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Dean’s approximation for curved pipe flow, valid under loose coiling and high Reynolds
numbers, is extended to study three-dimensional travelling waves. Two distinct types
of solutions bifurcate from the Dean’s classic two-vortex solution. The first type arises
through a supercritical bifurcation from inviscid linear instability, and the corresponding
self-consistent asymptotic structure aligns with the vortex–wave interaction theory. The
second type emerges from a subcritical bifurcation by curvature-induced instabilities and
satisfies the boundary region equations. A connection to the zero-curvature limit was not
found. However, by continuing from known self-sustained exact coherent structures in the
straight pipe flow problem, another family of three-dimensional travelling waves can be
shown to exist across all Dean numbers. The self-sustained solutions also possess the two
high-Reynolds-number limits. While the vortex–wave interaction type of solutions can be
computed at large Dean numbers, their branch remains unconnected to the Dean vortex
solution branch.
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1. Introduction
Fluid flow through a curved pipe is encountered in various applications, from engineering
equipment to biological systems. It is well-known that unidirectional laminar flow is
not achievable in this system, as the balance between centrifugal force and pressure is
disrupted, resulting in the formation of steady cross-stream vortices named after Dean’s
seminal works (Dean 1927, 1928). The earliest qualitative observations of this flow pattern
can be traced back to Boussinesq (1868). Over the past century, Dean vortices have
remained a fundamental example of secondary flows in fluid dynamics.
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Extensive research into curved pipes has been conducted through experiments (White
1929; Ito 1959; Sreenivasan & Strykowski 1983; Kuhnen et al. 2014,2015), theory (Dean
1927; Van Dyke 1978; Daskopoulos & Lenhoff 1989; Boshier & Mestel 2014, 2017;
Boshier & Mestel 2014), and numerical computations (Collins & Dennis 1975; Patankar
et al. 1975; Webster & Humphrey 1997; Huttl & Friedrich 2001; Piazza & Ciofalo 2011).
Readers seeking quick access to this vast body of work are encouraged to consult review
articles by Berger et al. (1983), Vashisth et al. (2008) and Vester et al. (2016). Numerical
computations of curved pipe flows can be broadly categorised into those that use the so-
called loose-coiling approximation, originating from Dean’s work, and those that do not,
and this study belongs to the former category. The full curved pipe flow problem involves
two parameters: the Reynolds number and the (dimensionless) curvature of the pipe. The
loose-coiling approximation is valid when the curvature is small and the Reynolds number
is large, allowing the behaviour of Dean vortices to be captured by a single parameter
known as the Dean number. Historically, this approximation was particularly valuable
when computational resources were limited. When the Dean number is small, perturbation
theory can be applied, providing a useful check on numerical computations for finite Dean
numbers.

In the 1980s and 1990s, significant interest centred on the non-uniqueness of steady
vortex structures in the loose-coiling approximation system. Two families of four-vortex
solutions were discovered numerically (Benjamin 1978; Nandakumar & Masliyah 1982;
Winters 1987; Yanase et al. 1989; Daskopoulos & Lenhoff 1989), and are later elegantly
reconstructed via perturbation expansion (Boshier & Mestel 2014, 2017). These flow
states can be regarded as what are now called exact coherent structures. Identifying
exact coherent structures has become one of the major focuses in shear flow research,
guided by dynamical systems theory (see e.g. Kerswell 2005; Eckhardt et al. 2007).
However, previous studies on Dean vortices have only addressed two-dimensional
stationary structures that are invariant along the pipe’s axial direction. The primary
goal of this research is therefore to extend these theoretical and numerical results to
three-dimensional travelling-wave-type exact coherent structures, providing a broader
theoretical understanding of the complex dynamics in curved pipe flows.

Although stable travelling wave states have been observed under specific parameters in
experiments and numerical simulations (Webster & Humphrey 1993, 1997), to the best
of the authors’ knowledge, systematic continuation study of corresponding exact coherent
structures by Newton’s method has not been conducted yet. Stability analysis of the Dean
vortex with respect to three-dimensional perturbations serves as an obvious first step
towards obtaining nonlinear travelling waves by bifurcation analysis. However, somewhat
surprisingly, such stability analysis was not pursued until the recent work by Canton et al.
(2016).

Another pathway to finding a three-dimensional travelling wave is through homotopy
continuation from the exact coherent structures obtained in a straight pipe flow (Faisst &
Eckhardt 2003; Wedin & Kerswell 2004; Pringle & Kerswell 2007; Pringle et al. 2009). In
the absence of curvature, no linear instability arises in the laminar Hagen–Poiseuille flow,
thus the transition to turbulence is necessarily triggered by finite-amplitude perturbations.
Exact coherent structures are crucial for an understanding of such subcritical transition
problems (Kerswell 2005; Eckhardt et al. 2007). The physical mechanism by which
coherent structures are maintained, independent of laminar flow instabilities, is commonly
explained by a cyclic interaction between the rolls, streaks and waves (self-sustaining
process; see Hamilton et al. 1995; Waleffe 1997). The cycle naturally emerges from
the large-Reynolds-number asymptotic expansion of exact coherent structures in the
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high-Reynolds-number limit, known as the vortex–wave interaction (VWI) theory (see
Hall & Smith 1991; Hall & Sherwin 2010; Deguchi & Hall 2014, Ozcakir et al. 2016).

At medium to high curvatures of the pipe, Sreenivasan & Strykowski (1983), Webster
& Humphrey (1993, 1997) and Kuhnen et al. (2014) identified a supercritical transition
characterised by the emergence of a travelling wave. However, when the pipe curvature
is small, the neutral curve recedes to higher Reynolds numbers, making subcritical
transition, as observed in straight pipe flow problems, more dominant (Kuhnen et al. 2015).
Expanding on these findings, Canton et al. (2020) conducted detailed direct numerical
simulations around the pipe curvature at which the nature of the transition changes from
subcritical to supercritical. They observed that within a narrow range of pipe curvatures,
the flow can exhibit both sustained turbulence and a stable travelling wave, with two
competing attractors in the phase space. Moreover, the supercritical Hopf bifurcation
point for the three-dimensional travelling waves detected by Canton et al. (2020) aligns
perfectly with the neutral curve computed by the stability analysis (Canton et al. 2016).

One of the remaining unanswered questions is how the three-dimensional travelling
waves that emerge in the supercritical transitions relate to the exact coherent structures
self-sustained at the straight pipe case. This inquiry is closely tied to the works by Nagata
(1988, 1990), where exact coherent structures in plane Couette flow were found through
continuation from secondary flows induced by system rotation. Another key question in
this paper is the relationship between the Dean vortices in the loose-coiling approximation
and the VWI theory, both of which apply in the high-Reynolds-number limit. Bridging
these theories seems promising, given that the VWI originated from the asymptotic theory
for Görtler vortices (Hall & Smith 1988).

