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This paper studies the long-time behaviour of solutions to a one-dimensional strongly
nonlinear partial differential equation system arising from phase transitions with
microscopic movements. Our system features a strongly nonlinear internal energy
balance equation. Uniform bounds of the global solutions and the compactness of the
orbit are obtained for the first time using a lemma established recently by Jiang. The
existence of global attractors and convergence of global solutions to a single steady
state as time goes to infinity are also proved.

1. Introduction and main results

We investigate the long-time behaviour of global solutions to a strongly nonlinear
partial differential equation (PDE) system arising from a reversible phase transi-
tion model based on Frémond’s theory (see [7, 8, 15]). The most notable feature of
this model is that it takes into account the microscopic movements of particles by
including their effect on the macroscopic behaviour of the body.

Considering a two-phase material located in a bounded domain Ω ⊂ R
3 with a

smooth boundary Γ , the state of phase change is described by the absolute tem-
perature θ and the order parameter ϕ standing for the local proportion of one of
the two phases. Following Frémond and neglecting the macroscopic velocities (the
material behaves like a rigid body at the macroscopic level), the energy balance
equation results in (see [6, 31])

∂te + div q = r + B∂tϕ + H · ∇∂tϕ, (1.1)

where e denotes the internal energy, q is the heat flux vector, r corresponds to
an external heat source, and B and H are a density of energy function and an
energy flux vector, respectively, resulting from the microscopic interior forces to be
specified later.

The evolution of the phase variable ϕ is derived from the principle of virtual
power (see [15]) which reads

− div H + B = A, (1.2)

where A collects the amount of external forces.
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In order to state the constitutive laws, we introduce the expressions of the free
energy Ψ and a pseudo-potential of dissipation Φ. We choose the free energy which
describes the state of the system as follows:

Ψ(θ, ϕ, ∇ϕ) = −csθ ln θ − L

θc
(θ − θc)λ(ϕ) + G(ϕ)L + 1

2ν|∇ϕ|2, (1.3)

where L > 0 stands for the latent heat at the critical transition temperature θc > 0,
where cs > 0 represents the specific heat, where the parameter ν > 0 is the factor
of the interfacial energy term, and where λ(·) and G(·) are smooth functions.

The microscopic contribution to the macroscopic behaviour during the thermal
evolution process is expressed in terms of the so-called pseudo-potential of dissipa-
tion Φ, which is defined as

Φ(∂tϕ, ∇∂tϕ) = 1
2µ(∂tϕ)2 + 1

2h|∇∂tϕ|2, (1.4)

where µ > 0 and h > 0 are two coefficients related to the evolution of the interface.
Note that, as the phenomenon is reversible, no constraints are required on the sign
of ∂tϕ.

In order to comply with the second principle of thermodynamics, we have the
following constitutive relations:

B =
∂Ψ

∂ϕ
+

∂Φ

∂(∂tϕ)
, H =

∂Ψ

∂(∇ϕ)
+

∂Φ

∂(∇∂tϕ)
, (1.5)

while the internal energy e is related to the free energy Ψ and to the entropy
η = −∂Ψ/∂θ by the classical relation

e = Ψ + ηθ = Ψ − θ
∂Ψ

∂θ
. (1.6)

Finally, we assume that the heat flux q is determined by the standard Fourier heat
flux law

q = −k0∇θ, k0 > 0. (1.7)

Thus, by substituting in (1.1) and (1.2) relations (1.3)–(1.7), the resulting system
of PDEs can be written as follows:

csθt +
L

θc
θλ′(ϕ)ϕt − k0∆θ = µϕ2

t + h|∇ϕt|2 + r, (1.8 a)

µϕt − h∆ϕt − ν∆ϕ + LG′(ϕ) − L

θc
(θ − θc)λ′(ϕ) = A. (1.8 b)

We stress that our model is compatible with the second principle of thermo-
dynamics in terms of the Clausius–Duhem inequality [15]

ηt � −∇ ·
(

q

θ

)
+

r

θ
, (1.9)

since substituting into the Clausius–Duhem inequality leads to the reduced inequal-
ity

0 � µϕ2
t

θ
+

h|∇ϕt|2
θ

+
k0|∇θ|2

θ2 , (1.10)

which holds true and proves the thermodynamical consistency of the model.
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Without loss of generality, we assume that the external heat source r = 0 and
all the other physical parameters cs, L, θc, k0, µ, h, ν and A are normed to 1. In
addition, we take the typical forms of λ as a linear function and G as a double-well
potential (see [6, 9]), i.e.

λ(ϕ) = ϕ, G(ϕ) = 1
8 (1 − ϕ2)2. (1.11)

Since we are focusing on the long-time behaviour of global solutions in the one-
dimensional case, in the remainder of this paper we choose Ω = (0, 1) with Γ =
{0, 1}. Thus, the PDE system studied in this paper is

θt + θϕt − θxx = ϕ2
t + ϕ2

xt,

ϕt − ϕxxt − ϕxx + 1
2 (ϕ3 − ϕ) − θ = 0.

}
(1.12)

We supplement system (1.12) with homogeneous Neumann boundary conditions

θx|x=0,1 = 0, (1.13)
ϕx|x=0,1 = ϕxt|x=0,1 = 0, (1.14)

and the initial data
θ(0) = θ0, ϕ(0) = ϕ0. (1.15)

We remark that, in view of the relations (1.5) and (1.7), the homogeneous Neu-
mann conditions (1.13) and (1.14) account for no heat flux and no energy flux on
the boundary (see [4, 6]). As a result, the total energy of the system is conserved
during the evolution process. Indeed, if we multiply the second equation in (1.12)
by ϕt, add the result up to the first equation in (1.12), then integrate the resultant
over Ω by parts, we obtain the following conservation relation:∫ 1

0
( 1
2ϕ2

x + 1
8ϕ4 − 1

4ϕ2 + θ) dx =
∫ 1

0
( 1
2ϕ2

0x + 1
8ϕ4

0 − 1
4ϕ2

0 + θ0) dx := m. (1.16)

In view of (1.16), the corresponding stationary problem to (1.12)–(1.15) is

uxx = 0,

−ψxx + 1
2 (ψ3 − ψ) − u = 0,

ux|x=0,1 = ψx|x=0,1 = 0,∫ 1

0
( 1
2ψ2

x + 1
8ψ4 − 1

4ψ2 + u) dx = m.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.17)

We study the infinite-dimensional dynamical system associated with (1.12)–(1.15)
and the convergence of any global solution towards a single steady state solution
that fulfils (1.17). To formulate our results, we first introduce some notation on the
functional settings. Let Lp(Ω), W k,p(Ω), 1 � p � ∞, k ∈ N be the usual Lebesgue
and Sobolev spaces, respectively, and, as usual, Hk(Ω) = W k,2(Ω) and

H2
N = {f(x) | f ∈ H2 and fx|x=0,1 = 0}.

Let A be the unbounded linear operator defined by A = I − ∆, whose domain is
D(A) = H2

N . It is well known (see, for example, [37]) that one can define spaces
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D(As) for s ∈ R, with inner product 〈·, ·〉s = (As/2·, As/2·) and corresponding
norm | · |s =

√
〈·, ·〉s. In particular, D(A1/2) = H1, D(A0) = L2. ‖ · ‖B denotes

the norm in the space B; we also use the abbreviation ‖ · ‖ := ‖ · ‖L2 . We denote
by Ck(I, B), k ∈ N0, the space of k times continuously differentiable functions
from I ⊂ R into a Banach space B, and, likewise, by Lp(I, B), 1 � p � ∞, the
corresponding Lebesgue spaces. Throughout this paper, we will frequently use the
Sobolev embedding theorem that H1(Ω) ↪→ L∞(Ω).

Now we are in a position to state the main result of our paper.

Theorem 1.1. Suppose θ0 ∈ H1 and ϕ0 ∈ H2
N are two given functions and suppose

that θ0 > 0 in [0, 1]. Then the following results hold.

(i) Problem (1.12)–(1.15) admits a unique global solution (θ, ϕ) satisfying

ϕ ∈ C([0, +∞), H2
N ), ϕt ∈ C([0, +∞), H2

N ) ∩ L2((0, +∞), H2
N ), (1.18)

ϕtt ∈ L2((0, +∞), H2
N ), (1.19)

θ ∈ C([0, +∞), H1(Ω)), θt ∈ L2((0, +∞), L2(Ω)), (1.20)
θ > 0, ∀(x, t) ∈ [0, 1] × [0, +∞). (1.21)

(ii) As t → +∞, it holds that

‖θx‖ → 0, ‖θ − θ̄‖L∞ → 0, (1.22)
‖ϕt‖H2 → 0, (1.23)

where θ̄ =
∫ 1
0 θ(x, t) dx.

