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ABSTRACT

Using telematics technology, insurers are able to capture a wide range of
data to better decode driver behavior, such as distance traveled and how
drivers brake, accelerate, or make turns. Such additional information also
helps insurers improve risk assessments for usage-based insurance, a recent
industry innovation. In this article, we explore the integration of telematics
information into a classification model to determine driver heterogeneity. For
motor insurance during a policy year, we typically observe a large proportion
of drivers with zero accidents, a lower proportion with exactly one accident,
and a far lower proportion with two or more accidents. We here introduce
a cost-sensitive multi-class adaptive boosting (AdaBoost) algorithm we call
SAMME.C2 to handle such class imbalances. We calibrate the algorithm using
empirical data collected from a telematics program in Canada and demon-
strate an improved assessment of driving behavior using telematics compared
with traditional risk variables. Using suitable performance metrics, we show
that our algorithm outperforms other learning models designed to handle class
imbalances.
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1. INTRODUCTION

Telematics refers to the use of telecommunication devices and technology
to transmit and store information. Currently, there is a growing list of
applications of telematics technology in diverse fields. Examples include radio
receivers installed in drones for journalism reporting or private investigation;
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smart home systems that remotely control temperature, lighting, appliances,
or even alarms for security; electronic systems used for better communi-
cation between healthcare professionals and patients in health telematics
(Orphanoudakis et al. (1998)); and, predominantly, devices installed in cars or
mobile apps to remotely monitor driving habits to determine insurance rating.

In the insurance industry, the use of telematics-based insurance is slowly
maturing. It is also becoming an attractive option for drivers, as it gives them
the opportunity to save on premiums in exchange for permission to mon-
itor their driving behavior. Accelerations in technology advancement have
led to variations in usage-based insurance (UBI) with similar self-descriptive
names that include, for example, pay as you drive (PAYD), pay how you drive
(PHYD), pay as you drive as you save (PAYDAYS), pay per mile, and pay
as you go (PASG). UBI programs offer a number of potential benefits to
consumers, insurers, and society. For one, vehicle telematics has the positive
social effect of encouraging better driving behavior. It also allows insurers to
put a price tag on insurance that is more directly linked to individual driv-
ing habits, helping to increase the predictability of profit margins and giving
drivers the opportunity for more affordable premiums. Consumers can also
control premium costs by adopting safer driving habits or reducing their driv-
ing frequency. UBI programs also benefit society, as safer driving and having
fewer drivers on the road reduce accidents, congestion, and car emissions.

The growing literature on telematics in actuarial science and insurance
has produced a variety of evidence that this additional acquired information
allows for better claim prediction, risk classification, and premium assessments.
Interestingly, the work by Ayuso et al. (2016) uses survival models to conclude
that gender discrimination is unnecessary in the presence of sufficient telemat-
ics information on driving behavior. Boucher et al. (2017) suggests the benefits
of using generalized additive models (GAM) to gain additional insight into
to how premiums can be more dynamically assessed for PAYD policies based
on telematics information. For tariff determination, Ayuso et al. (2019) uses
classical frequency models to incorporate significant information drawn from
telematics metrics based on data from a portfolio of PAYD policies issued by
a Spanish insurance company. In addition, Gao et al. (2019) demonstrates the
relevance of telematics covariates extracted from speed-acceleration heatmaps
in claim frequency models. Additional research that further reveals the bene-
fits of telematics metrics for improving the understanding of driving behavior
includes, but is not limited to, Constantinescu et al. (2018), Verbelen et al.
(2018), Pérez-Marín et al. (2019), Pesantez-Narvaez et al. (2019), and Guillen
et al. (2020).

For most portfolios of motor insurance, it is rare to observe one claim from
a policyholder, let alone two or more claims. This fact presents challenges
regarding the development of learning algorithms to handle sparse informa-
tion. As will be discussed, this is even more relevant in the case of telematics
data due to the perceived self-selection for drivers with UBI. Because of the
attractiveness of potential premium savings, policyholders of UBI believe they
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are and actually tend to be more careful drivers, making sparsity an even
more challenging issue. The early work of Pednault et al. (2000) suggests
addressing highly imbalanced classification using a tree-based model with the
log-likelihood used as an impurity function for identifying the splitting of the
regions. The most common measure of impurity used for classification trees
is the Gini index. However, this previous work lacks empirical evidence to
support the method. We distinguish our work from the previous literature by
building a classification model for accident frequency and thereby addressing
the sparsity of recorded claims for datasets containing telematics information
resulting from highly imbalanced observed frequencies.

We here employ an extended multi-class classification algorithm, referred
to as SAMME.C2, to handle class imbalances. The proposed algorithm has its
origin in the work by Zhu et al. (2009), which introduced SAMME (Stagewise
Additive Modeling using Multi-class Exponential loss function), a multi-class
adaptive boosting (AdaBoost) classification model. AdaBoost, introduced by
Freund and Schapire (1997), is an iterative classification algorithm that com-
bines several weak and inaccurate learners to improve prediction accuracy.
In contrast with other similar AdaBoost techniques, SAMME.C2 uses a cost-
sensitive learning mechanism to rebalance and tilt the class distribution by
accounting for the costs of prediction errors. This integration of the multi-class
AdaBoost algorithm with the cost-sensitive learning concept is one of the main
innovations of our paper.

To some extent, the proposed algorithm is motivated by a telematics dataset
drawn from a UBI program offered by a Canadian-owned insurance coop-
erative. We here focus on the number of accidents as the response variable
during the observation period. For the training data, 97.1% of observations
had zero accidents, 2.8% had exactly one accident, and only 0.1% had two or
more accidents. These observations are highly imbalanced, and we investigated
the predictive power of telematics metrics apart from traditional metrics to
understand the heterogeneous characteristics of drivers with UBI. The telemat-
ics information drawn from this data was not raw but had been pre-engineered.
This should not affect the number of accidents observed, though it may affect
other pre-engineered feature variables. Feature variables that are highly cor-
related, including those that are compositional in nature, were addressed by
applying a principal component analysis (PCA).

Using both simulated and real datasets, we found that SAMME.C2 outper-
formed other multi-class classification models that handle class imbalances,
including SAMME, SAMME with SMOTE, SAMME with SVMSMOTE, SAMME with
KMeansSMOTE, RUSBoost, and SMOTEBoost. Each of these methods is
briefly explained in the subsequent section. While performance statistics, such
as recall and precision, are not unreasonable measures for comparison, it is
more practical to use the macro average geometric of recall (MAvG) metric
for comparison in situations with highly imbalanced classes. This performance
metric is merely a geometric average of the recall for all classes. In addition,
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we found that telematics variables provide more information than traditional
variables in terms of measuring accident frequency.

The rest of the paper is organized as follows. Section 2 provides an overview
of related works on AdaBoost suitable to handle class imbalances. In Section 3,
we introduce our novel SAMME.C2 algorithm. It is largely based on an inte-
gration of the SAMMEand Ada.C2 methods, which are both also described
in detail. Section 4 presents simulation results to assess the performance of
SAMME.C2. We also briefly explain various performance metrics used to com-
pare classificationmodels. Section 5 presents the results based on our telematics
dataset, and Section 6 concludes the paper.

