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Abstract

We characterise the Zoll Riemannian metrics on a given simply connected spin closed
manifold as those Riemannian metrics for which two suitable min-max values in a finite
dimensional loop space coincide. We also show that on odd dimensional Riemannian
spheres, when certain pairs of min-max values in the loop space coincide, every point lies
on a closed geodesic.
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1. Introduction

On a closed manifold of dimension at least 2, a Riemannian metric is called Besse when
all of its geodesics are closed. It is called Zoll when all its unit-speed geodesics are closed
with the same minimal period, and simple Zoll when they are also without self-intersections.
As usual, by closed geodesic we mean a non-constant periodic orbit of the geodesic flow.
Riemannian metrics in these three classes are of great interest in Riemannian geometry, see
[Bes78].

The only known closed manifolds admitting Zoll Riemannian metrics are the com-
pact rank-one symmetric spaces, that is, Sn , RPn , CPn , HPn , or CaP2, whose canonical
Riemannian metrics are simple Zoll. Actually a result of Bott and Samelson [Bot54, Sam63]
implies that any closed manifold admitting a simple Zoll Riemannian metric has the integral
cohomology ring of a compact rank-one symmetric space. Conjecturally, on simply
connected closed manifolds M , the notions of Besse and Zoll Riemannian metrics are
equivalent. This conjecture has been recently established for M = Sn with n ≥ 4 by
Radeschi and Wilking [RW17], and was earlier established for M = S2 by Gromoll and
Grove [GG81], who also showed that on S2 the condition of being simple Zoll is equivalent
to the other two ones.
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The geodesic flow of a Riemannian manifold is a classical autonomous Hamiltonian
flow in its tangent bundle. This implies that the closed geodesics parametrized with
constant speed are the non-trivial critical points of the energy functional on the space of
loops, whereas the closed geodesics with any parametrisation are the critical points of
the length energy functional. A result claimed by Lusternik [Lju66] and proved recently
by the authors [MS18] implies that a Riemannian 2-sphere is Zoll if and only if the
min-max values of the length functional over three suitable homology classes of the space
of unparametrised simple loops coincide. If instead only two among these three values
coincide, the Riemannian metric may not be Zoll, but the geodesic dynamics is still rather
special: any point of the 2-sphere must lie on a closed geodesic. For n-spheres of arbitrary
dimension n ≥ 2 with sectional curvature pinched inside [1/4, 1], analogous results were
proved by Ballmann–Thorbergsson–Ziller [BTZ83]. The aim of this paper is to provide
further results along this line for more general closed manifolds, and in particular for higher
dimensional ones, without any assumption on the curvature.

In order to state our theorems, let us quickly recap the variational theory for the closed
geodesic problem. Let M be a closed orientable manifold of dimension n ≥ 2 admitting
a simple Zoll Riemannian metric. The manifold M will be implicitly identified with the
submanifold of constant loops in the free loop space �M = W 1,2(R/Z, M). For this class
of manifolds, we have the explicit cohomology computation

H ∗(�M, M)∼=
⊕
m≥1

H ∗−m i(M)−(m−1)(n−1)(SM), (1·1)

where SM denotes the unit tangent bundle of M , and i(M) is a suitable positive integer only
depending on the integral cohomology ring of M , according to an argument due to Radeschi
and Wilking [RW17, page 942]. Throughout this paper, the singular cohomology H ∗ and
the singular homology H∗ will always be intended with Z coefficients unless we explicitly
state otherwise. Since M admits a simple Zoll Riemannian metric, Bott and Samelson’s
theorem [Bes78, theorem 7·23] implies that it is simply connected and with vanishing Euler
characteristic if and only if it is homeomorphic to an odd dimensional sphere Sn . In this
case, the relative cohomology group H ∗(�M, M) has rank at most one in every degree, and
for each integer m ≥ 1 we choose two generators

αm ∈ H (2m−1)(n−1)(�M, M), βm ∈ H 2m(n−1)+1(�M, M). (1·2)

For each Riemannian metric g on M , the associated energy functional is

E :�M −→ [0,∞), E(γ )=
∫ 1

0
‖γ̇ (t)‖2

g dt.

For each b> 0, we consider the energy sublevel set �M<b := {γ ∈�M | E(γ ) < b}, and
denote by ιb : (�M<b, M) ↪→ (�M, M) the inclusion. Given a non-trivial cohomology class
μ ∈ H d(�M, M), the associated min-max

cg(μ)= cg(−μ) := inf{b> 0 | ι∗bμ 
= 0}
is a critical value of E , and thus the energy of a closed geodesic. One can easily verify that,
if g is a Zoll Riemannian metric with unit-speed geodesics of minimal period � > 0, then
cg(αm)= cg(βm)= m2�2 for all m ≥ 1. Conversely, we will prove the following theorem.
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THEOREM 1·1. Let M be a manifold homeomorphic to an odd dimensional sphere Sn, n ≥
3, and g a Riemannian metric on M. If cg(αm)= cg(βm) for some m ≥ 1, then for each q ∈ M
there exists a (possibly iterated) closed geodesic γ ∈ crit(E) with γ (0)= q and E(γ )=
cg(αm).

Our second result provides a min-max characterisation of Zoll Riemannian metrics on
simply connected spin closed manifolds. The statement requires a new finite dimensional
reduction of the variational settings for the energy, which goes as follows. Let (M, g) be
a closed Riemannian manifold of dimension n ≥ 2, with associated energy functional E :
�M → [0,∞). We denote by ρ = injrad(M, g) > 0 the injectivity radius, and by d : M ×
M → [0,∞) the Riemannian distance. For each δ ∈ (0, ρ) and k ∈N, we consider the space

ϒM =ϒδ,k M :=

⎧⎪⎨
⎪⎩q = (q0, ..., qk−1) ∈ M × ...× M

∣∣∣∣∣∣∣
d(q0, q1)= δ,∑
i∈Zk\{0}

d(qi , qi+1)
2 <ρ2

⎫⎪⎬
⎪⎭ .

We consider ϒM as a finite dimensional submanifold of �M , by identifying each q ∈ϒM
with the unique periodic curve γq ∈�M such that, for each i = 0, · · · , k − 1, the restriction
γq|[τi (q),τi+1(q)] is the unique shortest geodesic parametrized with constant speed joining qi and
qi+1. Here, the time values

0 = τ0(q) < τ1(q) < · · ·< τk(q)= 1

are chosen so that τ2(q)− τ1(q)= τ3(q)− τ2(q)= · · · = τk(q)− τk−1(q), and τ1(q) is the
value that minimizes the energy of the associated piecewise broken geodesic γq. A
straightforward computation shows that such values are given by

τi(q) := δ

δ + σ(q)
+ (i − 1)

k − 1

σ(q)
δ + σ(q)

, ∀i = 1, ..., k, (1·3)

where

σ(q)2 := (k − 1)
∑

i∈Zk\{0}
d(qi , qi+1)

2 > 0. (1·4)

A feature of ϒM that was missing in �M is the smooth evaluation map

Ev :ϒM → SM, Ev(q) := exp−1
q0
(q1), (1·5)

where we have denoted by SM the unit tangent bundle of (M, δ−2g). This map is injective
in cohomology (Lemma 5·1). We choose two generators

ω ∈ Ev∗(H 2n−1(SM))∼=Z, (1·6)

α ∈ H i(M)(�M, �M<4ρ2
)∼= H i(M)(�M, M)∼=Z. (1·7)

We will always fix a sufficiently small parameter δ ∈ (0, ρ) and a sufficiently
large k ∈N for the space ϒM =ϒδ,k M so that, according to Lemma 5·8, ω�
j∗α 
= 0 in H i(M)(ϒM, ϒM<4ρ2

), where j : (ϒM, ϒM<4ρ2
) ↪→ (�M, �M<4ρ2

) is the
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inclusion. For each b> 0, we set ϒM<b :=�M<b ∩ϒM , and denote by jb :
(ϒM<b, ϒM<4ρ2

) ↪→ (ϒM, ϒM<4ρ2
) the inclusion. Given a non-trivial cohomology class

μ ∈ H d(ϒM, ϒM<4ρ2
) the associated min-max

cg(μ)= cg(−μ) := inf{b> 0 | j∗
bμ 
= 0} (1·8)

is a critical value of the restricted energy E |ϒM , see Section 4. We can now state our second
main theorem.

