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Abstract
We study the asset allocation decision of a life insurance company’s general account with respect to
the possibility of large negative economic shocks and examine how this account is affected by
policyholder investment decisions in the company’s separate account. This is accomplished using a
performance metric that incorporates downside risk measured using univariate and multivariate
extreme value distributions. Because of its well-known price volatility, diversification attributes,
and significant weight in the combined general and separate accounts, our primary focus is the
company’s equity investments. Although industry asset allocations have varied over the past two
decades, we find that the actual allocations to equity in the general account are close to the allocation
percentages suggested by our extreme value metrics and both are far below the maximum values
indicated by the relevant regulatory bodies.
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1. Introduction

Life insurance companies (LICs) are an integral part of modern economies and their financial systems. As
financial intermediaries, they pool significant amounts of capital obtained by collecting premiums from
their policyholders, and invest this capital to support the payments dictated by the policy terms. Because
of the industry’s size and pervasiveness, major financial crises have the potential to cause widespread
economic distress. To mitigate this negative impact, LICs are required by various government agencies to
create, enact, and follow prudent internal financial risk management policies. One such policy involves
the allocation of assets, a form of diversification whereby assets are grouped by general types (e.g. stocks
and bonds). The portion of the total attributed to each asset type is determined by a risk-return rubric
and meets the percentage guidelines set forth by the appropriate insurance regulatory agencies.

*Correspondence to: John Paul Broussard, School of Business – Camden, Rutgers, The State University of New
Jersey, Camden, NJ 08102, USA. Tel: +1 (856) 225-6647; E-mail: john.broussard@rutgers.edu

372

https://doi.org/10.1017/S1748499517000264 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499517000264
mailto:john.broussard@rutgers.edu
https://doi.org/10.1017/S1748499517000264


The purpose of this paper is (1) to examine the ways in which LICs allocate their assets, and (2) to
determine if these allocations have been optimal, using a performance criterion measured in terms of
asset return per unit of risk. We use US LIC data to create a “typical firm” with respect to the
composition of its assets, and employ the concept of downside risk in an asset pricing model context
augmented by extreme value statistics and analyses. We pay special attention to equity investments
because of the increasing importance of this asset to the life insurance industry’s overall asset mix,
and of the constraints placed on owning this asset by various regulatory bodies, which may result in
various compliance costs.

Modern risk measurement used to construct investment portfolios is typically based on the
Markowitz (1952) choice of variance (or standard deviation) to be the appropriate risk metric. This
risk measure is the basis of the well-known Mean-Variance Capital Asset Pricing Model (CAPM).
The CAPM was developed and refined by Sharpe (1964), Lintner (1965), and Mossin (1966), and is
the theoretical basis of the Sharpe Ratio (Sharpe, 1966, 1994), a widely used investment performance
measure that relates mean return in excess of a risk-free rate to the standard deviation of returns.

Work by Roy (1952), later extended initially by Markowitz (1959) and then by Hogan & Warren
(1974), Bawa & Lindenberg (1977), Harlow & Rao (1989), and others, however, provides an alter-
native way of thinking about risk in a portfolio context1. In their perspective, risk is the potential for
disaster or catastrophe as evinced by the most negative deviations from expected returns. The approach
is often referred to as “safety-first”, in the sense that an investor seeks to maximise return while
minimising the chance that ruinous outcomes occur. This risk is often referred to as downside or (left)
tail risk, because the left tail of a probability distribution of returns is where the undesirable outcomes
reside. Satchell (2001) points out that defining risk in this way leads to a class of asset pricing models
sometimes referred to as LPMCAPM, i.e., Lower Partial-Moment Capital Asset Pricing Model.

Although Roy’s (1952) work has received much less attention than the original Markowitz (1952)
approach, his downside risk framework is potentially more relevant to the LIC’s asset allocation
decision because, as noted by Bailey (1862) over 150 years ago, of the company’s commitment to
meet its periodic contractual obligations to its policyholders. We incorporate this downside risk
focus using the Sortino Ratio (Sortino, 2001), which, as shown by Satchell (2001), theoretically
supports the LPMCAPM. This ratio uses portfolio returns in excess of a target rate (sometimes
referred to as the desired or minimum acceptable rate) as the numerator and the square root of the
second lower-partial moment of these returns as defined by the target rate as the denominator.
Portfolio returns are the sum of weighted individual asset returns, with the weights determined by the
asset’s value contribution to the portfolio. The second lower partial moment (SLPM) of these returns
is calculated by using conditional bivariate copulas, which, collectively, are referred to as a vine
copula. The optimal portfolio is the one with the largest Sortino Ratio value2.

Underlying these CAPM-based performance measures is the assumption that all assets in the portfolio
are able to be traded at the discretion of the investor. As pointed out by Heaton & Lucas (2000),

1 Markowitz (1952) briefly touches on the notion of downside risk by considering negative skewness. He
dismisses the phenomenon as an indication of gambling and, thus, not functionally related to the formation of
investment portfolios.

2 We are not the first to explore investment policies in the context of downside risk. For example, Browne
(1995), Liu & Yang (2004), and Consiglio et al. (2009) also propose optimal investment strategies for an investor
seeking to minimise their probability of ruin or catastrophe. These efforts are in line with work to develop asset-
liability management models for a LIC (e.g. Lamm-Tennant, 1989; Consiglio et al., 2008; Chiu & Li, 2009).
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Klos & Weber (2006), and Palia et al. (2014), among others, this is not always the case. The risk
associated with these “non-tradeable” assets is typically referred to as background risk. LICs face
background risk in the sense that a portion of their assets are under the control of their policyholders
(see section 2 for details). We address this issue by calculating the optimal allocation of the
entire portfolio, treating the policyholder portion (separate account) as predetermined, and defining the
portion of the total portfolio that is under the control of the company (general account) as the residual.

Our empirical results show that the canonical vine (C-vine) structure effectively models the multi-
variate dependency of bivariate copulas, with the preponderance of the bivariate copulas being
Student-t. Moreover, corporate bonds drive the vine dependency structure, which is not surprising
since corporate bonds are by far the largest investment class overall. Nevertheless, although equities
are the second largest class overall, the optimal percentage of the assets under the direct control of
the company is small, which is consistent with the actual equity allocations during our study period
but much lower than the maximum percentage dictated by relevant regulations or suggested by the
National Association of Insurance Commissioners (NAIC)3.

