
Ergod. Th. & Dynam. Sys. (2020), 40, 1738–1754
doi:10.1017/etds.2018.123

c© Cambridge University Press, 2018

Cogrowth for group actions with strongly
contracting elements

GOULNARA N. ARZHANTSEVA and CHRISTOPHER H. CASHEN

Universität Wien, Fakultät für Mathematik, Oskar-Morgenstern-Platz 1, 1090 Wien,
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Abstract. Let G be a group acting properly by isometries and with a strongly contracting
element on a geodesic metric space. Let N be an infinite normal subgroup of G and let δN

and δG be the growth rates of N and G with respect to the pseudo-metric induced by the
action. We prove that if G has purely exponential growth with respect to the pseudo-metric,
then δN/δG > 1/2. Our result applies to suitable actions of hyperbolic groups, right-angled
Artin groups and other CAT(0) groups, mapping class groups, snowflake groups, small
cancellation groups, etc. This extends Grigorchuk’s original result on free groups with
respect to a word metric and a recent result of Matsuzaki, Yabuki and Jaerisch on groups
acting on hyperbolic spaces to a much wider class of groups acting on spaces that are not
necessarily hyperbolic.
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1. Introduction
We consider the exponential growth rate δG of the orbit of a group G acting properly on
a geodesic metric space X . In various notable contexts this asymptotic invariant is related
to the Hausdorff dimension of the limit set of G in ∂X and to analytical and dynamical
properties of G\X such as the spectrum of the Laplacian, divergence rates of random
walks, volume entropy, and ergodicity of the geodesic flow.

In some cases of special interest, the value of half the growth rate of the ambient space
X is distinguished. For example, when X =Hn and H is a torsion-free discrete group
of isometries of X , the Elstrodt–Patterson–Sullivan formula [24] for the bottom of the
spectrum of the Laplacian of H\X has a phase change when the ratio of δH to the volume
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entropy of X is 1/2. Similarly, if X is a Cayley tree of a finite-rank free group Fn and H
is a subgroup, then the Grigorchuk cogrowth formula [13] for the spectral radius of H\X
has a phase change at δH/δFn = 1/2. Our main result says that, in great generality, normal
subgroups land decisively on one side of this distinguished value.

THEOREM 1.1. Suppose that G is a group acting properly by isometries on a geodesic
metric space X with a strongly contracting element and with purely exponential growth. If
N is an infinite normal subgroup of G, then δN/δG > 1/2, where the growth rates δG and
δN are computed with respect to G y X.

The ratio δN/δG is known as the cogrowth of Q := G/N . The hypotheses will be
explained in detail in the next section. Briefly, the existence of a strongly contracting
element means that some element of G acts hyperbolically on X , though X itself need
not be hyperbolic, and pure exponential growth is guaranteed if the action has a strongly
contracting element and an orbit of G in X is not too badly distorted.

In negative curvature, the strict lower bound on cogrowth has been shown in various
special cases [5, 16, 21, 23]. For X = G = Fn , the strict lower bound on cogrowth is due
to Grigorchuk [13].

Grigorchuk and de la Harpe [14, p. 69] (see also [15, Problem 36]) asked whether
the strict lower cogrowth bound also holds when Fn is replaced by a non-elementary
Gromov hyperbolic group and X is one of its Cayley graphs. This long-open problem
was recently answered affirmatively by Matsuzaki, Yabuki and Jaerisch [19] (see also a
survey by Matsuzaki [18]). Their result applies more generally to groups of divergence
type acting on hyperbolic spaces. Theorem 1.1 gives an alternative proof of the positive
answer to Grigorchuk and de la Harpe’s question and goes much beyond. In comparison,
Matsuzaki, Yabuki and Jaerisch’s result applies to more general actions if one restricts
to actions on hyperbolic spaces, while Theorem 1.1 applies to many renowned non-
hyperbolic examples.

COROLLARY 1.2. For the following G y X, for every infinite normal subgroup N of G
we have δN/δG > 1/2.
(1) G is a non-elementary hyperbolic group acting cocompactly on a hyperbolic

space X.
(2) G is a relatively hyperbolic group and X is hyperbolic such that G y X is cusp

uniform and satisfies the parabolic gap condition.
(3) G is a right-angled Artin group defined by a finite simple graph that is neither a

single vertex nor a join and X is the universal cover of its Salvetti complex.
(4) X is a CAT(0) space and G acts cocompactly with a rank-one isometry on X.
(5) G is the mapping class group of a surface of genus g and p punctures, with 6g − 6+

2p > 2, and X is the Teichmüller space of the surface with the Teichmüller metric.

Results (3)–(5) are new, only known as consequences of Theorem 1.1. Further new
examples include wide classes of snowflake groups [2] and of infinitely presented graphical
and classical small cancellation groups [1] and hence many so-called infinite ‘monster’
groups.
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The generality of Theorem 1.1 is striking. Previous successes in showing the strict
lower bound on cogrowth have relied on fairly sophisticated results concerning Patterson–
Sullivan measures on the boundary of a hyperbolic space or ergodicity of the geodesic
flow on G\X . These tools are not available in our general setting. Instead, we use the
geometry of the group action directly to estimate orbit growth. The idea of our argument
is as follows.
(1) If G contains a strongly contracting element for G y X , then so does every infinite

normal subgroup N of G. Let c ∈ N be such an element.
(2) By passing to a high power of c, if necessary, we may assume that its translation

length is much larger than the constants describing its strong contraction properties.
In this case the growth δ[c] of the set [c] of conjugates of c is exactly δG/2.

(3) A ‘tree’s worth’ of copies of [c] injects into the normal closure 〈〈c〉〉 of c, which is
a subgroup of N . It follows that the growth rate of 〈〈c〉〉, and hence of N , is strictly
greater than δ[c] = δG/2. In this step we use the ‘hyperbolicity’ of the action of c,
as quantified by strong contraction, to provide geometric separation between copies
of [c].

