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Caseinophosphopeptides (CPPs) are multifunctional bioactive peptides containing phosphorylated
seryl residues in their sequence. In the present study, method for the production of CPPs from buffalo
milk casein was optimised and characterised for their sequence, calcium solubilising and calcium
binding activities. Response surface methodology was used to optimise the conditions for hydrolysis
of buffalo casein by trypsin to obtain maximum yield of CPPs. The optimum hydrolysis conditions
were as follows: hydrolysis pH 7·5, temperature 37 °C, hydrolysis time 7·0 h. Under these conditions,
the experimental yield obtained was 10·04±0·24%, which is slightly lower than value predicted
by the model. These CPPs were able to solubilise 1·03±0·08mg la/mg CPPs in presence of excess
phosphate and bind 0·935mg of Ca/mg of CPPs. Eight phosphopeptides i.e. αs1-CN f (37-58) 2P;
αs1-CN f (37-58) 3P; αs1-CN f (35-58) 2P; αs1-CN f (35-58) 3P; αs2-CN f (2-21) 4P; αs2-CN f (138-149)
1P; β-CN f (2-28) 4P and β-CN f (33-48) 1P were identified by LC-MS/MS which contained motif
for binding of divalent minerals. The sequences of these CPPs differed from that of derived from
bovine casein.
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Caseinophosphopeptides (CPPs) derived from bovine
caseins are well studied as multifunctional peptides due
to their mineral binding, antioxidant (Diaz et al. 2003;
Sakanaka et al. 2005) and cytomodulatory potential
(Hata et al. 1999; Otani et al. 2000). Their capacity to form
complexes with mineral elements through the clusters
(SpSpSpEE) (three phosphoseryl groups followed by two
glutamic acid residues), plays an important role in mineral
bioavailability. Some biological functions such as promotion
of calcium uptake (Hansen et al. 1996; Bennet et al. 2000),
calcium absorption (Erba et al. 2002), calcium retention
(Sato et al. 1991), bone calcification (Tsuchita et al. 1996),
hypotensive effect (Kitts & Yuan, 1992) and anticariogenicity
(Reynolds et al. 1995) of CPP could be attributed to their
chelating activity for transition metal ions. These CPPs can
be released enzymatically, e.g. by tryptic cleavage, resulting
in general tryptic casein phosphopeptides; [αs1-CN 2P
(f43-58), αs1-CN 5P(f59-79), αs1-CN 1P (f106-119), αs2-CN
4P (f2-21), αs2-CN 4P (f46-70), αs2-CN 2P (f126-136),
αs2-CN 1P (f138-149), β-CN 4P (f2-25) and β-CN 1P

(f33-48)]. All these peptides showed calcium binding
capacity and characteristic inhibitory effect on calcium
phosphate crystallisation and precipitation (Schmidt et al.
1987; Naito, 1990; Schlimme & Meisel, 1993; Holt, 1996).
To date, the actions of trypsin (Wei et al. 2003), chymo-
trypsin (McDonagh & FitzGerald, 1998), plasmin (Andrews
et al. 2006), Lactobacillus proteinase (Corsetti et al. 2003),
pancreatin (Adamson & Reynolds, 1995), and simulated
gastrointestinal proteases (Miquel et al. 2006) on bovine
caseins, Na-caseinates or milk have been typically studied
for the CPPs production.
India has the highest livestock population in the world

which includes 50% of the buffaloes and 20% of the world’s
cattle population. Out of 92140146 tonnes world buffalo
milk production in 2009, India contributes about 62860000
tonnes (FAO, 2011). Buffalo milk is mainly used for pre-
parations of dairy products and ingredients similar to those
of bovine milk. It also can be used for preparation of various
functional ingredients like bioactive peptides. There are
very few reports on production of bioactive peptides from
buffalo milk (El - Shibiny et al. 2001, Petrilli et al. 1987).
Various buffalo milk caseins like αs1, αs2, β and κ differ at
certain positions in their primary structure from respective
cow milk caseins (Ferranti et al. 1998). These sequences*For correspondence; e-mail: bimleshmann@gmail.com
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indicate that αs1, αs2, β and κ casein differ in their amino acid
sequence at 10, 10, 5 and 13 different sites, respectively
(Cosenza et al. 2009, Mishra et al. 2005, Mukesh et al. 2006,
Sukla et al. 2006, 2007). It is well documented that the
mineral binding ability of CPPs is due to the highly anionic
phosphorylated regions present in them and the amino acid
sequence around anionic hydrophilic domain seems to
play a significant role in mineral binding (McDonagh &
FitzGerald, 1998). Furthermore, the extent of hydrolysis may
be different in buffalo milk caseins vis-à-vis cowmilk caseins
because of differences in their primary structure and it has
been reported that yield of the CPPs vary with extent of
hydrolysis (Adamson and Reynolds, 1995). So there is a need
to optimise the conditions of hydrolysis of buffalo caseins for
better yield of CPPs, to study their calcium solubilising and
binding capacity and to identify the sequence of these
peptides.

