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TWO NON-VANISHING RESULTS CONCERNING THE
ANTI-CANONICAL BUNDLE

NIKLAS MÜLLER

Abstract. Let (X,Δ) be a klt threefold pair with nef anti-log canonical divisor

−(KX +Δ). We show that κ(X,−(KX +Δ)) ≥ 0. To do so, we prove a more

general equivariant non-vanishing result for anti-log canonical bundles, which

is valid in any dimension.

§1. Introduction

Let (X,Δ) be a klt pair with nef log-canonical divisor KX+Δ. Recall that the celebrated

Non-Vanishing conjecture predicts that κ(X,KX +Δ)≥ 0, i.e. that there exists an integer

m≥ 1 such that m(KX +Δ) is Cartier and

H0
(
X,OX

(
m(KX +Δ)

))
�= 0.

Along with the Abundance conjecture, which predicts that KX +Δ is even semiample, the

Non-Vanishing conjecture has attracted much attention. One might be tempted to ponder

what happens on the opposite end of the spectrum, namely, when the anti-log canonical

divisor −(KX +Δ) is nef. One quickly realises that the situation is somewhat different:

Already the example of P2 blown-up in 9 points shows that −KX might be nef but fail

to be semiample, see [17]. On the other hand, in [1] the authors classified rather explicitly

smooth projective threefolds with nef anti-canonical class and observed a posteriori that

κ(X,−KX)≥ 0, at least when X is rationally connected, see also [31] and [32].

Recently, Lazić–Matsumura–Peternell–Tsakanikas–Xie [21] studied varieties with nef

anticanonical bundle with a view towards the recently proposed generalised Non-Vanishing

conjecture [20], [14]. In particular, they proved that κ(X,−(KX +Δ)) ≥ 0 if (X,Δ) is

a rationally connected threefold pair with nef anti-log canonical bundle and they asked

whether the same conclusion holds more generally, assuming only that −(KX +Δ) is nef.

In this paper, we want to give the following affirmative answer to this question:

Theorem A. Let (X,Δ) be a projective klt pair and assume that the anti-log canonical

divisor −(KX +Δ) is nef. Let (F,ΔF ) denote a general fibre of the MRC-fibration of X. If

−(KF +ΔF ) is semiample, then

κ(X,−(KX +Δ))≥ 0.

Despite giving only a partial answer, Theorem A applies in many cases. For example, as

can be seen by using [15], it applies whenever F is a surface with enough automorphisms.

Thus, combining our result with [14] and [21] to deal with the other cases enables us to

fully settle the three-dimensional case:
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2 N. MÜLLER

Corollary B. Let (X,Δ) be a projective klt threefold pair such that −(KX+Δ) is nef.

Then

κ(X,−(KX +Δ))≥ 0.

Besides the results obtained in [9] and [23], which form the backbone of our strategy,

the main ingredient in our proof of Theorem A is the following “equivariant Non-Vanishing

theorem,” which allows us to lift sections from F to X as explained in Section 2. It holds

in greater generality and might be of independent interest:

Theorem C (Equivariant Non-Vanishing for Anti-Canonical Divisors). Let (X,D) be a

projective sub-log canonical pair and assume that −(KX +D) is semiample. Then for any

commutative, linear algebraic subgroup H ⊆ Aut(X,D) there exists an integer m ≥ 1 such

that −m(KX +D) is Cartier and

H0
(
X,OX

(
−m(KX +D)

))H

�= 0.

We will abbreviate this by writing κ(X,−(KX +D))H ≥ 0.

Here, Aut(X,D)⊆Aut(X) denotes the subgroup of automorphisms ϕ ∈Aut(X) leaving

D invariant as a subset of X. Then Aut(X,D) acts on H0(X,OX(−m(KX +D))
)
) in a

natural way and we denote by H0(X,OX(−m(KX +D)))H the space of sections which

are fixed under this action. For our terminology concerning pairs we refer the reader to

Section 1.2 below.

We would like to emphasise that the conclusion of Theorem C is astonishing to the author

in several different ways: First, perhaps somewhat unexpectedly, the crucial assumption in

Theorem C is the log canonicity and not the semipositivity of −(KX+D), as the conclusion

of Theorem C can fail even if (X,D) is log smooth and if −(KX +D) is ample as soon as

(X,D) is no longer sub-log canonical, see Example 3.24.

Moreover, it is noteworthy that the action of H on the space of sections of −m(KX +D)

is usually far from being trivial and already in very simple examples the ring of invariant

sections of −(KX+D) might be much smaller than the ring of all sections, cf. Example 3.23.

Nevertheless, Theorem C shows that there always do exist invariant sections. In particular,

in case κ(X,−(KX +D)) = 0 the action must be trivial after all.

Finally, note that the conclusion of Theorem C certainly fails if one allows for more

general subgroups of Aut(X,D), cf. Example 3.22.

1.1 Overview of the methods used in the proof of Theorem C

By far the most important special case of Theorem C is the one where (X,D) is log

smooth and H ∼= (C×)r is an algebraic torus. Indeed, the general case is readily reduced to

this one; the precise argument is contained in Section 4.

Under these assumptions, the main idea of the proof is to convert the global question

of whether κ(X,−(KX +D))H ≥ 0 into a problem in convex geometry determined by the

local action of H near the fixed points in X. This method of computing global invariants

of an action is well-known and heavily used in Geometric Invariant Theory and Symplectic

Reduction. However, it is classically only developed for ample line bundles, while we will

also need it for semiample ones. This case seems to have received little–if any–interest so

far. Consequently, we re-prove the statements we need in detail.
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TWO NON-VANISHING RESULTS CONCERNING THE ANTI-CANONICAL BUNDLE 3

In the log Fano case, the result boils down to a combination of some explicit local

computations, some classical results about moment polytopes and a little piece of convex

geometry. The semiample case then follows via some perturbation techniques. All of this

will be explained in detail in Section 3.

1.2 Conventions

Throughout the paper, we work over the field C of complex numbers.

Since the terminology concerning pairs is slightly ambiguous at times in the literature, let

us fix explicitly the notation we will use: For us, a pair (X,D) consists of a normal variety

X and a Q-Weil divisor D =
∑

aiDi on X with the property that KX +D is Q-Cartier.