We used this strategy in our paper with Tao [2] (see also references therein) to prove
growth tightness of G y X for actions having a strongly contracting element. The key
point was to estimate the growth rate of the quotient of G by the normal closure of c. We
chose a section A of the quotient map and built a tree’s worth of copies of it by translating
by a high power of c. By construction, the set A did not contain words containing high
powers of c as subwords, so translates of A by powers of c were geometrically separated.
There is a serious difficulty in applying step (3) for cogrowth, because [c] does contain
words with arbitrarily large powers of c as subwords. Indeed, any word of G can occur
as a subword of an element of [c], so we do not get the same nice geometric separation as
hoped for in step (3) and consequently our abstract tree’s worth of copies of [c] does not
inject into G. We overcome this difficulty by quantifying how this mapping fails to be an
injection. We show that there is asymptotically at least half of [c] for which the map is an
injection and we use this half of [c] to complete step (3).

For an example where the conclusion of the theorem does not hold, consider the
group G = F2 × F2 acting on its Cayley graph X with respect to the generating set
(S ∪ 1)× (S ∪ 1), where S is a free generating set of F2. The F2 factors are normal and
have growth rate exactly half the growth rate of G. The action G y X does not have a
strongly contracting element.

2. Preliminaries

We write x ∗

≺ y, x
+

≺ y, or x ≺ y if there is a universal constant C > 0 such that x < Cy,
x < y + C , or x < Cy + C , respectively. We define ∗

�,
+

�, �, ∗�,
+

�, and � similarly.
Throughout, we let (X, d, o) be a based geodesic metric space and let G be a

group acting isometrically on X . For Y ⊂ X and r > 0, let Br (Y ) := {x ∈ X | ∃y ∈ Y,
d(x, y) < r} and B̄r (Y ) := {x ∈ X | ∃y ∈ Y, d(x, y)6 r}. Let Br := Br (o) and let S1r :=
Br+1 − Br .

There are an induced pseudo-metric and a semi-norm on G given by d(g, h) :=
d(g.o, h.o) and |g| := d(o, g.o).
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2.1. Growth. The (exponential) growth rate of a subset Y ⊂ X is

δY := lim sup
r→∞

log #Y ∩ B̄r

r
.

The Poincaré series of a countable subset Y of X is

2Y (s) :=
∑
y∈Y

exp(−sd(y, o)).

For any 1> 0, we also consider the series

2
S,1
Y (s) :=

∞∑
i=0

(#Y ∩ S1(i+1)
1i ) exp(−s1i),

2
B,1
Y (s) :=

∞∑
i=0

(#Y ∩ B̄1i ) exp(−s1i).

The series 2B,1
Y (s) and 2S,1

Y (s) agree with 2Y (s) up to multiplicative error depending
on 1 and s, so they all converge and diverge together. Now, 2Y (s) converges for s > δY

and diverges for s < δY . The set Y is said to be divergent, or of divergent type, if 2Y (s)
diverges at s = δY .

We say that Y ⊂ X has purely exponential growth if there exist δ > 0 and 1> 0 such
that #Y ∩ S1r

∗

� exp(δr). Recall that this means that there is a constant C > 0, independent
of r , such that exp(δr)/C 6 #Y ∩ S1r 6 C exp(δr).

An action G y X is (metrically) proper if for all x ∈ X and r > 0 the set {g ∈ G |
d(x, g.o)6 r} is finite. When G y X is proper, we extend all the preceding definitions to
subsets H of G by taking Y = H.o; for example,

δH := lim sup
r→∞

log #H.o ∩ B̄r

r
= lim sup

r→∞

log #{h ∈ H | |h|6 r}
r

.

When G y X is cocompact or, more generally, has a quasi-convex orbit, the growth of
#S1r ∩ G.o is coarsely sub-multiplicative, which, when δG > 0, implies an exponential
lower bound on #S1r ∩ G.o. Conversely, if G y X contains a strongly contracting
element, then the growth of #S1r ∩ G.o is coarsely super-multiplicative, which implies the
corresponding exponential upper bound. For instance, Coornaert [9] proved that a quasi-
convex-cocompact, exponentially growing subgroup of a hyperbolic group has purely
exponential growth. More generally, in [2] we introduced the following condition that
implies that the pseudo-metric induced by a group action behaves like a word metric for
growth purposes: the complementary growth of G y X is the growth rate of the set of
points of G.o that can be reached from o by a geodesic segment in X that stays completely
outside of a neighborhood of G.o, except near its end points. We say that G y X has
complementary growth gap if the complementary growth is strictly less than δG . Yang
[25] proved that if G acts properly with a strongly contracting element and 0< δG <∞,
then complementary growth gap implies purely exponential growth.

For relatively hyperbolic groups the complementary growth gap specializes to the
parabolic growth gap of [11], which requires that the growth of parabolic subgroups of
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a relatively hyperbolic group is strictly less than the growth rate of the whole group. For
another non-cocompact example, we showed in [2] that the action of the mapping class
group of a hyperbolic surface on its Teichmüller space has complementary growth gap.

For a non-example, consider the integers Z acting parabolically on the hyperbolic plane.
Hyperbolic geodesics connecting o to n.o for large n travel deeply into a horoball at the
fixed point of Z on ∂H2, far from the orbit of Z. Although Z has 0 exponential growth in
any word metric, in terms of this action on H2 it has exponential growth due entirely to the
distortion of the orbit.

2.2. Contraction. A subset Y of X is C-strongly contracting, for a ‘contraction
constant’ C > 0, if for all x, x ′ ∈ X , if d(x, x ′)6 d(x, Y ), then the diameter of πY (x) ∪
πY (x ′) is at most C , where πY (x) := {y ∈ Y | d(x, y)= d(x, Y )}. A set is called strongly
contracting if there exists a C > 0 such that it is C-strongly contracting. The projection
distance in Y is dπY (x, x ′) := diam πY (x) ∪ πY (x ′). We extend these definitions to sets
Z ⊂ X by πY (Z) :=

⋃
z∈Z πY (z) and dπY (Z , Z ′) := diam πY (Z) ∪ πY (Z ′).

Strong contraction of Y is equivalent [2, Lemma 2.4] to the bounded geodesic image
property: for all C > 0, there exists C ′ > C such that if Y is C-strongly contracting, then,
for every geodesic γ in X , if γ ∩ BC ′(Y )= ∅, then diam πY (γ )6 C ′.