Materials and methods

Materials

Trypsin (EC 3·4·21·4, Sigma-Aldrich, St.Louis, MO, USA,
Cas No. 9002077), PhosphoQuant™ phosphoprotein
phosphate estimation kit (GBiosciences, St.Louis, MO,
USA). All other reagents were procured from Sisco
Research Laboratories (SRL) Pvt Ltd., India.

Preparation of CPPs

Buffalo milk casein was prepared by acid precipitation using
skim milk. Sodium caseinate was prepared by dissolving wet
casein in water and adjusting to pH 7·0 using 2 MNaOHwith
continuous stirring (Fox, 1970).

CPPs were prepared by hydrolysing buffalo sodium
caseinate with trypsin. The hydrolysis conditions were
optimised by using Response Surface Methodology. The
software Design Expert 7.0 (Stat-Ease Inc., Minneapolis,
Minn., USA) was employed for experimental design, data
analysis and model building. A central composite rotatable
design (CCRD) with 3 variables was used to determine the
response pattern and then to establish a model. Three vari-
ables used in this study were pH (A), time (B) and tempera-
ture (C) of hydrolysis, with 3 levels of each variable (Table 1),
while the dependent variable was yield of CPPs (Y). The
design consisted of 20 experimental points (8 factorial,
6 axial and 6 central). These 20 experiments were carried out
in random order. Fifty ml sodium caseinate (5%, w/v in
distiled water) was taken for hydrolysis and trypsin (E: S;
1 :100) was added and kept in waterbath maintained at
required temperature. The pH of the solution was main-
tained throughout the hydrolysis using 1 M NaOH manually.
After hydrolysis, the enzyme was inactivated by heating at
80 °C for 5 min and the hydrolysate was adjusted to pH 4·6
with 1 M HCl. The unhydrolysed caseinate was removed by
centrifugation at 3000 g (Kubota centrifuge, Tokyo, Japan)

for 10 min at 4 °C. Supernatant was collected and adjusted to
pH 7 with 1 M NaOH. Calcium chloride (11 mg/ml, w/v) was
added to the supernatant and allowed to aggregate for 1 h at
room temperature. Ninety five percent ethanol (v/v) was then
added to get 50% (v/v) final concentration and resultant
precipitate was collected by centrifugation at 6000 g for
10min (McDonagh & FitzGerald, 1998). The precipitates
were freeze dried and stored at �20 °C for further analysis.
The protein content of the sample was analysed by method
given by Lowry et al. (1951).

Degree of hydrolysis

The degree of hydrolysis (DH) was calculated by using pH-
stat technique formula which gives a direct measurement of
the percentage of hydrolysed bonds (Adler-Nissen, 1986).

DH ¼ B�NB � 1=α� ð1=MPÞ � ð1=htotÞ � 100%

Where, B=volume of NaOH used for maintaining the pH;
NB=normality of the base; 1/α=average degree of dis-
sociation of the α-amino groups related with the pK of
the amino groups at particular pH and temperature; htot
(meq/g)=sum of millimoles of individual amino acids per
gram of protein associated with the source protein. (8·2 for
casein); Mp=amount of the protein in reaction mixture (g).

Calcium solubilising capacity of CPPs

The calcium solubilising capacity of CPPs was determined
by using the method of McDonagh & FitzGerald (1998) with
slight modification. Two hundred microgram (protein equi-
valent) of CPPs (demineralised by Amberlite IR120) was
incubated at 37 °C with test solution (0·5 ml) containing
0–3·0mg/ml calcium at pH 8·0. Excess phosphate (i.e.
0·5 ml of 60 mM Na2HPO4/NaH2PO4, pH 8·0 buffers) was
added after 60min incubation. The calcium concentration
of the supernatant arising from the mixed and centrifuged
(6000 g for 1 min) samples was then determined by atomic
absorption spectrometer (Polarized Zeemann AAS, Hitachi
Z-5000, Japan). The calcium solubilised at pH 8·0 by onemg
CPPs preparation in the presence of excess phosphate was
expressed as mg of Ca2+/mg of CPPs.