2. Institutional Background and Risk Environment

The products sold by modern LICs can be broadly classified into life insurance and annuities. These two
products provide the policyholder with different benefits. A life insurance policy requires the purchaser
to pay periodic payments (premiums) through her life, and, in turn, her estate receives a payment
(benefit) at the time of her death. In contrast, an annuity contract requires the purchaser to make an
upfront payment in return for receiving periodic payments until her death, or a period determined at the
time of the purchase. Thus, from the perspective of the issuing LIC, the risks associated with these two
types of products tend to counteract each other. The risk associated with life insurance is that the
covered person dies sooner than expected, resulting in fewer premiums collected for an earlier death
benefit payment. In contrast, the risk associated with annuities is that the covered person lives longer
than expected, requiring additional annuity payouts be made from the same initial premium.

Managing this historical risk tradeoff has been further complicated by the emergence of variable life
insurance and variable annuity products. A key feature of a variable policy is the additional investment
control granted by the LIC to its policyholders, who can invest their premiums in a menu of investment
options. If the investments linked to their policies perform well, then policyholders benefit by having
richer death benefits or annuity payouts. A confounding risk management issue arises when the LIC
offers downside protection on their variable products. This protection creates a potential liability to the
company if variable product values become insufficient to meet the promised benefits. Moreover,
variable product policyholders tend to invest heavily in riskier portions of the asset menu (e.g. equities)
provided to them. Thus, the LIC must make risk management decisions based not only on the risk
exposures that it creates but also on those exposures created by the policyholders themselves.

From an accounting perspective, the assets of the LIC are placed into either the “general” account or
the “separate” account, depending on the nature of the contractual obligations they support. The
general account assets support the LIC’s payouts for the fixed-payment products and other
obligations. The separate account assets support the payouts on products associated with policyholder
investment risk, such as variable life insurance and variable annuities. Because the policyholders of the

3 The NAIC is a group of state-based regulators that promotes consistency throughout the US state-based
regulatory system.
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variable products are given the ability to allocate their premiums among several investment choices, the
asset allocation of the separate account reflects the aggregate investment choices of the policyholders,
whereas the asset allocation of the general account reflects the LIC’s investment decisions and is exposed
to the background risk produced by the policyholders’ allocations.

In Table 1 we provide the industry asset allocations for the general and separate accounts for select
years starting with 1994 and ending in 2013. According to American Council of Life Insurers (ACLI)
(2014), total investible assets in 2013 amounted to $6.15 trillion, with the two largest contributors
being bonds (48.8%) and stocks (32.6%). In addition, of the total invested amount, the general and
separate accounts accounted for $3.8 and $2.35 trillion, respectively. Thus, 61.8% of the total
investible assets were in direct control of the LICs. The asset allocations within the general and
separate accounts, however, were dramatically different.

Table 1. Aggregate life insurance company (LIC) balance sheet investment composition.

1994 1998 2002 2006 2010 2013

Panel A – general account (%)

Bonds 68.44 71.72 72.90 72.44 72.41 70.97
Stocks 4.93 4.78 3.52 4.73 2.39 2.23
Mortgages 13.25 11.02 10.05 9.80 9.18 9.56
Real estate 2.65 1.45 0.90 0.62 0.58 0.60
Policy loans 5.32 5.35 4.31 3.63 3.65 3.46
Other assets 5.42 5.69 8.31 8.78 11.80 13.18

Panel B – separate account (%)

Bonds 27.57 15.96 19.84 12.62 13.00 12.89
Stocks 58.06 73.12 73.68 80.22 80.28 81.67
Mortgages 1.27 0.59 0.74 0.60 0.52 0.44
Real estate 3.34 1.48 1.16 0.81 0.42 0.37
Policy loans 0.24 0.23 0.09 0.03 0.03 0.02
Other assets 9.52 8.61 4.50 5.72 5.75 4.62

Panel C – combined account (%)

Bonds 61.07 53.74 57.86 51.04 51.68 48.78
Stocks 14.51 26.82 23.42 31.74 29.56 32.58
Mortgages 11.09 7.65 7.41 6.51 6.16 6.08
Real estate 2.77 1.46 0.97 0.69 0.52 0.51
Policy loans 4.40 3.70 3.11 2.34 2.39 2.14
Other assets 6.16 6.63 7.23 7.69 9.69 9.91

Panel D – combined account by sub-account ($ millions)

General account 1,592,128 1,915,147 2,421,562 3,097,337 3,457,945 3,800,386
Separate account 350,145 911,374 958,438 1,725,485 1,853,261 2,349,913
Combined account 1,942,273 2,826,521 3,380,000 4,822,822 5,311,206 6,150,299

Note 1: The table shows the aggregate (combined account) balance sheet asset distribution of the US LIC’s broken
down into the general account (assets directly under the control of the company) and the separate account (assets
for which policyholders direct investment through certain insurance and annuity policies) for 1994, 1998, 2002,
2006, 2010, and 2013. Other Assets includes short-term investments, cash and cash equivalents, derivatives
securities, and accounting assets such as premiums owed and interest earned but not yet received.
Note 2: The data are from ACLI (2005, 2007, 2009, 2011, 2013, 2014).
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For example, of the total general account assets, nearly 71.0% was invested in long-term bonds
(including mortgage-backed securities), an allocation that remained fairly steady over this 20-year
period. Other notable asset classes include direct mortgage investments, which received about 10%, and
stocks, which received only a 2.2% allocation. The stock allocation steadily declined since 1994 when it
was nearly 5%. Moreover, the allocation to the other assets category increased markedly from less than
6% of the general account before 2002 to over 13% in 2013. This doubling reflects increased allo-
cations to cash and short-term investments, derivative assets (typically used for risk hedging strategies),
and non-invested assets (e.g. premiums owed and interest earned but not yet received).

In contrast to the general account, only 12.9% of the separate account assets were invested in long-
term bonds in 2013, but 81.7% is invested in stocks. These allocations are markedly different than
those in 1994, when the allocation associated with long-term bonds was more than double (27.6%)
its 2013 allocation, and stocks received an allocation less than 60%.

Although this upward trend may be partially attributed to the downside protection offered by the
LICs on many of the separate account policies, the difference in the magnitude of equity holdings
between the general and separate accounts does not appear to be a result of regulatory constraints
placed on the general account. In this regard, Henebry & Diamond (1998) point out that, depending
on the state, the maximum portion of the general account allocated to stock ranges from 10% to
100%. Moreover, in both versions of its Investment of Insurers Model Act, NAIC (1996, 2001)
suggest that stock holdings not exceed 20% of the investment portfolio.