(iii) The orbit is compact in H1 × H2.

(iv) Let

H := {(θ, ϕ) ∈ H1(Ω) × H2
N (Ω) : θ(x, t) > 0, x ∈ [0, 1]} (1.24)

and, for every β1, β2 > 0, β3 < 0 such that 0 < β1 < eβ3−Cβ2 (Cβ2 is given
in lemma 5.3), we define the metric space

Hβ1,β2,β3 :=
{

(θ, ϕ) ∈ H, θ � β1 > 0,

∫ 1

0
( 1
2ϕ2

x + 1
8ϕ4 − 1

4ϕ2 + θ) dx � β2,∫ 1

0
(ln θ + ϕ) dx � β3

}
.

(1.25)

Then the orbit starting from Hβ1,β2,β3 will reenter itself after a finite time
and stay there forever. Moreover, it possesses in Hβ1,β2,β3 a global attractor
Aβ1,β2,β3 , which is compact.

(v) The ω-limit set

ω(θ0, ϕ0) := {(θ̃(x), ϕ̃(x)) | ∃tn such that (θ(x, ·), ϕ(x, ·))
→ (θ̃(x), ϕ̃(x)) in H1 × H2 as tn → +∞}

(1.26)
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is a singleton. In other words, the global solution (θ(t), ϕ(t)) will converge to
a single stationary solution to problem (1.17) in H1 × H2 as time goes to
infinity.

Remark 1.2. Note that our choice of Neumann boundary condition (1.14) has
an evident physical justification. From a mathematical point of view, we stress
that different choices of boundary conditions for ϕ and ϕt can be accounted for
in our analysis. Different boundary conditions for θ, such as constant temperature
boundary condition, can be dealt with in an analogous way as well (see [32]).

Remark 1.3. The linear choice of λ(·) is made for the sake of simplicity and the
nonlinear cases can be treated similarly (see [18]).

Remark 1.4. When nonlinear heat flux q = −k0θ∇θ is considered (see, for exam-
ple, [1, 14]), our method can be also applied in the long-time behaviour analysis
with some modification. We save this study for later work.

Before giving a detailed proof of our main results, let us now briefly recall some
related results in the literature.

In recent years, nonlinear coupled PDE systems arising from phase transitions
based on Frémond’s theory have been extensively studied in many research papers
(see [3, 5, 6, 10,12,23,24,31] and the references cited therein). It was first proposed
in [7,8] that the interior forces depend on microscopic movements during the phase
change. Since then, various mathematical models have been derived in the litera-
ture for the first-order phase transitions with microscopic movements. In [1], Berti
et al . developed a phase transition model describing temperature-induced solid–
liquid transitions in materials whose thermal conductivity increases linearly with
temperature. More precisely, they derived a phase transition model analogous to
ours under the assumptions that q = −k0θ∇θ and λ(ϕ) = −3ϕ2 + 8ϕ3 − 6ϕ2,
G(ϕ) = 6ϕ2(1 − ϕ)2 in expression of the free energy (1.3). Moreover, the pseudo-
potential of dissipation Φ was assumed to be independent of ∇∂tϕ, i.e. h = 0.
A well-posedness result for a simplified version of the resulting PDE system in a
regular bounded domain Ω ⊂ R

3 was established for Neumann–Dirichlet bound-
ary conditions. The simplification by neglecting the highly nonlinear terms µϕ2

t

appearing in the original model was interpreted as the so-called small perturbation
assumption (see [16]). Phase transition models taking the microscopic movements
into account are also proposed for thermoviscoelastic materials [3,28,29] and ferro-
magnetic materials [2,26]. It is worth noting that, in [26], a thermodynamical model
based on micro-force balance of the ferro/paramagnetic transition was proposed.
Our model (1.8) can be formally viewed as a typical form of their model in the
one-dimensional case.

As we can see from the literature, when the small perturbation assumption is
not taken into account and the standard Fourier heat flux law is considered, the
existence and uniqueness of the global solutions to the full models is obtained only in
the one-dimensional case (see, for example, [20–22, 29]). The global well-posedness
of classical solutions in the three-dimensional case is still an open problem due
to the high nonlinearities of the original models. Feireisl et al . [14] considered a
model that is analogous to ours with the presence of the highly nonlinear term in a
bounded domain Ω ⊂ R

3. The existence and uniqueness of classical solutions was
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proved provided that the heat conduction is governed by a particular non-Fourier
heat flux law. However, concerning the standard Fourier case, they only obtained
existence of solutions in a suitable weak sense defined by an entropy inequality
(see [13]).

In [6] the Cauchy–Neumann problem of system (1.12) in a bounded domain
Ω ⊂ R

3 was studied from a different point of view. Indeed, system (1.12) was
considered as the limit problem of approximation PDE systems consisted of (1.8 a)
coupled with the following equation for ϕ:

ρ0ϕtt + µϕt − h∆ϕt − ν∆ϕ + 1
2 (ϕ3 − ϕ) − L

θc
(θ − θc) = 0, (1.27)

when ρ0 > 0 goes to zero. The additional term ρ0ϕtt comes from the consideration
of the power of microscopic acceleration forces. They established the local well-
posedness of the approximation problems by a fixed-point procedure. It is worth
noting that the proof of the local existence result was demonstrated in a different
way from that of [9] in order to avoid the lifespan’s dependence on ρ0. Then, passing
to the limit based on the a priori estimates, they proved the local existence result
for the limit problem.

We now focus on asymptotic analysis as time goes to infinity of global solutions
to the original full models of phase transitions with micro-movements. To the best
of our knowledge, this was an open problem for years until [18] studied the long-
time behaviour of global solutions for a one-dimensional case. They studied the
strongly nonlinear PDE system derived in [1] under the standard Fourier heat flux
law, which also coincides with the system proposed in [11] with constant mass
density. By establishing a lemma of analysis (see lemma 3.1), they obtained the
uniform bounds of the global solutions. Moreover, they proved the compactness
of the orbit and the existence of global attractors. In a continuation work [19],
Jiang and Zhang considered the corresponding stationary states to the problems
of [18]. Using a modified plane-analysis method, they proved that the stationary
problem admits at most countable infinite solutions. Hence, the global solution to
the evolution system will converge to a single steady state as times goes to infinity.

We include some new features, which are listed below.

(i) The asymptotic behaviour of solutions to the original phase transition mod-
els has been an open problem for some time due to the high nonlinearities
of the original model creating difficulties in obtaining the uniform a priori
estimates independent of time of the solutions. Thanks to the recently estab-
lished lemma 3.1 (see [18]) and some delicate a priori estimates, we are able
to solve this problem. Moreover, we would like to mention that this lemma
may have important applications in the analysis of long-time behaviour for
various nonlinear coupled systems, including an energy equation for the abso-
lute temperature θ, such as nonlinear thermoviscoelastic systems (see, for
example, [14, 17,33,36]).

(ii) From a mathematical point of view, the simplification (or the so-called small
perturbation assumptions) of the original model not only removes the main
obstacle from obtaining the uniform a priori estimates of the solutions inde-
pendent of time, but also fails to keep an energy conservation (1.16) that
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has important physical significance. Due to this conservation property, the
long-time behaviour must be considered in a different way from that of the
simplified problem. We cannot expect an absorbing ball for initial data varying
in the whole space. Instead, we should consider the dynamics in a restricted
set that is invariant for the orbit (see [32,33,36,38]).

(iii) The corresponding stationary problem is an ordinary differential equation
of second order subject to Neumann boundary conditions with a non-local
term that is the integral of the unknown function and its derivative. This
is significantly different from the stationary problems of the Cahn–Hilliard
equations, the phase field equations, the thin film equations, etc., where the
non-local term only depends on the unknown function itself. We use a modified
plane analysis method (see [19, 25, 34]) to prove that the stationary problem
admits at most an infinitely countable number of solutions.

The remainder of the paper is organized as follows. In Section 2 we establish
global well-posedness results. Exploiting lemma 3.1, we obtain the uniform esti-
mates of the solutions in Section 3. Then we prove the compactness of the orbit by
a decomposition of the trajectory in Section 4. The existence of maximal attractors
is given in Section 5, where we use lemma 3.1 again. In Section 6, we prove that
the stationary problem admits at most an infinitely countable number of solutions
and the global solution of the evolution problem will converge to an equilibrium as
time goes to infinity. For the reader’s convenience we give a proof of lemma 3.1 in
the appendix.

2. Global existence and uniqueness

In this section we establish the global existence and uniqueness of solutions to our
problem. First, we state the local well-posedness result.