Calcium binding capacity of CPPs

The calcium binding capacity of CPPs was determined
by using the method of McDonagh & FitzGerald (1998) with
some modification. One mg (protein equivalent) of CPP

Table 1. Coded settings for the process parameters for hydrolysis,
according to central composite rotatable design

Parameter �1 0 +1

A: pH 7·5 8 8·5
B: Time (h) 3 5·5 8
C:Temperature (°C) 37 46 55
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preparation (de-mineralised on Amberlite IR120) was
incubated with 5 mg of Ca2+at pH 7·5, 37 °C in a total
volume of 1·0 ml. After 60 min incubation, the test solution
was placed in the upper chamber of filtration unit (PALL life
sciences, USA) membrane (1000 Da cut-off). The assembly
was then centrifuged for 30min at 2450 g at 10 °C (Herasus
Centrifuge). The calcium concentration in the retentate was
determined by using atomic absorption spectrophotometer
(Polarized Zeemann AAS, Hitachi Z-5000, Japan), relative
to a blank solution without CPP. The calcium-binding
abilities of the CPPs were expressed as mg of Ca2+ bound/
mg of CPP.

Analysis of CPPs by RP-FPLC and identification of peptides
by LC-MS/MS

The sample was separated by using RP-FPLC (AKTA purifier,
GE Healthcare biosciences, Hongkong) with a fraction
collector attached. Freeze-dried sample (10 mg) was dis-
solved in 1ml trifluoro acetic acid (TFA) (0·1 ml/100 ml) and
500 μl of this solution was injected and separated on
RESOURCE RPC 3ml (Reverse phase column). Detection
was performed at 214 nm with UV Detector. The mobile
phases were solvent A, containing TFA (0·037 ml/100 ml
(v/v)) in HPLC grade water, and solvent B, containing TFA
(0·027 ml/100 ml (v/v)) in 80% (v/v) acetonitrile. A linear
gradient from 100–40% A and 0–60% B was applied in
70 min; the amount of B was then increased in 5min to 90%,
which was held constant for another 10min, and finally
reduced to 0% B, all at a flow rate of 1·0 ml/min. The
fractions were collected and analysed for protein by Lowry
method (Lowry et al. 1951) and phosphorus content by
phosphate estimation kit. The fractions having higher protein
and phosphorus content were pooled and freeze dried. The
sample was then sequenced at Proteomics International Pvt.
Ltd., Western Australia through Technoconcept Pvt Ltd.,
New Delhi. Samples were analysed by electrospray ionis-
ation mass spectrometry using the Ultimate 3000 nano
HPLC system [Dionex] coupled to a 4000 Q TRAP mass-
spectrometer [Applied Biosystems]. Tryptic peptides were
loaded onto a C18PepMap100, 3 mm [LC Packings] and
separated with a linear gradient of water/acetonitrile/0·1%
formic acid (v/v). Spectra were analysed to identify proteins
of interest usingMascot sequence matching software [Matrix
Science] with taxonomy set to all entries.

Results and discussion

Process optimisation for the preparation of CPPs

The process for the preparation of CPPs was optimised using
response surface methodology. Sodium caseinate prepared
from buffalo milk was hydrolysed using trypsin. Total of 20
runs for optimising the three individual parameters by the
current design, including 6 replicates, were obtained. The
results of 20 experiments are presented in Table 2. At

different hydrolysing conditions, the yield of CPPs varied
from 7·38±0·23 to 10·53±0·21%. The regression coef-
ficient and their P values for central composite randomised
design are shown in Table 3. The coefficient of determi-
nation (R2) is defined as the ratio of the explained variation to
the total variation and is a measurement of the degree of
fitness. The closer the value of R2 is to 1·00, the better is the
model. The R2 of present model as calculated by ANOVA
was 0·8935, indicating that the sample variation of
89·35% could be attributed to the independent variables.