THEOREM 1·2. Let M be a simply connected spin closed manifold of dimension n ≥ 2
admitting a simple Zoll Riemannian metric, and g a Riemannian metric on M. Then
cg( j∗α)= cg(ω� j∗α)=: �2 if and only if g is Zoll and the unit-speed geodesics of (M, g)
have minimal period �.

In this theorem, if we drop the assumptions of M being simply connected and spin, it is
still true that cg( j∗α)= cg(ω� j∗α)=: �2 if g is Zoll with unit-speed geodesics of minimal
period �; however, if cg( j∗α)= cg(ω� j∗α)=: �2, our proof would only imply that g is
Besse and either � or �− 2δ is a common period of the unit-speed closed geodesics.

Actually, the only simply connected closed manifolds that are not spin and admit a Besse
Riemannian metric have the same integral cohomology of even dimensional complex pro-
jective spaces CP2m . Therefore, Theorem 1·2 applies to Sn , CP2m+1, HPn , and CaP2. The
theorem would also apply to all those closed manifolds admitting a simple Zoll Riemannian
metric and having the integral cohomology of Sn , CP2m+1, HPn or CaP2; however, as we
already mentioned, there is no known example of simply connected, spin, closed manifold
different from Sn , CP2m+1, HPn and CaP2, and admitting a Besse Riemannian metric.

It might be possible to prove a spectral characterisation of Zoll Riemannian metrics
working directly with the ordinary loop space cohomology; however, due to the lack of
an evaluation map such as (1·5), a proof would necessitate a different argument. After this
work was completed, inspired by our Theorem 1·2, the first author together with Ginzburg
and Gürel proved a spectral characterization of Zoll Riemannian metrics by means of
S1-equivariant loop space cohomology [GGM19].

1·1. Organisation of the paper

In Section 2 we provide some background on the energy functional of Besse Riemannian
manifolds. In Section 3 we prove Theorem 1·1. In Section 4 we study the variational theory
of the energy functional in the finite dimensional loop space ϒM . Finally, in Section 5 we
prove Theorem 1·2.

2. Preliminaries

Let E :�M → [0,∞) be the energy functional of a closed Besse manifold (M, g) of
dimension n ≥ 2. By a theorem due to Wadsley [Wad75], all unit-speed geodesics have a
minimal common period � > 0. In particular, each critical manifold

K m := crit(E)∩ E−1(m2�2),

where m ∈N= {1, 2, 3, ...}, is diffeomorphic to the unit tangent bundle SM . As usual,
we denote by ind(E, K m) the Morse index of E at any γ ∈ K m , which is the number of
negative eigenvalues of the symmetric operator associated to the Hessian d2 E(γ ). We also
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denote by nul(E, K m)= dim ker d2 E(γ )− 1 the Morse nullity of E at any γ ∈ K m . Both
ind(E, K m) and nul(E, K m) are independent of the choice of γ within K m . The nullity of
a closed geodesic is always bounded from above by 2n − 2; since dim(K m)= 2n − 1 ≤
nul(E, K m)+ 1, we readily infer that nul(E, K m)= 2n − 2 = dim(K m)− 1. Therefore,
each critical manifold K m is non-degenerate, meaning that the restriction of the energy
functional to the fibers of its normal bundle has non-degenerate Hessian. This, together with
Bott’s iteration theory [Bot56], implies that

ind(E, K m)= m ind(E, K )+ (m − 1)(n − 1),

nul(E, K m)= 2n − 2,
(2·1)

see [GH09, equation. (13·1·1)]. Actually, Wilking [Wil01] showed that the energy func-
tional E is always Morse–Bott when (M, g) is Besse, meaning that the critical points are
organised in critical manifolds J ⊂ crit(E) such that nul(E, J )= dim(J )− 1. Moreover,
Radeschi and Wilking [RW17, page 941] proved that the minimal index

i(M) := min
{
ind(E, γ )

∣∣ γ ∈ crit(E)∩ E−1(0,∞)
}

is independent of the choice of a Besse Riemannian metric on M , and indeed only depends
on the integral cohomology ring of M .

Now, let us assume that (M, g) is an orientable Zoll Riemannian manifold. This readily
implies that i(M)= ind(E, K ) and

crit(E)∩ E−1(0,∞)=
⋃
m≥1

K m .

A result of Goresky and Hingston [GH09, theorem 13·4(1)] implies that, if one further
assumes that g is simple Zoll, the energy functional E is perfect for the integral singular
homology, and equivalently for the integral singular cohomology. This means that, for every
integer m ≥ 1 and for all ε > 0 small enough, the homomorphism

H ∗(�M, �M<m2�2
)

incl∗−−→ H ∗(�M<m2�2+ε, �M<m2�2
)

is surjective. Moreover, by [GH09, proposition 13·2], the negative bundle of every critical
manifold K m is oriented, which implies that

H ∗(�M<m2�2+ε, �M<m2�2
)∼= H ∗−ind(E,K m )(SM).

This, together with a usual gradient flow argument from Morse Theory, implies that coho-
mology of the free loop space�M relative to the constant loops M ⊂�M is given by (1·1).
Actually, for any Zoll Riemannian metric g on M , the Morse index formula in (1·1) becomes
ind(E, K m)= m i(M)+ (m − 1)(n − 1). This readily implies that, on any closed manifold
M admitting a simple Zoll Riemannian metric, the energy functional E :�M → [0,∞) of
any Zoll Riemannian metric g on M is perfect even if g is not simple Zoll.

3. A min-max condition for covering with closed geodesics

Let M be a manifold homeomorphic to an odd dimensional sphere Sn , n ≥ 3. The
inclusion M ⊂�M of the constant loops admits the evaluation map

ev :�M −→ M, ev(γ )= γ (0)
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as left inverse (this map should not be confused with the velocity evaluation map defined
in (1·5)). This implies that the cohomology homomorphism

ev∗ : H ∗(M) ↪→ H ∗(�M)

is injective. Ziller’s computation [Zil77] of the homology of the free loop space of the
compact rank-one symmetric spaces gives

H d(�M, M)∼=
{
Z, if d = m(n − 1) or d = m(n − 1)+ n, for m ∈N= {1, 2, ...},
0, otherwise.

In particular, we have two non-trivial generators αm ∈ H (2m−1)(n−1)(�M, M) and βm ∈
H 2m(n−1)+1(�M, M), as claimed in (1·2).

LEMMA 3·1. For each m ∈N, we have

αm � ev∗ν = βm

for a suitable generator ν ∈ H n(M).

Proof. Let g be a Zoll Riemannian metric on M , and E :�M → [0,∞) the associated
energy functional. If K = crit(E)∩ E−1(�2) is the critical manifold of the prime closed
geodesics, the other critical manifolds are M = E−1(0) and

K m = {γ m | γ ∈ K }, ∀m ∈N.

Here, as usual, we have denoted by γ m ∈�M the mth iterate of γ , which is defined by
γ m(t)= γ (mt). The associated critical values are m2�2 = E(K m). Let G be any complete
Riemannian metric on �M (for instance the usual W 1,2-one induced by g). We denote
by π : Nm → K m the negative bundle of K m , which is an orientable vector bundle of rank
ind(E, K m) whose fibers π−1(γ ) are the negative eigenspaces of the self-adjoint Fredholm
operator Hγ on Tγ�M defined by G(Hγ ·, ·)= d2 E(γ ). By means of the exponential map
of (�M,G), we can see the total space Nm as a submanifold of �M containing the critical
manifold K m in its interior. Since E is a Morse–Bott function, for all ε > 0 small enough
the inclusion induces a cohomology isomorphism

H ∗(�M<m2�2+ε, �M<m2�2
)

incl∗−−→∼= H ∗(Nm, ∂Nm). (3·1)

The critical manifold K m is homeomorphic to SM via the map γ �→ γ̇ (0)/‖γ̇ (0)‖g. Since
both the Euler characteristic χ(M)= χ(Sn) and the cohomology group H 1(M)∼= H 1(Sn)

vanish, the Gysin sequence of SM implies that π∗ : H n(M)→ H n(SM) is an isomorphism.
Therefore, the evaluation map induces a cohomology isomorphism

ev|∗K m : H n(M)
∼=−→ H n(K m).