There are at least three possible reasons why these regulatory standards do not appear to be binding.
First, as Hart pointed out a half a century ago, individuals may invest in risky portfolios but they
expect their standard insurance policies “… to be safe beyond question” (1965: 360). Thus, LICs
may be simply accommodating their policyholders’ wishes. Second, in constructing their investment
portfolio, the companies must also consider the risk-based capital rule that states that a company’s
equity capital cannot be less than an amount prescribed by a stated formula. As discussed by
Weinsier et al. (2002), this covariance type formula contains capital requirement factors for various
types of assets. For example, the factor for stocks is 0.30 for every dollar invested, while for high
grade corporate bonds the factor is 0.003. Thus, the LIC may be considering the cost of capital
compliance. Finally, the seemingly low equity allocation in the general account may be the result of
the LIC jointly assessing the investment risks in the general and separate accounts and constructing
an investment portfolio to reflect its desired risk and reward tradeoff. It is to this issue that we
now turn.

3. Measuring Life Insurer Market Performance

3.1. The Sortino Ratio

To measure the performance of the LIC asset allocation decision from a “downside risk” perspective,
we use the Sortino Ratio4. This ratio expresses the average returns (R) in excess of a target rate

4 Other downside risk measures exist. Bacon (2016) provides numerous examples. Risk, as measured by
drawdown (single or multiple negative price changes within a defined period), is used in the Calmar, Sterling,
Burke, Pain, and Martin Ratios. Measures that rely on the lower partial moment include the Omega and Prospect
Ratios. The Sharpe Ratio has been modified to explicitly consider skewness and kurtosis. Moreover, in some
cases, unconditional measures have been transformed into conditional ones.
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(Rtarget) per unit of downside risk (measured by the SLPM), which is also determined by the target
rate. Thus, it rewards returns obtained in excess of the target rate, penalises downside volatility, and
ignores upside volatility. More formally, we express the Sortino Ratio as:

Sortino Ratio=
R�Rtarget
� �

SLPMð Þ12
(1)

where

SLPM=
1
T

XT
i=1

Rtarget �Ri
� �2

; 8Ri ≤Rtarget (2)

and T is the number of observations in the left tail as defined by Rtarget
5. SLPM measures the

variability in expected shortfall, i.e., the expectation that Ri is less than or equal to Rtarget, and is
associated with variance and skewness aversion.

3.2. Estimating SLPM

Three basic steps are needed to calculate SLPM: (1) estimate the extreme value distribution for each
of the LIC’s asset classes, (2) combine these individual distributions to create a single multivariate
distribution system, and (3) use the multivariate system to simulate a distribution of returns that
empirically defines the left tail of the asset portfolio returns.

3.2.1. Univariate extreme value modelling
A generalised Pareto distribution (GPD) is often used to model the tail returns of an asset (see, e.g.
Longin, 2005; Carmona, 2014; Booth & Broussard, 2016). Tail returns are those returns below
some set threshold. The threshold, also referred to as location (λ), is one of the three GPD para-
meters. The other parameters are scale (σ) and tail shape (τ). The threshold and shape parameters
have (−∞, ∞) as their range, while the scale parameter value is non-negative. To calculate SLPM,
however, Rtarget must be less than or equal to the threshold value. The cumulative distribution
function, F(R), of the GPD given return R is typically expressed as:

F Rð Þ= 1� 1 + τ
R� λ

σ

� �� �� 1
τ

(3)

with its corresponding probability distribution function f(R) being

f Rð Þ= 1
σ

1 + τ
R� λ

σ

� �� �� 1
τ + 1ð Þ

(4)

3.2.2. Multivariate extreme value modelling
To model the joint probability distribution of the LIC’s multiple asset investment portfolio, we rely
on Sklar’s (1959) observation that if there are d random variables R1,… , Rd that have continuous
cumulative distribution functions F1,… , Fd and a joint cumulative distribution function F, there
exists a unique copula C such that F(R1,… , Rd)=C(F(R1),… , F(Rd)). C is a distribution function on

5 Alternatively SLPM may be expressed as
ÐRtarget
�1 Rtarget �R

� �2
d f Rð Þ½ �, where f(R) is the first derivative of the

cumulative density function, F(R), of R.
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[0, 1]d with uniform marginal distributions that permits the distribution functions of R1,… , Rd to be
the functional inputs. Thus, theoretically, copulas can be used to estimate the joint probability
distribution of returns for d asset classes.

Unfortunately, most of the currently known copula functions involve pairs of random variables.
This poses a challenge for a joint analysis of three or more random variables. Nevertheless, work by
Joe (1996), Bedford & Cooke (2001, 2002), and Kurowicka & Cooke (2006), and outlined in
Brechmann & Schepsmeier (2013), suggests an effective approach to skirt this limitation. These
authors propose using vine copulas, which decompose a multivariate copula into a series of con-
ditional bivariate pairs.

We base our approach on similar copula-based portfolio modelling work done by others including
Brechmann & Czado (2013), Allen et al. (2014), and Carmona (2014). Using the Rsafd package
available in R, we first estimate a two-tailed GPD model for each of the LIC asset classes in order to
model their marginal distributions. A two-tailed GPD model is initially used because we employ the
vine copula framework to model joint dependence between asset classes across their full distribution.
We focus on the left tail at a later stage when we calculate the Sortino Ratio of prospective risky
portfolios. The copula data are formed by taking the cumulative distribution function, F(Ri), for each
return R in asset class i based on i’s GPD marginal distribution.

Next, we choose a conditioning path for the vine copula based on the dependence structure of assets.
This approach permits selection of an appropriate bivariate copula function for each “twist” or
“node” of the vine. The structure selection criteria proposed in Czado (2010) and Czado et al.
(2012) is used. The structure selection depends not only on the joint dependence of various bivariate
pairs of the individual asset classes but also on the underlying structure of the vine copula.

There are two popular vine copulas – the canonical vine (C-vine) and drawable vine (D-vine).
Graphic examples of the two vine structures are provided in Brechmann & Schepsmeier (2013: 5,
fig. 1). The C-vine copula is structured so that each level of the vine (called a tree) has a single-root
variable and all pairs are built on this root. In this copula, the root variable for each tree is the
variable that has the greatest joint dependence across the other variables, conditioned on the earlier
roots. In contrast, the D-vine copula is designed so that no single variable drives the joint dependence
throughout the vine or in each tree. Instead, the aim is to determine the variable order that will
maximise the joint dependence of the first tree. The later trees are naturally built based on the order
of the first tree. For robustness purposes, we estimate the C-vine and D-vine copulas (using the
CDVine package provided in R) and compare the results of both structures.