2. RELATED WORK

This section provides an overview of related work and techniques, which can be
categorized based on three levels of focus: (a) the data level; (b) the algorithm
level; and (c) the cost-sensitive learning level.

2.1. Handling minority classes

As pointed out by Yang and Wu (2006), one of the challenges of data mining
is dealing with observations that may suffer due to the presence of imbalanced
classes. At the data level, the class distribution may be inherently imbalanced,
creating classes that are considered majority (too much data) or minority (lack-
ing data), as is the case with our telematics dataset. It is difficult to predict
classes belonging to the minority since there are only a few samples to learn
from in terms of the features to predict from this class. One obvious approach
to this issue is to resample from the dataset so that the class distribution is
rebalanced by oversampling (or undersampling) from the underrepresented
(or overrepresented) classes. A technique developed by Chawla et al. (2002)
called SMOTE (synthetic minority oversampling technique) is becoming increas-
ingly popular as an oversampling approach. In contrast to oversampling with
replication, the SMOTE algorithm creates synthetic samples for the minority
class. These are generated by drawing samples using the k-nearest neighbors
(KNN) method, which are linearly connected to produce the synthetic sam-
ples. As stated by Chawla et al. (2002), it “works to cause the classifier to
build larger decision regions that contain nearby minority class points.” While
SMOTE is therefore used to increase prediction accuracy over minority classes,
we examine uses of this algorithm in combination with boosting methods aim-
ing to increase the accuracy over the entire dataset. In addition, we consider
recent approaches that combine SMOTE algorithm with the use of support vec-
tor machines (SVMs; Tang et al. (2009)) or k-means clustering (Douzas et al.
(2018)) for handling class imbalances.
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2.2. Boosting

At the algorithm level, boosting techniques are considered some of the most
powerful learning algorithms discovered in recent years. Boosting is based on
the principle of combining several weak learners to produce a strong learner to
achieve more accurate predictions. Beginning with equal observation weights,
the algorithm is an iterative process that involves fitting classifiers at each step
and adjusting the weights in the subsequent steps according to the results of
the classification. More weights are given to observations that have been mis-
classified. It should be noted that, as pointed out by Hastie et al. (2009), while
boosting was originally intended for classification problems, the concept has
also been expanded to regression problems.

The first practical boosting algorithm was introduced by Freund and
Schapire (1997) and is referred to as AdaBoost.M1. Today, AdaBoost now
refers to a whole class of AdaBoost algorithms. However, AdaBoost.M1 is
still a well-known iterative boosting algorithm. Let us assume that we are given
a dataset denoted by (xxxi, yi) for i= 1, . . . ,N, where xxxi is a set of feature vari-
ables and yi is a binary variable. Beginning with a distribution of equal weights
to the observations, this is updated after each iteration based on αt, which is a
function of the weighted classification error:

εt =
∑N

i=1 DiI(yi �= ht(xxxi))∑m
i=1 Di

, (2.1)

where Di is the distribution of the weights and ht(xxxi) is the classifier at step
t ∈ {1, 2, . . . ,T}. This weighted error tends to increase during the iteration pro-
cess, while the final classifier’s training error gradually decreases. It has been
shown that AdaBoost.M1 is equivalent to an additive model with a minimiza-
tion of an exponential loss function (Friedman et al. (2000) and Hastie et al.
(2009)) and that it therefore belongs to the traditional statistical family of for-
ward stagewise additive models. Considering this viewpoint, it can be seen that
the algorithm is efficient and has a straightforward statistical interpretation.
Several variant AdaBoost algorithms have appeared in the literature (Ferreira
and Figueiredo (2012)). See also Ferrario and Hämmerli (2019) for a review of
boosting for actuarial applications.

AdaBoost algorithms have gained widespread popularity, and several
works have demonstrated their advantages. Schapire and Singer (1999) shows
that the training error of the final classifier is bounded, while Freund and
Schapire (1997) demonstrates that each weak classifier is slightly better than
random, and the training error drops exponentially in relation to T , the num-
ber of weak classifiers. Some scholars, such as Friedman et al. (2000), have also
reported that AdaBoost is robust to overfitting by demonstrating that test error
consistently decreases and then levels off as more classifiers are added. In terms
of practicality, many empirical applications in machine learning have shown
that AdaBoost algorithms are superior classifiers. For instance, Friedman et al.
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(2000) called AdaBoost with decision trees the “best off-the-shelf classifier in
the world.”

AdaBoost.M1 has also been extended to multi-class classification prob-
lems in which yi belongs to the set {1, 2, . . . ,K}. The extension AdaBoost.M2
presented by Freund and Schapire (1997), which is based on a pseudo-loss
function instead of the error rate, is also suitable for handling multi-class prob-
lems. AdaBoost.MH, developed by Schapire and Singer (1999), is a multi-class
AdaBoost algorithm based on the Hamming loss function. Because this loss
function is applied to create a set of binary problems, the procedure may be
slow and thereby inefficient. These are only a few such extensions. However,
in this paper, we compare our proposed method to the multi-class extension
of the forward stagewise additive model, which is based on a generalization of
exponential loss to multiple classes given by:

L(UUUi, fff (xxxi))= exp

(
− 1
K

K∑
k=1

Ukifk(xxx)

)
= exp

(
− 1
K
UUU ′
i fff (xxxi)

)
, (2.2)

for observation i. Here, UUUi is a recoding of yi, and fff (xxx)=
(f1(xxx), f2(xxx), . . . , fK (xxx))′ is a set of classifier functions that solve the opti-
mization routine. All entries in the vector UUUi will be equal to −1/(K − 1)
except for a value of 1 in position k if the observation yi = k. In effect, we have
Ui = (U1i,U2i, . . . ,UKi)′, where:

Uki =
{
1, if yi = k

− 1
K−1 , if yi �= k

Such code, inspired by a similar one used for SVM algorithms, gives a one-
to-one correspondence between Ui and yi, with each referring to the class
the observation i belongs to. It can be seen that

∑K
j=1 Uji = 0 for all i=

1, 2, . . . ,N. Developed by Zhu et al. (2009), the code has been referred to as
the SAMME algorithm, and the detailed steps of the algorithm are summarized
as Algorithm 2 in Appendix A.

As it is common to combine the benefits of resampling and boosting, we
also considered the following algorithms:

• SAMME with SMOTE sampling;
• SAMME with SVMSMOTE sampling;
• SAMME with kMeansSMOTE sampling;
• SMOTEBoost (described in Chawla et al. (2003); an approach for learn-

ing from minority classes based on a combination of SMOTE and
AdaBoost.M2); and

• RUSBoost (described in Seiffert et al. (2010); an algorithm with the same
goal as SMOTEBoost but that replaces SMOTE sampling with random
undersampling).
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2.3. Cost-sensitive learning

Cost-sensitive learning adds an additional layer of complexity to our algo-
rithm to further improve its prediction accuracy. In particular, it takes into
account misclassification costs by adding a penalty to predictions that lead
to incorrect classification. While the added costs are primarily those account-
ing for misclassification, it has been identified that cost adjustments may be
made to reflect costs of other types, such as those associated with computa-
tional efficiency/complexity, data collection, or model evaluation. The primary
objective is to minimize the total costs of the model. Cost-sensitive algorithms
that minimize misclassification costs in classification problems first appeared
in Pazzani et al. (1994). The cost matrix is an additional input to the learn-
ing procedure and is also used to evaluate the ability of the learned procedure
to reduce misclassification costs. In the context of AdaBoost, the cost adjust-
ment function is used to modify the updating of the weights at each iteration
(see Galar et al. (2012)). Zhang (2020) developed CS-KNNs, an extension to
the KNN classification method that applies cost-sensitive learners to handle
class imbalances. Shon et al. (2020) developed COST-HDL, an extension of
a hybrid deep learning algorithm with a cost-sensitive loss function that can
help to classify imbalanced kidney cancer data. The most familiar method
combining AdaBoost with cost-sensitive learning is Ada.C2, which inspired
the algorithm suggested in this paper. In the following sections, we discuss
this algorithm in detail, as it was a precursor to our proposed multi-class
cost-sensitive algorithm.