Theorem 2.1 (local existence and uniqueness). For any initial data (θ0, ϕ0) ∈
H1 × H2

N , there exists δ > 0 depending on Ω, ‖θ0‖H1 and ‖ϕ0‖H2 such that the
problem admits a unique solution (θ, ϕ) in Ω × [0, δ] satisfying

θ ∈ C([0, δ], H1(Ω)), θt ∈ L2((0, δ), L2(Ω)), (2.1)

ϕ ∈ C([0, δ], H2
N ), ϕt ∈ C([0, δ], H2

N ) ∩ L2((0, δ), H2
N ), (2.2)

ϕtt ∈ L2((0, δ), H2
N ). (2.3)

Sketch of the proof. The proof of theorem 2.1 is quite standard using a fixed-point
procedure. Let M0 = ‖ϕ0‖2

H2 + ‖θ0‖2
H1 . We introduce the set

Xδ(M) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(χ, v)

∣∣∣∣∣∣∣∣∣∣∣∣∣

χ ∈ C([0, δ], H2
N (Ω)) ∩ C1([0, δ], H2

N (Ω)),
χtt ∈ L2((0, δ), H2

N (Ω)),
v ∈ C([0, δ], H1(Ω)), vt ∈ L2((0, δ), L2(Ω)),
χ|t=0 = ϕ0, v|t=0 = θ0,

max0�t�δ(‖χ‖2
H2 + ‖χt‖2

H2) +
∫ δ

0 ‖χtt‖2
H2 dτ � M,

max0�t�δ ‖v‖2
H1 +

∫ δ

0 ‖vt‖2 dτ � 2M0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
(2.4)
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For (χ, v) ∈ Xδ(M), we consider the following two auxiliary linear problems:

θt + Aθ = f1(v, χ) := v − vχt + χ2
t + χ2

xt,

θ(0) = θ0,

}
(2.5)

and
Aϕt + Aϕ = f2(v, χ) := − 1

2 (χ3 − 3χ) + v,

ϕ(0) = ϕ0.

}
(2.6)

It is easy to verify that f1(v, χ), f2(v, χ) ∈ C([0, δ], H1) ∩ H1((0, δ), L2), hence, by
the theory of linear parabolic equations, (2.5) has a unique solution

θ ∈ C([0, δ], H1) ∩ H1((0, δ), L2).

On the other hand, (2.6) can be solved by

ϕ(t) = e−tϕ0 −
∫ t

0
es−t[A−1f2(v, χ)](s) ds. (2.7)

Next, we argue in a similar way to [18] to prove that, by choosing proper M and δ,
the mapping G : (v, χ) �→ (θ, ϕ) maps Xδ into itself and, moreover, G is a contrac-
tion. Then the local existence and uniqueness result follows. We omit the details
here.

Now we aim to show that the unique local solution can be extended to [0, T ] for
any T > 0. To this end, we will prove the boundedness of ‖θ‖H1 and ‖ϕ‖H2 . In
what follows, we denote by CT a universal constant that may depend on the initial
data, Ω and T , and by C we denote a universal constant that may depend on the
initial data and Ω, but not on T . Since θ represents the absolute temperature, we
expect θ to be positive since θ0 > 0 in [0, 1]. This is given by the following lemma
(see [27]).

Lemma 2.2. For any given initial data (θ0, ϕ0) ∈ H1 × H2
N satisfying θ0 > 0 in

[0, 1], let (ϕ, θ) be the local solution according to theorem 2.1. Then it holds that

θ > 0, ∀(x, t) ∈ Ω̄ × [0, δ]. (2.8)

Proof. We argue using the comparison principle as in [20]. First, we rewrite the
first equation of (1.12) as

θt − θxx = −θϕt + ϕ2
t + ϕ2

xt := aθ + b. (2.9)

Now, due to theorem 2.1, we have

a ∈ L1((0, δ), L∞(Ω)) and b � 0 in Ω̄ × [0, δ], (2.10)

so that
θt − θxx � −‖a‖L∞(Ω)θ. (2.11)

Setting θ
¯0 := minx∈[0,1] θ0(x) and noting that

Θ : t �→ θ
¯0 exp

(
−

∫ t

0
‖a(s)‖L∞(Ω) ds

)
(2.12)
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satisfies Θ(0) � θ0 and Θ′ + ‖a‖L∞(Ω)Θ = 0, the comparison principle entails that

θ(·, t) � Θ(t) in Ω̄ × [0, δ]. (2.13)

Thus, the positivity of θ follows.

Lemma 2.3. For any t > 0, it holds that

‖ϕ‖H1 � C, (2.14)∫ 1

0
θ(t) dx � C. (2.15)

Proof. Multiplying the second equation of (1.12) by ϕt and adding the result to
the first equation, then integrating over Ω, we arrive at the following conservation
relation:

d
dt

∫ 1

0
(θ + 1

2ϕ2
x + 1

8ϕ4 − 1
4ϕ2) dx = 0. (2.16)

Using Young’s inequality, we see that

1
8ϕ4 − 1

4ϕ2 � 1
16ϕ4 − C. (2.17)

Thus, by virtue of the boundary conditions and of the Poincaré inequality, (2.14)
and (2.15) easily follow.

Lemma 2.4. For any t > 0, the following estimate holds:∫ t

0

∫ 1

0

(
θ2

x

θ2 +
ϕ2

t

θ
+

ϕ2
xt

θ

)
dxdτ � C. (2.18)

Proof. Multiplication of the first equation in (1.12) by θ−1 and integrating with
respect to x yields

d
dt

∫ 1

0
(ln θ + ϕ)(t) dx −

∫ 1

0

(
θ2

x

θ2 +
ϕ2

t

θ
+

ϕ2
xt

θ

)
(t) dx = 0. (2.19)

Since ln θ � θ − 1 for all θ > 0, and noting lemma 2.3, we obtain (2.18).

Lemma 2.5. For any t ∈ [0, T ], it holds that∫ t

0
‖θ‖2 dτ � CT (2.20)

and ∫ t

0
‖ϕt‖2

H1 dτ � CT . (2.21)

Proof. Let u =
√

θ. Then

u2
x =

1
4

θ2
x

θ
. (2.22)

It follows from (2.18) that ∫ t

0

∫ 1

0

u2
x

θ
dxdτ � C. (2.23)
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Using Young’s inequality together with (2.15), we infer that∫ t

0

( ∫ 1

0
|ux| dx

)2

dτ �
∫ t

0

( ∫ 1

0

u2
x

θ
dx

)( ∫ 1

0
θ dx

)
dτ � C. (2.24)

Noting that
‖u‖2 = ‖θ‖L1 (2.25)

and the Sobolev embedding inequality

‖u‖L∞ � C‖u‖W 1,1 ,

we conclude that ∫ t

0
‖u‖2

L∞ dτ � CT , (2.26)

and, hence, ∫ t

0
‖θ‖L∞ dτ � CT . (2.27)

Then it follows that∫ t

0

∫ 1

0
θ2 dxdτ �

∫ t

0

(
‖θ‖L∞

∫ 1

0
θ dx

)
dτ � CT . (2.28)

On the other hand, multiplying the second equation in (1.12) by ϕt, integrating
over Ω and applying Young’s inequality, we obtain that

‖ϕt‖2 + ‖ϕxt‖2 +
1
2

d
dt

‖ϕx‖2 +
d
dt

∫ 1

0
( 1
8ϕ4 − 1

4ϕ2) dx � 1
2‖ϕt‖2 + C‖θ‖2. (2.29)

Integrating the above inequality with respect to t for t ∈ [0, T ] and noting (2.14),
we obtain ∫ t

0
‖ϕt‖2

H1 dτ � CT . (2.30)

Lemma 2.6. For any t ∈ [0, T ], it holds that

‖ϕt‖H2 + ‖ϕ‖H2 + ‖θ‖H1 � CT (2.31)

and ∫ t

0
(‖θt‖2 + ‖ϕxxt‖2 + ‖ϕxt‖2) dτ � CT . (2.32)

Proof. Differentiate the second equation in (1.12) with respect to t to obtain that

ϕtt − ϕxxtt − ϕxxt + ( 3
2ϕ2ϕt − 1

2ϕt) − θt = 0. (2.33)

Multiplying (2.33) by ϕt, integrating over Ω and applying Young’s inequality, then
using the fact that ‖ϕ‖L∞(Ω) � ‖ϕ‖H1 � C, we obtain that

1
2

d
dt

(‖ϕt‖2 + ‖ϕxt‖2) + ‖ϕxt‖2 = −
∫ 1

0
( 3
2ϕ2ϕt − 1

2ϕt − θt)ϕt dx

� 1
4‖θt‖2 + C‖ϕt‖2. (2.34)
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Similarly, multiplying (2.33) by −ϕxxt and integrating over Ω, we have