Since the inclusion K m ⊂ Nm is a homotopy equivalence, we also have a cohomology
isomorphism

ev|∗Nm
: H n(M)

∼=−→ H n(Nm),

https://doi.org/10.1017/S0305004121000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004121000311


A min-max characterization of Zoll Riemannian metrics 597

which fits into the commutative diagram

H n(�M) incl∗ �� H n(Nm)

H n(M).

ev|∗Nm

∼=

�����������������������

ev∗

��

We set I := {(2m − 1)(n − 1), 2m(n − 1)+ 1}. The index formulas (2·1), together with
i(Sn)= n − 1, imply that

H d(Nm, ∂Nm)∼= H d−ind(E,K m )(K m)∼= H d−(2m−1)(n−1)(SSn)∼=Z, ∀d ∈ I.

This, together with the fact that E is a perfect functional and that the relative cohomology
groups H ∗(�M, M) have rank at most rank 1 in each degree, implies that the inclusion
induces the cohomology isomorphism

κ∗
1 : H d(�M, �M<m2�2

)
incl∗−−→∼= H d(Nm, ∂Nm), ∀d ∈ I. (3·2)

Let ν be a generator of H n(M). We set

μ := ev∗ν ∈ H n(�M), μ′ := ev|∗Nm
ν ∈ H n(Nm).

Let α′ ∈ H (2m−1)(n−1)(Nm, ∂Nm) be the Thom class of the orientable vector bundle Nm →
K m corresponding to an arbitrary orientation. The Thom isomorphism implies that α′ �μ′

is a generator of H 2m(n−1)+1(Nm, ∂Nm). Once again, since E is a perfect functional, we have
an isomorphism

κ∗
2 : H d(�M, �M<m2�2

)
incl∗−−→∼= H d(�M, M), ∀d ∈ I,

and we infer

(κ∗
2 )

−1βm = (−1)h(κ∗
1 )

−1(α′ � ev|∗Nm
ν)

= (−1)h(κ∗
1 )

−1α′ � ev∗ν

= (−1)h(κ∗
2 )

−1αm � ev∗ν

= (−1)h(κ∗
2 )

−1(αm � ev∗ν).

for some h ∈ {0, 1}. Up to replacing ν with −ν, we can assume that h = 0.

Proof of Theorem 1·1. Let us assume by contradiction that �2 := cg(αm)= cg(βm) for some
m ∈N, but that for some q ∈ M there is no γ ∈ crit(E) of energy E(γ )= �2 with γ (0)= q.
Under this latter assumption, the open subset U :=�M \ ev−1(q) is a neighbourhood of
the critical set crit(E)∩ E−1(�2). By Lemma 3·1, βm = αm � ev∗ν for some generator ν
of H n(M), and therefore the classical Lusternik–Schnirelmann theorem (see, e.g., [Vit97,
theorem 1·1] for a modern account) implies that (ev∗ν)|U 
= 0 in H n(U ). Now, consider the
commutative diagram
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H n(M) ev∗
��

incl∗

��

H n(�M)

incl∗

��

H n(M \ {q}) ev|∗U �� H n(U ).

Since M has dimension n, the punctured manifold M \ {q} has trivial cohomology group
H n(M \ {q}). This, together with the above commutative diagram, implies that (ev∗ν)|U =
ev∗(ν|M\{q})= 0, contradicting Lusternik–Schnirelmann theorem.

4. The finite dimensional loop space ϒM

Let (M, g) be a closed Riemannian manifold of dimension n ≥ 2 with associated
Riemannian distance d : M × M → [0,∞), injectivity radius ρ = injrad(M, g) > 0, and
energy functional E :�M → [0,∞). For each δ ∈ (0, ρ) and k ∈N, we consider the
space ϒM =ϒδ,k M , which we identify with a subspace of �M as we explained in the
introduction. The restriction of the energy functional Eδ,k := E |ϒM can be expressed as

Eδ,k(q)=
∫ 1

0
‖γ̇q(t)‖2

g dt =
k−1∑
i=0

d(qi , qi+1)
2

τi+1(q)− τi(q)

= δ2

τ1(q)
+ k − 1

1 − τ1(q)

∑
i∈Zk\{0}

d(qi , qi+1)
2

=
⎛
⎝δ +

√
(k − 1)

∑
i∈Zk\{0}

d(qi , qi+1)2

⎞
⎠2

.

Here, the times 0 = τ0(q) < · · ·< τk(q)= 1 are those defined in Equation (1·3). For each
i ∈Zk , we define v±

i (q) ∈ Tqi M by

v±
i (q) := γ̇q(τi (q)±).

The choice of τ1 that we made in (1·3) is such that, for all q ∈ crit(Eδ,k), the corresponding
curve γq has constant speed (even though γ̇q may not be smooth at times τ0(q)= 0 and
τ1(q)). More precisely, we have the following statement.

PROPOSITION 4·1. The critical points of Eδ,k are precisely those q ∈ϒM such that v−
0 (q) ∈

{v+
0 (q),−v+

0 (q)}, v+
1 (q) ∈ {v−

1 (q),−v−
1 (q)}, and v−

i (q)= v+
i (q) for all i ∈Zk \ {0, 1}.

Proof. Consider the functional

F : M × · · · × M︸ ︷︷ ︸
×k

×(0, 1)−→ [0,∞),

F(q, τ )= 1

τ
d(q0, q1)

2 + k − 1

1 − τ

∑
i∈Zk\{0}

d(qi , qi+1)
2,

which is smooth on the subset U ⊂ M×k × (0, 1) of all those points (q, τ ) such that
d(qi , qi+1) < ρ for all i ∈Zk . Notice that, for all q ∈ϒM , we have E(γq)= F(q, τ1(q)),
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and one can easily verify that τ1(q) is the unique critical point and the global minimiser of
the function τ �→ F(q, τ ). In the following, for each τ ∈ (0, 1) we set

Fτ := F(·, τ ).
We denote by SM the unit tangent bundle of (M, δ−2g), that is,

SM = {
(q, v) ∈ TM

∣∣ ‖v‖g = δ
}
.

The space ϒM is diffeomorphic to the space ϒ ′M of those

q′ = (q0, v0, q2, ..., qk−2, qk−1) ∈ SM × M × · · · × M︸ ︷︷ ︸
×k−2

,

such that, if we set q1 := expq0
(v0), we have∑

i∈Zk\{0}
d(qi , qi+1)

2 <ρ2.

The explicit diffeomorphism is

ι :ϒ ′M
∼=−→ϒM, ι(q0, v0, q2, ..., qk−1)= q = (q0, q1, q2, ..., qk−1),

and we have

v0

‖v0‖g
= γ̇q(0+)

‖γ̇q(0+)‖g
.

We consider the submersion Q : SM → M , Q(q, v)= expq(v). The differential of ι is given
by

dι(q′)(z,w)= (dπ(q0, v0)z, dQ(q0, v0)z,w),

where w = (w2, · · · , wk−2) ∈ Tq2 M × ...× Tqk−1 M , and z ∈ T(q0,v0)SM . We set

q = (q0, q1, q2, ..., qk−1) := ι(q′), τi := τi (q), v±
i := γ̇q(τ

±
i ),

so that

d(Fτ1 ◦ ι)(q′)(w, z)=
∑

i∈Zk\{0,1}
2g(v−

i − v+
i , wi )

+ 2g(v−
1 − v+

1 , dQ(q0, v0)z)

+ 2g(v−
0 − v+

0 , dπ(q0, v0)z).

(4·1)

By equation (4·1), d(Fτ1 ◦ ι)(q′)(0,w)= 0 for all w if and only if v−
i = v+

i for all i ∈Zk \
{0, 1}.

Notice that

dQ(q0, v0)
(

ker dπ(q0, v0)
) = span{v−

1 }⊥.

Therefore, by Equation (4·1), d(Fτ1 ◦ ι)(q′)(z, 0)= 0 for all z ∈ ker dπ(q0, v0) if and only if
v−

1 − v+
1 ⊥span{v−

1 }⊥, that is, v+
1 ∈ span{v−

1 }.
Now, fix an arbitrary tangent vector

v ∈ span{v0}⊥ = span{v+
0 }⊥,
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and choose any smooth curve ζ : (−ε, ε)→ M such that ζ(0)= q0, ζ̇ (0)= v, and
d(ζ(t), q1)= δ for all t ∈ (−ε, ε). We set ξ(t) := exp−1

ζ(t)(q1), and

z := d
dt |t=0(ζ(t), ξ(t)).

Notice that

dπ(q0, v0)z = v, dQ(q0, v0)z = 0.