3. SAMME.C2 ALGORITHM

The SAMME.C2 algorithm combines the benefits of boosting and cost-sensitive
algorithms to handle class imbalances in multi-class classification problems.
Boosting algorithms are generally considered advantageous because their
implementation is straightforward, they are statistically justified and generally
suitable for many kinds of classification problems, and they lead to relatively
few issues in terms of overfitting. By directly penalizing misclassified samples,
cost-sensitive learning algorithms provide the added benefit of high prediction
accuracy, especially for minority classes. The cost-sensitive component of our
proposed algorithm was inspired by the Ada.C2 method.

3.1. Ada.C2 method

AdaBoost models treat samples of different classes equally. In particular, the
weights of misclassified samples from different classes are increased by an
identical ratio, while the weights of correctly classified samples from different
classes are decreased by another identical ratio. A desirable boosting strategy
for an imbalanced dataset is one that is able to distinguish different classes
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of samples and provide a greater boost to the weights of the samples associ-
ated with higher costs. The concept of Ada.C2 was introduced by Sun et al.
(2007), and this method adds a cost item to each sample as follows. The input
data to the algorithm consists of (xxxi, yi,C(yi)) for i= 1, 2, . . . ,N, where i is the
index used for each individual driver, and N is the total number of individ-
ual drivers in the training set. The differences between this algorithm and the
original AdaBoost algorithm are as follows:

1. The updating of the distribution of the dataset at each iteration has the
form:

Dt+1(i)= C(yi)Dt(i) exp (− αtI(yi = ht(xxxi)))∑N
j=1 C(yj)Dt(j) exp (− αtI(yj = ht(xxxj)))

.

2. The weight of each classifier is

αt = 1
2
log

(∑N
i=1 C(yi)Dt(i) I(yi = ht(xxxi))∑N
i=1 C(yi)Dt(i) I(yi �= ht(xxxi))

)
.

AdaBoost is accuracy-oriented, and its weighting strategy may therefore
still tilt toward the majority class, since it contributes more to the overall clas-
sification accuracy. However, Ada.C2 uses a strategy for updating the data
distribution based on assigning higher costs to minority classes. On the one
hand, when minority classes are misclassified, the weights increase more so
than when majority classes are misclassified. On the other hand, when minor-
ity classes are correctly classified, the weights decrease less than when majority
classes are correctly classified. The steps used in the algorithm are summarized
as Algorithm 3 in Appendix A.

3.2. The proposed algorithm

The proposed algorithm, which we call SAMME.C2, is a blend of SAMME and
Ada.C2. Although we adopt all of the algorithmic steps from Ada.C2, there
are a number of important differences. First, we use the calculation formula of
αt from the SAMME algorithm at the iterative step t, which includes the addition
of log (K − 1). As pointed out by Zhu et al. (2009), this adjustment term is
crucial for multi-class classification problems as it helps to ensure that “the
accuracy of each weak classifier is better than random guessing.” It can be
shown that the presence of the term log (K − 1) is a consequence of the solution
to the optimization based on the extended muti-class exponential loss function.
Second, in our algorithm, the calculation of the weighted classification error, εt,
is not adjusted with the cost values. This was necessary to prove our algorithm
follows the form of a forward stagewise additive model. Details of this proof
are omitted in this paper.
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The steps of the proposed algorithm are summarized as follows:

Algorithm 1: SAMME.C2: cost-sensitive multi-class AdaBoost
Input: Training dataset xxxi ∈X , yi ∈Y = {1, 2, . . . ,K}, C(yi) ∈ (0, 1], T
Output: Final classifier H(xxxi)

1 Set initial distribution of dataset equally distributed:
D1(i)= 1

N , i= 1, 2, . . . ,N ;
2 for t= 1, . . . ,T do
3 Train weak classifier using the distribution Dt;
4 Get weak classifier ht :X → k ∈ {1, 2, . . . ,K} ;
5 Compute εt =

∑N
i=1 Dt(i)I(yi �= ht(xxxi))∑N

i=1 Dt(i)
;

6 Choose αt = log
(1− εt

εt

)
+ log (K − 1) ;

7 Update Dt+1(i)= C(yi)Dt(i) exp (− αtI(yi = ht(xxxi)))∑N
j=1 C(yj)Dt(j) exp (− αtI(yj = ht(xxxj)))

;

8 end
9 Return the final classifier: H(xxxi)= argmax

k

∑T
t=1 αtI(ht(xxxi)= k) ;

Figure 1 presents a comparative visual representation regarding how the
algorithm correctly classifies (or misclassifies) majority and minority classes.
For the SAMME algorithm, there is an even redistribution of correct classi-
fication (or misclassification) for majority and minority classes. In contrast,
with the addition of a cost-sensitive learning mechanism, the redistribution is
uneven and gives a heavier weight to minority classes. In effect, after a suffi-
ciently large number of iterations, weak classifiers are modeled with a heavy
emphasis on minor and misclassified instances.

4. PERFORMANCE EVALUATION AND SIMULATION

4.1. Performance metrics

For classification problems, the most common measurement of performance
is accuracy, which is the proportion of all observations that are correctly
classified. For obvious reasons, this is an irrelevant measure for imbalanced
datasets. Let us consider three performance statistics: recall, precision and F1-
score. We can compute performance statistics for each class, i= 1, 2, . . . ,K
and aggregate them with an average. The recall for class i, Ri is defined as the
proportion of observations in class i that were correctly classified. The recall
is also sometimes referred to as the sensitivity. The precision, Pi, is the pro-
portion of predictions in class i that were correctly classified. The F1-score,
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FIGURE 1: Visualizing the effect of the SAMME.C2 algorithm on classifying majority/minority classes.

F1i, is the harmonic average of recall and precision and is therefore equal
to 2 · (Ri ×Pi)/(Ri +Pi). For visualization, receiver operating characteristic
curves are popular for binary classifiers but are less meaningful for multi-class
classification problems, especially those with imbalanced classes.

When aggregating the results to provide a single measure of perfor-
mance for a given classifier, we define statistics, such as macro-precision
and macro-recall, to represent the arithmetic averages of the respective per-
formance statistics for each class. We define macro-F1-score as the recip-
rocal of the harmonic average of macro-precision and macro-recall, that
is, macro-F1-score= (2 ∗macro-precision ∗macro-recall)/(macro-precision+
macro-recall). For the recall, we use the geometric average and define

MAvG= (R1 ×R2 × · · · ×RK )1/K . (4.1)

Finally, when comparing classifiers, a better performing classifier is one that
gives a larger value for each of these aggregate statistics.