COROLLARY 2.1. Suppose that Y is C-strongly contracting and C ′ is as above.
Suppose that γ is a geodesic defined on an interval [a, b], possibly infinite. Let t0 :=
inf{t | d(γ (t), Y ) < C ′} and let t1 := sup{t | d(γ (t), Y ) < C ′}. Then diam πY (γ ([a, t0]))
6 C ′ and diam πY (γ ([t1, b]))6 C ′, while γ ([t0, t1])⊂ B̄3C ′(Y ). If a and b are finite
and diam πY (γ (a)) ∪ πY (γ (b)) > C ′, then πY (γ (a))⊂ B̄2C ′(γ (t0)) and πY (γ (b))⊂
B̄2C ′(γ (t1)).

An infinite-order element c ∈ G is said to be a strongly contracting element for G y X
if the set 〈c〉.o is strongly contracting. In this case Z→ X : i 7→ ci .o is a quasi-isometric
embedding and c is contained in a maximal virtually cyclic subgroup E(c). This subgroup,
which is alternately known as the elementarizer or elementary closure of c, can also be
characterized as the maximal subgroup consisting of elements g ∈ G such that g−1

〈c〉g is
at bounded Hausdorff distance from 〈c〉. Since E(c).o is coarsely equivalent to 〈c〉.o, the
set E(c).o is also strongly contracting. Note that E(c)= E(cn) for every n 6= 0. Thus,
when considering E(c).o, we can pass to powers of c freely without changing the set
E(cn).o and in particular without changing its contraction constant.

For a strongly contracting element c, let E := E(c).o and let Y be the collection of
distinct G-translates of E . Bestvina, Bromberg and Fujiwara [3] axiomatized the geometry
of projection distances in Y. With Sisto [4], they showed that by a small change in the
projections and projection distances, a cleaner set of axioms is satisfied—these will allow
us to make an inductive argument in the next section. The following is [4, Theorem 4.1]
applied to Y. We list here only those axioms that we will make use of and that are not
immediate from our particular definitions of Y, πY , and dπY . A detailed verification that Y
satisfies the hypotheses of [4, Theorem 4.1] can be found in [2].
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THEOREM 2.2. There exists θ > 0 such that for each Y ∈ Y there is a projection π ′Y
taking elements of Y to subsets of Y such that for all X ∈ Y and g ∈ G, we have
π ′Y (X )⊂ Bθ (πY (X )) and π ′gY (gX )= gπ ′Y (X ). Furthermore, there are distance maps
dY (X , Z)= diam π ′Y (X ) ∪ π

′

Y (Z) with |dY − dπY |6 2θ such that, for θ ′ := 11θ , the
following axioms are satisfied for all X , Y, Z, W ∈ Y:

(P 0) dπY (X , X )6 θ when X 6= Y;
(P 1) if dπY (X , Z) > θ , then dπX (Y, Z)6 θ for all distinct X , Y , Z;
(SP 3) if dY (X , Z) > θ ′, then dZ (X ,W)= dZ (Y,W) for all W ∈ Y− {Z};
(SP 4) dY (X , X )6 θ ′ when X 6= Y .

For more details on strongly contracting elements and many examples, see [2].

PROPOSITION 2.3. (Lemma 2.2 and Proposition 2.3 of [4]) With θ ′ as in Theorem 2.2,
for each X and Z in Y define Y(X , Z) := {Y ∈ Y− {X , Z} | dY (X , Z) > 2θ ′} and
Y[X , Z] := Y(X , Z) ∪ {X , Z}. There is a total order @ on Y[X , Z] such if Y0 @
Y1 @ Y2, then dY1(Y0, Y2)= dY1(X , Z). The relation Y0 @ Y1 is defined by each of the
following equivalent conditions:
• dY0(X , Y1) > θ

′;
• dY1(X , Y0)6 θ ′;
• dY1(Y0, Z) > θ ′;
• dY0(Y1, Z)6 θ ′.

3. Embedding a tree’s worth of copies of [c]
For a subset H ⊂ G, let H∗ := H − {1} and consider Ĥ :=

⋃
∞

k=1(H
∗)k . We consider Ĥ

to be a ‘tree’s worth of copies of H’ in allusion to the case of the free product H ∗ Z/2Z
when H is a group. The group H ∗ Z/2Z acts on a tree with vertex stabilizers conjugate
to H and every element that is not equal to 1 or the generator z of Z/2Z has a unique
expression as zαh1zh2z · · · hk zβ for some k ∈ N, α, β ∈ {0, 1}, and hi ∈ H∗.

The naı̈ve map Ĥ → X : (h1, . . . , hk) 7→ h1c · · · hkc.o, where c is a strongly
contracting element, is clearly not an injection for H = [c], as it gives collisions
(h−1, h) 7→ h−1chc.o 7→(h−1ch). To avoid collisions we remove a fraction of [c] in four
steps and use a slightly different map. The main technical result is as follows.

PROPOSITION 3.1. Under the hypothesis of Theorem 1.1, let c be a strongly contracting
element. After possibly passing to a power of c, there is a subset G4 ⊂ [c] that is divergent,
has δG4 = δG/2, and for which the map Ĝ4→ X : (g1, . . . , gk) 7→ (

∏k
i=1 gi c2).o is an

injection.

The main theorem follows by an argument analogous to the one we used in [2], which
we reproduce for the reader’s convenience.

Proof of Theorem 1.1. Let c′ ∈ G be a strongly contracting element for G y X . Suppose
that N < E(c′). Since N is infinite, it has a finite-index subgroup in common with 〈c′〉.
But conjugation by an element of G fixes N , so it moves 〈c′〉 by a bounded Hausdorff
distance, which means that G = E(c′) is virtually cyclic and N is a finite-index subgroup
of G. However, 〈c′〉 has an undistorted orbit in X . Since this is a finite-index subgroup
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of G, the growth of G is only linear, contradicting the exponential growth hypothesis.
Thus, we may assume that G is not virtually cyclic and that N contains an element g that
is not in E(c′). We showed in [2, Proposition 3.1] that for sufficiently large n the element
c := g−1(c′)−ng(c′)n is a strongly contracting element of N .