For plane Couette flow, Deguchi et al. (2013) showed that when the streamwise
wavelength of exact coherent structures is comparable to the Reynolds number, the VWI
approximation breaks down and must be replaced by boundary region equations (BRE).
More recently, Dokoza & Oberlack (2023) considered the same limit to explain the large-
scale coherent structures observed in direct numerical simulations in Lee & Moser (2019).
We will show that two high-Reynolds-number limits, VWI and BRE, are also possible for
the curved pipe flow problem.

The rest of the paper is organised as follows. In the next section, we will
formulate the curved pipe flow problem using Navier–Stokes equations. The loose-
coiling approximation and its extensions to the three-dimensional travelling waves will
be discussed. Section 3 first studies the large Reynolds number asymptotic properties of
the stability of the Dean vortices with respect to three-dimensional perturbations. In the
same section, we will also study the bifurcation of nonlinear travelling waves. Section 4
is devoted to the continuation of exact coherent structures from the straight pipe problem.
Finally, in § 5, we present our conclusions and discuss the implications of the results.

2. Formulation of the problem
Consider an incompressible Newtonian viscous fluid with density ρ∗ and dynamic
viscosity μ∗ flowing through a curved circular pipe. As sketched in figure 1, we denote
the radius of the curvature of the pipe centreline as d∗, and the radius of the pipe as a∗,
with the latter chosen as the length scale. Following Germano (1982, 1989), the orthogonal
coordinates (r∗, θ, z∗) are installed to describe the radial, circumferential and streamwise
directions, respectively. We assume that the flow is driven by a constant pressure
gradient G∗. In the absence of the curvature, the centreline velocity of the laminar
Hagen–Poiseuille flow is given by U∗

c = (G∗a∗2)/(4μ∗), and we adopt this as the velocity
scale. The non-dimensional velocity field (u, v, w) and pressure p are governed by the
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a*

d*

z*
r*
θ

Figure 1. A sketch of the curved pipe studied in this paper. The grey surface represents a section of a torus
with minor and major radii denoted by a∗ and d∗, respectively. The flow field is described by the orthogonal
coordinates (r∗, θ, z∗).

Navier–Stokes equations

ω
∂w

∂z
+ ∂u

∂r
+ u

r
+ 1

r

∂v

∂θ
+ κω{u cos θ − v sin θ} = 0, (2.1a)

Du

Dt
− v2

r
− κωw2 cos θ = −∂p

∂r
+ 1

R

{(
1
r

∂

∂θ
− κω sin θ

)
S1 −ω

∂S3

∂z

}
, (2.1b)

Dv
Dt

+ uv

r
+ κωw2 sin θ = −1

r

∂p

∂θ
+ 1

R

{
ω
∂S2

∂z
−
(
∂

∂r
+ κω cos θ

)
S1

}
, (2.1c)

Dw
Dt

+ κωw(u cos θ − v sin θ)= −ω ∂p

∂z
+ 1

R

{
4 +

(
1
r

+ ∂

∂r

)
S3 − 1

r

∂S2

∂θ

}
,(2.1d)

where r = r∗/a∗, z = z∗/a∗ and

D
Dt

= ∂

∂t
+ωw

∂

∂z
+ u

∂

∂r
+ v

r

∂

∂θ
, ω= 1

1 + κr cos θ
, (2.1e)

S1 = 1
r

∂u

∂θ
− ∂v

∂r
− v

r
, S2 =ω

∂v

∂z
+ κωw sin θ − 1

r

∂w

∂θ
, (2.1f )

S3 = ∂w

∂r
+ κωw cos θ −ω

∂u

∂z
. (2.1g)

The flow has two parameters, the Reynolds number and the non-dimensional curvature:

R = U∗
c a∗ρ∗

μ∗ , κ = a∗

d∗ . (2.2)

The no-slip conditions u = v =w= 0 are imposed at r = 1. In the streamwise direction,
the flow is assumed to be periodic with period 2π/α, where α is the wavenumber. Our
Reynolds number R is based on the pressure gradient; therefore, the bulk velocity Q
(i.e. normalised flux) is one of the appropriate quantities to diagnose the flow state.
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As Dean (1927) realised, the combined parameter K ≡ 2κR2 plays an important role
when the curvature κ is small (see § 2.1). This is one of the widely used definitions of
the ‘Dean number’ found in the literature. In experiments, however, the flux is easier to
control, and De ≡ RQκ1/2 = Q(K/2)1/2 is more commonly used (see Vester et al. 2016).
Since Q depends on R in a non-trivial manner, numerical computations are necessary to
link K with De.

If the curvature κ is not small, then the flow cannot be controlled by the Dean number
alone (see e.g. Topakoglu 1967), and our study does not cover such a parameter regime.

2.1. Dean vortices
Suppose that the flow is steady and does not depend on z. The loose-coiling approximation
corresponds to the asymptotic limit of R → ∞, κ → 0 while keeping the Dean number
K = 2κR2 as an O(1) quantity. Substituting the asymptotic expansions

u = R−1 U (r, θ)+ · · · , v = R−1 V (r, θ)+ · · · , (2.3a)

w= W (r, θ)+ · · · , p = R−2 P(r, θ)+ · · · , (2.3b)

into (2.1), and retaining the leading-order terms, we obtain the set of equations

∂U

∂r
+ U

r
+ 1

r

∂V

∂θ
= 0, (2.4a)

U
∂U

∂r
+ V

r

∂U

∂θ
− V 2

r
− K

2
W 2 cos θ = −∂P

∂r
+	2U − U

r2 − 2
r2
∂V

∂θ
, (2.4b)

U
∂V

∂r
+ V

r

∂V

∂θ
+ U V

r
+ K

2
W 2 sin θ = −1

r

∂P

∂θ
+	2V − V

r2 + 2
r2
∂U

∂θ
, (2.4c)

U
∂W

∂r
+ V

r

∂W

∂θ
= 4 +	2W. (2.4d)

Here,

	2 = ∂2
r + r−1 ∂r + r−2 ∂2

θ (2.5)

is the two-dimensional Laplacian operator. The no-slip conditions U = V = W = 0 must
be fulfilled at r = 1. Equations (2.4) are equivalent to (15)–(18) of Dean (1928).

When K = 0, a unidirectional laminar flow solution (U, V,W )= (0, 0, 1 − r2) exists.
As the curvature increases, a pair of streamwise vortices develops; hereafter, this
state is referred to as the 2-vortex solution. Dean (1928) found this solution using a
perturbation approach, and obtained the following approximation for the bulk velocity
Q = (1/π)(

∫ 2π
0

∫ 1
0 W (r, θ) dr dθ):

Q2 ≈ 1
2

(
1 − 0.0306

(
K

576

)2

+ 0.0120
(

K

576

)4

+ O(K 6)

)
. (2.6)

Here, the subscript 2 indicates that this result is valid for the 2-vortex solution, and
K = 576 corresponds to De ≈ 16.59. Attempts to extend the radius of convergence of the
perturbation expansion were made by Van Dyke (1978), and more recently Boshier &
Mestel (2014, 2017) successfully reproduced the two families of 4-vortex solutions
previously reported numerically (Benjamin 1978; Winters 1987; Yanase et al. 1989;
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Figure 2. (a) Dependence on K of the total average velocity Q. The dashed green curve is the approximation
(2.6), neglecting the O(K 6) terms. (b) The same 4-vortex solutions as in (a), but expressed in terms of
the deviation of Q from the 2-vortex solution. The values of K at the saddle–node bifurcation points are
K1 ≈ 5.71 × 104, K2 ≈ 3.89 × 105.

