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We study the linear stage of the dynamo instability of a turbulent two-dimensional
flow with three components (u(x, y, t), v(x, y, t),w(x, y, t)) that is sometimes referred
to as a 2.5-dimensional (2.5-D) flow. The flow evolves based on the two-dimensional
Navier–Stokes equations in the presence of a large-scale drag force that leads to the
steady state of a turbulent inverse cascade. These flows provide an approximation
to very fast rotating flows often observed in nature. The low dimensionality of the
system allows for the realization of a large number of numerical simulations and
thus the investigation of a wide range of fluid Reynolds numbers Re, magnetic
Reynolds numbers Rm and forcing length scales. This allows for the examination of
dynamo properties at different limits that cannot be achieved with three-dimensional
simulations. We examine dynamos for both large and small magnetic Prandtl-number
turbulent flows Pm= Rm/Re, close to and away from the dynamo onset, as well as
dynamos in the presence of scale separation. In particular, we determine the properties
of the dynamo onset as a function of Re and the asymptotic behaviour in the large
Rm limit. We are thus able to give a complete description of the dynamo properties
of these turbulent 2.5-D flows.
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1. Introduction

The dynamo instability caused by the motion of conducting fluids is the main
source of magnetic-field generation in astrophysical objects such as planets, stars, the
interstellar medium and galaxies. In many cases these objects are rotating, rendering
the flow strongly anisotropic (Pedlosky 1987; Izakov 2013). The Coriolis force, caused
by rotation, suppresses the variations along the axis of rotation, leading the flows
to become to some extent two-dimensionalized and dependent on only two spacial
coordinates, although in some cases retaining all three velocity components, depending
on the boundary conditions. This result was first shown in Hough (1897) for linear
perturbations and proven in more detail in Taylor (1917) and Proudman (1916). The
tendency for rotating flows to become two-dimensionalized and the implications
of this have been further examined in theoretical investigations (Hopfinger & van
Heijst 1993; Waleffe 1993; Scott 2014), numerical simulations (Hossain 1994; Yeung
& Zhou 1998; Smith & Waleffe 1999; Chen et al. 2005; Thiele & Müller 2009;
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Mininni & Pouquet 2010; Yoshimatsu, Midorikawa & Kaneda 2011; Sen et al. 2012;
Deusebio et al. 2014; Alexakis 2015) and laboratory experiments (Sugihara, Migita
& Honji 2005; Staplehurst, Davidson & Dalziel 2008; van Bokhoven et al. 2009;
Yarom, Vardi & Sharon 2013; Campagne et al. 2014; Gallet et al. 2014). The extent
of this two-dimensionalization depends on the rotation rate and is subject to current
investigation (Nazarenko & Schekochihin 2011; Baqui & Davidson 2015). Recently,
theoretical work has shown that the flow becomes exactly two-dimensional (2-D) for
free-slip or periodic boundary conditions provided that the rotation is above a critical
value (Gallet 2015). This allows one to consider the large-rotation limit which leads
to a flow (u(x, y, t), v(x, y, t), w(x, y, t)) that is independent of the coordinate along
the axis of rotation (from here on taken as the z-direction). These flows are referred
to in the literature as ‘two-and-a-half’-dimensional (2.5-D) flows or the 2+ ε model.

Two-dimensionalization of the flow drastically alters its statistical properties.
Perhaps the most important consequence is the change in the direction of the energy
cascade: whereas three-dimensional (3-D) flows cascade energy to small scales,
2-D flows cascade energy to large scales. The small scales in 2-D turbulence are
controlled by the forward cascade of the enstrophy (the second invariant of the 2-D
Navier–Stokes equations). The fate of the energy that cascades to the large scales
depends on the presence or absence of a dissipation mechanism at large scales. In
the presence of such dissipation (as in, for example, Ekman friction (Pedlosky 1987)),
the injected energy that cascades to the large scales is balanced and the Kolmogorov
power-law energy spectrum E(k) ∝ k−5/3 is formed (Boffetta & Ecke 2012). In its
absence, however, energy accumulates at the large scales leading to condensates that
take the form of vortex dipoles (Kraichnan 1967; Chertkov et al. 2007; Laurie et al.
2014). This process leads to saturation when the dipole amplitude is so large that
viscous dissipation at the large scales balances the inversely cascading energy, leading
to an amplitude that is inversely proportional to viscosity. In fact, it can be shown
that for single mode forcing and in the absence of any large-scale dissipation, both
energy and enstrophy are dissipated by viscosity at large scales (Constantin, Foias
& Manley 1994; Eyink 1996; Alexakis & Doering 2006). The energy spectra in this
case are not power laws but are instead peaked at the smallest wavenumbers. Thus, in
many respects these flows have a more laminar than turbulent behaviour irrespective
of the value of the Reynolds number which can be very large. It is not surprising
then, that these two different situations (with or without large-scale dissipation) have
different dynamo properties and require separate treatment.