1
2

d
dt

(‖ϕxt‖2 + ‖ϕxxt‖2) + ‖ϕxxt‖2 =
∫ 1

0
( 3
2ϕ2ϕt − 1

2ϕt − θt)ϕxxt dx

� 1
2‖ϕxxt‖2 + ‖θt‖2 + C‖ϕt‖2. (2.35)

On the other hand, multiplying the first equation in (1.12) by θt, integrating over
Ω and applying Young’s inequality, we obtain that

1
2

d
dt

‖θx‖2 + ‖θt‖2 =
∫ 1

0
(ϕ2

t + ϕ2
xt − θϕt)θt dx

� 1
2‖θt‖2 + C

∫ 1

0
θ2ϕ2

t dx + C

∫ 1

0
(ϕ4

t + ϕ4
xt) dx. (2.36)

By virtue of the Sobolev embedding theorem and the Poincaré inequality, the last
two terms on the right-hand side of (2.36) yield

∫ 1

0
θ2ϕ2

t dx � ‖θ‖2
L∞‖ϕt‖2 � C

(
‖θx‖ +

∫ 1

0
θ dx

)2

‖ϕt‖2 � C(‖θx‖2 + 1)‖ϕt‖2,

(2.37)
and ∫ 1

0
(ϕ4

t + ϕ4
xt) dx � ‖ϕt‖2

L∞‖ϕt‖2 + ‖ϕxt‖2
L∞‖ϕxt‖2

� C(‖ϕt‖2 + ‖ϕxt‖2 + ‖ϕxxt‖2)(‖ϕt‖2 + ‖ϕxt‖2). (2.38)

Now, multiplying (2.35) by 1
8 and adding the result up with (2.34) and (2.36),

combining with (2.37) and (2.38), we finally obtain that

d
dt

( 1
2‖ϕt‖2 + 9

16‖ϕxt‖2 + 1
16‖ϕxxt‖2 + 1

2‖θx‖2) + ‖ϕxt‖2 + 1
16‖ϕxxt‖2 + 1

8‖θt‖2

� C(‖θx‖2 + 1)‖ϕt‖2 + C(‖ϕt‖2 + ‖ϕxt‖2 + ‖ϕxxt‖2 + 1)(‖ϕt‖2 + ‖ϕxt‖2).
(2.39)

Let
y(t) = 1

2‖ϕt‖2 + 9
16‖ϕxt‖2 + 1

16‖ϕxxt‖2 + 1
2‖θx‖2.

Then (2.39) can be written as

d
dt

y(t) � C(‖ϕt‖2 + ‖ϕxt‖2)y(t) + C(‖ϕt‖2 + ‖ϕxt‖2). (2.40)

By the Gronwall inequality and lemma 2.5, we conclude that y(t) � CT . Assertion
(2.31) follows from the elliptic regularity theory and (2.32) comes from the integral
of (2.39) with respect to t. This completes the proof.

We are now in a position to state and prove theorem 2.7 concerning the global
existence and uniqueness result.
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Theorem 2.7 (global existence and uniqueness). Under the assumptions of theo-
rem 1.1, for any T > 0, there exists a unique global solution (θ, ϕ) such that

ϕ ∈ C([0, T ], H2
N ), ϕt ∈ C([0, T ], H2) ∩ L2((0, T ), H2), (2.41)

ϕtt ∈ L2((0, T ), H2), (2.42)

θ ∈ C([0, T ], H1(Ω)), θt ∈ L2((0, T ), L2(Ω)), (2.43)
θ > 0, ∀(x, t) ∈ [0, 1] × [0, T ]. (2.44)

Proof. Based on lemmas 2.3–2.6, we can see that the unique solution obtained in
theorem 2.1 can be extended to [0, T ] for any T > 0.

It remains to prove (2.42). We note that

‖ϕtt‖2
H2 � C‖ϕtt − ϕxxtt‖2. (2.45)

Then, by (2.33) and lemmas 2.5 and 2.6, we obtain (2.42). This completes the
proof.

3. Uniform a priori estimates

In this section we obtain the uniform a priori estimates in order to study the long-
time behaviour of the global solutions. To begin with, we state the following key
lemma of analysis, which was first established in [18] and which plays a crucial role
in the proof of uniform a priori estimates.

Lemma 3.1. Let Ω = (0, 1). Suppose that ϑ(t, x) ∈ C([0, +∞), H1(Ω)) is a positive
function. Moreover, suppose that the following relations hold:∫ 1

0
ϑ(t, x) dx � K1 (3.1)

and ∫ ∞

0

∫ 1

0

ϑ2
x

ϑ2 dxdτ � K2, (3.2)

where K1 and K2 are two positive constants that are independent of t.
Then we have that ∫ ∞

0
‖ϑ − ϑ̄‖2 dτ � C(K1, K2), (3.3)

where

ϑ̄(t) =
∫ 1

0
ϑ(t, x) dx

stands for the mean integral of ϑ and C(K1, K2) is a positive constant depending
only on K1, K2 and Ω.

For the reader’s convenience we give the proof of this lemma in the appendix.
Now, with the help of this key lemma, we are able to obtain the uniform estimates
of the global solutions, which are given by the following theorem.
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Theorem 3.2. Under the assumptions of theorem 2.7, we have the following uni-
form estimates with respect to time for the unique global solution (θ, ϕ) to problem
(1.12):

‖θ‖2
H1 +

∫ t

0
‖θt‖2 dτ � C, (3.4)

‖ϕ‖2
H2 + ‖ϕt‖2

H2 +
∫ t

0
(‖ϕt‖2

H2 + ‖ϕtt‖2
H2) dτ � C. (3.5)

Moreover, when t goes to infinity, it holds that

‖θ − θ̄‖L∞ + ‖θx‖ + ‖ϕt‖H2 → 0. (3.6)

Proof. First of all, we see from lemma 2.3, lemma 2.4 and theorem 2.7 that θ(t, x)
fulfils the conditions of lemma 3.1. Thus, it follows that∫ ∞

0
‖θ − θ̄‖2 dτ � C. (3.7)

Applying the Sobolev embedding theorem and Young’s inequality, we note that

∫ 1

0
(ϕ2

t + ϕ2
xt) dx � ‖θ‖L∞

∫ 1

0

ϕ2
t + ϕ2

xt

θ
dx

� (‖θ − θ̄‖L∞ + θ̄)
∫ 1

0

ϕ2
t + ϕ2

xt

θ
dx

� C(‖θx‖ + ‖θ − θ̄‖ + 1)
∫ 1

0

ϕ2
t + ϕ2

xt

θ
dx

� C(‖θ − θ̄‖2 + ‖θx‖2 + 1)
∫ 1

0

ϕ2
t + ϕ2

xt

θ
dx. (3.8)

Integrating the first equation of (1.12) over Ω yields

θ̄t +
∫ 1

0
θϕt dx =

∫ 1

0
(ϕ2

t + ϕ2
xt) dx. (3.9)

Multiplying the substraction of (3.9) from the first equation of (1.12) by θ − θ̄ and
integrating over Ω, we are led to

1
2

d
dt

‖θ − θ̄‖2 + ‖θx‖2 = −
∫ 1

0
(θ − θ̄)θϕt dx +

∫ 1

0
(θ − θ̄)(ϕ2

t + ϕ2
xt) dx

= −
∫ 1

0
(θ − θ̄)2ϕt dx − θ̄

∫ 1

0
(θ − θ̄)ϕt dx

+ θ̄(‖ϕt‖2 + ‖ϕxt‖2) +
∫ 1

0
θ(ϕ2

t + ϕ2
xt) dx. (3.10)
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Exploiting Young’s inequality and by the Sobolev embedding theorem, we infer that∫ 1

0
(θ − θ̄)2ϕt dx � ‖ϕt‖L∞‖θ − θ̄‖2

� C(‖ϕt‖2
L∞ + 1)‖θ − θ̄‖2

� C(‖ϕxt‖2 + ‖ϕt‖2 + 1)‖θ − θ̄‖2. (3.11)

Noting that

θ̄ =
∫ 1

0
θ dx � C

and applying Young’s inequality, we obtain that

−θ̄

∫ 1

0
(θ − θ̄)ϕt dx + θ̄(‖ϕt‖2 + ‖ϕxt‖2) � C(‖θ − θ̄‖2 + ‖ϕt‖2 + ‖ϕxt‖2). (3.12)

It remains to estimate the last term on the right-hand side of (3.10). Applying
Young’s inequality again, we have∫ 1

0
θ(ϕ2

t + ϕ2
xt) dx �

∫ 1

0
θ2(ϕ2

t + ϕ2
xt) dx + C(‖ϕt‖2 + ‖ϕxt‖2), (3.13)

where∫ 1

0
θ2(ϕ2

t + ϕ2
xt) dx � 2

∫ 1

0
(θ − θ̄)2(ϕ2

t + ϕ2
xt) dx + 2θ̄2(‖ϕt‖2 + ‖ϕxt‖2)