Daskopoulos & Lenhoff 1989). Figure 2(a) summarises the variation of Q for 2- and
4-vortex solutions. To gain a clearer understanding of the bifurcations, it is helpful to
summarise the results in terms of the deviation from the 2-vortex value, 	Q ≡ Q − Q2
(Figure 2b). The 2-vortex solution is known to be stable for z-independent perturbations
in the range of K shown in the figure. However, it becomes unstable against more general
perturbations at a critical K , as we will see in § 3.

2.2. Numerical methods
Our aim is to extend the above argument to three-dimensional travelling waves. An
examination reveals that except for the terms involving K , (2.4) matches the Navier–
Stokes equations in cylindrical coordinates, but with a unit Reynolds number and no
z-dependence. Therefore, a naive approach would be to simplify the full governing
equations (2.1) to

∂w

∂z
+ ∂u

∂r
+ u

r
+ 1

r

∂v

∂θ
= 0, (2.7a)

Du

Dt
− r−1v2 − K

2

(w
R

)2
cos θ = −∂p

∂r
+ 1

R

(
	u − r−2u − 2r−2 ∂v

∂θ

)
, (2.7b)

Dv
Dt

+ r−1uv + K

2

(w
R

)2
sin θ = −r−1 ∂p

∂θ
+ 1

R

(
	v − r−2v+ 2r−2 ∂u

∂θ

)
, (2.7c)

Dw
Dt

= −∂p

∂z
+ 1

R
(4 +	w), (2.7d)

where D/Dt = ∂t + u ∂r + r−1v ∂θ +w ∂z and Δ= ∂2
r + r−1 ∂r + r−2 ∂2

θ + ∂2
z . It is easy

to verify that (i) when K = 0, (2.7) become the three-dimensional Navier–Stokes equations
governing the straight pipe flow problem, and (ii) the leading-order parts of the Dean
vortex solutions satisfy (2.7).

The use of the above equations can be justified by asymptotic analysis. To clarify the
discussion, we will define a terminology: we will refer to a reduced system as asymptotic
preserving reduction (APR) when it contains all the essential components to yield the
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α α

6.0 × 105 9.0 × 105 1.2 × 106 1.5 × 106

(a) (b)

Figure 3. The stability of the 2-vortex solution found by the Orr–Sommerfeld equations (3.2). (a) The
neutral curve in the α–R plane at K = 1.5 × 106. The upper curve is the inviscid mode. (b) The neutral
curve in the α–K plane at R = 105. The dots represent the same point in the parameter space. The magenta
dashed lines indicate the parameter range studied in figure 5. The spatial resolution is checked using up to
(L , M)= (50, 50).

leading-order solution of the full equations (2.1). We will demonstrate that in the same
limit considered by Dean (1927), there are two possible sets of reduced equations for three-
dimensional coherent structures, and that (2.7) is APR of both of them.

All numerical results in this paper are based on (2.7), including figure 2. In
order to find nonlinear travelling wave solutions u(r, θ, z − ct), we apply a Galilean
shift to eliminate the time dependence. Our numerical code is based on Deguchi
& Nagata (2011), where the poloidal–toroidal decomposition u =W(r) ez + ∇ × ∇ ×
(φ(r, θ, z) er )+ ∇ × (ψ(r, θ, z) er ) is used. The continuity is automatically satisfied, and
the independent equations can be obtained by operating er · ∇ × ∇ × , er · ∇ × and the
θ -z average to the momentum equations. The basis functions for the poloidal potential φ,
toroidal potential ψ , and mean flow W are the same as those used in Deguchi & Walton
(2013). A Fourier–Galerkin method is used in the θ and z directions, while a Chebyshev
collocation method is employed in the r direction. This transforms the problem into a
set of algebraic equations, with the spectral coefficients and phase speed c as unknowns,
which can then be solved using Newton’s method. The truncation level of the expansions
is specified using the triplet (L , M, N ), where L is the degree of Chebyshev polynomials,
and M and N are the orders of Fourier series in the θ and z directions, respectively.

Since we have the Jacobian matrix at hand, stability analysis can be performed readily.
The complete list of eigenvalues is first computed by the LAPACK routine ZGGEV. The
most unstable mode is then tracked in the parameter space using the well-known Rayleigh
quotient iteration scheme (Lloyd & David 1997). If good initial guesses are provided,
then this method allows accurate eigenvalues and eigenvectors to be obtained with just a
handful of numerically low-cost iterations.

3. Bifurcation from the 2-vortex solution

3.1. Linear stability of the 2-vortex solution
The linear stability of the Dean vortices can be analysed by introducing a perturbation
u = (R−1U, R−1V,W )+ (ũ, ṽ, w̃), p = R−2 P + p̃. The perturbation is assumed to be

1007 A34-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

67
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.67


R. Song and K. Deguchi

proportional to an infinitesimally small amplitude δ > 0 and a normal mode as

(ũ, ṽ, w̃, p̃)= δ(û(r, θ), v̂(r, θ), ŵ(r, θ), p̂(r, θ)) eiαz+σ t + c.c., (3.1)

where c.c. stands for the complex conjugate. The real part of the complex growth rate
σ = σr + iσi determines the stability.

Given that Dean’s limit corresponds to the high Reynolds number regime, the base
flow may be dominated by W . Moreover, the advection effect by that component is much
stronger than the curvature effects of O(R−2) (see (2.7)). If we are allowed to neglect U ,
V and the terms proportional to K , then the stability can be found by the Orr–Sommerfeld
equation generalised for the base flow varying in two directions:

∂ û

∂r
+ û

r
+ 1

r

∂v̂

∂θ
+ iαŵ= 0, (3.2a)

(σ + iαW )û = −∂ p̂

∂r
+ 1

R

{
(	2 − α2)û − û

r2 − 2
r2
∂v̂

∂θ

}
, (3.2b)

(σ + iαW )v̂= −1
r

∂ p̂

∂θ
+ 1

R

{
(	2 − α2)v̂ − v̂

r2 + 2
r2
∂ û

∂θ

}
, (3.2c)

(σ + iαW )ŵ+ û
∂W

∂r
+ v̂

r

∂W

∂θ
= −iα p̂ + 1

R
(	2 − α2)ŵ. (3.2d)

Here, 	2 is the operator defined in (2.5). The no-slip conditions û = v̂= ŵ= 0 are
imposed at r = 1. Using the 2-vortex solution as the base state at K = 1.5 × 106, the
eigenvalue problem yields the neutral curve shown in figure 3(a). The upper neutral
curve tends to a constant value of α as R increases, which is a typical feature of
inviscid instability. Note that for neutral modes, the viscous terms are still important
around the critical layer, where W − c vanishes. Nevertheless, for sufficiently large R,
the generalised Orr–Sommerfeld result matches with the inviscid result (Deguchi 2019).
Since computations become challenging at very high Reynolds numbers, this paper will
use R = 105 to infer results involving inviscid waves. Figure 3(b) shows the neutral curve
obtained by varying K at that fixed R. The instability exists only for K � 7.78 × 105

(De � 289.69). The inviscid mode serves as a starting point of the analysis of the
VWI-type nonlinear solutions in § 3.2.