Therefore, by equation (4·1), d(Fτ1 ◦ ι)(q′)(z, 0)= 0 for all z of this form if and only if
v−

0 − v+
0 ⊥span{v+

0 }⊥, that is, v−
0 ∈ span{v+

0 }.
It remains one last case in order to cover all the possible choices of tangent vectors z ∈

T(q0,v0)SM , namely when z is the value of the geodesic vector field at (q0, v0). In this case,

dπ(q0, v0)z = v0 = δ

‖v−
0 ‖g

v+
0 , dQ(q0, v0)z = δ

‖v−
1 ‖g

v−
1 = δ

‖v−
0 ‖g

v−
1 .

Therefore, by equation (4·1), d(Fτ1 ◦ ι)(q′)(z, 0)= 0 if and only if

g(v−
1 − v+

1 , v
−
1 )− g(v−

0 − v+
0 , v

+
0 )= 0.

Since ‖v−
1 ‖g = ‖v+

0 ‖g, this latter equation is verified if and only if

g(v+
1 , v

−
1 )= g(v−

0 , v
+
0 ). (4·2)

Notice however that condition (4·2) for the critical points of Eδ,k is redundant: indeed, any
point q ∈ϒM such that v−

0 ∈ span{v+
0 }, v+

1 ∈ span{v−
1 }, v−

i = v+
i for all i ∈Zk \ {0, 1}, and

g(v+
1 , v

−
1 ) 
= g(v−

0 , v
+
0 ) would define a geodesic cusp γq and thus violate the uniqueness of

the solution to the geodesic equation.
Summing up, we have proved that q ∈ crit(Eδ,k) if and only if v−

0 ∈ span{v+
0 }, v+

1 ∈
span{v−

1 }, v−
i = v+

i for all i ∈Zk \ {0, 1}. In this case, we have

σ = σ(q)=
∫ 1

τ1

‖γ̇q‖g dt,

and therefore

‖v+
0 ‖g = δ

τ1
= δ + σ =

∫ 1

0
‖γ̇q‖g dt = τ1‖v+

0 ‖g + (1 − τ1)‖v+
1 ‖g,

which implies that ‖v+
0 ‖g = ‖v+

1 ‖g.

Proposition 4·1 shows that, beside the global minimizers E−1
δ,k (4δ

2) (Figure 1(a)) there
are two other kinds of critical points of Eδ,k : the closed geodesics smoothly parametrised
with constant speed (Figure 1(b)), and the closed geodesics parametrised with constant
speed but non-smoothly with a zig-zag at times τ0 = 0 and τ1 (Figure 1(c)). If q′ ∈ crit(Eδ,k)

corresponds to a smoothly parametrized closed geodesic γq′ ∈ crit(E) and q′′ ∈ crit(Eδ,k)

corresponds to the same closed geodesic parametrized with a zig-zag, their energies are
related by

Eδ,k(q′′)1/2 = Eδ,k(q′)1/2 + 2δ. (4·3)
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(a) (b) (c)

Fig. 1. (a) A global minimiser of Eδ,k . (b) A critical point of Eδ,k corresponding to a closed geodesic.
(c) The “zig-zag” critical point of Eδ,k corresponding to the same closed geodesic.

We partition the critical point set crit(Eδ,k) as the disjoint union

crit(Eδ,k)= E−1
δ,k (4δ

2)∪ K ′ ∪ K ′′,

where K ′ = crit(E)∩ E−1(0,∞), while K ′′ contains zig-zag closed geodesics.
The functional setting of the energy Eδ,k :ϒM → [4δ2,∞) is suitable for Morse theory.

Indeed, Eδ,k can be continuously extended to the boundary ∂ϒM ⊂ M × · · · × M , and we
have

Eδ,k |∂ϒM ≡ sup Eδ,k = (
δ + √

(k − 1)ρ
)2
. (4·4)

In particular, every sublevel set ϒM≤b, for b<
(
δ + √

(k − 1)ρ
)2

, is a compact subset of
ϒM . Therefore, the classical min-max theorem is available in this setting: for each non-
trivial cohomology class μ ∈ H∗(ϒM, ϒM<4ρ2

), the min-max value cg(μ) defined in (1·8)
is a critical value of Eδ,k . Actually, each closed geodesic γ ∈ crit(E)∩ E−1(�2), with � > 0,
is contained in ϒM =ϒδ,k M if and only if

k > k(�, δ) := 1 + (�− δ)2

ρ2
.

Indeed, if we define

τ0 := 0,

τi := δ

�
+ (i − 1)

�− δ

(k − 1)�
, i = 1, ..., k − 1,

we readily verify that q = (γ (τ0), ..., γ (τk−1)) belongs to ϒM , and γq = γ .
The following two lemmas compare the Morse indices in the settings �M and ϒM . The

reader may skip their rather technical proofs on a first reading.

LEMMA 4·2. Let γ ∈ crit(E)∩ E−1(0,∞) be a closed geodesic. For each δ ∈ (0, ρ) and
k > k(E(γ )1/2, δ), if q ∈ crit(Eδ,k) is such that γq = γ , then

ind(E, γ )= ind(Eδ,k, q), nul(E, γ )= nul(Eδ,k, q).

Proof. We set θ0 := 0, θk := 1, and, for each i = 1, ..., k − 1, we choose a time value θi ∈
(τi(q), τi+1(q)) sufficiently close to τi(q) so that d(γ (θi ), γ (θi+1)) < ρ for all i ∈Zk . Notice
that

0 = τ0(q)= θ0 < τ1(q) < θ1 < τ2(q) < θ2 < · · ·< τk(q)= θk = 1.
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We set q ′
i := γ (θi ) and q′ := (q ′

0, ..., q ′
k−1). We consider the function

F : M×k −→ [0,∞), F(p′)=
k−1∑
i=0

d(p′
i , p′

i+1)
2

θi+1 − θi
,

which is smooth on an open neighbourhood of q′. Since q′ is obtained by sampling the
closed geodesic γ at times θi , it is a critical point of F . Since d(γ (θi ), γ (θi+1)) < ρ and for
all i ∈Zk , it is well known that

ind(E, γ )= ind(F, q′), nul(E, γ )= nul(F, q′),

see, e.g., [Mil63, theorem 16·2]. For each i ∈Zk , we denote by �i ⊂ Tq ′
i
M the hyperplane

orthogonal to γ̇ (θi ). By the definition of the Morse indices, there exist vector subspaces
V,W ⊂�0 × ...×�k−1 of dimensions ind(E, γ ) and ind(E, γ )+ nul(E, γ ) respectively
such that

d2 F(q′)[v′, v′]< 0, ∀v′ ∈V \ {0},
d2 F(q′)[v′, v′] ≤ 0, ∀v′ ∈W.

(4·5)

Now, we choose an open neighbourhood U ⊂ M×k of q′ that is small enough so that, for
all p′ = (p′

0, ..., p′
k−1) ∈ U , we have

δ < d(p′
0, p′

1) < ρ,

d(p′
i , p′

i+1) < ρ, ∀i ∈Zk \ {0}.
We define ζp′ ∈�M to be the piecewise broken geodesic such that each restriction ζp′ |[θi ,θi+1]
is the shortest geodesic joining p′

i and p′
i+1. Notice that ζq′ = γq = γ . We set

ν0(p′) := 0,

ν1(p′) := θ1δ

d(p′
0, p′

1)
,

νi(p′) := ν1(p′)+ (i − 1)
1 − ν1(p′)

k − 1
, ∀i = 2, ..., k.

Notice that νi(q′)= τi (q). Therefore, up to replacing U with a smaller neighbourhood of q′,
for each p′ ∈ U , the curve ζp′ is smooth at each time νi(p′). This implies that the map

ψ : U −→ϒM =ϒδ,k M, ψ(p′)= (ζp′(ν0(p′)), ..., ζp′(νk−1(p′))).

is smooth. Notice that ψ(q′)= q and

Eδ,k(ψ(p′))≤ F(p′), ∀p′ ∈ U,

with equality if p′ = q′. This, together with (4·5), implies that

d2 Eδ,k(q)[dψ(q′)v′, dψ(q′)v′] ≤ d2 F(q′)[v′, v′]< 0, ∀v′ ∈V \ {0},
d2 Eδ,k(q)[dψ(q′)v′, dψ(q′)v′] ≤ d2 F(q′)[v′, v′] ≤ 0, ∀v′ ∈W.