If we take the log of both sides of theMAvG statistics, we obtain an average
of the log of all the recall statistics. For log transformation, the result pro-
vides an average of the importance of accurately classifying observations for
all classes. For imbalanced datasets, this means that it is perfectly acceptable
to increase misclassifications of a majority class to correctly classify more of
a minority class. Indeed, as has been previously discussed (Fernández et al.
(2018)), the recall, or sensitivity, is usually a more interesting measure for
imbalanced classification. For these reasons, the MAvG is a good performance
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measure for imbalanced datasets. The MAvG concept is credited to the work
of Fowlkes and Mallows (1983).

4.2. Simulation

To investigate how the SAMME.C2 algorithm performs relative to other boost-
ing algorithms, the first crucial step was to perform a test based on a simple
simulated dataset. As mentioned, for the sake of comparison, we chose six
other boosting algorithms that are potentially viable for handling imbalanced
multi-class classification problems: (a) SAMME, (b) SAMME with SMOTE, (c)
SAMME with SVMSMOTE, (d) SAMME with KMeansSMOTE, (e) RUSBoost, and
(f) SMOTEBoost. Each of these methods has been described in the previous
section.

To generate a simulated dataset, we used the scikit-learn Python module
described in Pedregosa et al. (2011). This module is a user-friendly tool for
applying “state-of-the-art machine learning algorithms.” We used the built-in
function make_classification with parameterization executed as:

"""Make Simulation"""
from sklearn.datasets import make_classification

X, y = make_classification(n_samples=100000, n_features=50, n_informative=5-,
n_redundant=0, n_repeated=0, n_classes=3, n_clusters_per_class=2, class_sep=2,
flip_y=0, weights=[0.96,0.035, 0.005], random_state=16)

This generated 100,000 samples with 50 features, along with 3 classes. We
deliberately created a highly imbalanced dataset by setting the ratios for the
three classes as 96%, 3.5%, and 0.5%. Please refer to the package for an expla-
nation of the other parameters. We used 75% of the data for training, and the
rest was used for testing.

For the sake of simplicity, our analysis used a one-depth decision tree as a
weak classifier, as is used withmany boosting algorithms. In addition, 200 weak
classifiers were linearly combined with weights. To implement the cost values
for SAMME.C2, we employed a genetic algorithm (GA), which is a directed ran-
dom search technique invented byHolland (1975) and described inMühlenbein
(1997). This same GA to implement cost values was also used in the empirical
application. See also Bhowan et al. (2010).

For the GA, we first create the population set consisting ofM arbitrary cost
vectors, after which we run SAMME.C2 and determine the resulting MAvG,
hereafter referred to as the objective function. A cost vector has three elements
corresponding to each class. In the selection step used to select the two cost
vectors from theM vectors, we employ the “choice by roulette” method. Since
a large portion of the roulette wheel is assigned to cost vectors with a large
MAvG, this method has a higher probability of choosing cost vectors with a
large MAvG. In the crossover step, we combine the two selected cost vectors
into a single vector using an arithmetic average. In the mutation step, we pick
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FIGURE 2: Visualizing the genetic algorithm.

a random number within a tiny interval, which is used to adjust the elements
in the cost vector. Repeating these selection, crossover, and mutation steps,
we are able to produce a new population with new M cost vectors, for which
the procedure is iteratively repeated P number of times to generate the popu-
lation that produces the best cost vectors. Figure 2 provides a visualization of
these steps of the GA. In our search, we found that setting P= 10 andM = 10
produced cost vectors that optimized the MAvG. For the simulation, the final
cost vector produced had elements 1 for the most minority class, 0.963 for the
majority class, and 0.985 for the remaining class.

The GA is a necessary tuning process for the cost vectors given our purpose.
To demonstrate the sensitivity of the cost vectors to the performance measure
(MAvG), we examined the effects of randomly adjusting the cost vectors with
uniform distributions (−0.01, 0.01) and (−0.001, 0.001). The resulting effects
are visualized in Figure 3. The top part of the graph shows the sensitivity of
MAvG to uniform adjustments between −0.01 and 0.01. Here, even the range
between 0.3 and 0.7 did not lead to an optimal MAvG. The bottom part of
the graph shows a lower sensitivity to MAvG based on much smaller uniform
adjustments between −0.001 and 0.001.

Each boosting algorithm was trained using the training data, and its per-
formance was then evaluated on the test data. The results on the performance
of the various models are summarized in Table 1. According to the results, all
models except RUSBoost had similar Gini coefficients. In terms of MAvG,
SAMME.C2, which had an MAvG of 0.93, outperformed all the other models,
though SAMMEwith SMOTEwas not far behind at 0.90. An examination of each
class’ recall statistics revealed that SAMME.C2 outperformed all other models
in terms of correctly classifying those belonging to the minority class. However,
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TABLE 1

COMPARING THE PERFORMANCE MEASURES USING MAVG BASED ON THE SIMULATED DATASET.

Recall statistics
SAMME with SAMME with SAMME with

Class SAMME SMOTE SVMSMOTE KMeansSMOTE RUSBoost SMOTEBoost SAMME.C2

Class 1 1.00 0.96 0.92 0.97 0.88 0.99 0.88
Class 2 0.84 0.93 0.96 0.91 0.88 0.91 0.95
Class 3 0.42 0.83 0.82 0.82 0.30 0.76 0.95
MAvG 0.71 0.90 0.90 0.90 0.62 0.88 0.93
Gini coeff. 0.96 0.96 0.96 0.96 0.80 0.95 0.96
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FIGURE 3: SAMME.C2 model’s sensitivity of cost values to MAvG. Top: uniform adjustments to cost
values from (− 0.01, 0.01). Bottom: uniform adjustments to cost values from (− 0.001, 0.001). Vertical (red)

line: MAvG based on original cost vector.

FIGURE 4: Learning curves for SAMME.C2 based on the simulated data. Values on the x-axis, representing
the size of the training dataset, are in thousands (’000).

this came at the sacrifice of having the worst recall statistics for the majority
class (Class 1). The Gini coefficients were calculated according to the method
presented in Hand and Till (2001).

Figure 4 shows a set of diagnostic learning curves for examining the bias
and variance associated with training the SAMME.C2 based on the performance
metric MAvG. The graph demonstrates that we were able to achieve extremely
low bias and low variance simultaneously due to performance convergence as
the size of the training dataset increased (see Hastie et al. (2009)).

5. EMPIRICAL DATA: TELEMATICS

The overall goal of this paper is to analyze and understand driver behavior
using telematics. In this section, we demonstrate the strength of our SAMME.C2
algorithm as a model for analyzing and understanding the effects of the value
added by the telematics information. Insurance companies have long been
using traditional variables, such as age and gender, for the driver risk clas-
sification. The advancement of technology has led insurers to offer innovative
products, such as UBI (which uses telematics), to better classify and price risks,
with the understanding that such additional information helps to investigate
driver behavior.
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TABLE 2

SUMMARY STATISTICS OF THREE (CONTINUOUS) TRADITIONAL VARIABLES.