One might worry about the validity of neglecting the curvature terms in (3.2) given the
large values of K . The size of the curvature term in the linearised version of (2.7) is K/R2

multiplied by the wave amplitude, whereas the viscous term scales as O(1/R) times the
wave amplitude. The size of the latter term increases by O(R2/3) within the critical layer
of thickness O(R−1/3). Hence the condition for safely neglecting the curvature term is
K R−2 � O(R−1/3). For K = 106, this condition is satisfied as long as R 	 4000, which
is not difficult to achieve in pipe flows.

Along the lower neutral curve in figure 3(a), the wavenumber α behaves like O(R−1),
which is a typical signature of the emergence of the long-wavelength mode. This
observation motivates us to take the limit R → ∞ while keeping α0 ≡ Rα as a constant,
similar to the method used for unidirectional parallel flows (Smith 1979; Cowley & Smith
1985). However, in this limit, the advection effect due to W becomes W∂z = O(R−1),
making the advection effects due to U and V non-negligible. Furthermore, from the
continuity equation, ũ, ṽ are smaller than w̃ by a factor of O(R−1), similar to Dean’s
argument, which necessitates retaining the curvature terms. Formally, the long-wavelength
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Figure 4. The stability results based on the linearised version of (2.7) around the 2-vortex solution. (a) The
neutral curve of the curvature mode in the α0–R plane at K = 60 600. The long-wavelength limit (3.4) is
achieved as R → ∞. (b) The neutral curve in the α0–K plane at R = 106. The bullets represent the same point
in the parameter space. The magenta dashed lines indicate the parameter range studied in figure 7. Resolution
is checked using up to (L , M)= (50, 50).

limit can be obtained by rescaling α = R−1α0, σ = R−1σ0 and writing

(ũ, ṽ, w̃, p̃)= δR−1(û(r, θ), v̂(r, θ), R ŵ(r, θ), R−1 p̂(r, θ)) eR−1(iα0z+σ0t) + c.c.,(3.3)

in (2.7). The leading-order problem can be found as

∂ û

∂r
+ û

r
+ 1

r

∂v̂

∂θ
+ iα0ŵ= 0, (3.4a)(

L+ ∂U

∂r
+ 1

r2

)
û +

(
1
r

∂U

∂θ
− 2V

r
+ 2

r2
∂

∂θ

)
v̂ − K W ŵ cos θ + ∂ p̂

∂r
= 0, (3.4b)(

L+ 1
r

∂V

∂θ
+ 1

r2 + U

r

)
v̂ +

(
1
r

∂(r V )

∂r
− 2

r2
∂

∂θ

)
û + K W ŵ sin θ + 1

r

∂ p̂

∂θ
= 0,

(3.4c)

Lŵ+ ∂W

∂r
û + 1

r

∂W

∂θ
v̂= 0. (3.4d)

Here, we have defined the operator L= (σ0 + iα0W + U (∂/∂r)+ (V/r)(∂/∂θ)−	2) to
simplify the equations. The usual no-slip conditions complete the eigenvalue problem.

Figure 4(a) shows the stability of the 2-vortex solution by using the linearised version
of (2.7). Along both branches of the neutral curve, as R → ∞, the value of α0 tends to a
constant, which corresponds to the limit shown in (3.4). Interestingly, this result suggests
that our analysis detects a new mode, disconnected from the mode seen in figure 3(a).
Hereafter, the new mode is referred to as the ‘curvature mode’ as its existence depends
on the presence of the terms proportional to K . At the large R limit, the lower branch of
the neutral curve shown in figure 3(a) may be governed by the same limiting equations;
however, we do not examine it further in this paper.

The solid curve in figure 4(b) shows the neutral curve obtained with R = 106, which
is sufficiently large to observe the converged limiting solution. This figure clearly shows
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that the curvature mode exists only when K is larger than the critical value 5.72 × 104.
In terms of the flux-based parameter, this critical point corresponds to De ≈ 110. It is
noteworthy that recently Lupi et al. (2024) studied the stability of the 2-vortex solution
to long-wavelength, three-dimensional perturbations using full Navier–Stokes equations
(2.1). Their critical Dean number, De ≈ 113, observed around the loose-coiling limit
parameter regime, is well compared with our results.

3.2. Bifurcation from the inviscid mode: VWI
From the neutral points obtained above, bifurcations of nonlinear travelling wave solutions
are anticipated. We denote the phase speed as c = σ/α. Of course, c must be purely real
for travelling waves.

Here, we focus on bifurcations of VWI-type solutions from the inviscid mode computed
in figure 3. When the amplitude of the wave-like perturbation reaches a certain level,
it begins to affect the Dean vortices through the Reynolds stress. Among these stress
terms, the important ones are those that appear in the momentum equations in the r
and θ directions, as the velocities in these components are smaller than in the streamwise
direction. Therefore, the Dean equations (2.4) and the Orr–Sommerfeld equations (3.2)
may be coupled via the extra terms Fr and Fθ to the left-hand sides of (2.4b) and (2.4c),
respectively, where

Fr = R2δ2

r

{
∂(r ûû∗)
∂r

+ ∂(ûv̂∗)
∂θ

− v̂v̂∗
]

+ c.c., (3.5a)

Fθ = R2δ2

r

{
∂(r ûv̂∗)
∂r

+ ∂(v̂v̂∗)
∂θ

+ ûv̂∗
}

+ c.c., (3.5b)

and the asterisks denote complex conjugation. This combined system is similar to the
viscous regularised version of the VWI system used in Blackburn et al. (2013) for plane
Couette flow. (Note that the same set of reduced equations for that flow has also been
obtained by other research groups through slightly different physical considerations; see
Thomas et al. (2014) and Beaume et al. (2015).)

The regularised VWI system still depends on R. To find the appropriate large Reynolds
number asymptotic limit, the approach of Hall & Sherwin (2010) must be used. In light of
(3.5), one might consider balancing the Reynolds stress in Dean’s equations with δ = R−1,
but this is not correct. The reason is that at r = rc(θ), where W − c vanishes, the inviscid
approximation of (3.2) breaks down. This necessitates the introduction of a critical layer
of thickness R−1/3 around r = rc(θ). Outside that layer, the correct leading-order part of
the asymptotic expansion is given by (2.3) for the z-independent ‘vortex’ part, and by
(3.1) with δ = R−7/6 for the wave part. This peculiar exponent arises from the matching
of solutions inside and outside the critical layer.