3.2.3. Simulating multivariate tree returns
After estimating a vine copula, we simulate returns for a typical LIC’s investable assets that reflect the
joint dependence modelled in the vine copula and the GPD marginal distributions. The simulation
algorithms of Aas et al. (2009) generate samples of uniform [0, 1] data for each asset class that reflect
the joint dependencies modeled by the vine copula by using their conditional distribution functions.
We then treat the uniform [0, 1] data as Cumulative Distribution Function (CDF) probabilities from
the corresponding asset class’s univariate GPD distribution. By applying a GPD quantile function to
these simulated CDF probabilities, we produce a simulated series of returns for each asset class. To
build portfolios of these returns, we use historical industry asset allocation weights as a starting
point. We then vary the weights within reasonable economic limits to create our set of feasible
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portfolios. To compare risk-reduction tradeoffs for the simulated feasible portfolios, we estimate the
Sortino Ratio for each portfolio for each set of weights.

4. Data

The historical asset allocation weights for the US life insurance industry come from the ACLI (2005,
2007, 2009, 2011, 2013, 2014), which provides the weights for 1994–2013. ACLI (2014) classifies the
assets held by LICs into the following categories: US government bonds, non-US government bonds,
corporate bonds, mortgage-backed bonds, common stocks, preferred stocks, farm mortgages, resi-
dential mortgages, commercial mortgages, real estate, policy loans, short-term investments, cash and
cash equivalents, derivatives, other invested assets, and non-invested assets. The last two categories
include assets such as premiums and investment income owed the company, but not yet received.

Detailed price data for each of the above accounts are not available on a company or industry basis.
Thus, for each asset category we need a proxy variable. Suitable proxy daily data are available for
US government bonds, non-US government bonds, corporate bonds, mortgage-backed bonds,
common stocks, residential mortgages, commercial mortgages, short-term investments, and cash and
cash equivalents. As of 2013, these assets account for nearly 84.6% of the general account, 96.5% of
the separate account, and 89.2% of the combined assets of both accounts. Proxies and their sources
for each of the asset classes are listed in Table 2.

For all proxies, daily log prices are calculated based on index values, and then log returns are
calculated by taking first differences of the log prices. Descriptive statistics of these proxies are also
given in Table 2. The table includes statistics for each listed proxy for a common date range available
to all variables, i.e., 2 January 1998 to 31 October 20146. The mean daily return, minimum daily
return, and maximum daily return statistics are in percentage terms. Except for Trbd6 significant
skewness is exhibited. Positive skewness is associated with Fnbd, Rmbs, and Trbd3, but Trbd, Corp,
Vwst, and Cmbs are negatively skewed. As indicated by their significant excess kurtosis, all asset
classes are “heavy-tailed.” GARCH effects also are exhibited.

5. Copula Analysis

To model the joint distribution of the asset classes, we first model the marginal distribution of each
asset using a two-tailed GPD model. We balance tail size and parameter estimation by selecting
various tail sizes ranging between 1% and 12% of the observations and select “best-fit” estimations
via examining Q-Q plots7. Table 3 contains the estimated parameters of the two-tailed GPD

6 Taken together Booth & Broussard (2002, 2016) show that extreme value statistics may be strongly
influenced by the range of data values in the sample period. Thus, it is desirable to have a longer sample period so
that there is ample opportunity for extreme values to occur. Unfortunately, earlier data with daily observations
for some of the indices are not available. Nevertheless, by using this common date range, we are able to keep a
greater number of indices and better mimic the investment choices of a LIC’s typical general and separate
accounts. Moreover, during our sample period there were at least two major economic crises – the crash in
technology stock circa 2000 and the recession of 2007–2008.

7 Selecting an appropriate tail size requires judgement. A useful place to begin is with the empirical rule
developed by Loretan & Phillips (1994). They suggest that the number of observations contained in a tail should
be expressed by k= n2=3=ln lnðnÞ½ �, where k is the number of observations included in the tail and n the sample size.
In all our cases, k falls within our specified range.
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Table 2. Definitions, sources, and descriptive statistics of daily return data.

Trbd Fnbd Corp Vwst Rmbs Cmbs Trbd3 Trbd6

Mean (×100) 0.024 0.023 0.025 0.026 0.021 0.024 0.009 0.010
Variance (×100) 0.0025 0.0035 0.0012 0.0163 0.0004 0.0022 0.0000 0.0000
Skewness −0.12 (−3.22) 0.21 (5.49) −0.34 (−9.07) −0.28 (−7.46) 0.11 (2.80) −3.14 (−83.35) 0.89 (23.73) 0.04 (1.07)
Excess kurtosis 1.83 (24.32) 3.18 (42.27) 2.21 (29.39) 7.00 (93.01) 5.42 (72.01) 80.56 (1070.07) 34.32 (455.97) 56.87 (755.50)
Minimum (×100) −2.737 −3.211 −2.492 −9.405 −1.362 −9.358 −0.255 −0.414
Maximum (×100) 3.145 5.142 2.117 10.876 1.757 4.812 0.192 0.284
Ljung-box 10.73 6.14 4.38 26.60 61.71 200.37 2144.47 726.84
Lagrange multiplier 80.18 6.36 108.29 179.78 90.96 495.81 54.42 62.80
Observations 4,236 4,236 4,236 4,236 4,236 4,234 4,236 4,236

Note 1: Column headings correspond to an individual asset class. The point estimates for skewness and excess kurtosis are augmented with t-statistics based on the null
hypothesis of zero skewness and excess kurtosis. The Ljung-Box and Lagrange Multiplier statistics are based on the null hypothesis of no linear dependence and GARCH
effects, respectively. The statistics correspond to daily observations beginning 2 January 1998 through 31 October 2014.
Note 2: Asset class designations, names, return proxies, and data sources are: Trbd, US Treasury Bonds (US Treasury Composite Index); Fnbd, Non-US Treasury Bonds
(Global Government Excluding the US Composite Index); Corp, Corporate Bonds (US Corporate Composite Index); Vwst, Common Stocks (CRSP Value-Weighted Index
(with distributions)); Rmbs, Residential Mortgages and Mortgage Backed Bonds (US Mortgage Backed Securities Index); Cmbs, Commercial Mortgages (US Fixed Rate
CMBS Index); Trbd3, Cash and Cash equivalents (US 3-Month Treasury Bill Index); Trbd6, Short-Term Investments (US 6-Month Treasury Bill Index). Except for Vwst,
which is created and provided by the Center for Research in Security Prices (CRSP), all indexes are constructed by Bank of America/Merrill Lynch and extracted from
Bloomberg. Cmbs has 4,234 observations over the common date range (rather than 4,236 observations as with the other variables) due to missing observations for 2 days
during this time period.
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marginal distributions for the individual asset classes. Again, it is apparent that equities contain a
significant amount of tail risk for life insurers. As a class, they are heavy-tailed and exhibit high
volatility estimates. Fixed income assets, on the other hand, vary with respect to tail thickness and
volatility, but corporate bonds are characterised by non-existent tail and low volatility estimates.
These marginal distributions are then transformed into cumulative distribution functions to produce
the information needed to construct the vine copulas.