Table 3. Regression coefficients of the perdicted quadratic model

Coefficient Parameter estimate P-value prob>F

Intercept 9·20 –

A-pH �0·080 0·4678
B-Time 0·66 <0·0001*

C-temperatute �0·28 0·0234**
AB �0·30 0·0534
AC 0·11 0·4382
BC �0·080 0·5785
A2 0·17 0·1398
B2 �0·49 0·0008*

C2 �0·25 0·0353**
Other statistic
Model F- value 9·32
Model P- value 0·0008
R2 0·8935
Mean 8·80
Lack of fit 0·0521 not significant

*P<0·01, ** P<0·05, significance

Table 2. Experimental design showing different hydrolysis
conditions for the optimisation of yield of CPPs in central
composite rotatable design by trypsin

Run pH Time (Hrs.) Temperature (°C) Yield (%)

1 8·50 8·00 55·00 8·71±0·21
2 7·50 3·00 37·00 8·33±0·12
3 7·50 3·00 55·00 7·38±0·23
4 8·00 5·50 31·00 8·28±0·12
5 8·50 3·00 55·00 8·05±0·23
6 8·00 5·50 46·00 9·04±0·19
7 8·80 5·50 46·00 9·23±0·31
8 8·00 5·50 61·00 8·19±0·22
9 8·00 5·50 46·00 9·37±0·15

10 7·50 8·00 55·00 9·16±0·26
11 8·00 5·50 46·00 9·49±0·21
12 8·00 5·50 46·00 8·89±0·30
13 8·00 5·50 46·00 9·35±0·11
14 8·50 8·00 37·00 9·53±0·25
15 8·00 5·50 46·00 9·13±0·16
16 8·50 3·00 37·00 8·65±0·31
17 8·00 1·30 46·00 6·50±0·29
18 8·00 9·70 46·00 8·60±0·28
19 7·50 8·00 37·00 10·53±0·21
20 7·20 5·50 46·00 9·61±0·19

Figures are the mean±SE of three replicates
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The ANOVA also showed that there was non-significant
(P>0·05) lack of fit, which further validates the model (Khuri
& Cornell, 1987).

The P values were used as a tool to check the significance
of each coefficient, which in turn may indicate the pattern of
the interactions between the variables. Smaller the value of
P, more significant is the corresponding variable. The results
showed that the yield of CPPs was significantly affected
by two parameters i.e. time and temperature of hydrolysis,
as indicated in Table 3 (P<0·01 and P<0·05 respectively).
The effect of hydrolysis time was more as indicated by the
high value for regression coefficient (Table 3); the positive
sign indicates that as the hydrolysis time increases, the yield
also increased within the experimental conditions and
similar results are predicted from the response surface plot
(Fig. 1b, c). The sign for the regression coefficients for the pH
and temperature of hydrolysis were negative which shows
the yield of CPPs has negative correlation with these two
variables. Similarly, it was observed from the response
surface plot that with the increase in the temperature and pH
of hydrolysis, the yield of CPPs decreased (Fig. 1). For the
hydrolysis time and temperature, the quadratic effects were
highly significant which indicates that optimal values for
hydrolysis time and temperature exist within the experimen-
tal area. ANOVA analysis showed that the P value for the
model is significant (P<0·01) (Table 3), which means it is
suitable for the prediction of the yield of CPPs with respect to
hydrolysis conditions (Table 4). The yield of CPPs from the
optimised method was 10·04±0·24% which was slightly
less than that of the predicted value (Table 4). McDonagh &
FitzGerald (1998) reported that the yield of CPPs from the
original protein varies from 3·4 to 16·0% with various com-
mercially available proteases, while yield by trypsin is 8·3%.
But Corsetti et al. (2003) reported much lower yield of CPPs
i.e. 0·6–1·86% with lactobacillus proteases. The yield may
be depending on the type of proteases and the hydrolysis
conditions used.

DH measured for trypsin was 17·93±1·02%. DH was
determined by taking into account the amount of alkali/
acid used to maintain the constant pH during hydrolysis of
Na caseinate. Adamson & Reynolds (1995) studied the rela-
tionship between casein hydrolysis and phosphopeptides
release. They found that the highest yields for Novo trypsin
and pancreatin were obtained at DH 17% and DH 19–23%
respectively, while McDonagh & FitzGerald (1998) reported
8% DH for trypsin.