(4·6)

Each v′ = (v′
0, ..., v

′
k−1) ∈ Tq′ M×k defines a unique continuous and piecewise smooth vec-

tor field ξv′ along γ such that, for all i = 0, ..., k − 1, ξv′(θi)= v′
i and the restriction ξv′ |[θi ,θi+1]

is a Jacobi vector field. Since d(qi , qi+1) < ρ, the geodesic γ |[τi (q),τi+1(q)] is the shortest one
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joining qi and qi+1. This readily implies that the map

� : Tq′ M×k −→ Tq M×k, �(v′)= (ξv′(τ0(q)), ..., ξv′(τk−1(q)))

is injective on V and on W. The differential of ψ at q′ is given by

dψ(q′)v′ =�(v′)+ (
γ̇ (τ0(q))dν0(q′)v′, ..., γ̇ (τk−1(q))dνk−1(q′)v′).

Consider a non-zero v′ ∈V ∪W, and set v = (v0, ..., vk−1) :=�(v′). By the injectivity of�,
at least one component of v, say vi , is non-zero. Since both tangent vectors v′

i−1 and v′
i are

orthogonal to γ̇ , the whole Jacobi field ξv′ |[θi−1,θi ] is pointwise orthogonal to γ̇ , and so is vi =
ξv′(τi (q)). Therefore, vi + γ̇ (τi (q))dνi(q′)v′ is non-zero, which shows that the differential
dψ(q′) is injective on both V and W. This, together with (4·6), implies that

ind(Eδ,k, q)≥ ind(E, γ ),

ind(Eδ,k, q)+ nul(Eδ,k, q)≥ ind(E, γ )+ nul(E, γ ).

Since ϒM is a subspace of �M , the opposite inequalities hold as well.

LEMMA 4·3. Let γ ∈ crit(E)∩ E−1(0,∞) be a closed geodesic. For each δ ∈ (0, ρ) and
integer k > k(E(γ )1/2 + 2δ, δ), let q′ ∈ crit(Eδ,k) be such that γq′ = γ , and q′′ ∈ crit(Eδ,k) be
the associated zig-zag critical point, i.e. q ′′

0 = q ′
0, q ′′

1 = q ′
1, and Eδ,k(q′′)1/2 = Eδ,k(q′′)1/2 +

2δ. Then

ind(Eδ,k, q′)≤ ind(Eδ,k, q′′),

ind(Eδ,k, q′)+ nul(Eδ,k, q′)≤ ind(Eδ,k, q′′)+ nul(Eδ,k, q′′).

Proof. The proof is somewhat analogous to the one of Lemma 4·2, but requires some extra
ingredients. We consider the time values 1 + τ1(q′)=: σ1 >σ2 > · · ·>σk := 0 such that

γq′′(tτi+1(q′′)+ (1 − t)τi(q′′))= γ (tσi+1 + (1 − t)σi), ∀t ∈ [0, 1].
We choose arbitrary values 0 =: θ0 < θ1 < ... < θk := 1 such that

{θ1, ..., θk−1} ∩ {σ1 mod 1, ..., σk−1 mod 1} =∅,

d(γq′(θ0), γq′(θ1)) > δ,

d(γq′(θi), γq′(θi+1)) < ρ, ∀i = 0, ..., k − 1.

The function

F : M×k −→ [0,∞), F(p)=
k−1∑
i=0

d(pi , pi+1)
2

θi+1 − θi
,

is smooth on an open neighbourhood of q := (γq′(θ0), ..., θq′(θk−1)). Since q is obtained by
sampling the closed geodesic γ at times θi , it is a critical point of F . By Lemma 4·2 and
[Mil63, theorem 16·2], we have

ind(Eδ,k, q′)= ind(E, γ )= ind(F, q).

Therefore, if we denote by�i ⊂ Tqi M the hyperplane orthogonal to γ̇ (θi), we can find vector
subspaces V,W ⊂�1 × · · · ×�k−1 of dimensions ind(E, γ ) and ind(E, γ )+ nul(E, γ )
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respectively such that

d2 F(q)[v, v]< 0, ∀v ∈V \ {0},
d2 F(q)[v, v] ≤ 0, ∀v ∈W.

(4·7)

We choose an open neighbourhood U ⊂ M×k of q that is small enough so that d(p0, p1) >

δ and d(pi , pi+1) < ρ for all p = (p0, ..., pk−1) ∈ U and i ∈Zk \ {0}. We define βp ∈�M to
be the piecewise broken geodesic such that each restriction βp|[θi ,θi+1] is the shortest geodesic
joining pi and pi+1. Notice that F(p)= E(βp). Moreover, βq = γq′ = γ , which implies

F(q)= E(βq)= Eδ,k(q′).

We set ν(p) := δθ1d(p0, p1)
−1 ∈ (0, θ1) and notice that, since the restriction βp|[0,θ1] is a

geodesic, we have

d
(
βp(0), βp(ν(p))

) = δ.

We set

ν(p) := δ

δ +
√
(1 − ν(p))

∫ 1
ν(p) ‖β̇p(t)‖2

g dt
.

We define βp ∈�M so that the restrictions βp|[0,ν(p)] and βp|[ν(p),1] are affine reparametriza-
tions of βp|[0,ν(p)] and βp|[ν(p),1] respectively; namely,

βp(t) :=

⎧⎪⎪⎨
⎪⎪⎩
βp

(
t
ν(p)
ν(p)

)
, t ∈ [0, ν(p)],

βp

(
ν(p)+ (t − ν(p))

1 − ν(p)
1 − ν(p)

)
, t ∈ [ν(p), 1].

The choice of this reparametrisation guarantees that

E(βp)≤ E(βp)= F(p).

Moreover, ν(q)= ν(q)= τ1(q′) and βq = βq = γq′ = γ , and therefore

E(βq)= F(q).

We define αp :R/(1 + 2ν(p))Z→ M by suitably adding a zig-zag to βq as follows

αp(t) :=

⎧⎪⎪⎨
⎪⎪⎩
βp(t), t ∈ [0, ν(p)],
βp(2ν(p)− t), t ∈ [ν(p), 2ν(p)],
βp(t − 2ν(p)), t ∈ [2ν(p), 1 + 2ν(p)],

and we define αp ∈�M by αp(t)= αp(t (1 + 2ν(p))). The energies of αp and βp are related
by

E(αp)= (2δ + E(βp)
1/2)2.
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Moreover, αq = γq′′ . We set

ηi (p) := k − i

k − 1
(1 + ν(p)) , ∀i = 1, ..., k,

and notice that ηi (q)= σi . Up to replacing U with a smaller neighbourhood of q, for each
p ∈ U the curve βp is smooth at each time ηi (p). Therefore, the map

ψ : U −→ϒM =ϒδ,k M, ψ(p)= (βp(0), βp(η1(p)), βp(η2(p)), ..., βp(ηk−1(p)))

is smooth, and satisfies

ψ(q)= q′′ ∈ crit(Eδ,k).

Notice that Eδ,k(ψ(p))≤ E(αp) with equality if p = q. This, together with the other energy
inequalities pointed out so far, provides

Eδ,k(ψ(p))≤ (2δ + F(p)1/2)2, ∀p ∈ U,

Eδ,k(ψ(q))= Eδ,k(q′′)= (2δ + F(q)1/2)2.

This, together with the fact thatψ(q)= q′′ and q are critical points of Eδ,k and F respectively,
implies

d2 Eδ,k(q′′)[dψ(q)v, dψ(q)v] ≤ 2δ + F(q)1/2

F(q)1/2
d2 F(q)[v, v].

Therefore, by (4·7), we infer

d2 Eδ,k(q′′)[dψ(q)v, dψ(q)v]< 0, ∀v ∈V \ {0},
d2 Eδ,k(q′′)[dψ(q)v, dψ(q)v] ≤ 0, ∀v ∈W,

which provides the following lower bounds for the Morse indices

ind(Eδ,k, q′′)≥ dim(dψ(q)V), ind(Eδ,k, q′′)+ nul(Eδ,k, q′′)≥ dim(dψ(q)W).

Finally, the same argument as in the proof of Lemma 4·2 implies that dψ(q) is injective on
both V and W, i.e.

dim(dψ(q)V)= dim(V)= ind(Eδ,k, q′),

dim(dψ(q)W)= dim(W)= ind(Eδ,k, q′)+ nul(Eδ,k, q′).

5. Zoll Riemannian metrics

5·1. The evaluation map on ϒM

Let us quickly prove the following property of the evaluation map Ev :ϒM → SM
defined in (1·5). Here, as before, we denote by SM the unit tangent bundle of (M, δ−2g).