Consider G4 as provided by Proposition 3.1 with respect to c. Then Ĝ4 injects into X
and, moreover, the image is contained in 〈〈c〉〉.o⊂ N .o. Therefore, the growth rate of N is
at least as large as the growth rate of the image of Ĝ4, which we estimate using its Poincaré
series:

2Ĝ4
(s)=

∞∑
k=1

∑
(g1,...,gk )∈(G∗4)

k

exp(−s|g1c2
· · · gkc2

|)

>
∞∑

k=1

∑
(g1,...,gk )∈(G∗4)

k

exp
(
−sk|c2

| − s
k∑

i=1

|gi |

)

=

∞∑
k=1

exp(−sk|c2
|)

∑
(g1,...,gk )∈(G∗4)

k

k∏
i=1

exp(−s|gi |)

=

∞∑
k=1

exp(−sk|c2
|)

( ∑
g∈G∗4

exp(−s|g|)
)k

=

∞∑
k=1

(exp(−s|c2
|)2G∗4

(s))k .

Since G4 is divergent, for sufficiently small positive ε we have 2G∗4
(δG4 + ε)>

exp((δG4 + ε)|c
2
|), so 2Ĝ4

(δG4 + ε) diverges, which implies that δĜ4
> δG4 + ε. Thus,

δN > δĜ4
> δG4 + ε > δG4 = δG/2.

The remainder of this section is devoted to the construction of the set G4 satisfying the
conclusion of Proposition 3.1. Here is a brief overview. We need a subset of [c] such that
the given map is an injection. It would be preferable if we could take conjugates of c by
elements g that have no long projection to any element of Y. It is easy to build an injection
based on such elements, but, unfortunately, there are too few of them in our setting—the
growth rate of the set of such elements is strictly smaller than δG , so the growth rate of
c-conjugates by such elements is strictly smaller than δG/2. Instead, we consider elements
g that do not have long projections to E and gE ; in a sense, these are elements ‘orthogonal
to Y at their end points’, rather than ‘orthogonal to Y’ throughout. The desired condition
can be achieved with a small modification near the ends of g, so this does not change the
growth rate. We call this set of elements G1 and the conjugates of (a power of) c by these
elements G2. We define G3 by passing to a maximal subset of G2 such that elements are
sufficiently far apart. This does not change the set much; in particular, the growth rate is
unchanged. However, it will be an important point for the injection argument, because we
show in Lemma 3.5 that if g and h are in G3, then gE = hE implies that g = h. The final
refinement is to pass to the subset G4 of G3 of elements that are not ‘in the shadow’ of
some other element of G3, that is to say, elements g such that there does not exist h such
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that a geodesic from o to g.o passes close to h.o. The crux of the argument, Lemma 3.6, is
to show that at least half of G3 is unshadowed, so G4 is divergent with growth rate δG/2.
Finally, in Lemma 3.7, we check that G4 gives the desired injection.

Fix an element f0 ∈ G such that f0E is disjoint from E , o ∈ πE ( f0.o), and f0.o ∈
π f0E (o). To see that such an element exists, first note that there exists g ∈ G − E(c),
for instance, as in the first paragraph of the proof of Theorem 1.1. If E and gE are disjoint,
let f1 and f2 be elements of G such that f1.o ∈ E and f2.o ∈ gE realize the minimum
distance between E and gE . Then the element f0 := f −1

1 f2 satisfies our requirements. If
gE and E are not disjoint, consider gE and cngE for some n. If they intersect, then, by
(P 0),

2θ > dπE (gE, gE)+ dπE (c
ngE, cngE)> dπE (gE, cngE)> |cn

|.

This is impossible once n is sufficiently large as c is strongly contracting. So, gE and
cngE are disjoint for such n and we get f0 by the previous argument after replacing g with
g−1cng.

Since E and f0E are disjoint and o and f0.o are contained in one another’s projections,
strong contraction of c, and hence of E , gives a constant C > 0 such that

dπf0E (o, f0.o)= diam π f0E (o)6 C and dπE (o, f0.o)= diam πE ( f0.o)6 C. (1)

In the following, we use the following notation: | f0| is the length of the element f0 just
defined; 1 is as in the definition of purely exponential growth of G; C is a contraction
constant for E ; C ′ is the corresponding constant from Corollary 2.1; θ and θ ′ are as
in Theorem 2.2; K is a fixed constant strictly greater than max{C, θ + θ ′/2}. We call
these, collectively, ‘the constants’. The terms ‘small’ and ‘close’ mean bounded by some
combination of the constants. When possible we decline to compute these explicitly,
since only finitely many such combinations appear in the proof, except where noted.
Furthermore, 1 depends only on G and the others depend only on E = E(c).o. Since
E(c)= E(cp) for all p 6= 0, we can, and will, pass to high powers of c to make |cp

| much
larger than all of the constants and combinations of them that we encounter.

Set G1 := {g ∈ G | dπE (o, g.o)6 2K and dπgE (o, g.o)6 2K and gE 6= E}. This is a
subset of G that is closed under taking inverses.

LEMMA 3.2. For every g ∈ G, at least one of the elements g, f0g, g f0, or f0g f0 belongs
to G1.

Proof. First, consider g /∈ E(c) with |g|6 K . Recall that g ∈ E(c) if and only if gE =
E . By definition, πE (g.o) is the set of points of E minimizing the distance to g.o. By
hypothesis, o is a point of E at distance at most K from g.o, so d(g.o, πE (g.o))6 K , and
dπE (o, g.o)= diam {o} ∪ πE (g.o)6 2K . The same argument for o projecting to gE gives
dπgE (o, g.o)6 2K . Thus, elements g of this form already belong to G1.

Next, consider an element g ∈ E(c) such that |g|6 K . Since g ∈ E(c), we have f0gE =
f0E 6= E and πE (g.o)= g.o, so dπE (o, g.o)= d(o, g.o)6 K . Using this estimate and (1),
we see that

dπf0gE (o, f0g.o)6 dπf0gE (o, f0.o)+ dπf0gE ( f0.o, f0g.o)

= dπf0E (o, f0.o)+ dπE (o, g.o)6 C + K < 2K .
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In the other direction, using the fact that o ∈ πE ( f0.o)⊂ πE ( f0E), along with (P 0),

dπE (o, f0g.o)6 dπE (o, f0E)6 dπE ( f0E, f0E)6 θ < K .

Note that we did not use dπE (o, g.o)6 K for this direction—the inequality is valid for any
g ∈ E(c).

Suppose that g /∈ E(c) and dπE (o, g.o) > K ; then

θ < K < dπE (o, g.o)= dπf0E ( f0.o, f0g.o)6 dπf0E (E, f0gE).