Calcium solubilising and binding capacities

The method used for the calcium solubilising ability of CPPs
is related to the ability of CPPs to form soluble complexes
with calcium which is prevented from precipitating in
presence of excess phosphate. The calcium solubilising
ability of CPPs was 1·03±0·08 mg of Ca/mg of CPPs
(Table 4). McDonagh & FitzGerald (1998), and Perich
et al. (1992) reported that differences in the calcium
solubilising activity of CPPs may be related to the sequences
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Fig. 1. Response surface plots (3-D) a, b and c showed the
effects of variables (pH, Temperature, °C; Time, hrs) on the response
yield.
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of amino acids flanking the phosphoseryl rich region of the
peptides i.e. the sequence containing the SpSpSpEE motif or
part of it.

The calcium binding ability of CPPs was 0·934±0·05mg
calcium/mg CPPs (Table 4). Corsetti et al. (2003) observed
that the calcium binding ability of CPPs isolated from
various species varies from 0·4 to 1·4 mg calcium/mg CPPs.
Their results also showed that bovine, goat and buffalo
hydrolysates have higher calcium binding activity than
human and sheep milk. The highly polar acidic domains
confer mineral binding abilities to phosphopeptides.
Dephosphorylated peptides do not bind minerals (Sato
et al. 1983; Gerber & Jost, 1986; Berrocal et al. 1989).
The phosphorylated residues play an important role in
mineral binding which was demonstrated by Yoshikawa
et al. (1981). They observed that chemical phosphorylation
of αs1 and β casein increased the binding capacity. The
structure of the phosphopeptides identified in the present
study indicates that calcium binding ability may be due to
the presence phosphoseryl residues i.e. β-CN f (2-28)4P and f
(33-48) 1P; αs2-CN f (2-21)4P and f (138-149)1P and αS1-CN
f (37-58)3P, f (37-58)2P, f (35-58)3P, f (35-58)2P (Table 6).

Identification of CPPs

The separation of CPPs was done by preparative scale RP-
FPLC and presented in Fig. 2. The whole chromatograph has
been divided into four fractions. These fractions were col-
lected and analysed for their protein and phosphorus con-
tents (Table 5). The fraction No. 2 and 3 showed the highest
phosphorus and protein contents which indicated the
presence of phosphopeptides in these fractions. These two
fractions were pooled and freeze dried. These fractions were
further subjected to ESI-MS/MS. Eight caseinophosphopep-
tides have been identified in the FPLC fractions 2 and 3

Table 4. Optimised hydrolysis conditions and calcium binding and solubilising activity of CPPs

Optimised hydrolysis conditions
pH Time (hr) Temperature (°C) Predicted yield (%) Experimental yield (%) DH (%)
7·5 7·0 37·00 10·59±0·38 10·04±0·24 17·93±1·02%

Ca binding ability 0·935±0·05mg of Ca/mg of CPPs
% Ca Solubility/ 200 μg protein 1·03±0·08 mg of Ca/mg of CPPs

Fig. 2. RP-FPLC chromatogram of CPPs prepared from buffalo casein.

Table 5. Table showing protein and phosphorus content in RP-FPLC
fraction

Fraction No. Fraction Protein (μg/ml)
Phosphorus
(μM/mg protein)

