)
i+1 − a(l−1)

i )

Vmin ≤ n(pi+1 − pi) ≤ Vmax

amin ≤ n · (n − 1) · (pi − 2pi−1 + pi−2)/rj ≤ amax

(17)

where Vmin, Vmax, amin, amax are the minimum and maximum speed and acceleration of the vehicle.
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Table I. Time of path finder module process (ηth = 3)

Parameters Navigate to flat ground Navigate to bottom of pit

Goal (29.7028, −22.963, −2.09698) (31.6588, −20.2179, −2.1243)

Stdev=0.05 / /
Stdev=0.1 187.878 ms. 179.499 ms.
Stdev=0.15 46.2344 ms. 46.2344 ms.

Figure 8. Corridor generation result.

6. Experiments and results
We use robot operating system [45] and C++11 to implement the proposed system and algorithm in both
simulation and real-world scenarios and compare them with popular 2.5D method in mapless navigation
tasks and dynamic obstacle avoidance tasks. The qpOASES (Online Active Set Strategy) is used as the
convex optimization solver in the trajectory optimization stage.
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Figure 9. Trajectory generation results.

6.1. Simulation experimental setup
6.1.1 Simulation environment
First, we present several simulation experiments of the proposed local target selection, path search, and
trajectory optimization algorithms using Gazebo. In order to make the simulation more meaningful
and simplify the development and debugging process in the real environment, in this paper a URDF
unmanned vehicle simulation model is used, whose dynamic performance and motion restrictions are
similar to those of real vehicles. A 3D LIDAR and binocular camera are added to the model for context
awareness, as is shown in Fig. 4. An off-road environment is built in the software platform UNITY and
then imported into Gazebo to gain gravity and physical properties, as is shown in Fig. 5(a). The size of
the environment is 200 m × 200 m, with multiple pits and steep slopes of different diameters distributed,
and the maximum undulation of the terrain is about 3 m.

6.1.2. Result of the proposed method
Octomap building: The laser slam algorithm is used to build the sparse point cloud map of the con-
structed off-road scenario and get the six-dimensional pose estimation of the vehicle. In order to reduce
the interference of the real field environment on the point cloud and the huge computational cost of
navigation directly on the point cloud map, the map representation method of the octomap is adopted
in this paper. Point cloud within a certain range centered on the vehicle location will be added to the
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Figure 10. Comparison results with the GridMap method in mapless navigation task.
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Table II. Navigation time distribution

Path Corridor Trajectory
Start Goal finder generation generation

Item point point time (ms) time (ms) time (ms)
1 (0,0,0) (13.799, 8.528, 0.275) 49.4692 94.7934 6.15753

(0,0,0) (16.879, −11.780, 0.275) 111.831 84.3121 3.55139
(0,0,0) (18.891, −18.532, −0.863) 91.2956 80.8881 3.98212

2 (17, 12, −0.4) (33.812, 7.228, −0.025) 160.776 105.67 7.00782
(17, 12, −0.4) (30.205, 19.921, −0.025) 205.101 102.424 16.119
(17, 12, −0.4) (39.474, 12.839, −0.890) 104.207 100.128 11.3094

3 (17, −9, −0.4) (27.595, −25.934, −1.412) 74.6397 106.143 6.2942
(17, −9, −0.4) (25.825, −34.094, −1.351) 140.462 125.864 9.49656
(17, −9, −0.4) (24.136, 10.18, 0.425) 92.5626 91.1293 5.85881

Table III. Comparison results with the GridMap method in mapless navigation task

Method Navi. time (s) Traj. Len. (m) Re-planning times Success rate (%)
GridMap method 53.4 38.5616 18 8/20(40.0)
Proposed method 43.6 42.1011 4.5 18/20(90.0)

octomap where the terrain information will be maintained and updated, which allows the vehicle to have
lower map maintenance costs when real-time navigation tasks are performed. And we use the color to
distinguish the elevation, as is shown in Fig. 5(c). The global map coordinate system is established based
on the location of the centroid when the vehicle is started. A warmer color shows a higher elevation of
the terrain, indicating a larger value of Z-axis, which can be slopes. Conversely, colder colors refer to
lower elevation, which can be pits.