Mean Std dev Min Q1 Median Q3 Max

DRIVER.AGE 51.3 16.8 16.0 38.0 51.0 65.0 103.0
VEHICLE.AGE 5.7 4.49 −2.0 2.0 5.0 9.0 20.0
CREDIT.SCORE 754.8 88.0 390.0 716.0 780.0 811.0 892.0

5.1. Description and summary of data

Our telematics dataset was acquired from a Canadian-owned cooperative that
offers insurance and investment products. Its UBI program was launched in
Ontario in 2013. This dataset consists of information from drivers who par-
ticipated in the program and were observed during the period from 2013 to
2016, and it is based on nearly 100,000 policies. The telematics information
here is not raw but has been pre-engineered for the purpose of training a
statistical model for predictive purposes. This is in contrast to the work of
Gao et al. (2021), which analyzes raw telematics data acquired on a more fre-
quent basis. We considered feature variables as telematics when they were
drawn as a result of voluntary participation in this telematics program, which
required the installation of a vehicle-tracking device. At time of underwriting,
it is possible that telematics-related data may have been acquired and for our
purposes, they are considered classical and this includes, for example, the vari-
able ANN.KMS.DRV.SYSTEM. The response variable of interest is accident
frequency, classified according to the number of accidents observed per driver.
We were able to observe 0 (no accidents), 1 (exactly one accident), or 2+ (two
or more accidents). For training, we had a total of 50,301 observations, among
which 48,822 had no accidents, 1,430 had exactly one accident, and only 49 had
2 or more accidents. It can thus be seen that the classes were highly imbalanced
(97.1% with no accidents, 2.8% with exactly one accident, and only 0.1% with
two or more accidents). The dataset had no missing values regarding acident
frequency.

We had a total of 49 potential feature variables, 10 of which were tradi-
tional (e.g., driver age and gender), while the rest were telematics-driven. A
description of each variable in our dataset is given in Table 8. To provide a
preliminary understanding of the data, Table 2 shows summary statistics of
three traditional continuous variables: DRIVER.AGE, VEHICLE.AGE, and
CREDIT.SCORE. For example, it can be seen that the average driver age
in our records was 51.3, with 16.0 and 103.0 being the youngest and oldest
drivers, respectively. The cohort of drivers in our dataset with more mature
driving experience tended to fall within the middle age groups. According to
Figure 5, there does not seem to be a significant difference between males and
females with respect to accident frequency, even after controlling for the effects
of DRIVER.AGE, VEHICLE.AGE, and CREDIT.SCORE.
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FIGURE 5: Analysis of accident frequency by gender.

Table 3 provides summary statistics of two telematics variables:
DISTANCE.DRIVEN and EXPOSURE. For example, the average distance
traveled was 7,555.3 km for those without accidents, 14,155.4 km for those
with exactly one accident, and 12,834.89 km for those with two or more acci-
dents. Broadly speaking, this appears to indicate that the greater the distance
traveled, the more likely it is that the driver will have at least one claim.

We can broadly classify the telematics variables into those that are consid-
ered driving maneuvers (braking, acceleration, and left and right turn events)
and those that do not fall into this category. Most variables that fall into the
latter category are related to how much time drivers spend on the road (per-
centage of driving spent during each day of the week, exposure, and distance
driven; see Verbelen et al. (2018)). According to Table 8, there are essen-
tially four types of driving maneuver: braking, acceleration, left turn events,
and right turn events. The work by Gao et al. (2021) similarly examines these
driving maneuvers involving speed and acceleration.

BRAKE.xxKM refers to the number of sudden brakes applied at different
measures of deceleration (10,000/13,000/15,000/17,000/20,000/23,000 km per
h/s). The more rapid the deceleration, the faster the car is being driven when a
sudden brake is applied. Figure 6 displays a boxplot of the frequency of these
sudden brakes according to accident frequency. The y-axis was measured on a
logarithmic scale. First, it should be noted that the application of brakes with
higher deceleration is less frequently observed. Second, a more frequent appli-
cation of brakes for different decelerations leads to an increase in the likelihood
of an accident.

For left and right turn events (LTURN.EVENTxx and RTURN.
EVENTxx), the intensity was measured on a scale of 812, which expresses the
intensity of the force of gravity applied as the driver decelerates during a turn.
For example, 8 refers to an intensity of 80% of (3.57/9.80665) per m/s2, and sim-
ilarly, 12 refers to the intensity of 120% of (3.57/9.80665) per m/s2. The higher
the intensity value, the more intense the movement of the turn.
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TABLE 3

SUMMARY STATISTICS OF TWO TELEMATICS VARIABLES.

Variable Acc Freq Count Mean Std Dev Min Q1 Median Q3 Max

DISTANCE.DRIVEN 0 48, 822 7555.3 7149.4 0.1 2374.8 5395.7 10, 592.7 76, 271.8
1 1430 14, 155.4 8257.3 253.9 8319.7 12, 657.4 18, 161.2 58, 759.2
2 49 12, 834.9 7925.9 2247.8 7408.1 11, 408.3 16, 621.3 46, 527.4

EXPOSURE 0 48, 822 0.49 0.31 0.00 0.24 0.50 0.73 1.08
1 1430 0.78 0.25 0.02 0.64 0.89 1.00 1.06
2 49 0.74 0.26 0.23 0.50 0.80 1.00 1.06
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FIGURE 6: Analysis of accident frequency by exposure and distance driven.

5.2. Handling feature correlation

There are a number of clearly correlated features in our dataset. First, there
are feature variables that are compositional in nature, which refers to those
that describe parts of some whole and typically arise in terms of proportions
or percentages. The sum of the elements of these vectors is usually fixed as
a constant, such as 100%. To illustrate an example from the dataset, there are
feature variables that describe the percentages of time spent driving on each day
of the week (e.g., PCT.TRIP.MON and so forth). Such variables imply high
feature correlations and must be handled carefully. Second, there are other
feature variables that intuitively have a high correlation, such as EXPOSURE
andDISTANCE.DRIVEN. If a driver has a longer driving distance, it is highly
likely that the driver spends a higher percentage of time on the road.

Boosting algorithms using decision trees as weak learners are known to
be robust to feature correlation. However, collinearity may affect the inter-
pretation of certain results, such as the feature importance induced from the
model. To avoid such distortion, one particularly useful approach, applied in
Verbelen et al. (2018), is the application of log-ratio transformation for compo-
sitional features. However, we found this to be inadequate for our data due to
the large number of zero occurrences related to compositional features in our
dataset. At the same time, we wanted to control for the correlation of other fea-
ture variables, as earlier described. We thus applied a PCA after a preliminary
investigation of the correlations of the feature variables.
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(a) (b)

FIGURE 7: Analysis of feature correlation based on Spearman’s rank correlation with Ward’s hierarchical
clustering.