This contradicts (P 0) if E = f0gE , since, by hypothesis, f0E 6= E and f0gE 6= f0E . Thus,
E , f0E , and f0gE are distinct and we can apply (P 1) to get

dπE (o, f0g.o)6 dπE ( f0E, f0gE)6 θ < K .

For |g|6 K we are done, either g or f0g is in G1, and for |g|> K we have shown
that there is at least one choice of g′ ∈ {g, f0g} such that g′E 6= E and dπE (o, g′.o)6 K . If
dπg′E (o, g′.o)6 K , then we are done, so suppose not. Consider the possibility that g′ f0E =
E . Then g′ f0.o ∈ E , so o ∈ πE ( f0.o) implies that g′.o ∈ πg′E (g′ f0.o)⊂ πg′E (E). Since
g′E 6= E , (P 0) says that dπg′E (E, E)6 θ , so

K < dπg′E (o, g′.o)6 dπg′E (E, E)6 θ < K .

This is a contradiction, so E , g′E , and g′ f0E are distinct. Observe that, since g′.o ∈
πg′E (g′ f0.o),

dπg′E (E, g′ f0E)> dπg′E (o, g′ f0.o)> dπg′E (o, g′.o) > K > θ.

Thus, by (P 1) and the fact that g′ f0.o ∈ πg′ f0E (g
′.o), we have dπg′ f0E (o, g′ f0.o)6

dπg′ f0E (E, g′E)6 θ < K .
To check that the first inequality has not been spoiled, use the fact that dπg′E (E, g′ f0E) >

θ , so (P 1) implies that dπE (g
′E, g′ f0E)6 θ , which gives

dπE (o, g′ f0.o)6 dπE (o, g′.o)+ dπE (g
′.o, g′ f0.o)6 K + dπE (g

′E, g′ f0E) < K + θ < 2K .
�

Define φ0 : G→ G1 by fixing G1 and sending an element g ∈ G − G1 to an arbitrary
element of the non-empty set { f0g, g f0, f0g f0} ∩ G1. The map φ0 is surjective, at most
4-to-1, and changes norm by at most 2| f0|.

For each p ∈ N, define G2,p := {g−1cpg | g ∈ G1} and φ1,p : G1→ G2,p : g 7→
g−1cpg.

LEMMA 3.3. If p is sufficiently large, then, for every g ∈ G1, we have

2|g| + |cp
| − 8C ′ − 8K 6 |φ1,p(g)|6 2|g| + |cp

|.

Proof. The upper bound is clear. We derive a lower bound from strong contraction.
From the definition of G1, it follows that πg−1E (o)⊂ B̄2K (g−1.o) and πg−1E (g

−1cpg.o)⊂
B̄2K (g−1cp.o), so

|cp
| − 4K 6 dπg−1E (o, g−1cpg.o)6 |cp

| + 4K . (2)
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Let γ be a geodesic from o to g−1cpg.o. Its end points have projection to g−1E at
distance at least |cp

| − 4K � C ′ from one another, for p sufficiently large, as c is strongly
contracting. Thus, for t0 and t1 as in Corollary 2.1, we have d(γ (t0), πg−1E (o))6 2C ′, so
d(γ (t0), g−1.o)6 2C ′ + 2K and, similarly, d(γ (t1), g−1cp.o)6 2C ′ + 2K . We have

|φ1,p(g)| = |γ | = d(o, γ (t0))+ d(γ (t0), γ (t1))+ d(γ (t1), g−1cpg.o)

> (d(o, g−1.o)− (2C ′ + 2K ))+ (d(g−1.o, g−1cp.o)− 2(2C ′ + 2K ))

+ (d(g−1cp.o, g−1cpg.o)− (2C ′ + 2K ))

= 2|g| + |cp
| − 8C ′ − 8K . �

The following lemma also follows from (2).

LEMMA 3.4. Let g−1cpg = φ1,p(g) ∈ G2,p. If p is sufficiently large, then g−1E ∈
Y(E, g−1cpgE).

We also claim that φ1,p is bounded-to-one, independent of p. To see this, fix g ∈ G1 and
consider h ∈ G1 such that φ1,p(g)= φ1,p(h). Then gh−1 commutes with cp, so gh−1

∈

E(cp)= E(c). Thus,

|gh−1
| = dπE (o, gh−1.o)

6 dπE (o, g.o)+ dπE (g.o, gh−1.o)

= dπE (o, g.o)+ dπhg−1E (h.o, o)

= dπE (o, g.o)+ dπE (h.o, o)6 4K .

So, h satisfies h−1.o ∈ B̄4K (g−1.o). By properness of G y X , #G.o ∩ B̄4K (g−1.o)=
#G.o ∩ B̄4K (o) is finite.

Let G3,p be a maximal (6K + 1)-separated subset of G2,p, that is, a subset that
is maximal for inclusion among those with the property that d(g.o, h.o)> 6K + 1 for
distinct elements g and h. Let φ2,p : G2,p→ G3,p be a choice of closest point. This map
is surjective. By maximality, φ2,p moves points a distance less than 6K + 1. Thus, by
properness of G y X , the map φ2,p is bounded-to-one, independent of p.

LEMMA 3.5. If p is sufficiently large, then g−1cpgE = h−1cphE for g−1cpg and h−1cph
in G3,p implies that g−1cpg = h−1cph.

Proof. Since g ∈ G1, dπgE (o, g.o)6 2K and

dπg−1cp gE (o, g−1cpg.o)6 dπg−1cp gE (o, g−1cp.o)+ dπg−1cp gE (g
−1cp.o, g−1cpg.o)

6 dπg−1cp gE (E, g−1E)+ 2K .

Furthermore, g ∈ G1 implies that E 6= g−1E 6= g−1cpgE . By (2), dπg−1E (E, g−1cpgE)>
|cp
| − 4K � θ , so, by (P 0), E 6= g−1cpgE . Thus, E , g−1E , and g−1cpgE are distinct and

we can apply (P 1) to see that dπg−1cp gE (E, g−1E)6 θ < K . Inserting this into the previous
inequality gives

dπg−1cp gE (o, g−1cpg.o) < 3K . (3)
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The same computation applies for h, so πg−1cp gE (o)⊂ B̄3K (g−1cpg.o) ∩
B̄3K (h−1cph.o). Thus, g−1cpg and h−1cph are elements at distance at most 6K in
a (6K + 1)-separated set; hence, they are equal. �

For each D > 0, consider the set G ′4,p,D consisting of elements g−1cpg ∈ G3,p such
that there exists a different element h−1cph ∈ G3,p such that h−1cphc2p.o is within
distance D of a geodesic γ from o to g−1cpg.o. Define G4,p,D := G3,p − G ′4,p,D .