The importance of rotation on the dynamo properties of stellar and planetary flows
has been known for some time (Proctor & Gilbert 1995; Davidson 2014). Clearly,
when rotation is strong enough so that the flow is two-dimensionalized, the dynamo
properties differ from 3-D isotropic flows. A strict 2-D flow (two dimensions, two
components) does not give rise to dynamo instability (Zel’dovich 1958). However,
2.5-D flow can result in dynamo instability and thus it is perhaps the simplest
dynamo flow to be examined that can merit analytical and low-cost numerical
treatment. One of the first dynamo studies of 2.5-D flows was done by Roberts
(1972); it examined four different laminar 2.5-D flows. The flows were stationary,
which prevents Lagrangian trajectories from being chaotic in two dimensions. Since
chaotic Lagrangian trajectories are required for fast dynamos (dynamos whose growth
rate remains finite in the high-conductivity limit) (Vishik 1989), the resulting dynamos
were slow (dynamos whose growth rate decays to zero in the high conductivity limit).
However, time-dependent 2.5-D flows allow for the presence of chaos and thus
pose a computationally tractable system to investigate the existence of fast dynamos.
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Two-and-a-half dimensional flows were in fact the first smooth flows to demonstrate
fast dynamo action (Galloway & Proctor 1992; Otani 1993). The low computational
cost also makes it possible to examine flows with scale separation between the
velocity length scale and the domain size. This allows mean field theories that predict
large-scale dynamo action (alpha dynamos) in the large magnetic Reynolds number
limit to be tested (see Courvoisier, Hughes & Tobias 2006; Rädler & Brandenburg
2009). Finally, 2.5-D flows were recently the first to show the propagation of large
dynamo waves (Tobias & Cattaneo 2013; Cattaneo & Tobias 2014), whose existence
was postulated more than 60 years ago (Parker 1955).

Dynamo studies of turbulent 2.5-D flows that evolved based on the Navier–Stokes
equations were first performed by Smith & Tobias (2004). They considered flows in
the absence of large-scale dissipation. Despite the large Reynolds numbers used, the
inverse cascade of energy led to a large-scale condensate that took the form of a
vortex dipole which drove the dynamo instability. The flow, despite its almost laminar
structure, resulted in fast dynamo action. The behaviour of the growth rate for a wide
range of Reynolds numbers (both kinetic and magnetic) was examined. In particular,
this flow was the first to demonstrate the persistence of dynamo action in the small
magnetic Prandtl number limit (the ratio of viscosity to magnetic diffusivity). The role
of these large-scale coherent structures in the dynamo was further studied in Tobias
& Cattaneo (2008a,b), where a modified version of the 2-D Navier–Stokes equations
(Pierrehumbert, Held & Swanson 1994) that allowed the energy spectrum of the flow
to vary was used. A differentiation between the scales ` responsible for the dynamo
was made by using spectral filters. They argued that the scales responsible for dynamo
action are those which have short times scales (i.e. large shear S`∝u`/`) provided that
the local Reynolds number (i.e. the Reynolds number based on that scale Re`= u``/ν)
is sufficiently large.

The present work considers turbulent 2.5-D dynamos in the absence of large-scale
condensates. This is achieved by considering the presence of a linear drag force
that dissipates large-scale energy. In geophysics the linear drag force, referred to as
Ekman friction, models the boundary-layer drag force on large-scale flow dynamics.
The amplitude of the drag force is tuned so that the inverse cascade is damped before
the largest scales of the system are excited. Thus, no condensates are formed and
a continuous turbulent spectrum of excited scales is present. The study is based on
numerical simulations of forced 2.5-D turbulence in a 2-D periodic box. Both helical
and non-helical flows are considered. The aim of this study is to cover a wide range
of parameter space for both types of forcing to give a complete description of the
dynamo properties of this system.

The rest of the paper is structured as follows. We describe the system in detail in § 2
and discuss the hydrodynamic cascades that happen in this set-up in § 3. The results
for helical forcing are presented in § 4 and the results for non-helical forcing are given
in § 5. The critical magnetic Reynolds number is discussed in § 6. The dependence of
the dynamo instability with respect to the forcing length scale is discussed in § 7. We
present our conclusions in § 8.

2. Governing equation
We consider a 2.5-D flow in a periodic box of size [2πL, 2πL,H] where the height

H is along the invariant direction z. The equations governing the velocity field u =
u2-D + uzêz =∇× (ψ êz)+ uzêz are

∂t1ψ + (∇×ψ êz) · ∇1ψ = ν12ψ − νh1ψ +1fψ ,
∂tuz + (∇×ψ êz) · ∇uz = ν1uz + fz.