The Spearman’s rank correlation coefficient was used to measure the degree
of similarity between the feature variables. Based on these correlations, we
then performed Ward’s hierarchical clustering and applied PCA to each clus-
ter to create new independent feature variables according to the principal
components (PCs). Figure 7(a) shows a heatmap of these features based on
Spearman’s coefficients, with the features ranked according to the clustering
results so that they match the clusters in Figure 7(b). The different colors indi-
cate different clusters. The resulting new variables (PCs) in each cluster were
set to explain above 90% of the group information. For example, the cluster
comprising ACCEL.15KM, ACCEL.17KM, ACCEL.20KM, ACCEL.23KM,
BRAKE.20KM, and BRAKE.23KM had only one PC because one PC
explained 90% of the group information. The results of the eight new clustered
feature variables are summarized in Table 4.

5.3. Empirical model evaluation

We next evaluated the performance of SAMME.C2 against other classifica-
tion models using the test data set, as earlier described. For the test dataset,
we included a total of 21,574 observations: 20,901 had no accidents, 650 had
exactly one accident, and only 23 had two or more accidents. All the settings
of the various algorithms were identical to the ones described in Section 4. The
cost vector for SAMME.C2was preprocessed using a GA for which the assigned
cost was unique to each class in each observation. Employing the GA explained
in Section 4.2, the cost values for Accident 0, Accident 1, and Accident 2+ were
found to be 0.958, 0.979, and 1, respectively.
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TABLE 4

NEW VARIABLES (PRINCIPAL COMPONENTS) FROM THE EIGHT CLUSTERS.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

New PC1.TURN.L PC1.ACCEL.H PC1.ACCEL.L PC1.AGE related PC1.WEEK.D PC1.WEEKEN.D PC1.DISTANCE PC1.TRIP.HRS

Variables PC2.TURN.R PC2.ACCEL.L PC2.AGE related PC2.WEEK.D PC2.WEEKEN.D PC2.DISTANCE PC2.TRIP.HRS

PC3.ACCEL.L PC3.AGE related PC3.WEEK.D

PC4.WEEK.D

Original LTURN.EVENT08 ACCEL.15KM ACCEL.10KM CREDIT.SCORE PCT.TRIP.MON PCT.TRIP.SAT EXPOSURE PCT.TRIP.2HRS

Variables LTURN.EVENT09 ACCEL.17KM ACCEL.13KM VEH.USE_Pleasure PCT.TRIP.TUE PCT.TRIP.SUN DISTANCE.DRIVEN PCT.TRIP.3HRS

LTURN.EVENT10 ACCEL.20KM BRAKE.10KM DRIVER.AGE PCT.TRIP.WED PCT.WKEND.DRIV PCT.TRIP.4HRS

LTURN.EVENT11 ACCEL.23KM BRAKE.13KM YRS.CLAIMS.FREE PCT.TRIP.THU

LTURN.EVENT12 BRAKE.20KM BRAKE.15KM PCT.WKDAY.DRIV

RTURN.EVENT08 BRAKE.23KM BRAKE.17KM

RTURN.EVENT09

RTURN.EVENT10

RTURN.EVENT11

RTURN.EVENT12
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The results summarized in Table 5 are very encouraging regarding
SAMME.C2. In terms of the MAvG performance metric, with a value of 0.76,
it far outperformed all the other models. Further, with a Gini coefficient
of 0.67, SAMME.C2 is considered the best performing classifier, as this was
the highest among all the models considered. Although SAMME.C2 makes a
number of sacrifices regarding the prediction accuracy of the majority class
(here, the case of zero accidents), it produced a superior outcome for predict-
ing the other classes considered minorities. As in the simulations, the worst
classifiers were those that either did not resample (SAMME) or did resample
but only used undersampling (RUSBoost). Recall also that in the simula-
tion, SAMME.C2 only slightly outperformed the other two boosting algorithms
that used the SMOTE resampling method. However, our results demonstrate
when the empirical data are used, a cost-sensitive learning mechanism more
significantly outperforms mechanisms that use resampling methods.

Increasing the tree depth can be treated as part of hyper-parameter tuning
and, as pointed out in Ferrario and Hämmerli (2019), has the benefits of poten-
tially capturing linearities and introducing interaction terms. For our empirical
data, we additionally tested the effect of the weak learner’s tree depth. We ran
SAMME.C2 with depths of 1 through 4, and the resulting MAvGs were 0.76,
0.77, 0.72, and 0.64, respectively. Clearly, weak learners based on tree stumps
and two depths perform similar to but slightly better than those with higher
depths. Accordingly, increasing the depth can be recommended to reduce the
effect of feature correlation. However, since we preprocessed the data with
PCA to handle this issue, these differences in performance results between
models of different depths were not unexpected. For this reason, we pursued
the SAMME.C2 algorithm with tree stump weak learners.

To further assess the effectiveness of SAMME.C2, especially with respect to
overfitting, we note that there was very little difference when using in-sample
and stratified 10-fold cross-validation. Indeed, the MAvGs of in-sample and
stratified 10-fold cross-validation were 0.76 and 0.73, respectively. We also
examined a set of diagnostic learning curves to assess bias and variance, which
led to patterns similar to those shown in Figure 4.

5.4. Comparing traditional and telematics features

Several researchers and practitioners continue to be interested in the usefulness
of vehicle telematics information to build more customized pricing models.
This subsection shows how the results of the SAMME.C2 algorithm can help
enhance our understanding of driving behavior.

To evaluate the added value of telematics information, we compared the
results of SAMME.C2 using only the 10 traditional variables and those using the
49 traditional and telematics variables. The results are summarized in Table 6.

Based on the confusion tables, it can easily be calculated that the MAvG
was 0.76 for the SAMME.C2 using all 49 variables. In contrast, when only the

https://doi.org/10.1017/asb.2021.22 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.22


740
B
.SO

,J.-P
.B

O
U
C
H
E
R

A
N
D

E
.A

.V
A
L
D
E
Z

TABLE 5

COMPARING THE PERFORMANCE MEASURES USING MAVG BASED ON THE TELEMATICS DATASET.

Recall statistics
Accident SAMME with SAMME with SAMME with
Frequency SAMME SMOTE with SVMSMOTE KMeansSMOTE RUSBoost SMOTEBoost SAMME.C2

Accident 0 1.00 0.79 0.88 0.80 0.70 0.99 0.67
Accident 1 0.01 0.45 0.50 0.52 0.43 0.10 0.67
Accident 2+ 0.00 0.39 0.09 0.26 0.09 0.22 0.96
MAvG 0.01 0.52 0.34 0.48 0.30 0.28 0.76
Gini coeff. 0.66 0.51 0.46 0.44 0.36 0.59 0.67
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TABLE 6

CONFUSION TABLES BASED ON THE MODEL FIT OF SAMME.C2.