Here, D may or may not be effective.

We call (X,D) log smooth if X is smooth and if D has SNC support. A log smooth pair

(X,D) will be called sub-log canonical if ai ≤ 1 for all i, and log canonical if additionally D

is required to be effective, 0≤ ai ≤ 1. In general, a not necessarily log smooth pair (X,D)

is called (sub-)log canonical if for some/any log resolution f : X̂ →X the log smooth pair

(X̂,D̂) is so, where D̂ is determined by the rules KX̂ + D̂ ∼Q f∗(KX +D) and f∗D̂ =D.

Similarly, in the definition of a sub-klt pair we do not require D to be effective, while in

the definition of a klt pair we do. In other words, our definition of a sub-log canonical pair

coincides precisely with the definition of a log canonical pair in [18]; similarly for (sub-)klt

pairs.

§2. Reduction of Theorem A to the equivariant non-vanishing

In this section, we reduce the proof of Theorem A to the equivariant non-vanishing

problem Theorem C. The main technical tool we will use is the following structure theorem

which was recently obtained in [23], building on the previous works [27], [28], [33], [22],

[6], [8], [7], [9], [11], [5] and [30] among others. We refer to [10] for the definition of MRC-

fibrations (also known as rational quotients).

Theorem 2.1 (Matsumura–Wang [23]). Let (X,Δ) be a projective klt pair with nef anti-

log canonical divisor −(KX+Δ). Then there exists a finite quasi-étale cover π : X ′ →X such

that X ′ admis a holomorphic, everywhere defined, MRC-fibration f : X ′ → Y . Moreover, the

following hold true:

(1) Every component of Δ′ := π∗Δ is dominant over Y, that Δ′ is ‘horizontal’.

(2) The pair (Y,0) is klt and KY ∼Q 0.

(3) The general fibre (F,ΔF :=Δ′|F ) is a (connected) rationally connected klt pair with nef

anti-log canonical divisor −(KF +ΔF ).

(4) The morphism f is a locally constant fibration, that is, there exists a group homomor-

phism ρ : π1(Y )→Aut(F,ΔF ) and an isomorphism over Y

(X ′,Δ′)∼=
(
Ỹ × (F,ΔF )

)
/π1(Y ),

where Ỹ denotes the universal cover of Y and where π1(Y ) acts diagonally in the natural

way on Ỹ and through ρ on (F,ΔF ).

In view of Theorem 2.1 we expect −(KX+Δ) to have sections if and only if −(KF +ΔF )

admits sections which are invariant under the action of ρ. This is made precise below:
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4 N. MÜLLER

Theorem 2.2. Let (F,ΔF ) be a rationally connected projective klt pair and assume

that the anti-log canonical divisor −(KF +ΔF ) is nef. Then the following assertions are

equivalent:

(1) For any projective klt pair (X,Δ) with nef anti-log canonical divisor −(KX +Δ) and

whose MRC-fibration has (F,ΔF ) as its general fibre it holds that

κ
(
X,−(KX +Δ)

)
≥ 0.

(2) There exists a maximal algebraic torus T ⊆Aut(F,ΔF ) such that

κ
(
F,−

(
KF +ΔF

))T

≥ 0.

Recall that an algebraic torus is an algebraic group which is isomorphic to (C×)r for

some integer r. In order to prove Theorem 2.2 we need the following elementary result; we

include a proof for the sake of completeness:

Lemma 2.3. Let G be a linear algebraic group acting algebraically on a finite dimensional

vector space V. Then the following assertions are equivalent:

(1) For any commutative, algebraic subgroup H ⊆G it holds that V H �= 0.

(2) For any algebraic torus T ⊆G it holds that V T �= 0.

(3) For some maximal algebraic torus T ⊆G it holds that V T �= 0.

Proof. Clearly (1) ⇒ (2). Regarding the converse, let H ⊆ G be any commutative,

algebraic subgroup. Then H splits as

H = T ×U,

where T is an algebraic torus and U is unipotent, cf. [24, Theorem 16.13]. Consequently,

V H = V (T×U) =
(
V T

)U
.

Here, we used in the last step that the elements of U,T commute so that the action of

U preserves V T . Now, by our assumption V T �= 0. Since (essentially by definition) any

algebraic action of a unipotent group on a non-trivial vector space fixes at least one non-

trivial vector we conclude that V H �= 0.

Finally, the equivalence of (2) and (3) is clear as any torus T ⊆ G is contained in a

maximal one and since any two maximal tori in G are conjugate to each other, see [24,

Theorem 17.10].

Proof of Theorem 2.2. First, let us prove that (2)⇒ (1). Fix (X,Δ) a projective klt pair

which has (F,ΔF ) as general fibre of its MRC-fibration. We want to show that κ(X,−(KX+

Δ))≥ 0. Note that to do so we, may replace (X,Δ) by arbitrary quasi-étale covers, cf. [29,

Theorem 5.13]. In particular, by Theorem 2.1, we may assume that the MRC-fibration

f : X → Y is a locally constant fibration with fibre (F,ΔF ) and such that KY = 0. Fix a

group homomorphism ρ : π1(Y )→Aut(F,ΔF ) such that

(X,Δ) =
(
Ỹ ×

(
F,ΔF

))
/π1(Y ).

Claim. We may assume that the Zariski closure H := Imρ ⊆ Aut(F ) is a connected,

commutative, linear algebraic group.
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Indeed, as X is a projective, the image of π1(Y )
ρ→Aut(F )→Aut(F )/Aut0(F ) is finite,

see, for example, [25, Lemma 3.4]. Hence, H has only finitely many connected components.

Replacing Y by the finite (!) étale cover corresponding to

ker
(
π1(Y )→H/H0

)
⊆ π1(Y )

and replacing X by X ′ :=X×Y Y ′, we may assume that H =H0 is connected. Moreover,

as F is rationally connected, Pic0(F ) = 0 and so G := Aut0(F ) is linear algebraic, see [2,

Corollary 2.18]. Thus, H ⊆G is also linear.