� C(‖ϕt‖2
L∞ + ‖ϕxt‖2

L∞)‖θ − θ̄‖2 + C(‖ϕt‖2 + ‖ϕxt‖2)

� C(‖ϕxxt‖2 + ‖ϕxt‖2 + ‖ϕt‖2)‖θ − θ̄‖2 + C(‖ϕt‖2 + ‖ϕxt‖2).
(3.14)

Collecting (3.10)–(3.14), we arrive at

1
2

d
dt

‖θ − θ̄‖2 + ‖θx‖2 � C(‖ϕxxt‖2 + ‖ϕxt‖2 + ‖ϕt‖2)‖θ − θ̄‖2

+ C(‖ϕt‖2 + ‖ϕxt‖2 + ‖θ − θ̄‖2). (3.15)

Next, we multiply the first equation of (1.12) by θt and integrate with respect to
x over Ω. Then applying Young’s inequality yields

1
2

d
dt

‖θx‖2 − d
dt

∫ 1

0
θ(ϕ2

t + ϕ2
xt) dx + ‖θt‖2

= −2
∫ 1

0
θ(ϕtϕtt + ϕxtϕxtt) dx −

∫ 1

0
θθtϕt dx

� ε(‖ϕtt‖2 + ‖ϕxtt‖2) + 1
2‖θt‖2 + Cε

∫ 1

0
θ2(ϕ2

t + ϕ2
xt) dx, (3.16)

where ε is a positive constant to be specified later.
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On the other hand, testing (2.33) by ϕt and integrating over Ω, then using
Young’s inequality, we deduce that

1
2

d
dt

(‖ϕt‖2 + ‖ϕxt‖2) + ‖ϕxt‖2 =
∫ 1

0
(θt − 3

2ϕ2ϕt + 1
2ϕt)ϕt dx

� ε‖θt‖2 + Cε‖ϕt‖2. (3.17)

Multiplying (2.33) by ϕtt, integrating by parts and using Young’s inequality, we
get

1
2

d
dt

‖ϕxt‖2 + ‖ϕtt‖2 + ‖ϕxtt‖2 =
∫ 1

0
(θt − 3

2ϕ2ϕt + 1
2ϕt)ϕtt dx

� 1
2‖ϕtt‖2 + C1‖θt‖2 + C‖ϕt‖2. (3.18)

Similarly, multiplying (2.33) by −ϕxxt and integrating over Ω yields

1
2

d
dt

(‖ϕxt‖2 + ‖ϕxxt‖2) + ‖ϕxxt‖2 = −
∫ 1

0
(θt − 3

2ϕ2ϕt + 1
2ϕt)ϕxxt

� 1
2‖ϕxxt‖2 + C1‖θt‖2 + C‖ϕt‖2. (3.19)

Now, multiplying (3.17) by κ, (3.18) by α, and (3.19) by α, then adding the
resultants up with (3.15) and (3.16), and noting (3.14), we obtain that

1
2

d
dt

(
‖θ − θ̄‖2 + ‖θx‖2 + κ‖ϕt‖2 + (κ + 2α)‖ϕxt‖2 + α‖ϕxxt‖2

− 2
∫ 1

0
θ(ϕ2

t + ϕ2
xt) dx

)

+ ‖θx‖2 + ( 1
2 − εκ − 2C1α)‖θt‖2 + 1

2α‖ϕtt‖2

+ κ‖ϕxt‖2 + α‖ϕxtt‖2 + 1
2α‖ϕxxt‖2

� ε(‖ϕtt‖2 + ‖ϕxtt‖2) + Cε(‖ϕxxt‖2 + ‖ϕxt‖2 + ‖ϕt‖2)‖θ − θ̄‖2

+ C(ε, κ, α)(‖ϕt‖2 + ‖ϕxt‖2 + ‖θ − θ̄‖2). (3.20)

Let

Γ (t) = ‖θ − θ̄‖2 + ‖θx‖2 + κ‖ϕt‖2 + (κ + 2α)‖ϕxt‖2

+ α‖ϕxxt‖2 − 2
∫ 1

0
θ(ϕ2

t + ϕ2
xt) dx. (3.21)

By the one-dimensional Agmon inequality and Young’s inequality, we deduce
that

2
∫ 1

0
θ(ϕ2

t + ϕ2
xt) dx � 2(‖ϕt‖2

L∞ + ‖ϕxt‖2
L∞)θ̄

� C(‖ϕt‖2
L∞ + ‖ϕxt‖2

L∞)

� δ0‖ϕxxt‖2 + Cδ0(‖ϕt‖2 + ‖ϕxt‖2), (3.22)

with δ0 being a positive constant to be chosen later.
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Now, we choose appropriate ε, κ and δ0 such that

2C1α � 1
8 , εκ � 1

8 , δ0 � 1
2α, ε � 1

4α, κ � 2Cδ0 . (3.23)

For example, we pick α = 1/(16C1), δ0 = 1
2α, κ = 2Cδ0 and ε = min(1/(8κ), 1

4α),
which fulfils (3.23). Therefore, we obtain that

Γ (t) � 1
2α‖ϕxxt‖2 + Cδ0(‖ϕt‖2 + ‖ϕxt‖2) + ‖θ − θ̄‖2 + ‖θx‖2. (3.24)

Noting (3.8), we finally derive from (3.20) and (3.24) that

d
dt

Γ (t) � C(‖ϕxxt‖2 + ‖ϕxt‖2 + ‖ϕt‖2)‖θ − θ̄‖2 + C(‖ϕt‖2 + ‖ϕxt‖2 + ‖θ − θ̄‖2)

� C(‖ϕxxt‖2 + ‖ϕxt‖2 + ‖ϕt‖2)‖θ − θ̄‖2

+ C(‖θ − θ̄‖2 + ‖θx‖2)
∫ 1

0

ϕ2
t + ϕ2

xt

θ
dx

+ C

(
‖θ − θ̄‖2 +

∫ 1

0

ϕ2
t + ϕ2

xt

θ
dx

)
(3.25)

Hence, from (2.18), (3.7) and (3.25), we conclude by the Gronwall inequality that

Γ (t) � C. (3.26)

Then it follows from (3.24) that

‖ϕxxt‖2 + ‖ϕxt‖2 + ‖ϕt‖2 + ‖θ − θ̄‖2 + ‖θx‖2 � C. (3.27)

By the Poincaré inequality and the second equation of (1.12), we infer that

‖θ‖H1 + ‖ϕ‖H2 � C. (3.28)

Now, let us return to (3.20). Noting that Γ (t) � C, we find that

d
dt

Γ (t) + ‖θx‖2 + 1
4‖θt‖2 + 1

4α‖ϕtt‖2 + κ‖ϕxt‖2

+ 1
2α‖ϕxtt‖2 + 1

2α‖ϕxxt‖2 � C(‖θ − θ̄‖2 + ‖ϕt‖2 + ‖ϕxt‖2). (3.29)

Recalling (3.8) and Γ (t) � C, we have∫ t

0
(‖ϕt‖2 + ‖ϕxt‖2) dτ � C. (3.30)

Then, integrating (3.29) from 0 to t for t > 0, and by equation (2.33), we obtain
that ∫ t

0
(‖θx‖2 + ‖θt‖2 + ‖ϕt‖2

H2 + ‖ϕtt‖2
H2) dτ � C. (3.31)

Hence, it follows from (3.22) and (3.31) that∫ t

0
Γ (τ) dτ �

∫ t

0
(‖θ − θ̄‖2 + ‖θx‖2 + ‖θt‖2 + ‖ϕt‖2

H2 + ‖ϕtt‖2
H2) dτ � C. (3.32)

Concerning the asymptotic property (3.6), we shall make use of the following
lemma by Shen and Zheng [34].
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Lemma 3.3. Suppose that y(t) and h(t) are non-negative functions, y′(t) is locally
integrable on (0, +∞), and y(t) and h(t) satisfy

dy

dt
� A1y

2 + A2 + h(t), ∀t � 0, (3.33)∫ T

0
y(τ) dτ � A3,

∫ T

0
h(τ) dτ � A4, ∀T > 0, (3.34)

with A1, A2, A3 and A4 being positive constants independent of t and T . Then, for
any r > 0,

y(t + r) �
(

A3

r
+ A2r + A4

)
eA1A3 , ∀t � 0. (3.35)

Moreover,
lim

t→+∞
y(t) = 0. (3.36)

Now, letting y(t) = Γ (t) and applying lemma 3.3 on (3.29), we obtain that

Γ (t) → 0 as t → +∞. (3.37)

Recalling (3.24) and the Sobolev embedding inequality

‖θ − θ̄‖L∞ � C‖θx‖, (3.38)

we finally prove that, as t goes to infinity,

‖θ − θ̄‖L∞ + ‖θx‖ + ‖ϕt‖H2 → 0. (3.39)

This completes the proof.