LEMMA 5·1. For each b ≥ 4δ2, the cohomology homomorphism

Ev∗ : H ∗(SM) ↪→ H ∗(ϒM≤b)

is injective.
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Proof. We define the homeomorphism

ι : SM −→ E−1
δ,k (4δ

2)⊂ϒM, ι(q0, v0)= q,

where q = (q0, ..., qk−1) is the unique element in E−1
δ,k (4δ

2) such that expq0
(v0)= q1. Namely,

γq is the periodic curve such that τ1(q)= 1/2, γ̇q(0+)= 2v0, and γq(t)= γq(1 − t) for all
t ∈ [0, 1/2], as in Figure 1(a). Since the composition Ev ◦ ι is the identity, the lemma follows
for b = 4δ2. The lemma readily follows also for any b> 4δ2, since E−1

δ,k (4δ
2)⊂ϒM≤b.

As in (1·6), we denote by ω the generator of Ev∗(H 2n−1(SM)). The following lemma is
the main ingredient for the proof of Theorem 1·2.

LEMMA 5·2. Assume that there exists a cohomology class μ ∈ H d(ϒM, ϒM≤4ρ2
) such

that ω�μ 
= 0 in H d+2n−1(ϒM, ϒM≤4ρ2
). If

cg(μ)= cg(ω�μ)=: �2,

then g is a Besse manifold, and either � or �− 2δ is a common multiple of the periods of the
unit-speed closed geodesics of (M, g). Moreover, the critical set

K := crit(E)∩ (E−1(�2)∪ E−1((�− 2δ)2)),

has Morse index ind(E, K )≤ d.

Proof. Assume by contradiction that cg(μ)= cg(ω�μ)=: �2, but there exists (q, v) ∈ SM
such that the unit-speed geodesic

γ (t)= expq(tv/‖v‖g)

is either not periodic, or it is periodic but neither � nor �− 2δ are multiples of its minimal
period. By (4·3), the condition on �− 2δ implies that none of the zig-zag critical points
q ∈ K ′′ ∩ E−1(�2) satisfies Ev(q)= (q, v). Therefore, the open subset

U := {
q = (q0, q1, ..., qk−1) ∈ϒM

∣∣ (q0, exp−1
q0
(q1)) 
= (q, v)

}
contains the set of critical points crit(Eδ,k)∩ E−1(�2), and the classical Lusternik–
Schnirelmann’s theorem [Vit97, theorem 1·1] implies that the cohomology class ω|U ∈
H 2n−1(U ) is non-zero. Consider the commutative diagram

U � � incl ��

Ev|U
����

���
���

���
�� ϒM

Ev
��

SM.

Since ω is the generator of the image Ev∗(H 2n−1(SM)), ω|U is the generator of the image
Ev|∗U (H 2n−1(SM)). However, the homomorphism Ev|∗U : H 2n−1(SM)→ H 2n−1(U ) is zero,
since the map Ev|U is not surjective. This implies that ω|U = 0 in H 2n−1(U ), which is a
contradiction.
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So far, we have proved that g is Besse, and � or �− 2δ is a common multiple of the periods
of the unit-speed geodesics. Now, consider the critical sets

K := crit(E)∩ (
E−1(�2)∪ E−1((�− 2δ)2)

)
,

Kδ,k := crit(Eδ,k)∩ E−1
δ,k (�

2).

Let ε > 0 be small enough so that (�2, �2 + ε) does not contain critical values of Eδ,k . Since
cg(μ)= �, the relative cohomology group

H d(ϒM<�2+ε, ϒM<�2
)∼= H d−ind(Eδ,k ,Kδ,k )(Kδ,k)

is nontrivial. In particular

ind(Eδ,k, Kδ,k)≤ d. (5·1)

Since δ < ρ, 2δ is smaller than the minimal period of the unit-speed geodesics of (M, g).
This readily implies that the values � and �− δ cannot both be common periods for the
unit-speed geodesics of (M, g), and we have two possible cases:

(i) If � is a common period for the unit-speed geodesics of (M, g), then Kδ,k does not contain
zig-zag closed geodesics, and indeed K = Kδ,k ;

(ii) If �− 2δ is a common period for the unit-speed geodesics of (M, g), then Kδ,k contains
only zig-zag closed geodesics, and more precisely of those closed geodesics contained in
K .

In both cases, Lemmas 4·2 and 4·3, together with the inequality (5·1), imply

ind(E, K )≤ ind(Eδ,k, Kδ,k)≤ d.

5·2. Two subordinated homology classes in the Zoll case

In this subsection, we will consider a Zoll Riemannian manifold, and prove the “if” claim
in Theorem 1·2.

LEMMA 5·3. Let M be a closed manifold of dimension n ≥ 2 admitting a simple Zoll
Riemannian metric, and g a Zoll Riemannian metric on M whose unit-speed closed
geodesics have minimal period � > 0. For each δ ∈ (0, ρ) and for each integer k > k(�, δ),
we consider the spaceϒM =ϒδ,k M. For each ε ∈ (4δ2, �2), there exists a relative homology
class

h ∈ Hi(M)+2n−1(ϒM≤�2
, ϒM<ε)

such that h and h �ω|ϒM≤�2 are not in the kernel of the homomorphism

H∗(ϒM≤�2
, ϒM<ε)

incl∗−−→ H∗(�M, �M<ε).

Proof. Let K := crit(E)∩ E−1(�2) be the critical manifold of the non-iterated closed
geodesics. By Lemma 4·2, for each δ ∈ (0, ρ) and integer k > k(�, δ), we have K ⊂ϒM :=
ϒδ,k M and, for each γq ∈ K ,

ind(E, γq)= ind(Eδ,k, q)= i(M),

nul(E, γq)= nul(Eδ,k, q)= 2n − 2.
(5·2)
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We denote by G the Riemannian metric on ϒM induced by g, i.e.

G(v,w)=
∑
i∈Zk

g(vi , wi ), ∀v,w ∈ TqϒM.

Let π : N → K be the negative bundle of Eδ,k at K . Namely, for each q ∈ K , the fiber
π−1(q)⊂ TqϒM is the negative eigenspace of the symmetric linear map Hq : TqϒM →
TqϒM defined by G(Hq ·, ·)= d2 Eδ,k(q). The rank of this vector bundle is i(M), accord-
ing to (5·2). For each r > 0, we set Nr ⊂ N to be the r -neighbourhood of the 0-section,
measured with respect to G. With a slight abuse of notation, we still denote by exp the
exponential map of (ϒM,G). We choose r > 0 to be small enough so that exp |Nr is a well
defined diffeomorphism onto a neighbourhood of K in ϒM , and Eδ,k(expq(v)) < Eδ,k(q)
for all (q, v) ∈ Nr with v 
= 0. Since E has no critical values in the interval (�2, (�+ δ)2), the
arrows in the following commutative diagram are isomorphisms

H∗(Nr , ∂Nr )
exp∗
∼=

��

exp∗

∼=

����
���

���
���

���
���

���
���

� H∗(ϒM≤�2
, ϒM<�2

)

incl∗∼=

��

H∗(�M<(�+δ)2, �M<�2
)

see [GH09, theorem D·2]. Since E is a perfect functional, the exponential map also induces
an injective homomorphism

exp∗ : H∗(Nr , ∂Nr ) ↪→ H∗(�M, �M<�2
).

Since �2 is the smallest positive critical value of E , the restriction Eδ,k has no critical values
in the interval (4δ2, �2). For each ε ∈ (4δ2, �2), if we denote by φt the anti-gradient flow of
Eδ,k , we can fix t > 0 large enough so that

φt ◦ exp(∂Nr )⊂ϒM<ε.

If we set ι := φt ◦ exp, the induced homomorphisms ι∗ and incl∗ ◦ ι∗ in the following
commutative diagram must be injective

H∗(Nr , ∂Nr )
� � exp∗ ��

� �

ι∗

��

H∗(�M, �M<�2
)

H∗(ϒM≤�2
, ϒM<ε)

incl∗ �� H∗(�M, �M<ε)

incl∗∼=

��
.

Since the closed geodesics in K are not iterated, the negative bundle N → K is orientable. If
τ ∈ H i(M)(Nr , ∂Nr ) denotes its Thom class with respect to any orientation, we have a Thom
isomorphism

H ∗(Nr )−→ H ∗+i(M)(Nr , ∂Nr ), μ �−→ τ �μ.
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If we denote by ω′ the generator of H 2n−1(Nr )∼= H 2n−1(SM), and by h′ the generator
of Hi(M)+2n−1(Nr , ∂Nr ), then h′ �ω′ is the generator of Hi(M)(Nr , ∂Nr ). Consider the
evaluation map Ev :ϒM≤�2 → SM of equation (1·5), which is injective in cohomology
according to Lemma 5·1. If we denote by 0N ⊂ N the 0-section of N , the composition
Ev ◦ ι|0N : 0N → SM is clearly a homeomorphism. Therefore, up to changing the sign of
ω′,

ω′ = ι∗(ω|ϒM≤�2 ).