For a C-vine copula, we must select the root variable for each tree of the vine. We accomplish this
using the absolute values of the Kendall’s tau estimates of the dependence between each pair of
variables in the tree. Corporate bonds are chosen to be the root variable of the first tree because this
asset class has a higher sum of the Kendall’s tau estimates than any other asset class. These
dependencies, now conditional on corporate bond returns, are calculated anew among the remaining
seven asset classes for the second tree in the vine. Again, the asset class with the highest aggregate
joint dependency is chosen to be the root variable for the second tree. This process repeats itself until
the root variables for all of the trees are chosen. The order of these root variables is Corp, Trbd6,
Rmbs, Trbd, Cmbs, Fnbd, and Trbd3 and Vwst sharing equally in the final tree.

For a D-vine copula, we again make use of the Kendall’s tau estimates. However, the basic structure
of the vine is different, and we seek the order that produces the maximum aggregate joint depen-
dence. Instead of having each non-root variable paired with the root variable, each variable is paired
with only the variable immediately preceding and following it in the order. With eight asset classes,
we have 8!, or 40,320, possible orders for the first tree. Setting up all of the possible ordering
schemes and using the Kendall’s τ estimates for each pair allows us to find the order with the highest
aggregate joint dependence. As before, we use the absolute value of each estimate when taking the
sum across all of the pairs in the ordering scheme. This produces an optimal D-vine copula order of
Trbd3, Trbd6, Fnbd, Cmbs, Rmbs, Corp, Trbd, and Vwst.

After choosing an appropriate vine copula structure, we select the appropriate copula function for
each bivariate pair in the vine and estimate the corresponding parameters of the chosen bivariate
copula. The copula selection and estimation results for the C-vine and D-vine copulas are presented

Table 3. Generalised Pareto distribution (GPD) marginal distribution estimation for vine copulas.

Trbd Fnbd Corp Vwst Rmbs Cmbs Trbd3 Trbd6

λ̂l −0.0060 −0.0064 −0.0040 −0.0144 −0.0020 −0.0031 −0.0001 −0.0001
λ̂u 0.0060 0.0064 0.0040 0.0144 0.0020 0.0031 0.0001 0.0001
τ̂l −0.0109 0.0144 −0.0308 0.1797 0.1065 0.4587 0.4639 0.4197
τ̂u 0.1063 0.0658 0.0087 0.2387 0.1365 0.3645 −0.0048 0.0707
σ̂l 0.0032 0.0035 0.0025 0.0079 0.0013 0.0019 0.0001 0.0001
σ̂u 0.0026 0.0033 0.0018 0.0071 0.0012 0.0020 0.0001 0.0002

Note: The table contains the GPD parameter estimates for each includible asset class. For each asset class, the
lower tail threshold is based on the observation value corresponding to the observation number in the range
between 1% and 12% of available variable data. The upper tail threshold is set equal to the lower tail threshold
value but with the opposite sign. The threshold is denoted by λ, the tail shape by τ, and the scale by σ.
The subscript on each parameter indicates whether the estimate is for the lower (l) or upper (u) tail. Cmbs has
4,234 observations over the common date range (rather than 4,236 observations as with the other variables) due
to missing observations for 2 days during this time period. This common date range is used for the copula
analysis.
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in Tables 4 and 5, respectively. Each table shows the asset return pairs for each tree, the relevant
conditioning returns, and the name of the selected distribution. Both vines contain seven trees and 28
variable pairs. Of the 28 C-vine (D-vine) copula pairs 60.7% (57.1%) are labelled Student-t (T),
17.9% (25.0%) are independent (I), and 7.1% (7.1%) are Frank (F). The remaining four C-vine
copula pairs are classified as Gaussian (N), Survival Gumble (SG), Survival Joe (SJ), or Joe-Frank
two-parameter Archimedean (BB8) copulas. The remaining three D-vine copulas are the Joe-Frank
two-parameter Archimedean (BB8), Rotated Joe-Frank two-factor Archimedean (RBB8), and the
Survival Joe-Frank two factor Archimedean (SBB7) copulas.

Table 4. C-vine copula selection and estimation.

Tree Variable 1 Variable 2 Conditioning set Copula Parameter 1 Parameter 2

1 Corp Ttrbd6 N/A SG 1.2499 –

Corp Rmbs N/A T 0.8310 4.5747
Corp Trbd N/A T 0.9559 2.2150
Corp Cmbs N/A T 0.7978 2.1251
Corp Fnbd N/A T 0.3381 6.7571
Corp Trbd3 N/A SJ 1.1079 –

Corp Vwst N/A T −0.2431 4.6258
2 Trbd6 Rmbs Corp T 0.1819 8.0417

Trbd6 Trbd Corp I – –

Trbd6 Cmbs Corp T 0.1307 10.2479
Trbd6 Fnbd Corp T 0.0685 15.8650
Trbd6 Trbd3 Corp BB8 4.3970 0.9164
Trbd6 Vwst Corp T −0.0661 6.8569

3 Rmbs Trbd Corp, Trbd6 I – –

Rmbs Cmbs Corp, Trbd6 T 0.2987 5.8977
Rmbs Fnbd Corp, Trbd6 T 0.1037 16.5928
Rmbs Trbd3 Corp, Trbd6 T −0.0614 12.3659
Rmbs Vwst Corp, Trbd6 T 0.0844 8.7589

4 Trbd Cmbs Corp, Trbd6, Rmbs T −0.1859 7.3073
Trbd Fnbd Corp,Trbd6, Rmbs I – –

Trbd Trbd3 Corp,Trbd6, Rmbs T 0.0260 26.1849
Trbd Vwst Corp,Trbd6, Rmbs T −0.2211 9.1631

5 Cmbs Fnbd Corp,Trbd6, Rmbs, Trbd N 0.0722 –

Cmbs Trbd3 Corp, Trbd6, Rmbs, Trbd T −0.0603 15.8395
Cmbs Vwst Corp, Trbd6, Rmbs, Trbd I – –