4. Compactness of the orbit

The results in Section 3 imply that the unique global solution to problem (1.12)
defines a strongly continuous nonlinear semigroup S(t) acting on H1 × H2

N such
that (θ(t), ϕ(t)) = S(t)(θ0, ϕ0).

In this section we will prove the compactness of the orbit of (θ(t), ϕ(t)) for t > 0.
In what follows, we shall exploit some formal a priori estimates that can be justified
rigorously using the approximate procedure and the standard density argument.

Lemma 4.1. Under the assumptions of theorem 2.1, the following uniform estimate
holds.

‖θ(t)‖H2 � C, ∀t � 1, (4.1)

where C is a constant depending on the initial data, but not on t.

Proof. First, using the first equation of (1.12) and theorem 3.2, it holds that∫ ∞

0
‖θxx‖2 dτ � C. (4.2)

Now, we multiply the first equation of (1.12) by −θxxt and integrate by parts to
obtain

1
2

d
dt

‖θxx‖2 + ‖θxt‖2 =
∫ 1

0
(−θxϕt − θϕxt + 2ϕtϕxt + 2ϕxtϕxxt)θxt dx. (4.3)
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Recalling theorem 3.2 and applying Young’s inequality and the Sobolev embedding
theorem, we have

d
dt

‖θxx‖2 + ‖θxt‖2

� C(‖ϕt‖2
L∞‖θx‖2 + ‖θ‖2

L∞‖ϕxt‖2 + ‖ϕxt‖2
L∞‖ϕt‖2 + ‖ϕxt‖2

L∞‖ϕxxt‖2)

� C(‖θx‖2 + ‖ϕt‖2
H2). (4.4)

Then, exploiting the uniform Gronwall inequality (see [37]), we finally deduce that

‖θxx(t)‖ � C, ∀t � 1. (4.5)

Thus, (4.1) follows easily.

Next, we prove the pre-compactness of ϕ(t). Unlike the equation for θ, we have
to decompose the solution ϕ into a uniformly stable part and a compact part. We
decompose

ϕ = ϕd + ϕc, (4.6)

where ϕd and ϕc satisfy

ϕd
t − ϕd

xxt − ϕd
xx + ϕd = 0,

ϕd
x|x=0,1 = 0,

ϕd(0) = ϕ0,

⎫⎪⎪⎬
⎪⎪⎭ (4.7)

and
ϕc

t − ϕc
xxt − ϕc

xx + ϕc + 1
2 (ϕ3 − 3ϕ) − θ = 0,

ϕc
x|x=0,1 = 0,

ϕc(0) = 0.

⎫⎪⎬
⎪⎭ (4.8)

We have the following properties.

Lemma 4.2. For any given ϕ0 ∈ H2
N , the unique global solution ϕd to problem (4.7)

has the following estimate:

‖ϕd(t)‖H2 � Ce−t‖ϕ0‖H2 . (4.9)

Proof. The existence and uniqueness of ϕd to (4.7) can be easily proved as in
Section 2. Next, multiplying the equation in (4.7) by −ϕd

xx + ϕd and integrating
over Ω, we obtain that

1
2

d
dt

(‖ϕd
xx‖2 + 2‖ϕd

x‖2 + ‖ϕd‖2) + ‖ϕd
xx‖2 + 2‖ϕd

x‖2 + ‖ϕd‖2 = 0. (4.10)

Hence, we obtain that

‖ϕd(t)‖2
H2 � ‖ϕd

xx‖2 + 2‖ϕd
x‖2 + ‖ϕd‖2

= (‖ϕ0xx‖2 + 2‖ϕ0x‖2 + ‖ϕ0‖2)e−2t

� Ce−2t‖ϕ0‖2
H2 . (4.11)
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Lemma 4.3. For any t � 0, it holds that

‖ϕc(t)‖H3 � C. (4.12)

Proof. First, by theorem 3.2 and lemma 4.2, we have that

‖ϕc(t)‖H2 � C for t � 0. (4.13)

Multiplying the equation of (4.8) by ϕc
xxxx and integrating over Ω, we obtain

1
2

d
dt

(‖ϕc
xx‖2 + ‖ϕc

xxx‖2) + ‖ϕc
xx‖2 + ‖ϕc

xxx‖2

= −
∫ 1

0
ϕc

xx(3ϕϕ2
x + 3

2ϕ2ϕxx − 3ϕxx − θxx) dx. (4.14)

Recalling theorem 3.2 and applying Young’s inequality and the Sobolev embedding
theorem, we have

1
2

d
dt

(‖ϕc
xx‖2 + ‖ϕc

xxx‖2) + ‖ϕc
xx‖2 + ‖ϕc

xxx‖2

� 1
2‖ϕc

xx‖2 + C(‖ϕxx‖2 + ‖ϕx‖2 + ‖θxx‖2) + C. (4.15)

Then, by the Gronwall inequality, we infer that

‖ϕc
xx‖2 + ‖ϕc

xxx‖2 � C. (4.16)

Combining (4.13) and (4.16), we complete the proof.

Since the solution (θ, ϕ) defines a C0-semigroup and problem (1.12)–(1.15) has
a Lyapunov function. Thus, it is a gradient system. Then, it follows from the well-
known results in dynamic systems (see [37, 39]) that the ω-limit set ω(θ0, ϕ0) is a
compact and connected set that consists of equilibria of problem (1.12)–(1.15).

5. Existence of global attractors

In order to prove the existence of a global attractor, we shall apply theorem I.1.1
from [37], which was rephrased in [35] as follows.

Theorem 5.1. Suppose that we have the following.

(i) The mapping S(t), t � 0, defined by the solution to problem (1.12) is a non-
linear continuous semigroup from H into itself.

(ii) The operator S(t) is uniformly compact for t large, i.e. for every bounded set
B contained in Hβ1,β2,β3 , there exists t0 which may depend on B such that⋃

t�t0
S(t)B is relatively compact in H.

(iii) The orbit starting from any bounded set of Hβ1,β2,β3 will reenter in Hβ1,β2,β3

after a finite time, which depends only on this bounded set, and stay there
forever. There exists a bounded set Bβ1,β2,β3 in Hβ1,β2,β3 such that Bβ1,β2,β3

is absorbing in Hβ1,β2,β3 .
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Then the ω-limit set of Bβ1,β2,β3 , Aβ1,β2,β3 is a global attractor that is compact and
attracts the bounded sets of Hβ1,β2,β3 .

Based on the results obtained in Section 3 and Section 4, it remains to verify
condition (iii).

Hereafter, we always assume that the initial data (θ0, ϕ0) ∈ B ⊂ Hβ1,β2,β3 , with
‖(θ0, ϕ0)‖H � R, where B is an arbitrary bounded set in Hβ1,β2,β3 and R > 0 is
a constant depending on B. We will prove that, for any (θ0, ϕ0) ∈ B, there exists
t(B) > 0 such that, when t � t(B), the corresponding solution (θ, ϕ) ∈ Hβ1,β2,β3

and there exists a bounded set Bβ1,β2,β3 in Hβ1,β2,β3 such that Bβ1,β2,β3 is absorbing
in Hβ1,β2,β3 .

In what follows, we will denote by C and Ci constants that may depend on β1,
β2, β3 and Ω, but not on the initial data.

Lemma 5.2. For any t > 0, it holds that

‖ϕ‖H1 � C, (5.1)
θ > 0, ∀(x, t) ∈ [0, 1] × [0,∞), (5.2)

‖θ‖L1 � C. (5.3)

Proof. Integrating (2.16) with respect to t yields∫ 1

0
( 1
2ϕ2

x + 1
8ϕ4 − 1

4ϕ2 + θ) dx =
∫ 1

0
( 1
2ϕ2

0x + 1
8ϕ4

0 − 1
4ϕ2

0 + θ0) dx � β2. (5.4)

Then we can prove (5.1)–(5.3) as in lemma 2.3.

Lemma 5.3. For any t > 0, it holds that∫ t

0

∫ 1

0

(
θ2

x

θ2 +
ϕ2

t

θ
+

ϕ2
xt

θ

)
dxdτ � C, (5.5)

eβ3−Cβ2 �
∫ 1

0
θ dx � C, (5.6)

where Cβ2 = 16β2 + 9
2 .