We set

h := ι∗h′ ∈ Hi(M)+2n−1(ϒM≤�2
, ϒM<ε),

and notice that

h �ω|ϒM≤�2 = (ι∗h′)�ω|ϒM≤�2 = ι∗(h′ � ι∗(ω|ϒM≤�2 ))= ι∗(h′ �ω′) 
= 0

in Hi(M)(ϒM≤�2
, ϒM<ε).

In the following lemma, we will employ the notation of the introduction, and consider the
cohomology classes α and ω� j∗α from equations (1·6) and (1·7).

LEMMA 5·4. Let M be a closed manifold of dimension n ≥ 2 admitting a simple Zoll
Riemannian metric, and g a Zoll Riemannian metric on M whose unit-speed closed
geodesics have minimal period � > 0. For each δ ∈ (0, ρ) and integer k > k(�, ρ/

√
2),

consider the space ϒM =ϒδ,k M. Then cg( j∗α)= cg(ω� j∗α)= �2.

Proof. By Lemma 5·3, there exists a homology class

h ∈ Hi(M)+2n−1(ϒM≤�2
, ϒM<ε)

such that both h and h �ω|ϒM≤�2 are mapped to non-zero homology classes under the
homomorphism

( j�2)∗ = incl∗ : H∗(ϒM≤�2
, ϒM<ε)−→ H∗(�M, �M<ε).

Equation (1·1) implies that

H i(M)(�M, �M<4ρ2
)∼= H i(M)(�M, M)∼=Z,

H i(M)−1(�M, �M<4ρ2
)∼= H i(M)−1(�M, M)= 0.

Therefore, by the universal coefficient theorem,

H i(M)(�M, �M<4ρ2
)∼= Hom

(
Hi(M)(�M, �M<4ρ2

),Z
)
,

and the generator α ∈ H i(M)(�M, �M<4ρ2
) must satisfy

(ω� j∗
�2α)h = ( j∗

�2α)(h �ω)= α(( j�2)∗(h �ω)) 
= 0.

This implies that cg( j∗α)≤ cg(ω� j∗α)≤ �2. On the other hand, � is the smallest critical
value of the energy E |ϒM above the global minimum 4ρ2, and therefore we have the opposite
inequality cg( j∗α)≥ �2.
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5·3. Two subordinated homology classes for arbitrary metrics

Let M be a closed Riemannian manifold of dimension n ≥ 2 equipped with a Zoll
Riemannian metric g0 and with an arbitrary Riemannian metric g1. Their convex combi-
nations

gs := (1 − s)g0 + sg1, s ∈ [0, 1],
give a path of Riemannian metrics. We will denote with a subscript or superscript s the
usual Riemannian objects associated with the Riemannian metric gs : the exponential map
exp(s) : TM → M , the Riemannian distance ds : M × M → [0,∞), the injectivity radius
ρs = injrad(M, gs), and the energy Es :�M → [0,∞). We set

dmax(q0, q1) := max
s∈[0,1]

ds(q0, q1), ∀q0, q1 ∈ M,

ρmin := min{ρs | s ∈ [0, 1]}> 0,

c := min
{‖v‖g0‖v‖−1

gs

∣∣ v ∈ TM \ 0-section, s ∈ [0, 1]} ∈ (0, 1],
δmax := c ρmin

2
.

We fix δ0 ∈ (0, δmax) small enough, ε0 := 8δ2
0, and ε1 := 4ρ2

1 so that we have the inclusion of
sublevel sets

{E0 < ε0} ⊆ {E1 < ε1} ⊂�M.

Since both these sublevel sets can be deformed onto the space of constant loops M ⊂�M ,
the inclusion induces a homology isomorphism

H∗(�M, {E0 < ε0}) incl∗−−→∼= H∗(�M, {E1 < ε1}).

We denote by �0 > 0 the minimal period of the unit-speed geodesics of the Zoll metric g0.
By Lemma 5·3, for each integer k0 > k0(�0, δ0), if we set

ϒ(0)M =ϒ
(0)
δ0,k0

M,

there exists a relative homology class h ∈ Hi(M)+2n−1(ϒ
(0)M, ϒ(0)M<ε0) such that h and

h �ω0 are not in the kernel of the homomorphism

H∗(ϒ(0)M, ϒ(0)M<ε0)
incl∗−−→ H∗(�M, {E0 < ε0}). (5·3)

Here, ω0 ∈ H 2n−1(ϒ(0)M) is the cohomology class (1·6) for the Riemannian metric g0. Let
σ be a relative cycle representing h, which we can see as a continuous map of the form

σ : (�, ∂�)−→ (ϒ(0)M, ϒ(0)M<ε0)⊂ (�M, {E0 < ε0})
for a suitable simplicial complex � with simplicial boundary ∂�. Hereafter, we will treat
the points σ(z) as elements of the loop space �M .

LEMMA 5·5. For each δ1 > 0 small enough, there exists a continuous function T :�→
(0, 1) such that

d1(σ (z)(0), σ (z)(T (z)))= δ1, ∀z ∈�.
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Proof. We will denote by τ1 :ϒ(0)M → (0, 1) the function as defined in (1·3) associated to
g0, and by SM the unit tangent bundle of (M, g0). If τ ′′ ∈ (0, δ0) is sufficiently small, the
function

F : SM × [0, τ ′′)−→ [0,∞),

F(q, v, t)= d1(q, exp(0)q (tv))
2 = ‖(exp(1)q )

−1 ◦ exp(0)q (tv)‖2
g1

is smooth. For each (q, v) ∈ SM , the function F(q, v, ·) has a unique global minimiser at
t = 0, and F(q, v, 0)= 0. Since

(exp(1)x )
−1 ◦ exp(0)x (tv)= tv + o(t),

we readily see that there exists τ ′ ∈ (0, τ ′′) such that

d
dt F(q, v, t) > 0, ∀(q, v) ∈ SM, t ∈ (0, τ ′).

By the implicit function theorem, for each δ1 > 0 small enough there exists a smooth
function T ′ : SM → (0, τ ′) such that

F(q, v, T ′(q, v))= δ1, ∀(q, v) ∈ SM.

Now, for each z ∈�, the curve γz := σ(z)|[0,τ1(σ (z))] is a geodesic of (M, g0) with speed
‖γ̇ (0+)‖g0 = δ0/τ1(σ (z)). If we set qz := γz(0) and vz := γ̇z(0+)/‖γ̇z(0+)‖g0 , we have

F(qz, vz, t)= d1

(
γz(0), γz(t τ1(σ (z))/δ0)

)2
.

The desired continuous function is given by T (z) := T ′(qz, vz) τ1(σ (z))/δ0.

For each τ ∈ (0, 1), we introduce the subspace

Uτ :=
⎧⎨
⎩γ ∈�M

∣∣∣∣∣∣
γ (0) 
= γ (t) ∀t ∈ [0, τ ]
max

t∈(0,τ ]
dmax(γ (0), γ (t)) < ρmin

⎫⎬
⎭ .

We fix τ ∈ (0, 1) small enough to that the support of our cycle σ(�) is contained in Uτ .

LEMMA 5·6. For each δ1 ∈ (0, ρmin) small enough, integer k1 ∈N large enough, and
τ > 0 small enough, if we set

ϒ(1)M :=ϒ
(1)
δ1,k1

M,

there exists a homotopy σs :�→ Uτ , with s ∈ [0, 1], such that σ0 = σ , σ1(�)⊂ Uτ ∩ϒ(1)M,
and s �→ E1(σs(z)) is monotonically decreasing for all z ∈�.