Finally, according to [12, Theorem B], there exists a finite quasi-étale cover Y ′ → Y

such that Y ′ = A×Z splits as a product of an abelian variety A and a variety Z with

OZ(KZ) =OZ and vanishing augmented irregularity. Since G=Aut0(F ) is linear algebraic,

the image of the map ρ : π1(Z)→G=Aut0(F ) is finite by [12, Remark 1.4]. In other words,

after another finite étale cover we may assume that X splits as

X ∼=
(
(Ã×F )/π1(A)

)
×Z =:X ′×Z.

As OZ(KZ) =OZ has sections, it suffices to prove the assertion for (X ′,Δ|X′) and we are

thus reduced to the case that Y =A is an abelian variety. In particular, in this case π1(Y )

is an abelian group.

Let us denote by H ⊆G the Zariski-closure of Imρ. Then, by continuity,

[H,H] =
[
Imρ, Imρ

]
⊆ [Imρ, Imρ] = {1},

and so H ⊆ G is also commutative. In summary, H is a connected, commutative, linear

algebraic group. This concludes the proof of the Claim.

Let us now continue with the proof of (2)⇒ (1). According to Lemma 2.3 and the Claim

we may find an integer m≥ 1 such that −m(KF +ΔF ) is Cartier and such that(
H0

(
F,OF

(
−m

(
KF +ΔF

))))H

�= 0. (2.1)

Here, we used that G=Aut0(F ) is linear algebraic. In what follows, we will prove that the

elements of the vector space in (2.1) lift to non-zero sections in H0 (X,OX (−m(KX +Δ))).

Indeed, note that

H0
(
X,OX

(
−m(KX +Δ)

))
=H0

(
Y,f∗OX

(
−m(KX +Δ)

))
. (2.2)

Now,

f∗OX

(
−m(KX +Δ)

)
= f∗OX

(
−m(KX/Y +Δ)

)
=

(
Ỹ ×H0

(
F,OF

(
−m(KF +ΔF )

)))
/π1(Y ) (2.3)

is the holomorphically flat vector bundle with fibre H := H0(F,OF (−m(KF +ΔF ))) and

monodromy representation π1(Y )
ρ→Aut(F,ΔF )→GL(H), c.f. [21, Proposition 6.3(b)]. In

particular,
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6 N. MÜLLER

H0
(
X,OX

(
−m

(
KX +Δ

))) (2.2)
== H0

(
Y,f∗OX

(
−m

(
KX/Y +Δ

)))
⊇
(
H0

(
F,−m(KF +ΔF )

))ρ

⊇
(
H0

(
F,−m(KF +ΔF )

))H

�= 0.

Here we used in the last line that Imρ⊆H and (2.1). Thus, (2)⇒ (1) is settled.

Let us now turn to (1)⇒ (2); Given (F,ΔF ) as in the theorem and T ⊆Aut(F,ΔF ) any

maximal algebraic torus, our goal is to produce a projective klt pair (X,Δ) which admits a

locally constant fibration f : X → Y onto a variety Y with KY = 0 and with fibre (F,ΔF )

such that

H0
(
X,OX

(
−m(KX +Δ)

))
=H0

(
F,OF

(
−m

(
KF +ΔF

)))T

.

To this end, write T ∼= (C×)r. Fix an abelian variety Y of dimension r and ζ ∈ S1 ⊆
C× any number of absolute value one which is not a root of unity. Consider the group

homomorphism ρ : π1(Y )→ T determined by the rule

ρ : π1(Y )→ T, e2i−1 �→ (1, . . . ,1, ζ,1, . . . ,1), e2i �→ (1, . . . ,1), ∀i= 1, . . . , r,

where e1, . . . e2r is some Z-basis for π1(Y ) ∼= Z2r. Then Imρ is Euclidean dense in the

compact group (S1)r ⊆ (C×)r ∼= T . In particular, Imρ is Zariski dense in T.

Let us consider the complex analytic variety X := (Ỹ ×F )/π1(Y ) equipped with the Q-

Weil divisor Δ := (Ỹ ×ΔF )/π1(Y ). Then (X,Δ) is a projective klt pair with nef anti-log

canonical divisor −(KX +Δ), see [25, Theorem 5.1]. By assumption there exists m≥ 1 such

that

0 �=H0
(
X,OX

(
−m(KX +Δ)

))
=H0

(
Y,f∗OX

(
−m(KX +Δ)

))
. (2.4)

Now, as in (2.3),

f∗OX(−m(KX +Δ)) =

(
Ỹ ×H0

(
F,OF

(
−m

(
KF +ΔF

))))
/π1(Y )

is the holomorphically flat vector bundle with fibre H := H0(F,OF (−m(KF +ΔF ))) and

monodromy representation π1(Y )
ρ→ Aut(F,ΔF ) → GL(H). As Imρ is contained in the

compact subgroup (S1)r � T = (C×)r, this representation is unitary. It follows that all

global sections of f∗OX(−m(KX/Y +Δ)) are flat, see, for example, [30, Theorem 2.2(b)].

In other words,

H0
(
Y,f∗

(
OX

(
−m(KX/Y +Δ)

)))
=Hρ =HT .

Here, in the last step we used that the action of Aut(F ) on H = H0(F,−m(KF +ΔF ))

is algebraic and that Imρ � T is Zariski dense by construction. As we know that

H0(Y,f∗(−m(KX/Y +Δ))) �= 0 by (2.4) we conclude.

§3. Torus-invariant sections on semiample line bundles

In this section, we want to prove Theorem C under the additional assumption that (X,D)

is log smooth:
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Theorem 3.1. Let (X,D) be a projective, log smooth, sub-log canonical pair such that

−(KX +D) is semiample. Then for any algebraic torus T ⊆Aut(X,D) it holds that

κ(X,−(KX +D))T ≥ 0.

To prove Theorem 3.1, we will employ some discrete methods from toric geometry. Let

us start by introducing the following concept:

Definition 3.2. Let X be a normal variety and let G ⊆ Aut(X) be a subgroup. A

coherent sheaf L on X is said to be G-invariant if g∗L ∼= L for all g ∈ G. In this case,

we say that L is G-linearizable if the action of G on X may be lifted to an action of G on

the total space of L via sheaf automorphisms. A G-linearization of L is a choice of such

a lift. See [26, Definition 1.6] for a more formal definition of linearizations.