Proof. Multiplication of the first equation in (1.12) by θ−1 and integrating with
respect to x yields

d
dt

∫ 1

0
(ln θ + ϕ)(t) dx −

∫ 1

0

(
θ2

x

θ2 +
ϕ2

t

θ
+

ϕ2
xt

θ

)
(t) dx = 0. (5.7)

Since ln θ � θ for all θ > 0 and ‖ϕ‖H1 � C, we obtain that∫ t

0

∫ 1

0

(
θ2

x

θ2 +
ϕ2

t

θ
+

ϕ2
xt

θ

)
dxdτ �

∫ 1

0
(ln θ + ϕ) dx − β3 � C. (5.8)

Moreover, it follows from (5.7) that∫ 1

0
(ln θ + ϕ) dx �

∫ 1

0
(ln θ0 + ϕ0) dx � β3. (5.9)
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On the other hand, noting (5.4) and exploiting Young’s inequality, we may deduce
that ∫ 1

0
ϕ dx � 16β2 + 9

2 := Cβ2 . (5.10)

Hence, ∫ 1

0
ln θ dx � β3 −

∫ 1

0
ϕ dx � β3 − Cβ2 . (5.11)

Applying Jensen’s inequality, we infer that

ln
∫ 1

0
θ dx �

∫ 1

0
ln θ dx � β3 − Cβ2 . (5.12)

Then (5.6) follows from (5.3) and (5.12).

Lemma 5.4. For any (ϕ0, θ0) ∈ B, there exists t0 = t0(B) > 0 depending only on
B such that, for all t � t0, x ∈ [0, 1],

θ(x, t) � β1 > 0. (5.13)

Proof. We use a contradiction argument. Suppose that the assertion does not hold.
Then there exists an initial datum (θ0, ϕ0) ∈ B and a sequence tn → ∞, xn ∈ [0, 1],
such that the corresponding solution (θ, ϕ) satisfies

θ(xn, tn) < β1. (5.14)

On the other hand, it follows from theorem 3.2 that, as n → ∞,

θ(x, tn) − θ̄(tn) → 0, ∀x ∈ [0, 1]. (5.15)

By (5.6), we have ∫ 1

0
θ(x, tn) dx = θ̄(tn) � eβ3−Cβ2 > β1 > 0. (5.16)

Then, we derive from (5.15) and (5.16) that

lim inf
n→∞

θ(x, tn) � eβ3−Cβ2 > β1 > 0, (5.17)

which contradicts (5.14). The proof is complete.

Now, we can see from lemmas 5.2–5.4 that the orbits starting from any bounded
set B ∈ Hβ1,β2,β3 reenter Hβ1,β2,β3 when t � t0(B) and stay there forever.

Let

Bβ1,β2,β3 = {(θ, ϕ) ∈ Hβ1,β2,β3 , ‖θ‖H1 � C2, ‖ϕ‖H2 � C3}, (5.18)

where C2 and C3 are positive constants depending only on βi, i = 1, 2, 3, and will
be specified later.

Lemma 5.5. Bβ1,β2,β3 is an absorbing set in Hβ1,β2,β3 , i.e. for any bounded set
B ∈ Hβ1,β2,β3 , there exists some time t1 = t1(B) such that, when t � t1(B),
S(t)B ⊂ Bβ1,β2,β3 .
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Proof. To begin with, applying lemma 3.1 again, we infer from lemmas 5.2 and 5.3
that ∫ ∞

0
‖θ − θ̄‖2 dτ � C. (5.19)

Arguing as in the proof of theorem 3.2 and noticing (3.8) and (3.24), it is not
difficult to derive that there exists a generic constant C4 > 0 such that

d
dt

Γ (t) + C4Γ (t) � Γ (t)
(

‖θ − θ̄‖2 +
∫ 1

0

ϕ2
t + ϕ2

xt

θ
dx

)

+ C

(
‖θ − θ̄‖2 +

∫ 1

0

ϕ2
t + ϕ2

xt

θ
dx

)
. (5.20)

Owing to lemma 5.3 and (5.19), we obtain that

Γ (t) � CΓ (0)e−C4t + C5. (5.21)

This implies that there exists t1 = t1(B) such that, when t � t1,

Γ (t) � 2C5. (5.22)

Recalling (3.24), we deduce that, when t � t1,

‖ϕt‖2
H2 + ‖θ − θ̄‖2 + ‖θx‖2 � C7. (5.23)

Then, by virtue of the Poincaré inequality and equation (1.12), we finally deduce
that, when t � t1,

‖θ‖H1 � C2, ‖ϕ‖H2 � C3. (5.24)

Thus, Bβ1,β2,β3 is an absorbing set and the proof is now complete.

6. Stationary problem

In this section we investigate the multiplicity of solutions to the following elliptic
problem:

−νψxx + 1
2L(ψ3 − ψ) − L

θc
u = 0,

−k0uxx = 0,

ψx|x=0,1 = 0, ux|x=0,1 = 0,∫ 1

0
( 1
2νψ2

x + L( 1
8ψ4 − 1

4ψ2) + csu) dx = m

�
∫ 1

0
( 1
2νϕ2

0x + L( 1
8ϕ4

0 − 1
4ϕ2

0) + csθ0) dx,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.1)
which is the corresponding stationary problem of system (1.8) under the assumption
(1.11) and A = L, r = 0 with initial-boundary conditions (1.13) and (1.15). We aim
to count the number of solutions to problem (6.1) using the plane analysis method
(see [19, 25, 34]). Since most of the detailed discussions can be found in [19, 25, 34],
we just sketch the proof as follows.
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First, by virtue of the homogeneous Neumann boundary conditions, we have

u ≡ u0, (6.2)

where u0 is a constant that satisfies

u0 =
1
cs

[
m −

∫ 1

0
( 1
2νψ2

x + L( 1
8ψ4 − 1

4ψ2)) dx

]
. (6.3)

It follows that the unknown function ψ indeed satisfies a nonlinear elliptic equation
with a non-local term

−νψxx + 1
2L(ψ3 − ψ) − Lu0

θc
= 0,

ψx|x=0,1 = 0.

⎫⎬
⎭ (6.4)

We note that, in (6.3), the integral involves the derivative of ψ. In order to cancel
this term, we multiply the equation in (6.4) by ψ and integrate on (0, 1) to obtain
that

ν‖ψx‖2 + 1
2L

∫ 1

0
(ψ4 − ψ2) dx − Lu0

θc

∫ 1

0
ψ dx = 0. (6.5)

Then a substitution of (6.5) into (6.3) leads to

csu
0 − 1

8L

∫ 1

0
ψ4 dx +

Lu0

2θc

∫ 1

0
ψ dx = m. (6.6)

For the sake of simplicity, we introduce a new parameter

σ :=
2u0

θc
. (6.7)

Then the stationary problem (6.1) can be rewritten as

2ν

L
ψxx = f(ψ; σ) � ψ3 − ψ − σ, (6.8 a)

ψx|x=0,1 = 0, (6.8 b)

1
2 (csθcσ) + L

∫ 1

0
( 1
4σψ − 1

8ψ4) dx = m. (6.8 c)

Now multiplying (6.8 a) by ψx, we obtain the following identity:
ν

L
ψ2

x = F (ψ; σ, b) := J(ψ; σ) − b, (6.9)

where

J(ψ; σ) = 1
4ψ4 − 1

2ψ2 − σψ (6.10)

and b is some constant of integration.
Without loss of generality, we look for strictly increasing solutions (see [25]). In

view of (6.9), it means that the pair of parameters (σ, b) should be such that F has
two zeros, ψ1 < ψ2, so that

F (ψ1) = F (ψ2) = 0 and F (ψ) > 0 for ψ1 < ψ < ψ2. (6.11)
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Such a pair (σ, b) will be called admissible and the union of all admissible pairs
will be called the admissible region and will be denoted by Σ. We note that
the admissible range of σ is the open interval (− 2

9

√
3, 2

9

√
3) (see [34]) and, for

σ ∈ (− 2
9

√
3, 2

9

√
3), f(ψ; σ) has three roots w0(σ) < w1(σ) < w2(σ), and F has two

further zeros ψ0 and ψ3 such that

ψ0 � w0 � ψ1 � w1 � ψ2 � w2 � ψ3. (6.12)

Now, as in [30] (see also [19]), we introduce the time map I0, which is defined as

I0(σ, b) =
√

ν

L

∫ ψ2

ψ1

ds√
F (s; σ, b)

. (6.13)

We also define

I1(σ, b) =
√

ν

L

∫ ψ2

ψ1

( 1
2csθcσ + 1

4Lσs − 1
8Ls4)

ds√
F (s; σ, b)

, (6.14)

and

R(σ, b) =
I1(σ, b)
I0(σ, b)

. (6.15)

Then it follows from the periodicity of non-trivial solutions to (6.8) (see [25, 34])
that our problem is reduced to finding (σ, b) ∈ Σ such that

I0(σ, b) = 1/n for some n ∈ N, (6.16)

and
R(σ, b) = m. (6.17)