Proof. We fix a small enough δ1 ∈ (0, ρmin) so that Lemma 5·5 holds with an associated
function T :�→ (0, 1). We also fix τ ∈ (0,min T ), and a large enough k1 ∈N so that, if
we set

ϒ(1)M :=ϒ
(1)
δ1,k1

M,

we have

max E1 ◦ σ < sup
ϒ(1)M

E1,
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see (4·4). We fix z ∈� and γ0 := σ(z), and define its deformation γs = σs(z) ∈ Uτ , for s ∈
[0, 1], as follows. We set

ti = ti(z) := T (z)+ 1 − T (z)

k − 1
(i − 1), i = 1, ..., k,

so that 0 =: t0 < t1 < ... < tk = 1. The first half of the deformation, for s ∈ [0, 1/2], is the
usual Morse shortening process: we set ri,s := (1 − 2s)ti + 2sti+1 for i = 0, ..., k − 1; we
define γs |[ti ,ri,s ] the be the shortest g1-geodesic such that γs(ti)= γ0(ti ) and γs(ri,s)= γ0(ri,s),
and we set γs |[ri,s ,ti+1] = γ0|[ri,s ,ti+1].

The curve γ1/2 is a broken geodesic whose first portion γ1/2|[t0,t1] has g1-length δ1. The
second half of the deformation, for s ∈ [1/2, 1], is just a time reparametrisation of γ1/2 that
will make it belong to ϒ(1)M . We set

q = (q0, ..., qk1−1) := (γ1/2(t0), γ1/2(t1), ..., γ1/2(tk−1)).

We will denote by τi := τi (σ (z)) the times values 0 = τ0 < τ1 < ... < τk = 1 defined in (1·3)
associated to g1. For each s ∈ [1/2, 1], i = 0, ..., k − 1, and r ∈ [0, 1], we set

γs

(
(2s − 1)((1 − r)τi + rτi+1)+ (2 − 2s)((1 − r)ti + r ti+1)

)
:= γ1/2

(
(1 − r)ti + r ti+1

)
.

For each s ∈ [0, 1] and t ∈ (0, τ ], we have the evaluation map

Evs,t : Uτ −→ TM \ 0-section, Evs,t(γ )= (exp(s)γ (0))
−1(γ (t)).

Since Evs,t depends continuously on the pair (s, t), the cohomology homomorphism
Ev∗

s,t : H 2n−1(TM \ 0-section)→ H 2n−1(Uτ ) is actually independent of (s, t). We denote a
generator of its image by

�τ ∈ Ev∗
s,t(H

2n−1(TM \ 0-section))⊂ H 2n−1(Uτ ).

LEMMA 5·7. Up to changing the sign of ω0 and ω1, we have

�τ |Uτ∩ϒ(s)M =ωs |Uτ∩ϒ(s)M , ∀s ∈ {0, 1}.
Proof. We fix s ∈ {0, 1}, and denote by τ1 :ϒ(s)M → (0, 1) the function as defined in (1·3)
and by Ev :ϒ(s)M → TM \ 0-section the evaluation map (1·5) associated to gs . Notice that
the codomain of Ev in (1·5) is the unit tangent bundle SM of (M, δ−2

s gs). However, since
the the inclusion SM ↪→ TM \ 0-section is a homotopy equivalence, the cohomology class
ωs will also be the generator of Ev∗(H ∗(TM \ 0-section)). Since

Ev(γq)= Evs,τ1(q)(γq), ∀γq ∈ Uτ ∩ϒ(s)M,

we readily see that Ev|Uτ∩ϒ(s)M and Evs,t |Uτ∩ϒ(s)M , for all t ∈ (0, τ ], are homotopic maps.
Therefore, both the restrictions �τ |Uτ∩ϒ(s)M and ωs |Uτ∩ϒ(s)M are generators of the image
Ev|∗Uτ∩ϒ(s)M(TM \ 0-section), and, up to changing the sign of ωs , they coincide.

Since h and h �ω0 are mapped to non-zero classes in H∗(�M, {E0 < ε0}) by the homo-
morphism (5·3), Lemmas 5·6 and 5·7 imply that, for each s ∈ {0, 1}, [σs] and [σs] ∩ωs are
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non-trivial relative homology classes in

H∗(Uτ ∩ϒ(s)M,Uτ ∩ϒ(s)M<εs ).

If we consider the homomorphism induced by the inclusion

ι(s)∗ : H∗(Uτ ∩ϒ(s)M,Uτ ∩ϒ(s)M<εs )
incl∗−−→ H∗(Uτ ,Uτ ∩ {E1 < ε1}),

we have

ι(0)∗ [σ0] = ι(1)∗ [σ1] = [σ ], ι(0)∗ ([σ0]�ω0)= ι(1)∗ ([σ1]�ω1)= [σ ]��τ .

In particular, if we see σs and σs �ωs as relative cycles in (�M, {E1 < ε1}), we have [σ0] =
[σ1] and [σ0 �ω0] = [σ1 �ω1] in H∗(�M, {E1 < ε1}).

Now, consider the generator α ∈ H i(M)(�M, {E1 < ε1})∼=Z, and the inclusion

j1 : (ϒ(1)M, ϒ(1)M<ε1) ↪→ (�M, {E1 < ε1}).
LEMMA 5·8. For each δ1 ∈ (0, ρ1) small enough and k1 ∈N large enough, if we set

ϒ(1)M :=ϒ
(1)
δ1,k1

M,

we have ω1 � j∗
1 α 
= 0 in H i(M)(ϒ(1)M, ϒ(1)M<ε1).

Proof. Let δ1 ∈ (0, ρ1) be small enough and k1 ∈N large enough so that Lemma 5·6 holds.
Since H i(M)−1(�M, {E1 < ε1}) is trivial, the universal coefficient theorem implies that

H i(M)(�M, {E1 < ε1})∼= Hom
(
Hi(M)(�M, {E1 < ε1}),Z

)
.

This, together with the facts that α is the generator of H i(M)(�M, {E1 < ε1}) and that
( j0)∗([σ0]�ω0) is non-zero in Hi(M)(�M, {E1 < ε1}), implies that

α(( j0)∗([σ0]�ω0)) 
= 0.

Therefore, we conclude

(ω1 � j∗
1 α)[σ1] = ( j∗

1α)([σ1]�ω1)= α(( j1)∗([σ1]�ω1))

= α(( j0)∗([σ0]�ω0)) 
= 0.

Proof of Theorem 1·2. Let M be a closed manifold of dimension n ≥ 2 admitting a simple
Zoll Riemannian metric, and g a Riemannian metric on M . Lemma 5·8 implies that ω�
j∗α 
= 0 in the relative homology group H i(M)(ϒM, ϒM<4ρ2

).
If g is a Zoll Riemannian metric whose unit-speed geodesics have minimal period �, then

Lemma 5·4 implies that cg( j∗α)= cg(ω� j∗α)= �2. Conversely, assume that cg( j∗α)=
cg(ω� j∗α)=: �2. We can apply Lemma 5·2 with d = i(M) and μ= j∗α, and infer that g
is a Besse Riemannian metric, and either � or �− 2δ is a common multiple of the periods of
the unit-speed geodesics of (M, g). Moreover, the critical set

K := crit(E)∩ (
E−1(�2)∪ E−1((�− δ)2)

) ∼= SM,
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has Morse index ind(E, K )≤ i(M). Since i(M) is the minimal Morse index of a closed
geodesic, we have

ind(E, K )= i(M). (5·4)

Now, let us further require M to be simply connected and spin, and assume by contradic-
tion that g is not a Zoll Riemannian metric. We are now going to employ two results due to
Radeschi and Wilking. Since (M, g) is a simply connected Besse manifold, by [RW17, the-
orem D] the energy functional E :�M → [0,∞) is perfect for the S1-equivariant singular
cohomology with rational coefficients H ∗

S1(· ;Q). Moreover, since (M, g) is an orientable
and spin Besse manifold, by [RW17, corollary C] the negative bundles of all the critical
manifolds of E are orientable. This, in turn, implies that all critical manifolds of E are
homologically visible, and, if we set

Ki(M) :=
{
γ ∈ crit(E)

∣∣ ind(E)= i(M)
}
,

we have

H i(M)
S1 (�M, M;Q)∼= H 0

S1(Ki(M);Q).
Namely, the rank of H i(M)

S1 (�M, M;Q) is the number of path-connected components of
Ki(M). Clearly, K is a path-connected component of Ki(M). Since g is Besse but not Zoll,
equation (5·4) implies that Ki(M) \ K is not empty, and therefore

rank
(
H i(M)

S1 (�M, M;Q)) ≥ 2. (5·5)

On the other hand, if we repeat the whole argument with a Zoll Riemannian metric g0 instead
of g, the critical set Ki(M) becomes diffeomorphic to the unit tangent bundle SM , which is
path-connected. This implies that

rank
(
H i(M)

S1 (�M, M;Q)) = 1,

and contradicts (5·5).
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