Example 3.3. Let X be a normal variety, let G ⊆ Aut(X) be a subgroup and let

L ,L1,L2 be G-linearized coherent sheaves on X. Then also L ∗ and L1 ⊗L2 inherit

natural G-linearizations.

Definition 3.4. Let X be a normal variety, let G⊆Aut(X) be a subgroup and let L be

aG-linearized, coherent, reflexiveOX -module of rank one. Then G acts onH0(X,(L ⊗m)∗∗)

for any integer m and we will say that that κ(X,L )G ≥ 0 if and only if

∞⊕
m=1

H0
(
X,

(
L ⊗m

)∗∗)G

�= 0.

Example 3.5. Consider X = P1 equipped with the line bundle L =OP1(−1).

(1) Let G = Aut(P1) = PGL2(C). Then L is clearly G-invariant. However, this action is

(rather famously) not linearizable, see, for example, [3, Example 4.2.4].

(2) Let G = T � Aut(P1) be the subgroup of (equivalence classes of) diagonal matrices.

Then C× ∼= T � Aut(P1) is a maximal torus acting via t • [x : y] := [tx : y] and this

action is linearizable. In fact, for any w ∈Z an explicit choice of lifting is provided by

t • (x,y) = (tw+1x,twy). Here we identify, as per usual, OP1(−1)|[x:y] = C · (x,y)⊆ C2.

Example 3.6. Let X be a normal variety and let G ⊆ Aut(X) be a subgroup. Then

the anti-canonical bundle OX(−KX) admits a natural linearization given by push-forward

of forms: g • τ := g∗(τ). Recall that in local coordinates ϕ∗ is simply defined by the formula(
ϕ∗

(
f

∂

∂z1
∧ . . .∧ ∂

∂zn

))
(ϕ(x)) = f(x) ·dϕ

(
∂

∂z1

)
∧ . . .∧dϕ

(
∂

∂zn

)
,

where ϕ : X →X is any automorphism.

Example 3.7. Let D be a Cartier divisor on X and assume that it is invariant (as a

subset of X ) under the action of G. Then also OX(D) carries a natural G-linearization as

a subsheaf of C(X), which is induced by the pull-back of functions: g • f := (g−1)∗f . Note

that we take the inverse in order to obtain a left-action.

Similarly, Ω1
X admits a natural linearization given by g •df = d(g •f) = d((g−1)∗f).

In conclusion, whenever (X,D) is a pair, then the line bundle OX(−m(KX +D)) carries

a natural Aut(X,D)-linearization for all m ∈Z such that m(KX +D) is Cartier.

In the following, we will require some standard facts about algebraic tori and their

representations which we recall below: Let T ∼= (C×)r be an algebraic torus. Then its
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8 N. MÜLLER

character lattice M := Hom(T,C×) is a finitely generated free abelian group of rank

rkM = dimT . Explicitly, if T = (C×)r then

Zr ∼−→M =Hom(T,C×), w = (a1, . . . ,ar) �→
(
t �→ tw := ta1

1 · . . . · tar
r

)
.

In the sequel, following standard practice, we will consider M as an additive group (M,+).

In particular, the neutral element 0 ∈M corresponds to the trivial homomorphism t �→ 1.

We will also consider the real vector space MR :=M ⊗ZR.

Now, let ρ : T → GL(V ) be an algebraic representation of T on a finite-dimensional

complex vector space V (we also say that V is a T-module). Then the action of T can be

diagonalised, there exists a C-basis e1, . . . , em, called a basis of eigenvectors, for V such that

t •ei = twi · ei, ∀t ∈ T

for some w1, . . . ,wm ∈ M = Hom(T,C×) called the weights of the representation ρ. A

representation of T is determined up to isomorphism by its weights.

Definition 3.8. Let X be a normal projective variety, let T ⊆Aut(X) be an algebraic

torus and let L be a coherent sheaf on X, linearized for the action of T. Then T acts

naturally on the space H0(X,L ). We let WΓ(X,L )⊆M denote the set of weights of this

action. Moreover, we denote the convex hull of WΓ(X,L ) in MR by PΓ(X,L ) and call this

the section polytope of L .

Notation 3.9. From now on and for the rest of this section, we let X denote a smooth

projective variety and we fix an algebraic torus T ⊆ Aut(X). Then the set of fixed points

XT := {x ∈ X| t • x = x,∀t ∈ T} is a non-empty, closed, smooth subvariety of X, see [24,

Theorem 13.1, Proposition 13.20]. We let XT = Y1 � . . .�Yc denote the decomposition of

XT into its connected components. Moreover, for any i= 1, . . . , c let us fix a point yi ∈ Yi.

Definition 3.10. Let L be a line bundle on X, linearized for the action of T. Then

T acts on the one-dimensional C-vector space L |yi for any i= 1, . . . , c, with weight μi say.

Let us set Wμ(X,L ) := {μ1, . . . ,μc} ⊆M . The convex hull Pμ(X,L ) of Wμ(X,L ) in MR

is called the moment polytope.

Remark 3.11. Note that μi does not depend on the choice of yi ∈ Yi. Indeed, let

yi ∈U ⊆X be a T -invariant affine open neighbourhood which exists by [3, Corollary 5.3.6].

Pick a section σ ∈ L (U) which does not vanish at yi. Then the weight μy of the action of

T on L |y is given by tμy = (t•σ)(y)
σ(y) for all y ∈ Yi∩U such that σ(y) �= 0. This shows that

the map Yi →M , y �→ μy is continuous, hence constant.

Example 3.12. Continuing Example 3.5, let C× ⊆ Aut(P1) act on OP1(−1) via the

rule t • (x,y) = (tw+1x,twy). Then Wμ(P
1,O(−1)) = {w,w+1} ⊆M =Z and, consequently,

Pμ(P
1,OP1(−1)) = [w+1,w]⊆MR =R.