For the sake of argument, we introduce the level sets

Cλ = {(σ, b) ∈ Σ : I0(σ, b) = λ} (6.18)

and

Dµ = {(σ, b) ∈ Σ : R(σ, b) = µ}. (6.19)

Now we examine the sketches of Σ, Cλ and Dµ. We refer the interested reader
to [25, 34] for detailed discussions on Σ and Cλ. It follows by inspection that Σ is
symmetric in σ and the boundary of Σ consists of three arcs Γ0, Γ1 and Γ2 defined
by

ψ0 = w0 = ψ1 on Γ0, ψ1 = w1 = ψ2 on Γ1, ψ2 = w2 = ψ3 on Γ2, (6.20)

and Σ can be expressed as

Σ = (σ, b) | σ ∈ (−2
9

√
3, 2

9

√
3), b0(σ) � b < b1(σ) for σ ∈ [0, 2

9

√
3)

and b2(σ) � b < b1(σ) for σ ∈ (− 2
9

√
3, 0]

(6.21)
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where

b0(σ) = inf{b : (σ, b) ∈ Σ ∩ {σ � 0}}, (6.22)
b1(σ) = sup{b : (σ, b) ∈ Σ}, (6.23)
b2(σ) = inf{b : (σ, b) ∈ Σ ∩ {σ � 0}}. (6.24)

By [25, lemma 8.1], for λ > π
√

2ν/L the level set Cλ is a connected curve which is
symmetric in σ and joins the points(

± 1
3
√

3

(
1 − 2π2

λ2L

)1/2(
2 +

2π2

λ2L

)
,

1
12

(
1 − 4π4

λ4L2

))
, λ > π

√
2ν

L
. (6.25)

On the other hand, we can prove in a similar way as in [19] that R(σ, b) is analytic
on (σ, b) in IntΣ and the set Dµ consists of at most an infinitely countable number
of curves that are either closed or otherwise have end points on the boundary of Σ.
In addition, for fixed σ ∈ (− 2

9

√
3, 2

9

√
3), as b ↑ b1(σ),

R(σ, b) → 1
2csθcσ + 1

4Lσw1(σ) − 1
8Lw4

1(σ). (6.26)

Noting that w1(·) is an odd function, we infer that the level set Cλ does not coincide
with any componential curve of Dµ because the end points of them do not coincide.

Since ∂I0/∂b < 0 (see [25, lemma 5.1]), we get b = b1/n(σ) from I0(σ, b) = 1/n, for
n ∈ N. Then substituting it into R(σ, b) = m leads to R(σ, b1/n(σ)) = m. Therefore,
from the analyticity of R(σ, b1/n(σ)) on σ, we know that the set C1/n ∩ Dm has no
accumulation point in IntΣ. In other words, the only possibility of accumulation
points should be the end points of the curves in C1/n, n ∈ N. We may now conclude
this part with the following proposition. Further discussions on the multiplicity of
the problem (6.8) may be carried out in an analogous way as in [25,34].

Proposition 6.1. Problem (6.1) admits at most an infinitely countable number of
solutions.

Since we have proven that the ω-limit set is a non-empty connected set and
consists of stationary solutions, it follows from proposition 6.1 that the ω-limit set
is a singleton. More precisely, we have the following corollary.

Corollary 6.2. For any (θ0, ϕ0) ∈ H1 ×H2
N satisfying θ0 > 0 in [0, 1], the unique

global solution (θ, ϕ) of problems (1.12)–(1.15) will converge to an equilibrium in
H1 × H2 as t → +∞.
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Appendix A. Proof of lemma 3.1

By the Sobolev embedding theorem, we have

ϑ(t, x) ∈ C([0, +∞), C(Ω̄)).
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Now we introduce the function y(t) := ‖u(t)‖L∞(Ω) − 2(ϑ̄(t))1/2, where

u(t, x) =
√

ϑ(t, x). (A 1)

Obviously, y(t) is a continuous function on [0, +∞). Hence, we can divide the inter-
val [0, +∞) into two sets as the curve of y(t) crosses the t-axis. We denote them
by S and U which consist of closed intervals (the end points of these intervals are
transverse intersection points), where

y(t) � 0, ∀t ∈ S,

and

y(t) � 0, ∀t ∈ U.

Now we argue as follows.

(i) For t ∈ U , since y(t) � 0 and noting (3.1), we have that

u(t) � 2
( ∫ 1

0
ϑ(t) dx

)1/2

� 2K
1/2
1 , (A 2)

hence, it holds that
‖ϑ‖L∞ � 4K1, ∀t ∈ U. (A 3)

Then, from (3.2), we have∫
U

∫ 1

0
ϑ2

x dxdτ =
∫

U

∫ 1

0

ϑ2
x

ϑ2 ϑ2 dxdτ

�
∫

U

(
‖ϑ‖2

L∞

∫ 1

0

ϑ2
x

ϑ2 dx

)
dτ

� sup
U

‖ϑ‖2
L∞

∫ ∞

0

∫ 1

0

ϑ2
x

ϑ2 dxdτ

� 16K2
1K2. (A 4)

By the Poincaré inequality, we infer that∫
U

‖ϑ − ϑ̄‖2
L2 dτ � C

∫
U

∫ 1

0
ϑ2

x dxdτ � C(K1, K2). (A 5)

(ii) For fixed t ∈ S, by the continuity of u(t, x) with respect to the x variable, we
can deduce that, at time t, there exists x0(t) ∈ [0, 1] such that

u(x0(t), t) =
( ∫ 1

0
ϑ(t) dx

)1/2

.

This can be shown by a contradiction argument. Indeed, for the time being, if, for
any point x ∈ [0, 1], it holds that

u(x, t) >

( ∫ 1

0
ϑ(t) dx

)1/2

,
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then, using Young’s inequality, we infer that( ∫ 1

0
ϑ(t) dx

)1/2

=
( ∫ 1

0
u2 dx

)1/2

�
∫ 1

0
u dx >

( ∫ 1

0
ϑ(t) dx

)1/2

, (A 6)

which leads to a contradiction.
Hence, for t ∈ S, we have

u(x, t) − ϑ̄1/2(t) =
∫ x

x0(t)
ux dx. (A 7)

Therefore, it follows from the Young inequality that∫
S

‖u − ϑ̄1/2‖2
L∞(Ω) dτ �

∫
S

( ∫ 1

0
|ux| dx

)2

dτ

�
∫ ∞

0

( ∫ 1

0

u2
x

ϑ
dx

)( ∫ 1

0
ϑ dx

)
dτ

=
∫ ∞

0

( ∫ 1

0

ϑ2
x

4ϑ2 dx

)( ∫ 1

0
ϑ dx

)
dτ

� 1
4K1K2. (A 8)

Moreover, for the time being, since y(t) � 0, we have

ϑ̄1/2 � ‖u(t)‖L∞ − ϑ̄(t)1/2, (A 9)

hence,
ϑ̄1/2 � ‖u − ϑ̄1/2‖L∞ . (A 10)

Noting
ϑ − ϑ̄ = u2 − ϑ̄ = |u − ϑ̄1/2|2 + 2ϑ̄1/2(u − ϑ̄1/2), (A 11)

we infer from (A 10) that

‖ϑ − ϑ̄‖L∞ � 3‖u − ϑ̄1/2‖2
L∞ . (A 12)

Then it follows from (A 8) that∫
S

‖ϑ − ϑ̄‖L∞ dτ � 3
∫

S

‖u − ϑ̄1/2‖2
L∞ dτ � 3

4K1K2. (A 13)

Now, it is obvious to see that∫
S

‖ϑ − ϑ̄‖2 dτ =
∫

S

∫ 1

0
|ϑ − ϑ̄|2 dxdτ

�
∫

S

(
‖ϑ − ϑ̄‖L∞

∫ 1

0
|ϑ − ϑ̄| dx

)
dτ

�
∫

S

(
‖ϑ − ϑ̄‖L∞

∫ 1

0
(ϑ + ϑ̄) dx

)
dτ

� 2 sup
S

‖ϑ‖L1

∫
S

‖ϑ − ϑ̄‖L∞ dτ

� 3
2K2

1K2. (A 14)
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Finally, combining (A 5) and (A 14) we conclude that∫ ∞

0
‖ϑ − ϑ̄‖2 dτ =

∫
S

‖ϑ − ϑ̄‖2 dτ +
∫

U

‖ϑ − ϑ̄‖2 dτ � C(K1, K2). (A 15)

This completes the proof.
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14 E. Feireisl, H. Petzeltová and E. Rocca. Existence of solutions to a phase transition model
with microscopic movements. Math. Meth. Appl. Sci. 32 (2008), 1345–1369.

15 M. Frémond. Non-smooth thermomechanics (Springer, 2002).
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