LEMMA 3.6. For all D > 0, for p sufficiently large, G4,p,D is divergent and δG4,p,D =

δG/2.

Proof. The maps φ2,p, φ1,p, and φ0 are surjective and bounded-to-one, with bound
independent of p, so their composition is as well. Furthermore, we know how they change
norm: φ0 moves points at most 2| f0|, φ2,p moves them less than 6K + 1, and |φ1,p(g)| is
estimated in Lemma 3.3. Putting these together, for any r > 0 and g ∈ G ∩ S1r , we have

2r + |cp
| − 4| f0| − 8C ′ − 14K − 16 |φ2,p ◦ φ1,p ◦ φ0(g)|

< 2r + |cp
| + 21+ 4| f0| + 6K + 1. (4)

Let t := 2r + |cp
| − 4| f0| − 8C ′ − 14K − 1, E := 4| f0| + 4C ′ + 10K + 1, and 1′ :=

2(1+ E), so that (4) shows that

φ2,p ◦ φ1,p ◦ φ0(G ∩ S1r )⊂ G3,p ∩ S1
′

t ⊂ φ2,p ◦ φ1,p ◦ φ0(G ∩ S1+2E
r−E ).

This lets us compare the size of spherical shells in G3,p and G:

#G ∩ S1+2E
r−E > #G3,p ∩ S1

′

t
∗

� #G ∩ S1r . (5)

Pure exponential growth of G says that #G ∩ S1r
∗

� exp(rδG). Combining this with (5),
we have

#G3,p ∩ S1
′

t
∗

� exp(δGr) ∗� exp(−δG |cp
|/2) exp(tδG/2). (6)

This tells us that δG3,p = δG/2 and G3,p is divergent.
Now, we will estimate an upper bound for #G ′4,p,D ∩ S1

′

r and see that for large p and

r it is less than half of #G3,p ∩ S1
′

r . Thus, to get G4,p,D , we threw away less than half
of G3,p, at least outside a sufficiently large radius. We conclude that δG4,p,D = δG/2 and
G4,p,D is divergent.

Consider g−1cpg ∈ G ′4,p,D ∩ S1
′

r for any r > 7|cp
|. By definition of G ′4,p,D , there

exists h−1cph ∈ G3,p such that h−1cph 6= g−1cpg and h−1cphc2p.o is close to a geodesic
γ from o to g−1cpg.o.

Let@ be the order of Proposition 2.3 on Y[E, g−1cpgE]. The first step of the proof is to
show that E , g−1E , g−1cpgE , h−1E , and h−1cphE are distinct elements of Y[E, g−1cpgE]
and that the ordering is one of the two possibilities shown in Figures 1 and 2.

By Lemma 3.4, E @ g−1E @ g−1cpgE , so these three are distinct. Similarly, E , h−1E ,
and h−1cphE are distinct. Lemma 3.5 implies that g−1cpgE 6= h−1cphE .

We have |cp
| + 2|g|> |g−1cpg|

+

� |h−1cphc2p
|, since h−1cphc2p.o is close to a

geodesic from o to g−1cpg.o. On the other hand, any geodesic from o to h−1cphc2p.o has
projection to h−1cphE of diameter greater than |c2p

| − 3K by (3). This is much larger than
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FIGURE 1. h−1c phE before g−1E , that is, h−1c phE @ g−1E .

FIGURE 2. h−1c phE after g−1E , that is, g−1E @ h−1c phE .

C ′ when p is large, so |h−1cphc2p
|
+

� |h−1cph| + |c2p
|
+

� 3|cp
| + 2|h| by Corollary 2.1

and Lemma 3.3. Thus,
|g|

+

� |h| + |cp
|. (7)

However, by definition of G1, if h−1E = g−1E , then

4K > dπg−1E (o, g−1.o)+ dπh−1E (o, h−1.o)> d(g−1.o, h−1.o)> |g| − |h|
+

� |cp
|.

This is a contradiction for sufficiently large p. Similar considerations show that h−1E 6=
g−1cpgE , since o projects close to h−1.o in h−1E , by definition of G1, and close to
g−1cpg.o in g−1cpgE , by (3), but |h| � |g−1cpg|, by Lemma 3.3 and (7).

Next, we show that h−1E and h−1cphE belong to Y[E, g−1cpgE] and in the course of
the proof we will observe that g−1E 6= h−1cphE . By hypothesis, there exists t such that
d(γ (t), h−1cphc2p.o)6 D. This implies that dπh−1cphE (γ (t), h−1cphc2p.o)6 2D. Since
dπh−1cphE (o, h−1cph.o) < 3K , by (3), we have dπh−1cphE (o, γ (t))> |c

2p
| − 2D − 3K ,

which is large for p sufficiently large. Let t0 and t1 be the first and last times γ is distance
C ′ from h−1cphE , as in Corollary 2.1 with respect to h−1cphE . We cannot have t 6 t0,
since then dπh−1cphE (o, γ (t))6 C ′, which is a contradiction for large p.

If t > t1, then dπh−1cphE (γ (t), g−1cpg.o)6 C ′, so

dπh−1cphE (o, g−1cpg.o)> dπh−1cphE (o, γ (t))− dπh−1cphE (γ (t), g−1cpg.o)

> |c2p
| − 3K − 2D − C ′.

If t0 < t < t1, then we use Corollary 2.1 to say that dπh−1cphE (o, g−1cpg.o)>
|γ (t0, t1)| − 4C ′ and then estimate
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|γ (t0, t1)|> d(γ (t0), γ (t))

> d
(
πh−1cphE (γ (t0)), πh−1cphE (γ (t))

)
− C ′ − D

> dπh−1cphE (γ (t0), γ (t))− diam πh−1cphE (γ (t0))

− diam πh−1cphE (γ (t))− C ′ − D

> dπh−1cphE (γ (t0), γ (t))− 2C − C ′ − D

> dπh−1cphE (o, γ (t))− dπh−1cphE (γ (t0), o)− 2C − C ′ − D

> |c2p
| − 2D − 3K − C ′ − 2C − C ′ − D.