The following result is essentially taken from [4, Lemma 2.4] where it is stated only for

ample bundles. The proof generalises to the semiample setting without difficulties.

Proposition 3.13. Let X be a smooth projective variety, let T ⊆Aut(X) be an algebraic

torus and let L be a semiample line bundle on X, linearized for the action of T.

Then for any integer m≥ 1 the following hold true:
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(1) mPΓ(X,L )⊆ PΓ(X,L ⊗m) and mPμ(X,L ) = Pμ(X,L ⊗m) as subsets of MR,

(2) PΓ(X,L )⊆ Pμ(X,L ), and

(3) if L is basepoint free then PΓ(X,L ) = Pμ(X,L ).

Proof. (1): Clearly mWΓ(X,L ) ⊆ WΓ(X,L ⊗m) for if w1, . . . ,wm ∈ WΓ(X,L ) are

weights for the action of T on H0(X,L ) with corresponding eigenvectors σ1, . . . ,σm then

σ1⊗ . . .⊗σm ∈H0
(
X,L ⊗m

)
is an eigenvector for the action of T of weight w1+ . . .+wm ∈mWΓ(X,L ). We deduce that

mPΓ(X,L )⊆ PΓ(X,L ⊗m).

That mPμ(X,L ) = Pμ(X,L ⊗m) is obvious for if y ∈XT and if μ is the weight for the

action of T on L |y then the weight of the action on L ⊗m|y is just mμ.

To prove (2), the argument in [4, Lemma 2.4(2)] applies ad verbatim. Note that to prove

Theorem 3.1 we will not make use of this inclusion.

Regarding (3), the proof of [4, Lemma 2.4(3)] again goes through without changes.

However, as the argument is so elementary we want to quickly repeat it here: Fix y ∈XT

and let us denote by μ the weight of the action of T on L |y. As L is generated by global

sections we have the short exact sequence of T -modules

0→H0
(
X,L ⊗my

)
→H0

(
X,L

)
→ L |y → 0.

As it is well-known that any short exact sequence of T -modules splits, we find an eigenvector

σ ∈ H0(X,L ) for the action of T of weight μ. This proves that Wμ(X,L ) ⊆ WΓ(X,L ).

We infer that Pμ(X,L )⊆ PΓ(X,L ) and so the result follows from (2).

Corollary 3.14. Let X be a smooth projective variety, let T ⊆Aut(X) be an algebraic

torus and let L be a semiample line bundle on X, linearized for the action of T.

Then κ(X,L )T ≥ 0 if and only if the origin 0 ∈M is contained in Pμ(X,L ).

Proof. Let us start by proving that

κ(X,L )T ≥ 0 ⇔ ∃m : 0 ∈WΓ

(
X,L ⊗m

)
⇔ ∃m : 0 ∈ PΓ

(
X,L ⊗m

)
. (3.1)

Indeed, the first equivalence holds true by the very definition of WΓ and also the second

‘⇒’-implication is obvious. Regrading the converse, assume that 0 ∈ PΓ(X,L ⊗m). Let us

denote the weights of the action of T on H0(X,L ⊗m) by w1, . . . ,w� and let σ1, . . . ,σ� be

a corresponding basis of eigenvectors. Now 0 ∈ PΓ(X,L ⊗m) simply means that there exist

real numbers 0≤ λi ≤ 1 such that
∑

λi = 1 and

�∑
i=1

λiwi = 0.

In fact, by Proposition 3.15 below one can assume the λi’s to be rational numbers, say

λi =
pi

qi
. Set ki := q1 · . . . · qi−1 ·pi · qi+1 · . . . · q� ∈Z. Then

�∑
i=1

kiwi = 0.

But this in turn just means that

σ⊗k1
1 ⊗ . . .⊗σ⊗k�

� ∈H0
(
X,L ⊗m(k1+...+k�)

)
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is an eigenvector for the action of T of weight
∑

kiwi = 0. In other words, denoting k =

k1+ . . .+k� we deduce that

0 ∈ kWΓ

(
X,L ⊗m

)
⊆ kPΓ

(
X,L ⊗m

)
⊆ PΓ

(
X,L ⊗km

)
,

where we applied Proposition 3.13. This concludes the proof of (3.1).

But now, a further application of Proposition 3.13 yields

PΓ

(
X,L ⊗m

)
= Pμ

(
X,L ⊗m

)
=mPμ

(
X,L

)
for sufficiently large m ≥ 1. In view of (3.1), we deduce that κ(X,L )T ≥ 0 if and only if

0 ∈ Pμ(X,L ) as proclaimed.

The following result is just basic linear algebra. Due to the inability of the author to

locate a reference in the literature we include a proof anyway.

Proposition 3.15. Let M be a finitely generated free abelian group, let w1, . . . ,wm ∈
MQ :=M ⊗Q be a finite subset and let P ⊆MR be its convex hull. Then

P ∩MQ = PQ :=

{
m∑
i=1

λiwi

∣∣∣ 0≤ λi, λi ∈Q,

m∑
i=1

λi = 1

}
.

Proof. Clearly PQ ⊆ P ∩MQ. Regarding the converse, fix w ∈ P ∩MQ. After replacing

wi by wi−w we may assume that w = 0. Write

w =

m∑
i=1

λ∗
iwi

for some real numbers 0≤ λ∗
i such that

∑m
i=1λ

∗
i = 1. Forgetting some of the wi if necessary,

we may assume that λ∗
i > 0 for all i= 1, . . . ,m.

Now, consider the rational system of linear equations⎧⎪⎨⎪⎩
⎛⎜⎝λ1

...

λm

⎞⎟⎠
∣∣∣∣∣∣∣

m∑
i=1

λiwi = 0,

m∑
i=1

λi = 1

⎫⎪⎬⎪⎭ .

By assumption it admits the real solution λ∗ := (λ∗
1, . . . ,λ

∗
m) such that λ∗

i > 0. Let

(λ1, . . . ,λm) be any rational solution which is sufficiently close to λ∗. Then also λi > 0

and so w =
∑m

i=1λiwi with rational λi as required.