}
(2.1)
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The first equation corresponds to the vorticity equation of the 2-D components of
the flow and the second equation is an advection equation for the vertical velocity
component uz. ∆ stands for the 2-D Laplacian, ∇× stands for the curl operator.
fψ , fz denote the forcing functions that inject energy to the system. Two forcing
functions are used: one with mean helicity and the other without any mean helicity.
More precisely, we chose fψ = fz = cos(kf x) + sin(kf y) for the helical case and
fψ = cos(kf x) + sin(kf y), fz = sin(kf x) + cos(kf y) for the non-helical case. It is noted
that for the helical case the helicity of the forcing is given by −〈 fz1fψ〉> 0 whereas
for the non-helical case −〈 fz1fψ〉 = 0. ν is the viscosity and νh is the large-scale
dissipation coefficient (Ekman friction). The term proportional to νh models the effect
of the drag force experienced by flow due to boundary-layer effects (Ekman 1905;
Pedlosky 1987; Sous, Sommeria & Boyer 2013). We consider only a large-scale
dissipation for the evolution of u2-D because the energy of the uz component of the
flow does not cascade to the large scales. In addition, the absence of a large-scale
dissipation in the uz equation allows a decorrelation of uz from the vorticity ωz=−1ψ
that would otherwise follow the same equation (with the same forcing for the helical
case).

The evolution of the magnetic field is governed by the induction equation. Due to
the invariance of the flow in the z direction, the magnetic field can be decomposed
into Fourier modes in z, B= b(x, y, t) exp(ikzz), where b is a three-component complex
vector field. Each kz-mode evolves independently and the induction equation reads

∂tb+ (∇×ψ êz) · ∇b+ uzikzb= b · ∇(∇×ψ êz)+ η(∆− k2
z )b, (2.2)

where η is the magnetic diffusion. The divergence-free condition ∇ · B= 0 for each
magnetic mode gives

∂xbx(x, y, t)+ ∂yby(x, y, t)=−ikzbz(x, y, t). (2.3)

There are different ways to non-dimensionalize the system. Here, we are going
to use the forcing length scale k−1

f and the root-mean-square value of the total
velocity U = 〈|u2-D|2 + u2

z 〉1/2, where the angular brackets 〈·〉 denote the spatial and
time average. However, we note that U is not controlled in the simulations but
is measured a posteriori. Alternatively, we can use the forcing amplitude that is
controlled in the simulations. However, since the forcing amplitude does not appear
in the induction equation where most of the focus of our work lies, we have chosen
U. The non-dimensional control parameters of this system are Re = U/νkf the fluid
Reynolds number, Rm = U/ηkf the magnetic Reynolds number, kf L the forcing
wavenumber and a Reynolds number based on the large-scale friction Rh=Ukf /νh. A
fifth non-dimensional number is given by the aspect ratio L/H; however, since each
kz mode evolves independently, we can equivalently consider kzL as the fifth control
parameter.

The equations are solved numerically on a double periodic domain of size
[2πL, 2πL] using a standard pseudo-spectral scheme and a Runge–Kutta fourth-order
scheme for time integration (see Gomez, Mininni & Dmitruk 2005). The initial
condition for both the magnetic and kinetic field is given by a sum of a few Fourier
modes with random phases. Initially a hydrodynamic steady state is obtained by
solving only the hydrodynamic equations at a particular Re, kf L. With this steady
state, the dynamo simulation is begun with a seed magnetic field and by evolving
both the velocity and the magnetic field. The magnetic field starts to grow or decay
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FIGURE 1. (Colour online) The 2-D kinetic energy density (∂xψ)
2 + (∂yψ)

2 (a), the
vertical velocity uz (b) and the vorticity 1ψ (c) for a non-helical flow with kf = 16.

Case A1 A2 A3

kf L 4 8 16
N [256, 2048] [512, 2048] [512, 2048]
Re [0.5, 1200] 81, 92 91, 97
Rm [0.1, 2000] [0.5, 1000] [0.5, 1000]
Rh [35, 53] [163, 184] [364, 389]
kzL [0, 21] [0, 31] [0, 45]
T [300, 2000] [300, 600] [300, 600]

TABLE 1. Range of values of each parameter explored in the direct numerical simulations
separated into three cases based on the forcing wavenumber kf L. N is the numerical
resolution in each direction and T is the typical eddy turnover time from which the growth
rate is calculated.

depending on the control parameters in the system. We define the growth rate of the
magnetic field as

γ = lim
t→∞

1
2t

log
〈|b|2(t)〉
〈|b|2(0)〉 , (2.4)

and γ then depends on all the non-dimensional parameters Re, Rm, kzL and kf L. A
table of runs is shown in table 1 indicating the range of values of the parameters
examined.

3. Hydrodynamic flow and cascades
We first describe the hydrodynamic structure of the flow. A visualization of the 2-D

kinetic energy density (∂xψ)
2+ (∂yψ)

2, the uz component of the flow and the vorticity
ωz is shown in figure 1. While the 2-D energy is concentrated at large scales forming
large vortices, the vorticity and the vertical velocity are concentrated at small scales
showing both vortex and filamentary structures.