6 Fnbd Trbd3 Corp, Trbd6, Rmbs, Trbd, Cmbs F −0.2615 –

Fnbd Vwst Corp, Trbd6, Rmbs, Trbd, Cmbs I – –

7 Trbd3 Vwst Corp, Trbd6, Rmbs, Trbd, Cmbs, Fnbd F 0.2397 –

Note: The table contains the copula selection and parameter estimates for each bivariate pair in the C-vine copula
of a life insurance company’s includible asset classes. Variable 1 contains the root variable for each respective tree
in the vine. Conditioning set contains the root variables from earlier trees that are now conditioned on when
estimating the current tree. The entries in Copula indicate the copula function chosen where “I” denotes the
independence copula, “N” denotes the Gaussian copula, “T” denotes the Student-t copula, “F” denotes the Frank
copula, “BB8” denotes the Joe-Frank two-parameter Archimedean copula, “SG” denotes the survival version of
the Gumbel copula, and “SJ” denotes the survival version of the Joe copula. For the Gaussian and Student-t
copulas, Parameter 1 is a dependence parameter ρ∈ (−1, 1). For the Student-t copula, Parameter 2 is a degrees of
freedom parameter ν>2. For the one-parameter Archimedean copulas, Parameter 1 is θ≥ 1 (for Gumbel),
θ 2 R\{0} (for Frank), or θ> 1 (for Joe). For the two-parameter Archimedean copulas, the dependence is governed
by two parameters, which are θ≥1 and δ∈ (0, 1] for the BB8 copula.
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To address the question of whether the C-vine or D-vine structure model better fits the underlying
data, we use the likelihood ratio-based tests proposed by Vuong (1989) and Clarke (2007)
and summarised by Brechmann & Schepsmeier (2013). Both of these are based on ratios of the
competing vine copula densities and reject the null hypothesis that the two densities are similar if the
ratios are sufficiently large. Table 6, Panel A contains the calculated values of the test statistics and
p-values for both tests. The Vuong test suggests that the null hypothesis of statistical indis-
tinguishability cannot be rejected. In contrast, the Clarke test supports the supposition that the
C-vine model is a better fit. After correcting for the number of parameters using the Akaike and
Schwarz procedures, both tests provide the same qualitative conclusions.

Table 5. D-vine copula selection and estimation.

Tree Variable 1 Variable 2 Conditioning set Copula Parameter 1 Parameter 2

1 Trbd3 Trbd6 N/A BB8 4.7491 0.8859
Trbd6 Fnbd N/A SBB7 1.1160 0.1075
Fnbd Cmbs N/A T 0.3110 6.1904
Cmbs Rmbs N/A T 0.7587 2.8094
Rmbs Corp N/A T 0.8310 4.5747
Corp Trbd N/A T 0.9559 2.2150
Trbd Vwst N/A T −0.2961 4.2864

2 Trbd3 Fnbd Trbd6 F −0.6923 –

Trbd6 Cmbs Fnbd T 0.2565 4.9743
Fnbd Rmbs Cmbs T 0.1557 18.4851
Cmbs Corp Rmbs T 0.4699 4.1301
Rmbs Trbd Corp I – –

Corp Vwst Trbd T 0.1314 6.4029
3 Trbd3 Cmbs Trbd6, Fnbd RBB8 −1.7545 −0.7682

Trbd6 Rmbs Fnbd, Cmbs T 0.1692 21.0446
Fnbd Corp Cmbs, Rmbs T 0.0668 12.2309
Cmbs Trbd Rmbs, Corp T −0.1923 6.7365
Rmbs Vwst Corp, Trbd T 0.0927 11.5838

4 Trbd3 Rmbs Trbd6, Fnbd, Cmbs T −0.0679 12.0842
Trbd6 Corp Fnbd, Cmbs, RCbs I – –

Fnbd Trbd Cmbs, Rmbs, Corp I – –

Cmbs Vwst Rmbs, Corp, Trbd I – –

5 Trbd3 Corp Trbd6,Fnbd, Cmbs, Rmbs I – –

Trbd6 Trbd Fnbd, Cmbs, Rmbs, Corp I – –

Fnbd Vwst Cmbs, Rmbs, Corp,Trbd I – –

6 Trbd3 Trbd Trbd6, Fnbd, Cmbs, Rmbs, Corp T 0.0370 27.4600
Trbd6 Vwst Fnbd, Cmbs, Rmbs, Corp, Trbd T −0.0743 11.9488

7 Trbd3 Vwst Trbd6, Fnbd, Cmbs, Rmbs, Corp, Trbd F 0.2482 –

Note: The table contains the copula selection and parameter estimates for each bivariate pair in the D-vine copula of a
life insurance company’s includible asset classes. The entries in Copula indicate the copula function chosen where “I”
denotes the independence copula, “T” denotes the Student-t copula, “F” denotes the Frank copula, “BB8” denotes the
Joe-Frank two-parameter Archimedean copula, “SBB7” denotes the survival version of the Joe-Clayton two-para-
meter Archimedean copula, and “RBB8” denotes the 270° rotated version of the BB8 copula. For the Student-t
copula, Parameter 1 is a dependence parameter ρ∈ (−1, 1) and Parameter 2 is a degrees of freedom parameter ν>2.
For the Frank one-parameter Archimedean copula, Parameter 1 is θ 2 R\{0}. For the two-parameter Archimedean
copulas, the dependence is governed by two parameters, which are θ≥1 and δ>0 for the SBB7 copula and θ≥1 and
δ∈ (0, 1] for the BB8 copula. The 270° rotated versions of the Archimedean copulas allow for negative dependence
and have parameter spaces with the opposite sign, i.e., θ≤−1 and δ∈ [−1, 0) for the RBB8 copula.
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Because of the large percentage of Student-t copula pairs, we redo the C-vine analysis modelling
all copula pairs as a Student-t distribution. The results of this estimation are given in Table 7.
Two of the copula pairs are designated as Gaussian and not Student-t. This is because when the
Student-t degrees of freedom are reasonably large, a Gaussian distribution is a good proxy for
it and the overall vine calculation is simplified by making this substitution. As shown in Table 6,
Panel B, the uncorrected and Akaike corrected Vuong tests indicate that the notion that the Student-t
C-vine model is a better fit than the original C-vine model cannot be rejected. However, the
uncorrected and corrected Clarke and the Schwarz corrected Vuong tests indicate that the null
hypotheses that both C-vine versions explain the data equally well cannot be rejected.
Thus, we continue our analysis using both the C-vine pairing results, which are displayed in
Tables 4 and 7.