Within the critical layer, slightly different asymptotic expansions must be used, and
careful analysis, similar to that of Hall & Sherwin (2010), reveals that the vortex
components are subject to the jump conditions

r ′
c

rc

[
∂V

∂r

]rc+

rc−
=
[
∂U

∂r

]rc+

rc−
= r ′

c

rc
J1(θ), [P]rc+

rc− = J2(θ), (3.6a)
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Figure 5. Bifurcations of the VWI-type travelling wave solutions from the inviscid mode. The regularised VWI
system with R = 105 is used for computation. The bifurcation point indicated by the black dot corresponds to
the same point shown in figure 3. (a) The results for fixed wavenumbers. (b) The results for fixed Dean numbers.
Resolution is checked using up to (L , M)= (70, 50). Note that in the regularised VWI, no harmonics are
involved in the z direction. The pink dot indicates the nonlinear solution shown in figure 6.

where

J1(θ)= C

γ 5/3 B5r3
c

{(
−7

2
B ′

B
− 5

3
γ ′

γ
− 2

r ′
c

rc

) ∣∣∣∣∂ p̂

∂θ

∣∣∣∣2 + ∂

∂θ

∣∣∣∣∂ p̂

∂θ

∣∣∣∣2
}
, (3.6b)

J2(θ)= C

γ 5/3 B5r3
c

(
2B − 1 − r ′′

c

rc

) ∣∣∣∣∂ p̂

∂θ

∣∣∣∣2 , (3.6c)

with B(θ)= 1 + (r ′
c/rc)

2, γ (θ)= (α/B)(∂W/∂r |r=rc) and C = 2π(2/3)2/3 Γ (1/3)≈
12.8454, where Γ is the gamma function. The primes denote the derivatives with respect
to θ . Those jump conditions play the same physical role as the Reynolds stress terms Fr
and Fθ . The fully reduced VWI closure is therefore (2.4), (3.6) and the inviscid version of
(3.2). In principle, this system can be obtained by substituting the asymptotic expansions
into the full equations (2.1) and performing some straightforward algebraic manipulations.

The regularised VWI system is an APR of the fully reduced VWI, and the former
system is easier to solve as we do not need to impose the jump conditions explicitly. The
terms appearing in that system are a subset of those in (2.7). The nonlinear solutions of
the regularised VWI system can therefore be obtained by omitting the computations of
unnecessary terms in the numerical code described in § 2.2. It should also be remarked
that the equations obtained by linearising the regularised VWI system around the 2-vortex
solution correspond exactly to the eigenvalue problem used to compute figure 3. Therefore,
by using the eigenvector of the neutral solution as the initial value for the Newton method,
a nonlinear travelling wave solution can be obtained around the neutral curve.

The bifurcation diagram is obtained as figure 5. The parameter range computed in
the two plots corresponds to the magenta dashed lines in figure 3(b), indicating that
the bifurcation is supercritical. Figure 6 shows the flow structure of the travelling wave
solution at the pink dot in figure 5. Here and hereafter, in order to visualise the flow
field, we adopt the flow decomposition u = (u, v, w)+ (ũ, ṽ, w̃), with the first term on
the right-hand side representing the z-averaged part. More specifically, we apply this
decomposition for the leading-order part of the asymptotic expansions. Thus for VWI,
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Figure 6. The flow structure of the VWI-type solution at (K , R, α)= (1.5 × 106, 105, 0.1), corresponding
to the pink dot in figure 5. The phase speed is c ≈ 0.2597. (a) The vector field represents the roll velocities
u and v. The colour indicates the deviation of the streak velocity w from that of the 2-vortex solution at
the same K . (b) The black dashed curves represent the isocontours of w, while the coloured curves show the
isocontours of ω̃z at ϕ = 0. (c) The red/blue surface depicts the positive/negative isosurfaces of ω̃z at magnitude
0.002. The phase is defined by ϕ = α(z − ct).

(u, v, w)= (R−1U, R−1V,W ), and the wave components can be used with their notation
unchanged. The arrows in figure 6(a) indicate that the components u and v, traditionally
called the ‘roll’ component in the VWI and self-sustaining process theory, inherit the
large-scale swirls by the 2-vortex solution. The black contours in figure 6(b) show the
‘streak’ component, W . The colour map in figure 6(a) illustrates the extent to which
the component w deviates from that of the 2-vortex solution. Figure 6(c) shows the
three-dimensional structure of the ‘wave’ component visualised by the isosurfaces of the
streamwise vorticity ω̃z = r−1(∂(r ṽ)/∂r)− (∂ ũ/∂θ)). Here, we switched the streamwise
variable to the phase ϕ = α(z − ct) ∈ [0, 2π]. As seen in figure 6(b), the wave structure
is concentrated around the critical level, at which u matches the phase speed c ≈ 0.2597.
This amplification, also seen in other numerical works (Wang et al. 2007; Viswanath 2009;
Mckeon & Sharma 2010), is precisely due to the fact that inviscid neutral waves have
singularity there. It can be shown easily that ω̃z is O(R−7/6) outside the critical layer,
while inside it scales as O(R−1/2). The flow field satisfies

[u, v, w](r, θ, ϕ)= [u,−v, w](r,−θ + π, ϕ + π). (3.7)

This equation implies that the flow field remains unchanged when shifted by half a period
in the streamwise direction and reflected about the θ = 0, π axis. This symmetry is referred
to as the sinuous mode in the context of secondary flow instability in boundary layer flows
(Hall & Horseman 1991; Yu & Liu 1994).

3.3. Bifurcation from the curvature mode: BRE
A similar bifurcation analysis can be performed for the curvature mode shown in figure 4.
Recall that in § 3.1, we rescaled the wavenumber and the growth rate as α = R−1α0 and
σ = R−1σ0. This motivates us to employ the expansions

u = R−1 U (r, θ, X, T )+ · · · , v= R−1 V (r, θ, X, T )+ · · · , (3.8a)

w= W (r, θ, X, T )+ · · · , p = R−2 P(r, θ, X, T )+ · · · , (3.8b)

using X = R−1z, T = R−1t . Substituting these into the full Navier–Stokes equations (2.1)
yields the reduced problem

∂W

∂X
+ ∂U

∂r
+ U

r
+ 1

r

∂V

∂θ
= 0, (3.9a)
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Figure 7. Bifurcations of the BRE type travelling wave solutions from the curvature mode. The solution
branches are computed by (2.4) with R = 106. (a) The scaled wavenumber α0 = αR is fixed. (b) The Dean
number K is fixed. The red and green dots are the same as those in figure 4. Resolution is checked using up to
(L , M, N )= (25, 25, 30).

DU − V 2

r
− K

2
W 2 cos θ = −∂P

∂r
+	2U − U

r2 − 2
r2
∂V

∂θ
, (3.9b)

DV + U V

r
+ K

2
W 2 sin θ = −1

r

∂P

∂θ
+	2V − V

r2 + 2
r2
∂U

∂θ
, (3.9c)

DW = 4 +	2W, (3.9d)

correct to O(R−2) in the Dean limit. Here, we have defined the operator

D = ∂

∂T
+ W

∂

∂X
+ U

∂

∂r
+ V

r

∂

∂θ
, (3.10)

and impose the boundary conditions U = V = W = 0 at r = 1. Equations (3.9) have
similar structure to the nonlinear equations for the Görtler vortex problem formulated by
Hall (1988), and (4.2) in Smith (1976). These types of equations are more commonly
referred to as boundary region equations (BRE) for the study of boundary layer flows
(see the discussion in Wu et al. (2011) and Deguchi et al. (2013)), and we will adopt this
terminology. One can easily confirm that the reduced problem (2.7) is an APR of BRE.