The quantities conserved by the nonlinearities in the hydrodynamic equations are
the enstrophy in the x–y plane Ω = 〈ω2

z 〉 with ωz=−1ψ , where the angular brackets
〈·〉 denote spatial average, the energy in the x–y plane E2-D = 〈u2-D · u2-D〉/2, the
energy of the z component of velocity Ez = 〈u2

z 〉/2 and the helicity H = 〈uzωz〉. For
a more detailed discussion on the invariants, see Smith & Tobias (2004). For a
sufficiently small viscosity ν and damping νh, the conserved quantities cascade either
to small or large scales. For a turbulent 2-D flow there is a forward cascade of
enstrophy Ω and an inverse cascade of energy E2-D.Ez has a forward cascade since
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FIGURE 2. (Colour online) The spectra of the 2-D kinetic energy E2-D(k) and the spectra
of the vertical velocity Ez(k) for different values of Re mentioned in the legend. The
spectra correspond to non-helical forcing case. The dashed lines show the scaling, k−3

in (a) and k−1 in (b).

uz is passively advected and thus has the same phenomenology as passive scalars
(Batchelor 1959). Helicity cascades to small scales since both Ez and Ω cascade to
small scales. Between the forcing scale and the dissipation scale there exists a range
of scales (the inertial range) where the energy spectra have a power-law behaviour
E(k) ∝ ka for some exponent a. The exponent a of these power laws is determined
by the cascading quantities in the classical Kolmogorov phenomenology. For 2.5-D
flows, the exponent of the E2-D spectrum is −3 in scales smaller than the forcing
scale due to the enstrophy cascade and −5/3 in scales larger than the forcing scale
due to the inverse energy cascade. Similarly, for the spectra of Ez we have −1 in the
scales smaller than the forcing scale due to the forward cascade Ez which is similar
to the variance of a passive scalar (Batchelor 1959). Since there is no inverse cascade
for Ez, we expect equipartition among modes at scales larger than the forcing scale
that leads to the exponent +1.

Figure 2 shows the spectra E2-D and Ez for different values of Re for non-helical
forcing. The spectra for helical forcing are very similar to the spectra of the flows with
non-helical forcing so they are not shown here. The figure shows that the exponents
of E2-D and Ez in the forward cascade change as we increase Re. As shown in Boffetta
(2007), the exponent for the energy spectra at small scales tends to be the expected
value of −3 as the Re becomes large. In their study, they used numerical grids of
up to 32 7682 points to get the expected k−3 spectrum. In this work, since the focus
is on the dynamo effect, the simulations are done using resolutions only up to 20482

grid points, and thus the exponent in the spectra is less than −3. Figure 3 shows the
spectra E2-D and Ez as kf L is varied for the non-helical forcing. Due to the presence of
an inverse cascade, the energy spectra form a k−5/3 for scales larger than the forcing
scale. For the vertical velocity spectra, the large scales form an equipartition spectrum
of k+1. The inverse cascade of energy is dissipated by the friction at large scales which
inhibits the formation of a large-scale condensate.

The transfer of kinetic energy to magnetic energy is achieved by the shearing of
magnetic lines. Thus, the amplitude of the shear is a determinant quantity for dynamo
action that deserves some further discussion. In general, besides the shear amplitude,
the dynamo growth rate is also a function of the Reynolds number, the coherence
and the complexity of the flow among other quantities (Tobias & Cattaneo 2008a,b;
Tobias & Cattaneo 2015). However, for a sufficiently complex and random flow, and
if the magnetic Reynolds number is large enough to ignore the dissipative effects from
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FIGURE 3. (Colour online) The spectra of the 2-D kinetic energy E2-D(k) and the spectra
of the vertical velocity Ez as a function of the rescaled wavenumber k/kf for different
values of Re and kf L mentioned in the legend. The spectra correspond to the non-helical
forcing case. The dashed lines show the scaling, k−5/3 in (a) and k+1 in (b).

dimensional arguments alone, one expects that the growth rate will be proportional to
the largest shear of the flow. This is a speculation that does not take into account
some of the particularities of 2.5-D flows. Nonetheless, it is worth considering where
the largest shear in the turbulent 2.5-D flows lies.

In 2-D turbulence, the shear S`2-D in u2-D at a scale ` can be estimated by S`2-D ∝
u`2-D/`, where u`2-D is the amplitude of the u2-D at a scale `. We know that for 2-D
turbulence u`2-D ∼ `, and hence S`2-D is the same at all scales between the forcing and
the small scale dissipation. Thus, for any `f >`>`ν we have S`2-D∼ Sf = uf /`f , where
the index f indicates the forcing scale. This is strictly true for k−3 spectra, which are
seen at very large Re. Since this study uses an exponent that is less than −3 for the
most part, at small scales we have S`2-D < Sf . At large scales u` ∝ `1/3 and thus S` ∝
`−2/3. Thus, for any ` > `f we also have S`2-D < Sf again. Therefore, the maximum of
S`2-D is found at the forcing scale `f .