Path finding result: In this paper, we analyze the terrain information effectively based on the
octomap, which described in Section 4, and evaluate the front-end path search method using the sim-
ulation environment mentioned above. We set the navigation destinations at the bottom of the pit or a
relatively flat area and change the boundary threshold parameters to test the efficiency of the path finding
algorithm and the feasibility of the path.

By setting the boundary threshold reasonably, the path searched by the front-end pathfinder module
performs well in avoiding unknown areas, negative obstacles like pits, and steep slopes. Figure 6 shows
the successful front-end path finding process, where the cube is the sampled node. The white line is
the sampled path, and the red line is the final searched path. As shown in the picture, rejection area A
is an example of avoiding negative obstacles like pits and steep slopes. The red nodes are the accepted
nodes during the path search process, and magenta nodes are the rejected nodes which do not match
the terrain analysis results during the process. After the terrain analysis, some nodes that cannot be
safely reached by the vehicles will be refused to join the path, thereby ensuring the successful avoidance
of the dangerous areas such as pits and steep slopes. Rejection area B shows an example of avoiding
unknown areas. They are some areas that cannot be observed by some sensors, where there may be pits
and occlusions. Considering the safety of the car, the algorithm adopts an evasion strategy.

Figure 7 shows the effect of different boundary thresholds on path search results, while Table I shows
the search time. From the results, it can be seen that if the threshold of stddevth is too small, the path will
be difficult to extend and the search time will be greatly increased at the same time, such as stddev = 0.05
in Fig. 7. But when the threshold becomes larger, the path becomes smoother and the search time reduces.

https://doi.org/10.1017/S0263574721001983 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001983


Robotica 2849

Figure 11. Comparison results with the GridMap method in dynamic obstacle avoidance task.

The parameter stddevth is related to the flatness of the terrain, which needs to be set according to the
off-road capability of the unmanned vehicle in the real environment.

Path optimization result: As is introduced in Section 5, the analysis of the traversable corridor
and the trajectory optimization of the back-end are performed in this paper based on the path found by
the front-end path finder module. Considering the vehicle’s controller capability and the safety of the
navigation, we set an erosion area of the range of six resolution units to constrain the traversable corridor
within the absolute safety area during the analysis of the traversable corridor. As is shown in Fig. 8(a),
in order to visualize the results, a semi-transparent cube is used to represent the generated traversable
corridor. In generating the traversable corridor, we expanded the size on the Z-axis of the corridor, which
is relevant to the height of the vehicle. Figure 8(b) and (c) shows the results of the generated traversable
corridor to avoid the pits and steep slopes, showing its ability to navigate safely.

According to Section 5.2, in the process of back-end optimization, constraining the optimized path
within the generated passable corridor can not only ensure the safety of the trajectory but also smooth
the trajectory and increase the feasibility of it. As is shown in Fig. 9, there are the trajectory generation
results for three different sets of starting points, where transparent gray cube is the visualized traversable
corridor, the red line is the path searched by the front-end module, and the blue smooth line is the path
optimized by the mini-snap method. As is shown in the picture, a smooth trajectory can be generated
effectively through the method proposed in this paper, and the trajectory can be constrained within a
passable and safe corridor through a single calculation. The comparison of the running time of each
part in generating three sets of trajectories is listed in Table II. As is shown in the table, the front-end
path finder module and the passable corridor analysis module take approximately the same time, while
the back-end trajectory optimization module spends far less time than the first two modules.

6.2. Comparisons and analysis
In this part, our method is compared with a popular 2.5D navigation map representation method pro-
posed by P. Fankhauser using GridMap library [46]. In order to meet the need for real-time computing,
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Table IV. Comparison of re-planning time when encounter dynamic obstacles

TTA Traj Total Start Goal
Item Methods time (ms) time (ms) time (ms) point point
A GridMap method 1369 24.15 1393.15 (0,0,0) (13.799,8.528,0.275)

Proposed method 305.73 8.58 314.31

B GridMap method 1120 31.27 1151.27 (17,12,-0.4) (33.812,7.228,-0.025)
Proposed method 266.01 21.66 287.67

C GridMap method 1027 / / (17,-9,-0.4) (25.825,-34.094,-1.351)
Proposed method 245.49 19.61 265.1

(a)

(b)

Figure 12. The real-world off-road experimental area (point cloud map is built by laser-slam).

only the normal vectors, smoothening, and variance of each cell are considered when performing the
TTA in GridMap. Moreover, only the body-centered 20 m × 20 m size local map is processed and
updated to reduce the time of TTA and improve the real-time performance. However, the re-planning
process works only when dynamic obstacles or scene changes are located within 10 m of the vehicle. In
the navigation, the sample-based path planning in the 2D map and the dynamic window approach are
used for effective control and autonomous navigation.