Equations (3.9) linearised around the Dean vortex are given by (3.4). Therefore,
nonlinear travelling wave solutions bifurcating from the 2-vortex can be calculated from
the neutral curve of the curvature mode seen in figure 4. As seen in figure 7, the bifurcation
is subcritical. The parameter range for which we calculated nonlinear solutions is indicated
by the dashed lines in figure 4; these solutions exist when K is greater than 43 086.
Comparing figures 5 and 7, the BRE-type solutions, in contrast to the VWI-type solutions,
show an increase in flux relative to the 2-vortex. This is because, as seen in figure 8(a), the
nonlinear interaction generates high-speed streaks near the upper and lower pipe walls.
The three-dimensional wave components are concentrated around the outer side of the
curved pipe (figure 8c). From figure 8(b), it can be observed that this location corresponds
to the region where the streamwise velocity reaches its maximum. Despite the qualitative
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Figure 8. The same flow visualisation as figure 6, but for the BRE-type solution at (K , α0, R)= (5.5 ×
104, 3380, 106), corresponding to the blue dot in figure 7(a). The phase speed is c ≈ 0.5033. In (c), the
isosurfaces of ω̃z = ±7 × 10−5 are shown.

differences in the flow fields compared to the VWI-type, the BRE solution also satisfies
the shift–reflection symmetry (3.7).

The fact that the onset of three-dimensional turbulence increases the flow rate has
also been reported in numerical simulations (Noorani & Schlatter 2015) and experiments
(Vester et al. 2016).

4. Continuation from the finite-amplitude solutions in a straight pipe

4.1. Large Reynolds number limits of the exact coherent structures in a straight pipe
As already noted, when K = 0, (2.7) reduce to the straight pipe flow problem governed by
the Navier–Stokes equations, for which a variety of exact coherent structures is available
(Faisst & Eckhardt 2003; Wedin & Kerswell 2004; Pringle & Kerswell 2007; Pringle et al.
2009). Ozcakir et al. (2016) confirmed that some of these exact coherent structures follow
the VWI theory at sufficiently high Reynolds numbers. In this paper, we utilise the solution
found by Pringle & Kerswell (2007), which is later labelled as M1 in Pringle et al. (2009).
This solution was not studied in Ozcakir et al. (2016).

The solid curve in figure 9(a) shows the bifurcation diagram of the M1 solution. This
solution appears at a saddle–node bifurcation, occurring at the lowest flux-based Reynolds
number 2RQ ≈ 773 among all known solutions. In the laminar parabolic profile, the
value of Q is 0.5, and under constant pressure, nonlinear effects should decrease the
flux. Therefore, the upper curve in the figure corresponds to the ‘lower branch solutions’
referred to in previous literature. As shown in Pringle & Kerswell (2007), the solution
possesses mirror symmetry with respect to the line θ = ±π/2,

[u, v, w](r, θ, ϕ)= [u,−v, w](r,−θ + π, ϕ), (4.1)

and the shift–reflection symmetry with respect to the line θ = 0, π ,

[u, v, w](r, θ, ϕ)= [u,−v, w](r,−θ, ϕ + π). (4.2)

Due to the symmetry of the system, arbitrary shifts in the θ and z directions do not
disqualify M1 as a solution. However, when the effect of pipe curvature is introduced, the
orientation in the θ direction is no longer arbitrary. In this study, we use both the original
orientation from Pringle & Kerswell (2007) and an orientation rotated by 90◦ in the θ
direction. Figure 10(a) shows the flow field for the latter orientation at R = 40 000, where
mirror symmetry and shift–reflection symmetry become

[u, v, w](r, θ, ϕ)= [u,−v, w](r,−θ, ϕ) (4.3)
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Figure 9. Continuation of the M1 straight pipe flow solution found by Pringle & Kerswell (2007). (a)
Results with a fixed wavenumber α = 1.44. The solid curve is the solution of the Navier–Stokes equations
with (L , M, N )= (70, 50, 6). The dashed curve shows the regularised VWI results with (L , M)= (70, 50).
(b) Results with a fixed scaled wavenumber α0 = αR = 1728. The horizontal axis is ε = R−2. The black curve
and the red points correspond to the resolution levels (L , M, N )= (50, 22, 24) and (30, 22, 18), respectively.

and (3.7), respectively. Since the wavenumber α is fixed in figure 9(a), the solution branch
is expected to converge to the VWI results at high Reynolds numbers. To verify this, we
used the Navier–Stokes solution at R = 4 × 104 as the initial condition for the regularised
VWI code. The converged solution, shown in figure 10(b), is almost indistinguishable
from the initial condition, figure 10(a). The dashed curve in figure 9(a) represents the
regularised VWI results, which provide an excellent approximation when R is O(104) or
larger.

We can also compute the BRE limit of the M1 solution following Deguchi et al. (2013),
where this limit was first applied for exact coherent structures in the context of plane
Couette flow. The main idea is switching the parameters (R, α) to (α0, ε), where ε = R−2,
and reformulating the problem as a regular perturbation problem. The limit as ε→ 0 then
corresponds to the BRE; see Appendix A for more detail.

The solid curve in figure 9(b) represents the same M1 solution as in figure 9(a), but with
α0 fixed and ε reduced. This computation, which employs a resolution deemed more than
sufficient, encounters numerical instability, with the condition number of the Jacobian
matrix deteriorating rapidly as ε decreases. This issue is somewhat expected, given that
the limit involves an infinite Reynolds number and infinitely long pipe. Lowering the
resolution mitigates this issue (see the red circles in figure 9b), allowing the solution
to even reach ε = 0. Figure 10(c) shows the high-resolution computation at ε = 10−8

(R = 104), while figure 10(d) presents the asymptotic prediction made at R = 104 using
the low-resolution result at ε = 0. Both results match closely, demonstrating that the use
of ε = 10−8 serves as a sufficiently accurate approximation of the BRE solution.

4.2. Continuation from the VWI mode
Now let us add the effect of pipe curvature to the VWI mode obtained in figure 9(a).
Starting from the configuration shown in figure 10(b) (i.e. rotated by 90◦ from the original
orientation), mirror symmetry is preserved, while shift–reflection symmetry is broken. As
shown in figure 11(a), introducing a small curvature causes the value of 	Q to increase.
As K increases further, 	Q decreases and approaches zero. We can extend the branch to
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Figure 10. The three-dimensional structure of the M1 solutions at the VWI and BRE limits. The same format
as figure 6(c), but for ω̃z = ±0.02. (a) The Navier–Stokes result at (α, R)= (1.44, 4 × 104). (b) The regularised
VWI result at (α, R)= (1.44, 4 × 104). (c) The Navier–Stokes result at (α0, R)= (1728, 104). (d) The BRE
result at α0 = 1728 (i.e. formally R = ∞). The isosurfaces are the asymptotic prediction at R = 104, showing
the wave part of 10−4r−1((∂(r V )/∂r)− (∂U/∂θ)).

values of K where the linear instabilities are observed in § 3.1. However, no connection to
the 2-vortex solution was detected.