With traditional variables only

Actual

Acc 0 Acc 1 Acc 2+ Tot row

P
re
di
ct
ed

Acc 0 11,674 175 1 11,850

Acc 1 5319 274 3 5596

Acc 2+ 3908 201 19 4128

Tot col 20,901 650 23 21,574

With traditional and telematics variables
Actual

Acc 0 Acc 1 Acc 2+ Tot row

P
re
di
ct
ed

Acc 0 14,077 94 0 14,171

Acc 1 5930 438 1 6369

Acc 2+ 894 118 22 1034

Tot col 20,901 650 23 21,574

traditional variables are used, the MAvG was 0.58. This indicates that predic-
tion models from SAMME.C2 that include telematics information outperform
those considering only traditional feature variables. Interestingly, we also note
that the Gini coefficients were 0.67 and 0.46, respectively, with a higher index
for the model with both traditional and telematics variables. This is particularly
relevant when a classification model is used to build accident frequency models
because the index is related to the efficiency of the estimation of the expected
number of accidents derived from the classifier. Prior studies have similarly
concluded that claim frequency models that contain telematics information are
far better than those containing only classical feature variables (see Boucher
et al. (2017), Ayuso et al. (2019), and Guillen et al. (2020)). It should be noted
that the diagonal values in the table are the numbers of correctly classified
instances for each accident frequency according to the SAMME.C2 algorithm.
With a straightforward comparison of these diagonal values, it can be deduced
that the addition of the telematics variables improved the prediction.

Figure 8 depicts the relative importance of the feature variables, with the
telematics variables listed first and followed by the traditional variables. With
the assumption that a weak classifier can provide feature importance, the com-
mon procedure to calculate the index used in AdaBoost is to use the weighted
average of the weak classifier’s feature importance, using αt as weights. In this
paper, we used decision trees as weak classifiers, and the feature importance
was evaluated according to the Gini impurities. Therefore, the feature impor-
tance of SAMME.C2 was computed as the weighted average of the decreases in
these impurities. While the SAMME.C2 model was fitted based on the cluster
of variables resulting from the PCA, we reverted these clusters back into the
original variables when computing feature importance. Figure 8 provides the
different degrees of contribution to the feature importance made by each class
of accidents. In the figure, these contributions are distinguished according to
color, as labeled.

There are a number of conclusions we can draw from this decom-
position of the feature variable contributions. First, Figure 8 highlights
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FIGURE 8: Feature importance based on the SAMME.C2 predictions – using training data.

that there are a number of telematics variables that are better features
of accident frequency than traditional variables. For example, the top five
telematics features (EXPOSURE, DISTANCE.DRIVEN, BRAKE.13KM,
BRAKE.15KM, and ACCEL.13KM) are more important than the top tradi-
tional features (VEH.USE_Pleasure and YRS.CLAIMS.FREE). This seems to
indicate that traditional features that are usually considered significant could
be replaced by information drawn from telematics. Second, the top two feature
variables, EXPOSURE and DISTANCE.DRIVEN, far outweigh the others.
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Because the degree of contribution to each frequency class is different, this
does not necessarily imply that the more frequently one drives, the more likely
it is that one will be in accidents more often.

Third, as described in Section 5.1, we can classify the telematics vari-
ables into those considered as driving maneuvers and those related to
how much time a driver spends on the road. The fact that EXPOSURE
and DISTANCE.DRIVEN dominated in terms of feature importance indi-
cates that driving maneuvers are less important feature variables than
time and distance traveled. However, some of the top six telematics
variables (EXPOSURE, DISTANCE.DRIVEN, BRAKE.13KM, BRAKE.
15KM, ACCEL.13KM, and BRAKE.17KM) were related to driving maneu-
vers. Suppositionally, the former result can be explained by the effect of a
change in driver behavior based on knowledge that constant monitoring is
occurring when a telematics device is installed. This change would affect driv-
ing maneuvers more than it would with the time spent and distance traveled on
the road. Finally, we found that gender had little effect in terms of predicting
accident frequency. This is in line with previous studies, such as Ayuso et al.
(2016), which suggest gender discrimination may not be necessary for telem-
atics information. It may be that differences in driving behavior according to
gender are reflected well by telematics information. However, we also note that
this might only be what our data indicate and that there may be no significant
difference based on gender irrespective of the model used.

Before we conclude this section, we want to express precaution regard-
ing the use of our algorithm for pricing purposes. Throughout the paper, we
have highlighted that SAMME.C2 contains cost values that stress weights tilted
toward learning preference from data in minority classes. Intuitively, this could
lead to imbalances and possibly biased results when the algorithm is used to
estimate accident frequency for premium determination. The results reported
in Table 7 show rough estimates of the predicted number of accidents for the
various algorithms compared in this paper (separately for the simulated and
empirical data). Learning algorithms that place emphasis on minority classes
clearly lead to higher estimated mean accident frequencies and such is true for
SAMME.C2 and the other similar models reported in the table. It should be
noted that algorithms that do not place similar emphasis on minority classes,
such as SAMME and SMOTEBoost, may lead to less-biased prediction results.
The immediate concern with the direct use of classification techniques for insur-
ance pricing is the possibility of overpricing certain groups of drivers and
underpricing others. See Wüthrich and Buser (2020) for similar discussions.

However, the utility of SAMME.C2 to understand and rank important fea-
tures of driving behavior cannot be underestimated, especially when telematics
information is included. Such feature selection can be used in a posteriori
classification in insurance ratemaking, underwriting by introducing telematics-
related queries during the selection process, and other post-pricing risk man-
agement techniques, such as insurance reserving. Insurance reserving is an
important actuarial function used to determine the amount of funds necessary
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TABLE 7

COMPARING THE ROUGHLY ESTIMATED NUMBER OF ACCIDENTS FOR THE VARIOUS LEARNING ALGORITHMS.

Predicted number of accidents
SAMME with SAMME with SAMME with

Dataset SAMME SMOTE SVMSMOTE KMeansSMOTE RUSBoost SMOTEBoost SAMME.C2

Simulated 0.039 0.101 0.087 0.155 0.057 0.175 0.155
Empirical 0.001 0.243 0.203 0.114 0.014 0.283 0.337
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to cover future losses in as realistic a manner as possible. It is the responsibility
of a company’s chief actuary to ensure that estimated reserves, regardless of
the purpose, are calculated based on the state of risk of the insurance portfolio
at the valuation date. An investigation of how classification models can serve
these purposes will be an interesting project for future work.

6. CONCLUDING REMARKS

Over the past 5 to 6 years, there has been an influx of research related to
vehicle telematics in actuarial science. This article expands on this literature,
focusing on challenges not previously addressed and using an innovative clas-
sification model to handle imbalanced data. In particular, our work focuses on
an understanding of how the addition of telematics information helps improve
the recognition of driving behavior to improve understanding of accident
frequency. We treated the modeling of accident frequency as a multi-class clas-
sification problem with highly imbalanced classes. As with our empirical data,
we found that for motor insurance claim portfolios, a large number of drivers
with zero accidents, a few with exactly one accident, and far fewer with two or
more accidents are typically observed. We reviewed existing multi-class classi-
fication models that address the handling of the presence of minority classes
and found that a combination of resampling procedures and boosting algo-
rithms was suitable for our intentions. In particular, we propose an algorithm
that is a combination of boosting and cost-sensitive learning, which we call
SAMME.C2, to address the imbalances within multi-class classification prob-
lems. The injection of cost-sensitive factors has the effect of placing a heavy
penalty on the misclassification of minority classes, while a heavy reward is
simultaneously placed on the correct classifications of these classes. Further, we
demonstrate how PCA methods can be employed to explore the nature of the
strong dependencies common among telematics feature variables. The results
of our model fitting to our telematics dataset are very promising. Overall, we
conclusively demonstrate the superior performance of SAMME.C2 compared
with other known boosting algorithms that are also combined with resampling.