6.2.1 Mapless navigation
In this part, we compared the proposed method with the GridMap method in a mapless navigation task,
in which we do not provide a pre-generated map model. The unmanned vehicle needs to build a map
while exploring toward the target. Twenty trials are conducted using each of the two methods, with
a target point on a rugged terrain about 40 m from the starting point, and the maximum speed of the
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(a)

(b)

Figure 13. Real navigation in off-road experiment.

vehicle is set as 1m/s. We compared the average navigation time, trajectory length, re-planning times,
and success rate.

Table III shows that our proposed method has better performance in most metrics, including the
average navigation time, re-planning times, and success rate. It is worth noting that the average trajectory
length of our method is longer than that of the GridMap method. This is because the navigation approach
of GridMap is more aggressive, which marking unknown regions as free. However, such aggressiveness
also leads to a higher probability of failure in the mapless navigation tasks. In contrast, our approach
can significantly improve navigation by selecting appropriate local target points and re-planning. As
the instance shown in Fig. 10, in most of the failure-prone regions of the GridMap method shown in
Fig. 10(b), our approach can effectively re-plan to avoid the risk, as shown in Fig. 10(a).

6.2.2. Dynamic obstacle avoidance
Three sets of experiments are used to compare the dynamic performance of the two methods in specific
scenarios including avoiding large negative obstacles (experiment A), passing through narrow passable
area (experiment B), and navigating to the bottom of a depression (experiment C). The results are shown
in Fig. 11.

As is shown in Table IV, kinodynamic collision-free trajectories are both generated in scenarios
with and without dynamic obstacles in experiments A and B. However, our method is faster in the re-
planning process and tends to generate a smoother trajectory. In the experiment C, the GridMap method
fails to perform the re-planning process when dynamic obstacles are encountered while navigating to
the depression. This is because the sudden detection of dynamic objects makes it difficult to avoid when
the vehicle encounters negative obstacles due to the limited view of the sensor detection.
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6.3. Real-world experiments
We validate our proposed approach in a real-world, unstructured environment using the hardware plat-
form mentioned in Section 3 to show the capability of its real-time navigation. The environment we test
is a field site about 500 m in length and 200 m in width, with the maximum undulation of 5 m. And
there are pits, soil slopes, ponds, and other obstacles that are difficult for unmanned vehicles to cross, as
shown in Fig. 12.

Figure 13 shows some instances of the proposed method. When the target point is on the other side
of a huge depression as shown in Fig. 13(a), our method can reasonably plan a path such that the vehicle
can avoid the huge negative obstacle along the periphery. In Fig. 13(b), when reaching a target point
requires passing through a narrow area, our approach can drive the vehicle to pass in a reasonable
posture, avoiding being stuck or detouring.

7. Conclusions and future work
This paper proposes an autonomous navigation method for unmanned vehicles based on terrain analysis
in complex unstructured terrain. Particularly, it is specially optimized for complex unstructured terrain
with dynamic obstacles and negative obstacles such as pits and steep slopes. This method uses laser
SLAM to build the environment map and an octree to represent and store the navigation map. We opti-
mized the TTA method in front-end sampling, the target autonomous exploration process, and back-end
trajectory constraint in the 3D octomap to make navigation more efficient. And we showed the improve-
ment of the proposed method in dynamic obstacle avoidance task and mapless navigation task compared
to traditional 2D or 2.5D methods.

The navigation method proposed in this paper relies on data from LiDAR sensors, which lack a
high-level semantic representation of terrain information. This makes it slightly insufficient in facing
complex off-road environment with vegetation obstacles such as tall grass. In the future, we may consider
combining visual information to optimize terrain analysis.
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