For the vertical velocity field, the shear can be estimated by S`z ∝ u`z/`, where u`z
is the magnitude of uz at scale `. At small scales, u`z follows the scaling u`z ∝ `0

and the shear S`z ∝ `−1 increases as ` decreases. Thus, it is maximal at the smallest
scales `ν where we obtain S`νz `f /uf ∼ Re1/2. Therefore, S`2-D is largest at the forcing
scale whereas S`z is largest at the viscous scales. However, the dynamo instability
requires the presence of both Sz and S`. Thus, we cannot determine which scales are
responsible for dynamo action a priori or even if such distinction among scales makes
sense.

4. Helical dynamos
4.1. Dependence of γ on kz

We first focus on the helical forcing, the laminar case of which corresponds to the
case studied by Roberts (1972). Figure 4 shows the growth rate γ as a function of kz
for different values of Rm that are mentioned in the legend and for a fixed Re≈ 46.
The number of unstable kz modes increases as we increase Rm as has been observed
in other laminar and turbulent studies (Roberts 1972; Smith & Tobias 2004; Tobias
& Cattaneo 2008a). As we increase Rm the growth rates for the kz ∼ O(1) modes
saturate.

There are unstable dynamo modes for all values of Rm, but the range of unstable
modes becomes smaller as Rm is reduced. This can be attributed to the α effect which
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FIGURE 4. (Colour online) The growth rate γ as a function of kz for the helical forcing
case for different values of Rm mentioned in the legend for Re≈ 46.

is a mean field effect that can amplify the magnetic field at arbitrarily large scales. In
the mean field description, the large-scale magnetic field B obeys the equation

∂tB=∇× (αB)+ ηT1B, (4.1)

where α is in general a tensor and ηT is the turbulent diffusivity. For isotropic flows,
the diagonal terms in the α tensor are equal and are responsible for the dynamo effect.
They can be calculated numerically by imposing a uniform magnetic field B0 and
measuring the induced field b (see Courvoisier et al. 2006; Brandenburg Rädler &
Schrinner 2008):

α ·B0 = 〈u× b〉, (4.2)
∂tb+ u · ∇b= b · ∇u+B0 · ∇u+ η1b. (4.3)

In the small Rm limit, ηT = η and the α coefficient can be calculated analytically
(see Childress 1969; Moffatt 1978; Krause & Raedler 1980; Plunian & Rädler 2002;
Gilbert 2003; Brandenburg 2009) leading to the scaling α ∼ uRm. In either case, the
resulting growth rate for the problem at hand is given by

γ = αkz − ηTk2
z . (4.4)

Figure 5(a) shows the γ –kz curve on a log–log scale with the straight lines indicating
the linear scaling αkz, with α calculated from (4.2) and (4.3). This demonstrates that
the behaviour of γ in the small kz limit is well described by the α effect. Figure 5(b)
shows the dependence of α as a function of Rm for two different Re. For a turbulent
flow and for small Rm, the α coefficient scales as α∼ uRm (see Gilbert 2003), which
is captured well by the numerical data. For large Rm, the α value saturates to a
constant of the same order as the velocity field. This is different from what has been
observed in chaotic flows in Courvoisier et al. (2006), where the α coefficient varies
rapidly as one increases Rm.

Figure 6 shows the total magnetic energy spectra EB(k) (where k =
√

k2
x + k2

y ) for
different values of Rm, a fixed kz = 0.25 and Re ≈ 530. When the α effect is more
pronounced, the magnetic spectra are concentrated at large scales. This occurs in the
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FIGURE 5. (Colour online) (a) The growth rate γ as a function of kz on a log–log
scale. The corresponding α values are shown by the dotted straight lines at values of Rm
mentioned in the legend. (b) α as a function of Rm for the two different Re mentioned
in the legend.
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FIGURE 6. (Colour online) The magnetic energy spectra EB(k) as a function of the
wavenumber k for the different Rm shown in the legend. These correspond to a Reynolds
number Re≈ 530 and to the helical forcing case.

small Rm limit. For large Rm, the magnetic energy spectra become more concentrated
towards smaller scales.

4.2. γmax and kc
z

To quantify the behaviour of γ as we change both Re and Rm, we consider two
quantities γmax and kc

z which characterize the curves shown in figure 4. γmax is the
maximum growth rate for given Re and Rm, whereas kc

z is the largest kz that is an
unstable dynamo for given Re and Rm. Figure 7 shows γmax and kc

z as functions of
Rm for different values of Re. It can be seen that γmax is independent of Re. In the
small Rm limit, the behaviour of γmax is governed by the α effect, which gives a
scaling γmax∝Rm3 obtained by finding the maximum of (4.4). For large Rm, the γmax
approaches a finite asymptote and thus it is a fast dynamo. The most unstable length
scale is close to the forcing scale.