When SAMME.C2 was applied to our telematics dataset, we are able to
draw conclusive evidence on how telematics information affects accident fre-
quencies. First, we found that telematics are significantly better features of
accident frequency than typical classical variables used for risk classification
(e.g., DRIVER.AGE and GENDER). This indicates that telematics variables
can provide a better understanding of driver behavior. Second, we were able to
group telematics data according to variables related to the percentage of time
drivers spend on the road (e.g., EXPOSURE and DISTANCE.DRIVEN) and
those related to driving maneuvers (e.g. BRAKE.13KM, BRAKE.15KM, and
ACCEL.13KM). Broadly speaking, we found that the cluster of variables that
describes the percentage of time drivers are on the road are more important
feature variables than the cluster of those related to driving maneuvers. Two
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observations about driving maneuvers can help us to explain this. First, the
presence of a telematics device in the vehicle is, in an indirect sense, an encour-
agement of good driving behavior. Second, it is likely that drivers have more
control over these driving maneuvers, whereas time spent on the road may
be more a result of necessity (e.g., driving to school or work, driving family
members to events, or driving for a family vacation). However, we did find evi-
dence of moderate correlations between some of these driving maneuvers and
accident frequency. In particular, the more frequently a driver was found to
violate these driving maneuvers, the more likely they were to be in an accident.
Modeling claim frequency to understand driving behavior is an important part
of evaluating and classifying risks for pricing and reserving. However, many
insurance companies still do not have the ability to gather telematics-related
information. It is the hope of this paper that important telematics informa-
tion can be collected in the form of proxy variables queried in an underwriting
questionnaire. In the future, we aim to investigate the effects of telematics vari-
ables on claim severity and the damages associated with an accident. It will also
be interesting to investigate the incorporation of classification techniques into
insurance ratemaking.
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Appendix A. Detailed steps of the SAMME and Ada.C2 algorithms

Algorithm 2: SAMME: multi-class AdaBoost
Input: Training dataset xxxi ∈X , yi ∈Y = {1, 2, . . . ,K}, T
Output: Final classifier H(xxxi)

1 Set initial distribution of dataset equally distributed:
D1(i)= 1

N , i= 1, 2, . . . ,N ;
2 for t= 1, . . . ,T do
3 Train weak classifier using the distribution Dt ;
4 Get weak classifier ht :X → k ∈ {1, 2, . . . ,K} ;
5 Compute εt =

∑N
i=1 Dt(i)I(yi �= ht(xxxi))∑N

i=1 Dt(i)
;

6 Choose αt = log
(1− εt

εt

)
+ log (K − 1) ;

7 Update Dt+1(i)= Dt(i) exp (− αtI(yi = ht(xxxi)))∑N
j=1 Dt(j) exp (− αtI(yj = ht(xxxj)))

;

8 end
9 Return the final classifier: H(xxxi)= argmax

k

∑T
t=1 αtI(ht(xxxi)= k) ;

Algorithm 3: Ada.C2: cost-sensitive binary AdaBoost
Input: Training dataset xxxi ∈X , yi ∈Y = {0, 1}, C(yi), T
Output: Final classifier H(xxxi)

1 Set initial distribution of dataset equally distributed:
D1(i)= 1

N , i= 1, 2, . . . ,N ;
2 for t= 1, . . . ,T do
3 Train weak classifier using the distribution Dt ;
4 Get weak classifier ht :X → k ∈ {0, 1} ;
5 Compute εt =

∑N
i=1 C(yi)Dt(i)I(yi �= ht(xxxi))∑N

i=1 C(yi)Dt(i)
;

6 Choose αt = 1
2 log

(1− εt

εt

)
;

7 Update Dt+1(i)= C(yi)Dt(i) exp (− αtI(yi = ht(xxxi)))∑N
j=1 C(yj)Dt(j) exp (− αtI(yj = ht(xxxj)))

;

8 end
9 Return the final classifier: H(xxxi)= argmax

k

∑T
t=1 αtI(ht(xxxi)= k) ;
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Appendix B. Traditional and telematics variables in the dataset

TABLE 8

VARIABLE NAMES AND DESCRIPTIONS.

Type Variable Description

Traditional DRIVER.AGE Age of driver
GENDER Gender of the driver (M/F)
VEHICLE.AGE Vehicle age
MARITAL Marital status
VEH.USE Use of vehicle: Pleasure, Commute, Farmer,

Business
CREDIT.SCORE Credit score of driver
ZONE Zone where driver lives: rural, urban
ANN.KMS.DRV.SYSTEM Kilometer driven declared by driver
YRS.CLAIMS.FREE Number of years claims free
TERRITORY Territory where vehicle is rated

Telematics EXPOSURE Exposure time in percentage of 365 days
DISTANCE.DRIVEN Total distance driven
PCT.TRIP.xxx Percent of driving day xxx of week:

MON/TUE/.../SUN
PCT.TRIP.xxx Percent vehicle driven in xxx hrs:

2HRS/3HRS/4HRS
PCT.xxx.DRIV Percent vehicle driven in xxx of week:

WKDAY/WKEND
xx.RUSH.HOUR Percent of driving in xx rush hours: AM/PM
AVGDAY.USE.WKLY Average number of days used per week
ACCEL.xxKM Number of sudden acceleration 10/13/15.../23

km/h/s per 1000km
BRAKE.xxKM Number of sudden brakes 10/13/15.../23

km/h/s per 1000km
LTURN.EVENTxx Number of left turn per 1000km with intensity

08/09/10/11/12
RTURN.EVENTxx Number of right turn per 1000km with

intensity 08/09/10/11/12

Response ACC_FREQ Frequency of accidents during observation:
0/1/2+

https://doi.org/10.1017/asb.2021.22 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.22


COST-SENSITIVE MULTI-CLASS ADABOOST 751

Appendix C. Confusion tables based on the telematics dataset: SAMME, SAMME
with SMOTE, RUSBoost, SMOTEBoost

TABLE 9

SAMME.

Actual
Acc 0 Acc 1 Acc 2+ Tot row

P
re
di
ct
ed Acc 0 20,882 643 20 21,545

Acc 1 19 7 3 29
Acc 2+ 0 0 0 0
Tot col 20,901 650 23 21,574

TABLE 10

SAMME WITH SMOTE.

Actual
Acc 0 Acc 1 Acc 2+ Tot row

P
re
di
ct
ed Acc 0 16,491 226 5 16,722

Acc 1 3336 295 9 3640
Acc 2+ 1074 129 9 1212
Tot col 20,901 650 23 21,574

TABLE 11

RUSBOOST.

Actual
Acc 0 Acc 1 Acc 2+ Tot row

P
re
di
ct
ed Acc 0 14,558 333 6 14,897

Acc 1 5983 282 15 6280
Acc 2+ 360 35 2 397
Tot col 20,901 650 23 21,574

TABLE 12

SMOTEBOOST.

Actual
Acc 0 Acc 1 Acc 2+ Tot row

P
re
di
ct
ed Acc 0 20,669 579 16 21,264
Acc 1 209 67 2 278
Acc 2+ 23 4 5 32
Tot col 20,901 650 23 21,574
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