The black dashed contours in figure 12(a) illustrate the streak component w at
K = 10 000 (indicated by the blue square in figure 11a). The flow structure is overall
similar to that for the 2-vortex solution at the same parameter; see figure 12(c). The
difference between those two fields, presented in figure 11(d), reveals that changes in the
streak due to three-dimensional effects occur primarily near the inner wall, contrasting
with the observations in figures 6 and 8. The amplitude of the wave component responsible
for this mechanism is strongest at the critical layer, as expected for VWI-type exact
coherent structures (see the coloured contours in figure 12a).

If the original orientation (see figure 11f ) is used as the starting point of the continuation,
then the solution retains shift–reflection symmetry, but mirror symmetry is lost. The
resulting bifurcation diagram, shown in figure 11(b), is similar to the previous one, except
for the complex structure observed near K = 0. Figure 11(c) is the enlargement of this
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Figure 11. Continuation from the VWI-type straight pipe flow solution (see figure 9a). The regularised
VWI with (α, R)= (1.44, 4 × 104) is used. Resolution is checked using up to (L , M)= (70, 50). (a) The
continuation from the rotated orientation shown in figure 10(b). The solution has mirror symmetry (4.2). (b) The
continuation from the original orientation. The solution has shift–reflection symmetry (4.3). (c) The same result
as in (b), but enlarged around K = 0. (d–g) Flow visualisation at the corresponding points on the bifurcation
diagrams. The format is the same as in figure 6(a).

part, where one of the symmetric branches has been omitted for clarity. Starting from the
M1 solution, the solution branch extending into the negative K region forms a loop and
reaches the K = 0 axis again. At this point, the solution retains shift–reflection symmetry
but lacks mirror symmetry. The flow field of this solution (figure 11g) closely resembles
that of the asymmetric solution reported by Pringle & Kerswell (2007), referred to as S1
in Pringle et al. (2009).

The solution branch appears to continue indefinitely towards large K , but once again, no
direct connection to Dean vortices is observed. The deviation of the streamwise velocity
from the 2-vortex at K = 10 000, shown in figure 11(e), is qualitatively similar to that in
figure 11(d). A strong vortex layer appears in the wave component at the critical level, as
shown in figure 12(b). Although the structural details of the coloured contour differ from
that in figure 12(a), the physical role that waves play seems to be the same.
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Figure 12. Contours of the streak (black dashed lines) and the wave vorticity (coloured solid lines). The same
format as figure 6(b). Here, K = 104. (a) The mirror-symmetric solution shown in figure 11(d). The phase
speed is c ≈ 0.3031. (b) The shift–reflection-symmetric solution shown in figure 11(e). The phase speed is
c ≈ 0.3302. (c) The 2-vortex solution.
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Figure 13. Continuation from the BRE-type straight pipe flow solution (see figure 9b). Equations (2.7) are used
with (α0, R)= (1728, 104). Resolution is checked using up to (L , M, N )= (50, 22, 24). The continuation
starts from the M1 solution indicated by the circle. The solid black curve shows the continuation from the
rotated orientation shown in figure 10(c). Along the curve, mirror symmetry is preserved. The dashed blue
curve illustrates the continuation from the original orientation. Along the curve, shift–reflection symmetry is
preserved.

4.3. Continuation from the BRE mode
For completeness, we also examine the effect of curvature on the BRE-type solution. The
black curve in figure 13 represents the bifurcation diagram starting from the M1 solution
rotated by 90◦ (indicated by the circle). Along the solution branch, similar to figure 11(a)
for the VWI computation, mirror symmetry with respect to the φ = 0, π axis is preserved.
However, unlike the VWI case, a turning point is reached at relatively small K , after which
the solution branch returns to K = 0 (upward triangle). The straight pipe flow solution
found at this point is not M1 but belongs to a previously unreported class of solutions
that retain mirror symmetry but lack shift–reflection symmetry. Nevertheless, as shown
in figures 14(a–c), the overall flow structure is not significantly different from M1. It
is possible to continue the solution branch further from the new solution; however, the
behaviour of the solution branch is somewhat complicated, so it is not shown in the figure.

The blue curve in figure 13 represents a similar computation, but initiated from the
original orientation of M1. Throughout the computation, the shift–reflection symmetry is
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Figure 14. The asymmetric solutions obtained at K = 0 in figure 13. The same format as figure 6. (c,f ) The
isosurface at |ω̃z | = 0.02. (a–c) The solution at the upward triangle. The phase speed is c ≈ 0.6725. (d–f ) The
solution at the downward triangle. The phase speed is c ≈ 0.6938.

preserved. Again, the solution branch returns to the straight pipe (downward triangle). As
shown in figures 14(d–f ), the flow field at this point closely resembles the S1 solution.
While the solution branch can be further continued, it is unlikely that it can be extended
for large K .

5. Conclusion and discussions
In this study, we revisited the high Reynolds number limit in a weakly curved pipe,
as originally considered by Dean (1927, 1928), adopting the same definition of the
Dean number K . Dean’s works and many subsequent studies employed the nonlinear
equations (2.4), which are independent of z and t . We extended this result to account
for three-dimensional travelling waves propagating downstream. Our approach is based
on rational asymptotic analysis of the governing equations (2.1). The appropriate leading-
order problem depends on how the axial wavenumber α is scaled. We identified at least
two distinct asymptotic states based on the suitable choices of this scaling.

If α is fixed while taking the high Reynolds number limit, then the leading-order
problem can be formulated by combining the VWI theory with the Dean problem. More
specifically, the rigorous asymptotic limit of this type is described by a system of equations
that couples Dean’s equation (2.4) with a Rayleigh equation for the streak component,
through the jump conditions (3.6). However, from a computational perspective, it is more
practical to use a system known as the regularised VWI, which replaces the Rayleigh
equation and the jump conditions with the Orr–Sommerfeld equation and the Reynolds
stress terms (3.5). The justification for using the regularised VWI is that it serves as the
asymptotic preserved reduction (APR) of VWI, in the sense defined in § 2.2.

1007 A34-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

67
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.67


R. Song and K. Deguchi

Known solution at K = 0

A
m

p
li

tu
d
e 

o
f 

3
-D

 c
o
m

p
o
n
en

t

Curvature mode Inviscid mode

0

K

Figure 15. A schematic summarising the bifurcations of the nonlinear solutions obtained in this study. The red
dashed line represents the 2-vortex solution. The blue solid lines represent computations using the asymptotic
problem APR of the VWI (the regularised VWI), while the purple dashed lines correspond to computations
using the APR of the BRE (2.7).