6. General Account Optimal and Actual Equity Allocations

For each of the C-vine constructs, we empirically assess the efficacy of the typical LIC’s equity
allocation policies by creating stylised asset portfolios for 1994, 1998, 2002, 2006, 2010, and 2013,
each of which reflects the industry balance sheet for the reference year. For each of these years we use
the Sortino Ratio to determine the portfolio that provides the best performance. We then compare
the equity allocation of these top-performing portfolios to appropriate benchmarks.

Table 6. Vuong and Clarke tests comparing three vine copula models.

Vuong Clarke

Panel A – comparing C-vine and D-vine copula models

Test statistic (uncorrected) 1.45 2233
p-value 0.1461 0.0004
Test statistic (Akaike correction) 1.42 2231
p-value 0.1558 0.0005
Test statistic (Schwarz correction) 1.31 2225
p-value 0.1897 0.0010
Number of observations 4,236 4,236

Panel B – comparing C-vine and Student-t vine copula models

Test statistic (uncorrected) −2.62 2087
p-value 0.0088 0.3646
Test statistic (Akaike correction) −2.37 2099
p-value 0.0176 0.5907
Test statistic (Schwarz correction) −1.59 2155
p-value 0.1122 0.2491
Number of observations 4,236 4,236

Note: The table contains the test statistics and p-values for the Vuong (1989) and Clarke
(2007) tests on the statistical indistinguishability of our estimated C-vine and D-vine copula
models. Both tests are based on the log-likelihood ratios of the competing vine copula densities
c1 (for C-vine) and c2 (for D-vine) and reject the null hypothesis of indistinguishability if the
ratios are sufficiently large across our data set. To do so, we calculate the log difference
mi = log c1 ui;1;ui;2 j θ̂1

� �� �� log c2 ui;1; ui;2 j θ̂2
� �� �

for observations ui,j and estimated
parameters θ̂j, i=1,… , N and j=1, 2. The test statistic for the Vuong test is the standardised
sum of mi, which is asymptotically standard normal. For the Clarke test, the test statistic is the
sum of mi, given that mi is strictly positive, which is asymptotically binomial.
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To arrive at these comparisons, several steps must be taken. First, using the GPD and the two C-vine
copula estimates, we simulate 10,000 daily returns for each asset class. Second, we determine a
feasible set of combined (general and separate) account weights for each of the years. The general
account weights are choice variables for the LIC. In contrast, the separate account weights are
predetermined because they reflect investment decisions made directly by policyholders. As explained
in section 4, because we lack data for assets such as policy loans and other assets, the weights used in
the analysis are slightly different than those derived directly from the various ACLI Fact Books. After
excluding those missing asset classes, we normalise the weights for the remaining asset classes so that
they sum to one. For our data period, the includible asset classes always account for at least 85% of
the general account assets. Third, we construct 26 portfolios where the general account equity
allocation ranges from 0% to 5% in 20 basis point intervals. This range reflects the actual weights
that have been chosen by LICs and does not violate any of the asset allocation regulatory constraints.
Fourth, for each portfolio formed, we calculate the Sortino Ratio for that portfolio’s left tail

Table 7. Student-t C-Vine copula selection and estimation.

Tree Variable 1 Variable 2 Conditioning set Copula Parameter 1 Parameter 2

1 Corp Trbd6 N/A T 0.3145 9.4954
Corp Rmbs N/A T 0.8310 4.5747
Corp Trbd N/A T 0.9559 2.2150
Corp Cmbs N/A T 0.7978 2.1251
Corp Fnbd N/A T 0.3381 6.7571
Corp Trbd3 N/A T 0.1044 17.1437
Corp Vwst N/A T −0.2431 4.6258

2 Trbd6 Rmbs Corp T 0.1817 8.1252
Trbd6 Trbd Corp T 0.0275 16.2137
Trbd6 Cmbs Corp T 0.1262 10.0775
Trbd6 Fnbd Corp T 0.0675 15.2077
Trbd6 Trbd3 Corp T 0.7887 2.7613
Trbd6 Vwst Corp T −0.0651 6.4414

3 Rmbs Trbd Corp, Trbd6 T 0.0473 6.5113
Rmbs Cmbs Corp, Trbd6 T 0.2995 5.8822
Rmbs Fnbd Corp, Trbd6 T 0.1037 16.4520
Rmbs Trbd3 Corp, Trbd6 T −0.0584 13.7533
Rmbs Vwst Corp, Trbd6 T 0.0837 8.8084

4 Trbd Cmbs Corp, Trbd6, Rmbs T −0.1891 7.4126
Trbd Fnbd Corp,Trbd6, Rmbs T 0.0049 24.2087
Trbd Trbd3 Corp,Trbd6, Rmbs N 0.0452 –

Trbd Vwst Corp,Trbd6, Rmbs T −0.2231 8.3314
5 Cmbs Fnbd Corp,Trbd6, Rmbs, Trbd N 0.0694 –

Cmbs Trbd3 Corp, Trbd6, Rmbs, Trbd T −0.0690 15.4801
Cmbs Vwst Corp, Trbd6, Rmbs, Trbd T −0.0018 10.9575

6 Fnbd Trbd3 Corp, Trbd6, Rmbs, Trbd, Cmbs N −0.0345 –

Fnbd Vwst Corp, Trbd6, Rmbs, Trbd, Cmbs T 0.0018 15.6667
7 Trbd3 Vwst Corp, Trbd6, Rmbs, Trbd, Cmbs, Fnbd N 0.0294 –

Note: The table contains the copula selection and parameter estimates for each bivariate pair in the C-vine copula
of a life insurance company’s includible asset classes. Variable 1 contains the root variable for each respective tree
in the vine. Conditioning set contains the root variables from earlier trees that are now conditioned on when
estimating the current tree. The entries in Copula indicate the copula function chosen where “T” denotes the
Student-t copula and “N” denotes the Gaussian copula. For both copulas, Parameter 1 is a dependence parameter
ρ∈ (−1, 1). For the Student-t copula, Parameter 2 is a degrees of freedom parameter ν>2.
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containing 248 observations, which is 5.85% of the total number of simulated returns and
approximately equal to the midpoint of the tail sizes considered. The optimal combined account
equity allocation for each year is determined by that year’s maximum Sortino Ratio value. Finally,
we repeat this protocol 100 times and calculate the mean and standard deviation of optimal equity
allocations.