1 4–5 238·50±1·80 227·12±1·24
2 6–8 1561·30±2·76 641·64±1·92
3 9–10 1114·70±2·24 617·23±1·74
4 11–12 424·04±1·38 100·30±1·08
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(Table 6). These peptides were identified as fragments of αs1-
casein f (37-58 and 35-58), αs2-casein f (2-21 and 138-149)
and β-casein f (2-28 and 33-48). All these eight peptides
showed different level of phosphorylation. The peptides
αs2-CN f (138-149) and β-CN f (33-48) had one, αs1-CN f
(37-58 and 35-58) had two, αs1-CN f (37-58 and 35-58) had
three and β-CN f (2-28) and αs2-CN f (2-21) had four
phosphorylated serine residues. The sequences of CPPs
identified in this study were similar to those reported by
the earlier workers. The phosphoseryl segments that can be
released by tryptic digestion of bovine casein CPPs are αs1-
CN f (43-58) 2P; αs1-CN f (59-79) 5P; αs1-CN f (106-119) 1P;
αs2-CN f (2-21) 4P; αs2-CN f (46-70) 4P; αs2-CN f (126-136)
2P; αs2-CN f (138-149) 1P; β-CN f (2-25) 4P and β-CN f
(33-48) 1P, all having the calcium binding capacity (Naito,
1990; Schlimme & Meisel, 1993). Ellegard et al. (1999)
identified that the N-terminal sequence analysis of these
fractions results in identification of the phosphorylated pep-
tides αs1-CN f (43-58) 2P; αs2-CN f (1-21)1P; αs2-CN f (2-21)
4P; αs2-CN f (46-70)4P; αs2-CN f (46-70)3P; β-CN f (1-25) 2P;
β-CN f (1-25) 3P; β-CN f (30-48) 1P and β-CN f (33-48) 1P
from the tryptic hydrolysates of bovine casein. Similarly Zhu
& FitzGerald (2010) reported a number phosphopeptides in
tryptic hydrolysate of bovine casein i.e. αs1-CN f (35-58) 3P;
αs1-CN f (43-58) 2P; αs1-CN f (43-59) 2P; αs1-CN f (104-119)
1P; αs1-CN f (106-119) 1P; αs1-CN f (126-136) 2P; αs2-CN f
(126-137) 2P; αs2-CN f (138-149) 1P; αs2-CN f (130-150) 1P;
β-CN f (32-48) 1P; β-CN f (33-48) 1P and β-CN f (33-52) 1P.
In the present study, no phosphopeptides were identified as a
fragment of κ-casein. There may be a number possible
reasons which may account for this finding as reported by
Zhu & FitzGerald (2010) that κ-casein represents only 10%
of the total casein content and has fewer tryptic cleavage
sites. Moreover, κ-casein being a phosphoglycoprotein may
result in the release of tryptic peptides having greater sol-
ubility in the presence of calcium leading to their resistance
to aggregation during calcium and ethanol precipitation.
The sequence of all the eight peptides reported in this

study indicates that CPPs were released due to the
C-terminal cleavages of R and K residues which are
attributed to the specific activity of trypsin (Allen, 1989;
Antal et al. 2001; Su et al. 2007). Two peptides β-CN (f 2-28)
and αs2-CN (f 2-21) have well defined structural character-
istics of the CPPs which is the presence of phosphorylated
cluster (SpSpSpEE) and specific amino acids located around
it. The presence of the phosphorylated cluster in the CPPs
enhanced absorption of mineral (Ferraretto et al. 2003;
Kibangou et al. 2005). Miquel et al. (2006) indicated that
CPPs containing the cluster sequences could be good can-
didate for incorporation as functional ingredients in mineral
fortified foods.
The molecular mass of the peptides ranges from

1431·8–3302·5 as presented in Table 6. Slight difference
in the molecular mass was observed when compared with
similar peptides sequence reported in literature (Table 6).
This difference is due to the difference in the amino acid
composition of the peptides previously reported. The presentTa
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study was conducted with buffalo casein while the previous
worker identified the peptides bearing the same sequence
of bovine casein (Table 6) (Adamson & Reynolds, 1995;
Ellegard et al. 1999; Xu et al. 2005; Lin et al. 2007; Su et al.
2007). The phosphoseryl fragments of αS1 –CN f (37-58 and
35-58) have threonine at position 42 while the bovine milk
CPPs have lysine at same position (Ferranti et al. 1998; Su
et al. 2007). Similarly in the CPPs identified as fragment
of αS2 –CN f (2-21 and 138-149), have histidine at position 2
instead of aspargine and isoleucine at 147 position instead
of phenylalanine (Sukla et al. 2006) while the fragments of
β-casein f (2-28 and 33-48) have histidine at 24 and
methionine at 41 positions in place of arginine and threonine
in bovine β-casein phosphopeptides (Adamson & Reynolds,
1995; Ellegard et al. 1999; Xu et al. 2005; Lin et al. 2007).

Conclusion

The result revealed that response surface methodology is an
effective tool to optimise the conditions for hydrolysis of
buffalo casein by trypsin to obtain maximum yield of CPPs.
The CPPs enriched ingredient prepared from buffalo casein
has similar calcium solubilising and binding ability as that of
the CPPs reported from bovine casein. The peptides iden-
tified by mass spectroscopy contain the motif for binding of
minerals and are well defined as mineral binding peptides in
the literature. These CPPs can be used as a functional ingre-
dient in foods designed for increase mineral absorption.
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