In the plot of kc
z in the small Rm limit, the behaviour is dominated by the α effect

leading to kc
z ∝ Rm2 obtained from (4.4). In this limit, kc

z does not depend on Re
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FIGURE 7. (Colour online) γmax (a) and kc
z (b) as a function of Rm for the different values

of Re mentioned in the legend for the helical forcing case.
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FIGURE 8. (Colour online) The growth rate γ as a function of kz for the different values
of Rm mentioned in the legend for Re ≈ 32. The curves correspond to the non-helical
forcing case.

since kc
z = cRm2 with c being independent of Re. For large values of Rm, we see the

scaling kc
z ∝Rm1/2 which can be obtained by balancing the ohmic dissipation with the

stretching term. We can also see a clear decrease with the increase of Re, which will
be discussed in § 6.1.

5. Non-helical dynamos
5.1. Dependence of γ on kz

The growth rate γ is shown as a function of kz for different values of Rm in figure 8.
Unlike the helical case, there is no dynamo for small Rm due to the absence of a
mean field α effect. For sufficiently large Rm, dynamo instability occurs with the
magnetic spectra concentrated at small scales which is similar to the large Rm case
of the helical forcing shown in figure 6. As Rm is increased, the number of unstable
modes increases.
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FIGURE 9. (Colour online) γmax (a) and kc
z (b) as a function of Rm for the different values

of Re mentioned in the legend. The curves correspond to the non-helical forcing case.
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FIGURE 10. (Colour online) Contour of the magnetic energy B2-D for different values of
Rm. From (a–c) we have Rm≈ 32, Rm≈ 1030 and Rm≈ 2060, with Re≈ 32 for all three
contours. The figures correspond to the non-helical forcing case.

5.2. γmax and kc
z

Figure 9 shows γmax and kc
z as a function of Re and Rm. The dynamo instability

starts at Rm ≈ 10, which is the critical magnetic Reynolds number for this flow.
Unlike the helical case, the maximum growth rate γmax increases slowly with Rm
and a clear asymptote has not yet been reached. Re does not seem to affect the
behaviour of the γmax curve, indicating that the most unstable modes are not affected
by the smallest viscous scales. The scaling of kc

z ∼ Rm1/2 in the large Rm limit is
observed with a prefactor that decreases as Re is increased, which is similar to the
helical case. The magnetic field generated at small scales is spatially concentrated in
thin filamentary structures. Figure 10 shows the contours of magnetic energy in the
plane, |B2-D|2 = |bx|2 + |by|2, for increasing values of the magnetic Reynolds number
Rm. These structures become thinner as we increase Rm with the thickness scaling,
as Rm−1/2. This gives a physical interpretation for the scaling kc

z ∼ Rm1/2 seen in
figures 7 and 9 in terms of H: these filaments should be thinner than the box height
H for the dynamo instability to take place.

6. Critical magnetic Reynolds number Rmc

6.1. Layers of finite thickness
In general, the onset of dynamo instability depends on the domain size since it
determines the available magnetic modes. A flow results in a dynamo if at least one
of those modes is unstable. For a given height, H, the allowed wavenumbers satisfy
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FIGURE 11. (Colour online) kc
zReζ as a function of Rm for the different values of Re

shown in the legend, for the helical forcing case (a) and the non-helical forcing case (b).

kz > 2π/H ≡ kH
z . We thus define a critical magnetic Reynolds number Rmc based on

H as the maximum Rm for which all allowed kz modes are decaying,

RmH
c (Re, kH

z )=max{Rm s.t. γ 6 0 ∀kz > kH
z }. (6.1)

Thus, for Rm> RmH
c there is at least one kz > kH

z that is a dynamo. The value RmH
c

can be calculated from figures 7 and 9 with the condition that the marginal kz for
dynamo equals the minimum allowed wavenumber kc

z(Re, Rm) = kH
z . For the helical

case in the small Rm limit, we get the relation RmH
c ∝

√
kH

z based on the α effect.
Thus, for large H, a small Rm is sufficient for dynamo instability RmH

c ∝ (H)−1/2 with
the proportionality coefficient being independent of Re.

The behaviour of RmH
c for thin layers (kH

z � kf ) depends on Re for both the forcing
cases considered. In order to measure this dependence on Re, we rescale kc

z with Re
and replot it as a function of Rm. Figure 11 shows the rescaled cutoff wavenumber
kc

zReζ for the two different types of forcing studied. Here ζ is an exponent used to
collapse the data at large kz. For the helical forcing we find a best fit of ζ = 0.37 · · ·≈
3/8 and for the non-helical forcing we find a best fit of ζ = 0.25 · · · ≈ 1/4. This
implies that the critical magnetic Reynolds number scales like RmH

c ∝ Re2ζ
√

kH
z . This

is unlike the 3-D dynamos (Ponty et al. 2005; Iskakov et al. 2007; Mininni 2007) for
which Rmc is found to reach a constant value in the large Re limit. However, given
that ζ < 1/2, in the limit of large Re, RmH

c � Re and thus, as with 3-D turbulence, a
dynamo can be achieved for any magnetic Prandtl number Pm= Rm/Re provided Rm
is large enough. Whether this behaviour persists for very large Re remains to be seen.