The optimal allocation results are displayed in Table 8. Panel A presents the two sets of mean C-vine
optimal general account equity allocations. For both sets, we calculate the optimal general account
equity allocation using the optimal allocation of the combined account, the equity allocation in the
separate account, and the total values of the general and combined accounts. The last three variables
are predetermined so that a change in a combined account allocation is fully reflected in the general
account allocation. Panels B and C contain similar information for the separate and combined
accounts, respectively.

As shown in Panel A, the C-vine equity allocation for the general account ranges from 0.65% to
1.32%, with a mean of 1.08%, and the corresponding Student-t C-vine range is 0.27% to 1.43%,
with a mean of 0.85%. Neither range exhibits a discernable time trend. The mean difference in the
means of the two optimal allocation measures is 0.23%. If the 1994 value is omitted, the mean
difference declines to 0.08%, which is smaller than the 20 basis point measurement interval, and
there is no significant difference in yearly means. For 1998 through 2013, the t-test for difference in
means p-value ranges from 0.176 to 0.831. For 1994, however, the p-value is less than 10−7, which
indicates that after the Bonferroni correction, the hypothesis that as a group the mean differences are
equal is rejected at any reasonable level of significance. This rejection is confirmed by the MANOVA
Pillai test (p-value is 6.93×10−10).

Table 8. Optimal and actual equity allocations.

1994 1998 2002 2006 2010 2013

Panel A – general account (%)

C-vine (s.d.) 1.25 (1.74) 0.99 (1.41) 0.65 (1.24) 1.31 (1.75) 0.97 (1.29) 1.32 (1.69)
C-vine, Student-t (s.d.) 0.27 (0.78) 0.74 (1.18) 0.55 (1.08) 1.43 (1.65) 0.93 (1.35) 1.19 (1.47)
Hyperplane 2.60 4.60 4.20 2.40 4.20 1.40
Actual 5.04 4.54 2.94 3.07 2.46 2.37

Panel B – separate account (%)

Actual 66.64 81.44 77.25 84.80 83.70 84.61

Panel C – combined account (%)

C-vine (s.d.) 13.04 (1.43) 26.93 (0.95) 22.37 (0.89) 31.18(1.12) 29.84 (0.84) 33.14 (1.05)
C-vine, Student-t (s.d.) 12.24 (0.64) 26.76 (0.80) 22.30 (0.77) 31.26 (1.06) 29.81 (0.88) 33.06 (0.91)
Hyperplane 14.14 29.38 24.91 31.88 31.94 33.19
Actual 16.14 29.34 24.01 32.31 30.80 33.79

Note 1: The table contains life insurance company general, separate, and combined account equity allocations of
the includible asset classes for selected years. The vine optimal equity allocations are derived from the optimal
allocations of the combined account, the equity allocation in the separate account, and the total values of the
general and combined accounts. The C-vine entries are the means and standard deviations of simulations. For
comparison, the corresponding, the hyperplane analysis, and actual industry allocation values are provided. Note
that the actual allocations may be somewhat different from those presented in Table 1 because this table excludes
asset classes for which suitable proxy data sources were not available (see section 4).
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As demonstrated above, the calculated vine equity allocation values assume that asset returns
are unknown but that their stochastic processes are measurable. Thus, it is instructive to compare
these allocation values to those calculated when the relevant asset returns are known. To determine
the optimal equity allocation under this scenario, we follow Booth & Broussard (2016) and
use the returns for all the assets under consideration to construct numerous portfolios using various
portfolio weights. This creates a risk-return hyperplane, which condenses to an equity allocation
versus portfolio return plane. We fit a GPD to the left tail of each prospective portfolio’s
return distribution and use the GPD to calculate the Sortino Ratio for each portfolio. As before,
we declare the portfolio with the highest Sortino Ratio value to be optimal. We report the
corresponding optimum equity allocation for the six sample years in Panels A and C. The mean
equity allocation is 3.23% and ranges from 1.40% to 4.60%. These hyperplane percentages
are noticeably higher than the vine results, but, similar to the vine equity allocation, there is no
discernable time pattern.

It is also meaningful to compare all of the calculated equity allocation values to the insurance
industry actual allocation values. The actual mean value is 3.40%, but in contrast to the other
allocation measures, the actual allocation decreased from 5.04% in 1994 to 2.37% in 2013, with
noticeable decreases occurring following major stock market declines (Panel A). It is noteworthy that
during the same time period, the separate account equity allocation increased from 66.64% to
84.81%, nearly 18 percentage points, with the allocation being relatively constant from 1998
onward (Panel B). This substantial shift in equity allocation is reflected in the annual combined
account allocation data (Panel C).

7. Concluding Remarks

In this study, we use uni- and multivariate extreme value statistical methods to model and measure
the downside market risk contained in a typical LIC investment portfolio. Our purpose is to provide
insights into their historical optimal asset allocation choices. These companies are particularly prone
to this type risk of because of the guarantees they provide on their products. Our theoretical
underpinning is the LPMCAPM, which ensures that the allocation choices reflect the safety-first
objective. We also incorporate the notion of background risk since the allocation decisions are jointly
determined by the LIC and its policyholders8.

Our analyses provide two key economic results. First, we confirm that equity is a major LIC
investment class. Nevertheless, in the years covered by the study, we find that the industry’s allo-
cation to equities in the general account decreased, which mirrors the corresponding increase of
equities in the separate account. This decrease is especially noteworthy because of the ability to
manage equity risks through strategies other than asset allocation (e.g. hedging). Second, the extreme
value performance results indicate that general account equity allocation should be less than 2%
when the corresponding separate account allocation is around 80%. In the last year of our sample,
2013, the average industry allocation was close to this statistical recommendation, but was far
smaller than the maximum mandated by state laws and the limit suggested by NAIC. Taken together
the last two results indicate that, as a whole, the life insurance industry is acting as if safety first is an
important objective.

8 The company retains some control because policyholders must choose from the investment options provided
by the company. The ultimate decision of how much to invest in the menu of alternatives, however, lies with the
policyholders.
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Overall, our results suggest that the life insurance industry has recognised the risk implications of
their policyholders’ move to variable life insurance and annuity products and in response, have
gradually adjusted their general account asset allocations to better weather the difficulties caused by
potential extreme decreases in the value of their equity investments. Nevertheless, they also indicate
that the industry’s ability to use the general account in this manner is constrained on the downside.
This constraint is immutable and may require the industry to create new types of risk management
strategies, or consider limiting or modifying separate account product offerings if its overall equity
investments continue to grow. More generally, our study highlights the potential complications of
making optimal asset allocation decisions for investors that have their risk exposure partially
determined by the asset allocation decisions of others.
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