Example 3.16. Continuing Example 3.5, let C× ⊆Aut(P1) act on O(−1) via the rule

t • (x,y) = (tw+1x,twy). By Example 3.12 the moment polytope for the induced action of T

on O(m) is given by

PΓ

(
P1,O(m)

)
= Pμ

(
P1,O(m)

)
=
[
−m(w+1),−mw

]
.

We deduce that κ(P1,O(1))T ≥ 0 if and only if w = 0 or w =−1.

Proposition 3.17. Let X be a smooth projective variety and let T ⊆ Aut(X) be an

algebraic torus. Choose a fixed point y ∈ XT and denote by ν1, . . . ,νn the weights of the

natural isotropy action of T on the cotangent space Ω1
X |y.
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(1) The weight μ of the action of T on OX(−KX)|y satisfies the equation

μ=−(ν1+ . . .+νn).

(2) Let D be a T-invariant prime divisor on X and let us denote by μ the weight of the

action of T on OX(−D)|y. Then μ=
∑

imi ·νi for some non-negative integers mi ≥ 0.

Moreover:

(a) If y /∈D then μ= 0.

(b) If y ∈D is a smooth point of D then the natural isomorphism

OX(−D)|y ∼=N ∗
D/X |y ⊆ Ω1

X |y
is compatible with the action of T. In particular, μ= νi for some i.

Proof. The first statement is clear as OX(−KX)|y = det(TX|y) as T -modules.

Regarding item (2), we claim that there exists a local defining equation f ∈ OX,y of D

such that

t •f = tμ ·f, ∀t ∈ T. (3.2)

Indeed, let f ′ ∈ OX,y be any local defining equation. Since the action of T on OX,y

is algebraic, the C-vector space spanned by {t • f ′| t ∈ T} is finite-dimensional, see [24,

Corollary 4.8]. Let f1, . . . ,fr be a basis of T -eigenvectors, of weights μi say. Since t • f ′ =

(t−1)∗f ′ is a local defining equation of D for any t ∈ T by Example 3.7, it follows that fi
vanishes along D for any i. On the other hand, since f ′ is a C-linear combination of the fi,

there must exist at least one f = fi∗ which has multiplicity precisely one along D. Then f

is a local defining equation for D, that is, f |y = fi∗ |y generates OX(−D)|y. In particular,

the weight of the action of T on OX(−D)|y is μi∗ . Thus, μ= μi∗ , thereby proving (3.2).

Now, it follows from Luna’s étale slice theorem, cf. for example [24, Lemma 13.36], that

ÔX,y
∼= C[[z1, . . . , zn]]

for some formal functions zi satisfying t •zi = tνi · zi for any i= 1, . . .n. Express

f =
∑

J∈(Z≥0)n

aJ · zJ

as a formal power series. Since t •f = tμ ·f by (3.2), it follows that aJ = 0 for all but possibly

those J = (m1, . . . ,mn) such that
∑

mi · νi = μ. As f �= 0, we deduce that there exists at

least one J = (m1, . . . ,mn) ∈ (Z≥0)
n such that μ=

∑
imi ·νi. This proves the assertion.

Finally, if y /∈ D we may take f = 1, the constant function. As t • 1 = (t−1)∗(1) = 1 we

conclude that T acts trivially on OX(−D)|y as proclaimed.

Moreover, if y ∈ D is a smooth point of D then N ∗
D/X |y ⊆ Ω1

X |y is a one-dimensional

subspace, generated by df |y. We compute

t •df |y Ex. 3.7
==== d(t •f)|y = d(tμ ·f)|y = tμdf |y.

Thus the weights of the actions of T on OX(−D)|y and N ∗
D/X |y are the same and we are

done.

The presence of the divisor A in the following Lemma should be understood to be of

a purely technical nature. Note that in any case Lemma 3.18 is no more general than

Theorem C as also the pair (X,D−A) is sub-log canonical, see [18, Corollary 2.35].
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Lemma 3.18. Let (X,D) be a projective, log smooth, sub-log canonical pair and fix an

algebraic torus T ⊆Aut(X,D). Let A≥ 0 be an effective, T-invariant Q-divisor.

If −(KX +D−A) is ample, then 0 ∈ Pμ(X,−(KX +D−A)).

Remark 3.19. Note that in view of item (1) in Proposition 3.13 it makes sense to define

the moment polytope Pμ(X,−(KX +D−A)) even if A,D are only Q-divisors by choosing

m such that −m(KX +D−A) is Cartier and setting

Pμ

(
X,−

(
KX +D−A

))
:=

1

m
Pμ

(
X,OX

(
−m

(
KX +D−A

)))
⊆MR.

Proof of Lemma 3.18. Choose y ∈XT �= ∅ and let us denote by μ ∈MR the weight of

the action of T on OX(−(KX +D−A))|y1. Below, we will prove that

(1−ε)μ ∈ Pμ

(
X,−

(
KX +D−A

))
(3.3)

for all sufficiently small ε ≥ 0. Using some completely elementary convex geometry this

immediately yields the result, cf. Proposition 3.20 below.

To this end, let us denote the weights of the action of T on Ω1
X |y by ν1, . . . ,νn. As D has

SNC-support, we may write

D =
s∑

i=1

δiDi

in some analytic open neighbourhood of y ∈X so that the Di are smooth divisors meeting

transversely at y and where s≤ n. Then the N ∗
Di/X

|y ⊆Ω1
X |y are distinct, one-dimensional,

T -invariant subspaces. In particular, by Proposition 3.17 and after possibly re-indexing the

Di, we may assume that for any i=1, . . . , s the weight of the action of T on N ∗
Di/X

|y ⊆Ω1
X |y

is given by νi. Note that δi ≤ 1 as (X,D) is assumed to be sub-log canonical. Let us set

δi = 0 for s+1≤ i≤ n. Write A=
∑

ajAj , where, by assumption, aj ≥ 0 for all j.

Then by Proposition 3.17 the weight μ of the action of T on OX(−(KX +D−A))|y
satisfies the following equation:

μ=−
n∑

i=1

νi+

n∑
i=1

δiνi−
∑
j

ajmj,i νi =−
n∑

i=1

(1− δi)νi−
∑
i,j

ajmj,i ·νi ∈MR, (3.4)

for some integers mi,j ≥ 0.