6.2. Infinite layers
As seen in figure 4, in helical flows, due to the α effect for any Rm, there always
exists kz small enough such that the modes are dynamo unstable. Thus, for a layer that
is infinitely thick, a helical flow does not have a critical magnetic Reynolds number
since unstable modes exist even for Rm→ 0. However, for the non-helical case, there
is a critical Rm for the dynamo instability as can be seen in figures 8 and 9. Below
this Rmc, for any mode kz, there is no dynamo instability. Thus, the critical magnetic
Reynolds number Rmc in the infinite domain is defined as

Rmc(Re)=max{Rm s.t. γ 6 0 ∀kz} = lim
H→∞

RmH
c . (6.2)
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FIGURE 12. (Colour online) The critical magnetic Reynolds number Rmc as a function
of the fluid Reynolds number Re. The two vertical dotted lines denote the two transition
Reynolds numbers ReT1, ReT2 . The curves correspond to the non-helical forcing case.

Note that in practice we do not need an infinitely thick layer to capture the onset
of the instability. However, the height H needs to be sufficiently large to allow the
first unstable mode kz' 1 (as can be seen in figure 8) to be present. The dependence
of Rmc as a function of Re can be seen in figure 12. Three different regimes
corresponding to different flow behaviours are identified and these are separated by
vertical dotted lines in the figure denoting the critical Reynolds numbers ReT1 and
ReT2 . The curve for Re>ReT2 corresponds to the turbulent regime at large Re and the
curves in Re<ReT1 , ReT1 <Re<ReT2 correspond to two different laminar flows. Here,
ReT2 is the Reynolds number at which the flow transitions between a turbulent state
and a laminar state, and ReT1 is the Reynolds number at which the flow transitions
between two different laminar time-independent flows. In the limit of large Re we
see that the value of Rmc saturates as is observed in 3-D turbulent flows (Ponty
et al. 2005; Iskakov et al. 2007; Mininni 2007) and the condensate case (Smith &
Tobias 2004). Across the transition Reynolds numbers ReT2 and ReT1 , the Rmc curves
have discontinuous behaviour because the flow transitions from one state to the other
subcritically. In these laminar states, we find that the growth rate γ scales as k2

z
for very small kz as shown in figure 13 for Re= 0.91< ReT1 in the laminar regime.
This scaling indicates that the dynamo action can be explained by the β effect, also
known in the literature as the negative magnetic diffusivity effect (see Lanotte et al.
1999). The β effect is a mean field effect and the magnetic field is also amplified
at the large scales. Figure 14 shows the contour of |B2-D|2 = |bx|2 + |by|2, which is
the energy of the magnetic field in the x–y plane. Two different Reynolds number
are shown corresponding to the two different laminar states: on the left-hand side
ReT1 < Re = 5.4 < ReT2 and on the right-hand side Re = 0.53 < ReT1 . Both the plots
show large-scale modulations in the magnetic energy at scales close to the box size.

7. Dependence on kf L

In this section, we extend our study to flows with higher values of kf L. The linear
damping coefficient is adjusted for each value of kf L so that the maximum inertial
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FIGURE 13. (Colour online) The growth rate γ as a function of kz for a Reynolds number
Re= 0.91<ReT1 together with a dotted line showing the scaling k2

z . The curve correspond
to the non-helical forcing case.
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FIGURE 14. (Colour online) Contour of the magnetic energy B2-D for the two different
laminar flows at two different Re – (a) ReT1 < Re≈ 5.4< ReT2 , (b) Re≈ 0.53< ReT1 . The
contours correspond to the non-helical forcing case.

range for the inverse cascade is obtained without forming condensates. As we increase
kf L, the inverse cascade becomes more important. Depending on the scale separation
and the forcing used, the relative amplitude of u2-D and uz change as we change kf L.
Thus, in order to have a fair comparison between the different dynamos, we normalize
the growth rates based on the results of the Ponomarenko dynamo (Ponomarenko
1973) where the growth rate is proportional to the product of the vertical velocity
uz and the planar velocity u2-D divided by the total root-mean-square value. Thus, we
define a velocity scale Up = (〈|u2-D|2〉1/2〈u2

z 〉1/2)/(〈|u2-D|〉2 + 〈|uz|〉2)1/2 with which we
normalize the growth rate. Figure 15 shows the normalized growth rate γ /(Upkf ) as
a function of the normalized modes kz/kf for both helical and non-helical forcing as
we increase kf L for similar values of Re and Rm. Since kf is increased, the growth
rate γ and the number of unstable kz modes increase. The normalized curves seem to
follow a similar trend for both the forcing cases considered here. At relatively large
Rm and as the scale separation is increased, the most unstable wavenumber appears
to be close to the forcing wavenumber kmax

z ≈ kf /3 in both the helical and non-helical
forcing cases. This implies that the most unstable modes have a similar length scale
with forcing and not with the box size.
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FIGURE 15. (Colour online) γ /(Upkf ) as a function of kz/kf for different values of kf for
helical forcing on (a) and non-helical forcing on (b). The kinetic Reynolds number and
the magnetic Reynolds number are mentioned in the legends.