If the product of α and the Reynolds number is fixed during the limiting process, then the
leading-order system is given by (3.9), which represents the BRE with additional curvature
terms included. However, numerical instability present in this limit, especially at high
resolution, makes it preferable to use the augmented system (2.7) at small ε = R−2 for
computations. The validity of this approach is supported by the fact that (2.7) is the APR
of (3.9). Moreover, since (2.7) retains all the necessary terms for the regularised VWI, it
also serves as the APR of VWI. In this study, we used either (2.7) or the regularised VWI
((2.4) and (3.2) coupled by the stress body force term (3.5)) for numerical computations.

Our numerical results are summarised in the sketch shown in figure 15. In § 3, we
obtained nonlinear travelling wave solutions through bifurcation analysis from the Dean
vortices. This approach begins with the linear stability analysis of the 2-vortex solution
(§ 3.1), which corresponds to the asymptotic limit of the neutral curve obtained by Canton
et al. (2016). The instability detected by the Orr–Sommerfeld equation has an inviscid
limit, from which VWI-type solutions undergo supercritical bifurcation. Given the flow
characteristics and the nature of the bifurcation, this mode is likely part of the same family
of supercritical travelling wave solutions as those identified by Canton et al. (2020) at
moderate curvature.

We also identified another linear instability, termed the curvature mode. This mode
has long wavelengths and cannot be detected by the Orr–Sommerfeld equation. As the
Dean number K increases from zero, the curvature mode emerges first at K ≈ 5.72 × 104,
followed by the onset of instability detected by the Orr–Sommerfeld equation at
K ≈ 7.78 × 105. The former critical Dean number agrees well with the recent full Navier–
Stokes results from Lupi et al. (2024), and this is only slightly higher than the value at
which the first 4-vortex solution appears, K ≈ 5.71 × 104. The nonlinear solutions that
bifurcate subcritically from the curvature mode are described by the BRE and exist when
K exceeds 4.33 × 104.

The two types of travelling wave solutions mentioned above exhibit distinct physical
characteristics. First, the VWI-type solution reduces the flow rate, while the BRE-type
solution increases it. Second, the Strouhal number St = 2αc/Q is O(1) for the VWI-type
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solution, while for the BRE-type solution, it is much smaller, of the order of O(1/R). The
Strouhal number here is defined in the same way as in the review by Vester et al. (2016),
and it is frequently used to quantitatively investigate the swirl-switching phenomenon of
Dean vortices. Finally, we note the connection to recent efforts to extend the concept of
the self-sustaining process to Taylor–Couette flow, which also involves the shear-Coriolis
instability. In this context, the supercritical process proposed by Dessup et al. (2018) aligns
with our VWI-type solution, while the subcritical process identified by Wang et al. (2022)
is more suitable for our BRE-type solution.

In § 4, we introduced curvature effects to the M1 solution, originally found by Pringle &
Kerswell (2007) for straight pipes (i.e. K = 0). In § 4.1, we confirmed that this solution has
a high Reynolds number asymptotic limit of VWI (BRE) type when α (α0 = αR) is fixed.
In §§ 4.2 and 4.3, the effect of pipe curvature on those limits is examined. Computational
results for non-zero K depend on how the initial M1 solution at K = 0 is shifted in the
azimuthal direction. The M1 solution possesses both mirror symmetry and shift–reflection
symmetry, but their axes are orthogonal to each other. Starting the calculations from the
orientation used by Pringle & Kerswell (2007) and from a 90◦ rotated orientation leads to
different symmetries being preserved.

We found that, in general, the branches of the VWI-type solutions can be extended to
large values of K , whereas those for the BRE-type do not exhibit the same behaviour.
The VWI branch approaches the 2-vortex solution as K increases. However, even when
the branch enters the region where the 2-vortex solution becomes unstable, we could not
identify a bifurcation point connecting the two solutions. An intensive parameter search
(not shown in this paper) concludes that there is no apparent connection between the
three-dimensional instability of the 2-vortex solution and the self-sustained solutions in
the straight pipe. This is quite different from plane Couette flow studied by Nagata (1988,
1990), where the three-dimensional solution generated by adding system rotation can be
continued back to the zero-rotation limit. We note that Barnes & Kerswell (2000) reported
similar difficulties in their study of pipe flow when secondary flow is induced by system
rotation.

When K is smaller than 5.71 × 104, the 2-vortex solution is linearly stable, therefore
the transition to turbulence must be subcritical. Interestingly, figures 7 and 11 suggest that
in this regime, emergence of certain finite-amplitude travelling waves, which may support
turbulent activity, result in a positive value of 	Q; i.e. under the same pressure, the flow
rate achieved is higher than that of the laminar flow (the 2-vortex solution). This implies
that the so-called sub-laminar drag reported in previous numerical computations and
experiments (see Noorani & Schlatter 2015; Vester et al. 2016) is indeed realised for some
exact coherent structures. That said, for all computations in this paper, the normalised flux
Q is always less than 0.5, which is the value for the laminar parabolic profile in the straight
pipe. This result is consistent with the earlier observations.

Our numerical results show that for large K , the three-dimensional components do
not significantly affect the flow rate. The dominance of momentum transport by Taylor–
Görtler–Dean vortices is likely a general feature of shear flows subjected to centrifugal
instability (cf. Deguchi 2023). However, in general, the three-dimensionality of the flow
significantly alters the topology of the streamlines, thus our three-dimensional travelling
wave solutions may be useful for studying particle transport in curved pipe flows.
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Appendix A. The computation of the BRE limit
Applying the transformations X = R−1z, T = R−1t , (u, v, w)= (R−1U, R−1V,W ),
system (2.7) becomes

∂W

∂X
+ ∂U

∂r
+ U

r
+ 1

r

∂V

∂θ
= 0, (A1a)

DU − r−1V 2 − K

2
W 2 cos θ = −∂P

∂r
+	U − r−2U − 2r−2 ∂V

∂θ
, (A1b)

DV + r−1U V + K

2
W 2 sin θ = −r−1 ∂P

∂θ
+	V − r−2V + 2r−2 ∂U

∂θ
, (A1c)

DW = −ε ∂P

∂X
+ 4 +	W, (A1d)

where D = ∂T + U ∂r + r−1V ∂θ + W ∂X and Δ= ∂2
r + r−1 ∂r + r−2 ∂2

θ + ε ∂2
X . The

flow parameters become ε = R−2, K , and the rescaled wavenumber. At this stage, no
approximations have been made.

Similar to Deguchi et al. (2013) for the Cartesian case, the appropriate poloidal–toroidal
decomposition for this problem can be found as

U = −r−2 ∂
2φ̃

∂θ2 − ε
∂2φ̃

∂X2 − ∂φ

∂X
, (A2)

V = ∂2(r−1φ̃)

∂r ∂θ
+ ∂ψ

∂X
, (A3)

W =W + εr−1 ∂
2(r φ̃)

∂r ∂X
+ r−1 ∂(rφ)

∂r
− r−1 ∂ψ

∂θ
, (A4)

where we require ∫ 2π

0
φ dθ = φ,

∫ 2π

0
φ̃ dθ = 0. (A5)

We can compute the solutions for ε = 0 (i.e. the BRE limit) using those potentials.
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