On the other hand, it is an important fact that if L is any T -linearized ample line bundle

on X anf if μ denotes the weight of the action of T on L |y then

μ+ενi ∈ Pμ(X,L ) (3.5)

for sufficiently small ε≥ 0, see [4, Corollary 2.14] for a quick and purely algebraic proof2.

1 Here, to be precise we should really choose m ≥ 1 such that −m(KX +D−A) is Cartier, denote the

weight of the action of T on OX(−m(KX +D−A))|y by μ′ and set μ := μ′

m .
2 In fact, the original statement in [13, Theorem 3] holds much more generally for any symplectic manifold

and even shows that locally around μ, Pμ(X,L ) is just the cone spanned by the ν1, . . . ,νn, see Figure 1
below. Note that unfortunately [13] conventions regarding moment maps differ from ours by a minus
sign.
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Figure 1.

Locally around the vertex μ the moment polytope Pμ (drawn in blue) looks like the cone spanned by the

weights of the action on the cotangent space (drawn in lilac).

In any case in view of (3.4) and (3.5) we see that

(1−ε)μ= μ+ε

⎛⎝ n∑
i=1

(1− δi)νi+
∑
i,j

ajmj,i ·νi

⎞⎠ ∈ Pμ

(
X,OX

(
−(KX +D−A)

))
, (3.6)

where we use that δi ≤ 1 as (X,D) is sub-log canonical and aj ≥ 0 as A is effective. This

proves (3.3) as required. Finally, as was indicated already above, the claimed Lemma 3.18

now follows immediately from (3.3) and the following elementary consideration:

Proposition 3.20. Let V be a finite dimensional real vector space, let W ⊆ V be a

finite subset and let P ⊆ V be its convex hull. Assume that for any w ∈ W it holds that

(1−ε)w ∈ P for all sufficiently small 0≤ ε. Then 0 ∈ P .

Proof. Let us assume that 0 /∈ P . Then there exists a linear functional ϕ on V such that

ϕ|P > 0. As P ⊆ V is compact and convex so is ϕ(P )⊆R, that is, it is a (compact) interval,

say ϕ(P ) = [a,b]. Note that as P is the convex hull of W, ϕ(P ) is the convex hull of ϕ(W )

and so there exists at least one w ∈W for which ϕ(w) = a. But then our assumption that

(1−ε)w ∈ P for all sufficiently small 0< ε contradicts the fact that

ϕ
(
(1−ε)w

)
= (1−ε) ·ϕ(w) = (1−ε) ·a /∈ [a,b].

This completes the proof of the proposition.

Corollary 3.21. Let (X,D) be a projective, log smooth, log canonical pair and fix an

algebraic torus T ⊆Aut(X,D). If −(KX +D) is nef, then 0 ∈ Pμ(X,−(KX +D)).

Proof. Let us start by proving the following:

Claim. There exists a T -invariant, effective, ample divisor A on X.

Indeed, let L be a very ample line bundle on X. Then L is T -invariant and, possibly

replacing L by some multiple, even linearizable, see [3, Theorem 5.2.1]. Let us choose an

eigenvector σ ∈H0(X,L ) for the action of T of weight w ∈M . Then the zero-set A :=Z(σ)

is a T -invariant, effective, ample divisor on X as required.

Now, write A=
∑

j ajAj as the sum of distinct prime divisors. For any rational number

ε > 0 we consider the ample (!) divisor

−(KX +D−εA) =−(KX +D)+εA.
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According to Lemma 3.18 it holds that

0 ∈ Pε := Pμ(X,−(KX +D−εA)), ε > 0.

We are now ready to conclude that 0 ∈ P := P0 := Pμ(X,−(KX +D)): Let us denote by

d(Pε,P ) := max
{
sup
w∈P

d(Pε,w), sup
v∈Pε

d(P,v)
}

the Hausdorff distance between Pε and P with respect to some norm on MR. Note that by

definition and for any ε ≥ 0, the polytope Pε is the convex hull of the weights με,k of the

action of T on OX(−(KX +D−εA))|yk
. Moreover, by (3.4) we have

μ0,k = με,k+ε

⎛⎝∑
i,j

ajm
(k)
j,i ·νi

⎞⎠
for some integers m

(k)
j,i ≥ 0, depending only on the weights of the action of T on OX(−Aj)|yk

but not on ε ≥ 0, cf. Proposition 3.17. We infer that clearly d(Pε,P0) → 0 as ε → 0. In

particular, d(P0,0)≤ d(Pε,P0)→ 0 and so 0 ∈ P = P0, using that the latter set is closed.

Proof of Theorem 3.1. Follows immediately by simply combining Corollary 3.21 with

Proposition 3.13.

The rest of this section is devoted to giving examples which demonstrate that the

assumptions in Theorem 3.1, and hence in Theorem C, are essentially optimal.

Example 3.22. The conclusion of Theorem 3.1 fails if we allow for more general

subgroups H ⊆ Aut(F,ΔF ). In fact, the following example shows that it is already wrong

for solvable groups:

Let X = P1, D = 0 and let C× ∼= T ⊆ PGL2(C) be the group of diagonal matrices as

before. Then one easily checks that

∞⊕
m=0

H0(X,OX(−mKX))T = C[z∂z]

is generated by a single section. However, the vector field z∂z is not invariant under the

action of the subgroup B ⊆ PGL2(C) of upper triangular matrices.

Example 3.23. The above example shows that usually κ(X,−(KX +D))T is strictly

smaller than κ(X,−(KX +D)) even when the assumptions in Theorem 3.1 are satisfied. In

fact, it is straightforward to extend Example 3.22 to show that

0 = κ
(
Pn,−KPn

)T
< κ

(
Pn,−KPn

)
= n,

for any n≥ 1. Here, T ⊆Aut(Pn) = PGLn+1(C) denotes the torus of diagonal matrices.