Thus, h−1cphE ∈ Y[E, g−1cpgE] once p is sufficiently large. Additionally, this shows
that g−1E 6= h−1cphE , because, by (2) and (P 0), we have dπg−1E (E, g−1cpgE) +�

|cp
|, while the estimates above show that dπh−1cphE (E, g−1cpgE) +� |c2p

|, and these are
incompatible for sufficiently large p. Thus, the five axes are distinct.

From Corollary 2.1, we deduce that

d(h−1cphc2p.o, h−1E) +� dπh−1cphE (h
−1cphc2p.o, h−1E) +� |c2p

|.

Thus, for large enough p, we have d(h−1cphc2p.o, h−1E)> D > d(γ (t), h−1cphc2p.o),
so strong contraction of h−1E implies that dπh−1E (γ (t), h−1cphc2p.o)6 C . Since o
projects close to h−1.o in h−1E and h−1cphc2p.o ∈ h−1cphE projects close to h−1cp.o,
Corollary 2.1 says that γ must pass close to h−1cp.o. Now, we can run the same argument
as for h−1cphE to see that h−1E ∈ Y[E, g−1cpgE] once p is sufficiently large.

The first step of the proof is completed by observing that g−1E @ h−1E implies that
|h|

+

� |g| + |cp
|, which cannot be true when p is sufficiently large, by (7). Thus, h−1E

comes before g−1E and h−1cphE under @, and we are left with the possibilities that
h−1cphE @ g−1E , as in Figure 1, or the converse, as in Figure 2.

In the case of Figure 1, we have h−1cphE @ g−1E , so the projection of h−1cphc2p.o to
g−1E is close to the projection of o, which we know to be close to g−1.o. Write g−1.o=
h−1cphc2pa.o as in Figure 1 with |g|

+

� 2|h| + 3|cp
| + |a|.

In the case of Figure 2, we have h−1E @ g−1E and g−1E @ h−1cphE . The former
implies that the projection of h−1cp.o to g−1E is close to the projection of o, which we
know to be close to g−1.o, while the latter implies that the projection of h−1cph.o to g−1E
is close to the projection of g−1cpg.o, which we know to be close to g−1cp.o. Write
g−1.o= h−1cpb.o with |g|

+

� |h| + |cp
| + |b| and write h.o= bcpb′.o as in Figure 2 with

|h|
+

� |b| + |cp
| + |b′|; together these give |g|

+

� 2|b| + 2|cp
| + |b′|.

Suppose that we are in the case of Figure 2, so there are elements b and b′ such that
(r − |cp

|)/2
+

� |g|
+

� 2|b| + 2|cp
| + |b′|. Since G has purely exponential growth, if i 6

|b|< i + 1, there are, up to a bounded multiplicative error independent of p, r , and i , at
most exp(δG i) possible choices for b and at most exp(δG((r − 5|cp

|)/2− 2i)) choices of
b′, so there is an upper bound for the number of possible elements g by a multiple of

(r−5|cp
|)/4∑

i=0

exp(δG i) exp
(
δG

(
r − 5|cp

|

2
− 2i

))
<

exp(rδG/2)
exp(5δG |cp|/2)(1− exp(−δG))

.

(8)
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FIGURE 3. (
∏k

i=1 gi c2p).o.

The case of Figure 1 is similar, but gives an even smaller upper bound†. Thus, for all
sufficiently large p and r ,

#G ′4,p,D ∩ S1
′

r
∗

≺ exp(−5δG |cp
|/2) exp(rδG/2). (9)

Combining (6) and (9) gives

#G ′4,p,D ∩ S1
′

r
∗

≺ exp(−2|cp
|δG) · #G3,p ∩ S1

′

r . (10)

Crucially, the multiplicative constant in this asymptotic inequality does not depend on p,
so, for p sufficiently large, exp(2|cp

|δG) is more than twice the multiplicative constant and
(10) becomes a true inequality #G ′4,p,D ∩ S1

′

r < 1
2 #G3,p ∩ S1

′

r . We conclude that to get
G4,p,D from G3,p we threw away fewer than half of the points of G3,p in each spherical
shell S1

′

r such that r > 7|cp
|. �

LEMMA 3.7. For all sufficiently large D, for all sufficiently large p, the map Ĝ4,p,D→

X : (g1, . . . , gk) 7→ (
∏k

i=1 gi c2p).o is an injection.

Proof. Consider a point (
∏k

i=1 gi c2p).o in the image. Set g0 := c−2p. Suppose
that for each i , we have gi = e−1

i cpei for ei ∈ G1. For 06 i 6 k, set z′2i :=

(
∏i

j=0 g j c2p).o, z2i := (
∏i

j=0 g j c2p)c−2p.o, and Z2i := (
∏i

j=0 g j c2p)E . For 0< i 6

k, set z2i−1 := (
∏i−1

j=0 g j c2p)e−1
2i−1.o, z′2i−1 := (

∏i−1
j=0 g j c2p)e−1

2i−1cp.o, and Z2i−1 :=

(
∏i−1

j=0 g j c2p)e−1
2i−1E . See Figure 3.

Let us complete the proof assuming the following claim, to which we shall return:

for all 06 i < j 6 2k, dπZi
(z′i , Z j ) < 5K , and dπZ j

(z j , Zi ) < 5K . (11)

When p is sufficiently large, d(zi , z′i )� 10K for all i , so (11) implies that Zi @ Z j for
all 06 i < j 6 2k, where @ is the order of Proposition 2.3 on Y[Z0, Z2k].