The normalized maximum growth rate γmax/(Upkf ) and the normalized cutoff
wavenumber kc

z/kf for both helical and non-helical forcing are shown in figure 16.
As can be seen from the figures, the normalized quantities follow similar trends to
kf L= 4 with weak (or no) dependence on the box size L. Hence, the inverse cascade
does not seem to affect the dynamo instability, and the mechanisms of the small-scale
dynamo effect and the α dynamo are mostly governed by the forcing scale where the
strongest S2-D shear exists.

8. Conclusions
Our investigation examined the dynamo instability of 2.5-D flows for a wide range

of control parameters. This allowed us to test certain limits that are still not attainable
in 3-D simulations, and to test asymptotic theories and phenomenological expectations.

For helical flows, we were able to test the alpha dynamo predictions for the
behaviour of the large scales (kz � kf ) both for small and large values of Rm and
Re. The analytical predictions of mean field theories for small values of Rm were
verified. For large values of Rm, the growth rates were also shown to be in agreement
with a turbulent α dynamo (calculated numerically from (4.2) and (4.3)), and the
isotropic α was shown to asymptote to a value independent of Re and Rm. At
sufficiently large Rm, the fastest growing mode was always found to have kz close to
the forcing wavenumber. Thus, in a 3-D simulation with random initial conditions for
the magnetic field, it is the scales close to the forcing scale that would be observed
in the linear stage of the dynamo. This of course does not imply that the large-scale
instability does not play a role in the saturated stage of the dynamo and the formation
of large-scale magnetic fields at high Rm. To resolve this issue, a nonlinear formalism
for the α dynamo would be required.

The non-helical flows were also shown to result in dynamo instability above a value
of the magnetic Reynolds number with similar behaviour to the helical dynamo at
small scales kz & kf . The critical value of the magnetic Reynolds number for a thin
layer of height H was shown to scale similarly to RmH

c ∝ Re2ζ/
√

H with ζ ' 1/4 for
non-helical flows and ζ ' 3/8 for helical flows, implying that there is a dependence of
RmH

c on Re even at large values of Re. At infinite layer thickness H, the helical flow
always resulted in a dynamo (i.e. Rmc = 0). On the other hand, the non-helical flow
Rmc asymptotically reached a finite value in the limit Re→∞. It is worth pointing
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FIGURE 16. (Colour online) Normalized growth rate: γmax/(Upkf ) on (a,c) and kc
z/kf

on (b,d) for (a,b) helical forcing and (c,d) non-helical forcing as a function of Rm for
different kf L as mentioned in the legends.

out that this asymptotic value Rmc' 10 is almost an order of magnitude smaller than
what is obtained in 3-D simulations, and thus rotation could play a beneficial role in
liquid-metal experiments.

The investigated dynamo flows were driven by rotating flows that tend to become
2-D at sufficiently large rotation rates. As discussed in the introduction, this is justified
for layers of finite thickness and for the periodic boundary conditions above a critical
rotation rate that have been considered here. In nature, rotating flows are never fully
2-D, either due to moderate rotation rates or boundary-layer effects.

For moderate rotation rates, large 2-D motions co-exist with 3-D perturbations in
the form of travelling inertial waves. The resulting dynamo is then, in general, the
result of a combination of these effects. However, due to the fast decorrelation time of
inertial waves that has a dynamo suppressing effect (Herreman & Lesaffre 2011), we
expect that in rotating flows, even in the presence of some 3-D turbulent fluctuations,
the 2.5-D part of the flow would be the dominant effect for a dynamo.

Boundary-layer effects are another way that a flow can deviate from 2-D behaviour
in the fast rotating limit. For no-slip boundary conditions, the flow is known to
vary rapidly along the rotation direction over a thin layer known as the Ekman
layer (Ekman 1905; Pedlosky 1987). This layer is responsible for Ekman friction
and the third component of velocity along the direction of rotation due to Ekman
pumping. In this case, the amplitude of the third velocity component of the flow (that
is essential for dynamo action) depends on the rotation rate. An asymptotic study
that investigates these effects for a convection-driven dynamo in the presence of fast
rotation was developed in Calkins et al. (2015, 2016).

Further investigation of 3-D flows in the presence of rotation are required to address
these issues.
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