Example 3.24. The assumption that (X,D) is sub-log canonical is optimal as the

following example demonstrates: Consider X = P1 equipped with D = a · {0} for some

a ∈ Q. Then the standard torus of diagonal matrices T ∼= C× ⊆ Aut(P1) acts on P1 via

t • [x : y] = [tx : y]. Note that the weight of the action of T on TP1 |0 is given by 1 ∈ Z ∼=
M and the weight of the action of T on TP1 |∞ is given by −1 ∈ M . Consequently, the

weights of the action of T on Ω1
P1 |0 and Ω1

P1 |∞ are given by −1 and 1, respectively. Thus,
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Pμ(P
1,O(−KP1)) = [−1,1] and, hence, using Example 3.17

Pμ

(
P1,−

(
KCP 1 +D

))
=
[
−1+a, 1

]
.

We conclude that −(KP1 +D) has T -invariant sections if and only if a ≤ 1 which is the

case if and only if (X,D) is sub-log canonical. At the same time, notice that −(KP1 +D)

is ample as long as a≤ 2.

§4. Proof of the main results

4.1 Proof of Theorem C

Let (X,D) be a projective, sub-log canonical pair and assume that −(KX +D) is

semiample. Fix a connected, commutative, linear algebraic subgroup H ⊆ Aut(X,D). We

need to show that

κ(X,−(KX +D))H ≥ 0.

If (X,D) is log smooth, then this was already shown in Theorem 3.1, cf. also Lemma 2.3.

In general, we choose an H -equivariant log resolution f : X̂ → X of (X,D). Such a map

always exists by [19, Proposition 3.9.1]. Then, in particular Exc(f) will be H -invariant.

Let us write

KX̂ + D̂ ∼Q f∗(KX +D), (4.1)

where D̂ is supported on the strict transform of D and the exceptional locus of f. Then

(X̂,D̂) is a log smooth pair which is sub-log canonical as (X,D) is so, see [18, Lemma 2.30].

Also, by construction,

−
(
KX̂ + D̂

)
∼Q −f∗(KX +D),

is semiample. Thus the conditions in Theorem 3.1 are satisfied and we deduce that

κ
(
X̂,−

(
KX̂ + D̂

))H

≥ 0.

Let us fix an integer m≥ 1 such that −m(KX̂ + D̂) is Cartier and such that there exists an

H -invariant form

τ̂ ∈ H0
(
X̂,O

̂X

(
−m

(
KX̂ + D̂

)))
∼= H0

(
X̂,O

̂X

(
f∗(−m(KX +D))

))
= H0

(
X,OX

(
−m(KX +D)

))
.

Here, for the isomorphism in the second line we used (4.1). Let us denote by τ ∈
H0(X,OX(−m(KX +D))) the image of τ̂ under this isomorphism. We claim that τ is

H -invariant, concluding the proof of the Lemma. Note that this is not entirely clear as the

natural H -actions on both sides may a priori differ.

However, as f : X̂ →X is birational and H -equivariant, the set U := X̂ \ (D̂∪Exc(f)) is

a dense open H -invariant subset of X̂ on which f is an isomorphism. In particular, we see

that

τ̂ |U = τ |U ∈H0(U,OX(−KU )).
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As τ̂ is H -invariant we infer that so is τ̂ |U = τ |U and, hence, (by continuity) τ . Thus, we

have produced a non-trivial H -invariant form τ ∈ H0(X,OX(−m(KX +D))) and we are

done.

4.2 Proof of Theorem A

Theorem A is an immediate consequence of Theorem C and Theorem 2.2.

4.3 Proof of Corollary B

Let (X,Δ) a projective klt threefold pair with nef anti-log canonical divisor −(KX +Δ).

We want to prove that

κ(X,−(KX +Δ))≥ 0. (4.2)

Let us start with some preliminary considerations. Let us denote by (F,ΔF ) a general

fibre of the MRC fibration of (X,Δ) as in Theorem 2.1. Then F is a rationally connnected

projective variety, (F,ΔF ) is a klt pair and −(KF +ΔF ) is nef. We distinguish four cases

according to whether dimF = 0,1,2,3.

If dimF = 3, then X = F and (4.2) follows from [21, Theorem A]. In the other cases,

according to Theorem 2.2 we need to prove that for any algebraic torus T ⊆Aut(F,ΔF ) it

holds that

κ(F,−(KF +ΔF ))
T ≥ 0. (4.3)

In case dimF = 0, if F = {∗} is a point, there is nothing to prove, cf. Theorem 2.1. Also the

case dimF = 1 is easy to settle, for example because in this case clearly F =P1. Then since

−(KF +ΔF ) is nef it is even semiample and (4.2) is a direct consequence of Theorem A.

Thus, it remains to deal with the case when F is a surface.

So let us then assume that F is a surface. If T = {1} is trivial, then we simply need to

verify that

κ(F,−(KF +ΔF ))≥ 0,

which was proved in [14, Theorem 1.5]. Alternatively, this statement is also contained in

[21, Theorem A]. In any case, note that this is precisely the situation when X = Y ×F is a

product.

It remains to deal with the case that dimT ≥ 1. Proceeding exactly as in the proof of

Theorem C we may replace F by a log resolution. Note that this may force us to allow for

(F,ΔF ) to be only sub-klt but this will not be an issue henceforth. In any case, we may

assume F to be smooth.

Now, as dimT ≥ 1, the surface F is certainly a T-variety of complexity one, a variety

equipped with the action of an algebraic torus such that the maximal dimensional orbits

have codimension one in F. But then F is an Mori Dream Space in the sense of [16], so that

−(KF +ΔF ) is not only nef but also semiample. Hence, (4.2) follows from Theorem C.

The assertion that F is a Mori Dream Space under the above hypothesis seems to be

well-known, for the convenience of the reader we nevertheless provide a detailed explanation

below: As F is a smooth, rationally connected surface, it is in particular rational, birational

to P2. It follows that the class group Cl(F ) is finitely generated. Thus, to prove that F is a

Mori Dream Space it only remains to show that the Cox ring of F is finitely generated, see

[16, Proposition 2.9]. But indeed, Hausen and Süß in [15, Theorem 1.3] can even determine
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an explicit finite list of generators and relations in terms of combinatorial data associated

to the T -action. The theorem is proved.
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