Suppose that the map Ĝ4,p,D→ X is not an injection; there exist distinct elements
(g1, . . . , gm) and (h1, . . . , hn) of Ĝ4,p,D with the same image z ∈ X . Suppose that
m + n is minimal among such tuples. If h1E = g1E , then h1 = g1, by Lemma 3.5. This
contradicts minimality of m + n, so we must have h1E 6= g1E . Let Z0, . . . , Z2m be as
in Figure 3 for (g1, . . . , gm). By definition, o ∈ Z0 and z ∈ Z2m . By (11), πZ2m (o) is
close to z2m . By Corollary 2.1, any geodesic from o to z ends with a segment that stays
close to the subsegment of Z2m between z2m and z = z′2m . However, if Z ′0, . . . , Z

′

2n
are as in Figure 3 for (h1, . . . , hn), then the same is true for Z ′2n , which implies that

† Replace each ‘5’ in (8) with a ‘7’. This accounts for the restriction that r − 7|c p
|> 0.
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dπZ2m
(Z ′2n, Z

′

2n)
+

� d(z2m, z′2m)= |c
2p
|. Once p is sufficiently large, (P 0) requires that

Z2m = Z ′2n . Thus, Y[Z0, Z2m] = Y[Z ′0, Z
′

2n] and all of the Zi and Z ′j are comparable
in the order @ on Y[Z0, Z2m]. In particular, Z ′2 = h1E 6= g1E = Z2, so one of them
comes before the other. Suppose, without loss of generality, that h1E @ g1E . Then
dh1E (g1E, Z2m)6 θ ′, by Proposition 2.3, and dπh1E (Z2m, h1c2p.o) < 5K , by (11), so

dπh1E (g1.o, h1c2p.o)6 dπh1E (g1E, Z2m)+ dπh1E (Z2m, h1c2p.o)

< θ ′ + 2θ + 5K < 7K .

On the other hand, dπh1E (o, h1.o) < 3K , by (3), so dπh1E (o, g1.o)> |c2p
| − 10K � C ′.

By Corollary 2.1, any geodesic from o to g1.o passes within distance 2C ′ of πh1E (g1.o),
which is less than 7K from h1c2p.o. This means that g1 ∈ G ′4,p,(7K+2C ′), which is a
contradiction if D > 7K + 2C ′. Thus, if D > 7K + 2C ′, then for sufficiently large p
the map is injective.

We prove (11) by induction on m = j − i . For each 06 i < 2k, we have that z′i and
zi+1 differ by an element of G1, so Zi 6= Zi+1 and dπZi+1

(zi+1, z′i )6 2K . Furthermore,
by (P 0), dπZi+1

(Zi , Zi )6 θ . Thus,

dπZi+1
(zi+1, Zi )6 dπZi+1

(zi+1, z′i )+ dπZi+1
(z′i , Zi )

6 dπZi+1
(zi+1, z′i )+ dπZi+1

(Zi , Zi )

6 2K + θ < 3K .

Similarly, dπZi
(z′i , Zi+1) < 3K .

Now, extend m to m + 1: suppose that for some m > 1 and all 0< j − i 6 m, we have
dπZ j

(z j , Zi ) < 5K and dπZi
(z′i , Z j ) < 5K . (Note that this implies that Zi 6= Z j .) Then,

for all 06 i 6 2k − m − 1,

dZi+1(Zi+m+1, Zi )> dπZi+1
(Zi+m+1, Zi )− 2θ > d(zi+1, z′i+1)− 10K − 2θ � θ ′.

The final inequality is true for sufficiently large p, because the distance between zi+1 and
z′i+1 is either |cp

| or |c2p
|
+

� 2|cp
|, according to whether i is even or odd. Thus, by (SP 3)

and (SP 4),

dπZi
(Zi+m+1, Zi+1)6 dZi (Zi+m+1, Zi+1)+ 2θ

= dZi (Zi+1, Zi+1)+ 2θ 6 θ ′ + 2θ < 2K ,

which implies that

dπZi
(z′i , Zi+m+1)6 dπZi

(z′i , Zi+1)+ dπZi
(Zi+1, Zi+m+1) < 3K + 2K = 5K .

A similar argument gives dπZi+m+1
(zi+m+1, Zi ) < 5K . This completes the induction. �

Proof of Proposition 3.1. Take D and p as in Lemma 3.7. For this D, enlarge p if
necessary to satisfy the hypotheses of Lemma 3.6. Set G4 := G4,p,D . �
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4. Questions
QUESTION 4.1. Can we replace purely exponential growth of G by divergence of G in
Theorem 1.1?

By [19], the answer is ‘yes’ when X is hyperbolic.
Recall in (5) that we showed that 2G(s) is comparable to 2G3,p (s/2), while it is clear

that 2G3,p (s/2)62N (s/2). If G is divergent, then 2G(s) diverges at s = δG , which
means that 2N (t) diverges at t = δG/2. There are two possible circumstances in which
2N (t) diverges at t = δG/2:

Either δN > δG/2, or δN = δG/2 and N is divergent. (12)

We proved the first case of (12) directly, with the additional assumption of purely
exponential growth of G. The approach of [19] is to prove, if X is hyperbolic, that δN = δG

when N is divergent, so, since δG > δG/2, the second case of (12) is impossible. Thus,
a positive answer to Question 4.1 would be implied by a positive answer to the following
question, which is also interesting in its own right.

QUESTION 4.2. If G is a group acting properly by isometries with a strongly contracting
element on a geodesic metric space X and G y X is divergent, is it true that for every
divergent normal subgroup N of G we have δN = δG?

Jaerisch and Matsuzaki [17] showed that if F is a finite-rank free group and N is a
non-trivial normal subgroup of F , then, with respect to a word metric defined by a free
generating set of F , there is an inequality δN +

1
2δF/N > δF . Notice that δN > δF/2, by

the lower cogrowth bound, and δF/N < δF , by growth tightness of F .

QUESTION 4.3. Is there an analogue of Jaerisch and Matsuzaki’s inequality for G acting
with a strongly contracting element and complementary growth gap? Note that we know
both growth tightness, by [2], and the lower cogrowth bound, by Theorem 1.1, for such
actions.

For G = X = Fn [7, 13, 20], X =H2, and G a closed surface group [5], there exists a
sequence (Ni )i∈N of normal subgroups of G such that δNi /δG limits to 1/2, so the lower
cogrowth bound is optimal.

QUESTION 4.4. Is the lower cogrowth bound optimal in Theorem 1.1?

We must mention that the upper cogrowth bound is also very interesting. Grigorchuk
[13] and Cohen [8] showed that when F is a finite-rank free group, with respect to a word
metric defined by a free generating set, the upper cogrowth bound δN/δF = 1 is achieved
for N C F if and only if F/N is amenable. There have been several generalizations [6, 10,
12, 21, 22] to growth rates defined with respect to an action G y X , but the most general
to date [10] still requires G to be hyperbolic, the action to be cocompact, and X to be
either a Cayley graph of G or a CAT(–1) space. In the vein of our theorem, it would be
very interesting to generalize such a result to a non-hyperbolic setting.
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