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In constructive theories, an apartness relation is often taken as basic and its negation used

as equality. An apartness relation should be continuous in its arguments, as in the case of

computable reals. A similar approach can be taken to order relations. We shall here study

the partial order on open intervals of computable reals. Since order on reals is undecidable,

there is no simple uniformly applicable lattice meet operation that would always produce

non-negative intervals as values. We show how to solve this problem by a suitable definition

of apartness for intervals. We also prove the strong extensionality of the lattice operations,

where by strong extensionality of an operation f on elements a, b we mean that apartness of

values implies apartness in some of the arguments: f(a, b) 6= f(c, d) ⊃ a 6= c ∨ b 6= d.
Most approaches to computable reals start from a concrete definition. We shall instead

represent them by an abstract axiomatically introduced order structure.

1. Constructive linear order with minimum and maximum

A set L with a relation a < b is a constructive linear order if it satisfies

LO1. ∼ (a < b & b < a),

LO2. a < b ⊃ a < c ∨ c < b.
The strict linear order a < b allows us to define apartness, equality and weak linear order

by

a 6= b ≡ a < b ∨ b < a, (1.1)

a = b ≡ ∼a 6= b, (1.2)

a 6 b ≡ ∼b < a. (1.3)

These have the usual constructively valid properties.

A constructive linear order with minimum and maximum has the two-place operations

min(a, b), max(a, b) with the additional axioms

LO3. min(a, b) 6 a, min(a, b) 6 b,

LO4. a 6 max(a, b), b 6 max(a, b).

LO5. min(a, b) < c ⊃ a < c ∨ b < c,
LO6. c < max(a, b) ⊃ c < a ∨ c < b.

Constructively, we do not have the property min(a, b) = a ∨ min(a, b) = b, nor the dual
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max(a, b) = a∨max(a, b) = b, but the following result shows that axioms LO5 and LO6 are

still constructively acceptable.

Theorem 1.1.

(i) ∼ (min(a, b) < a & min(a, b) < b) is equivalent to LO5,

(ii) ∼ (a < max(a, b) & b < max(a, b)) is equivalent to LO6.

Proof. (i) In order to derive LO5, assume min(a, b) < c. Then, by LO2, min(a, b) < a∨a < c.
Case 1. If min(a, b) < a, then b 6 min(a, b) by ∼ (min(a, b) < a & min(a, b) < b). Therefore

b < c, so a < c ∨ b < c.
Case 2. a < c gives a < c ∨ b < c.

To show the reverse implication, assume LO5 and min(a, b) < a & min(a, b) < b. By LO5,

a < a ∨ b < a and a < b ∨ b < b, which is impossible.

(ii) The proof for max is similar.

Contraposition of axioms LO5 and LO6 gives uniqueness principles for min and max

analogous to those for meet and join in a lattice. (See also von Plato (1996) for more

details.)

In Negri and Soravia (1998), Axioms LO1–LO6 are explicitly verified for formal reals,

a version of computable reals based on constructive pointfree topology. They also show

the equivalence of formal reals to several other, more common approaches to computable

reals.

2. Open intervals

Open intervals will be elements of the product L × L of a set L with constructive linear

order with minimum and maximum. We shall say that an interval (a, b) is positive if a < b,

negative if b < a, nonpositive if b 6 a, nonnegative if a 6 b and degenerate if a = b.

Definition 2.1. (a, b) 
 (c, d) ≡ a < b & (a < c ∨ d < b).
We say that interval (a, b) exceeds interval (c, d) if (a, b) 
 (c, d).

Lemma 2.2.

(i) ∼ (a, b) 
 (a, b),

(ii) (a, b) 
 (c, d) ⊃ (a, b) 
 (e, f) ∨ (e, f) 
 (c, d).

Proof. (i) By ∼ (a < a ∨ b < b).
(ii) Let (a, b) 
 (c, d), or a < b & (a < c ∨ d < b). We have to prove

a < b & (a < e ∨ f < b) ∨ e < f & (e < c ∨ d < f). (∗)
Case 1. a < b & a < c. Then a < e ∨ e < b by axiom LO2.

Case 1.1. a < e. Then (∗) follows.

Case 1.2. e < b. Then e < f ∨ f < b by LO2.

Case 1.2.1. e < f. Then by a < c, a < e ∨ e < c.
Case 1.2.1.1 a < e. Then (∗) follows.

Case 1.2.1.2 e < c. Then (∗) follows.

Case 1.2.2. f < b. Then (∗) follows.

Case 2. a < b & d < b. The proof is similar.
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Note that 2.2(ii) has the same form as Axiom LO2. We call it splitting of excess, or just

splitting for short. The following are immediate consequences of Definition 2.1.

Corollary 2.3.

(i) (a, b) 
 (c, c) ⊃ a < b,
(ii) ∼ (c, c) 
 (a, b).

Using the same notation for relations in L and L× L, we define apartness, equality, and

weak and strict partial order relations in L× L by the following:

(a, b) 6= (c, d) ≡ (a, b) 
 (c, d) ∨ (c, d) 
 (a, b) (2.1)

(a, b) = (c, d) ≡ ∼ (a, b) 6= (c, d) (2.2)

(a, b) 6 (c, d) ≡ ∼ (a, b) 
 (c, d) (2.3)

(a, b) < (c, d) ≡ (a, b) 6 (c, d) & (a, b) 6= (c, d). (2.4)

These relations have the usual constructive properties. If a < b, it follows that

(a, b) 6 (c, d) ⊃⊂ c 6 a & b 6 d (2.5)

(a, b) < (c, d) ⊃⊂ (c 6 a & b < d) ∨ (c < a & b 6 d). (2.6)

Definition (2.4) is equivalent to

(a, b) < (c, d) ⊃⊂ (c, d) 
 (a, b) & ∼ (a, b) 
 (c, d). (2.7)

There is by Corollary 2.3(ii) a bottom element (c, c) of the partial ordering of intervals:

(c, c) 6 (a, b). (2.8)

Its uniqueness is guaranteed by our definition of interval equality. Further, it follows from

Corollary 2.3 that all nonpositive, degenerate and negative intervals are equal, so we have

the following corollary.

Corollary 2.4.

(i) b 6 a ⊃ (a, b) = (c, c),

(ii) (a, a) = (c, c),

(iii) b < a ⊃ (a, b) = (c, c).

3. The lattice of open intervals

So far we have established an excess relation for intervals and shown that this relation is

irreflexive and obeys the splitting property, Lemma 2.2. The usual reflexive and transitive

partial order was obtained as negation of excess, in (2.3). We shall now proceed to giving

a special lattice structure to the open intervals of the constructive continuum.

We first define the meet and join operations for intervals:

(a, b)∧(c, d) ≡ (max(a, c), min(b, d)) (3.1)

(a, b)∨(c, d) ≡ (min(a, c), max(b, d)). (3.2)

This definition gives meets that can be negative intervals, which is not a problem
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if the partial order is decidable. But we avoid the dependency of meet on a proof of

nonnegativity through Definition 2.1: say, if in (3.1) we have min(b, d) < max(a, c), the meet

is by Corollary 2.4 equal to the bottom element (c, c). Our Definition 2.1 leads to equating

all negative, nonpositive and degenerate intervals, thus permitting a uniformly applicable

lattice meet operation for intervals even if the order relation is undecidable. It also follows

that any positive interval covers the bottom element, a < b ⊃ (c, c) < (a, b). More, generally,

if we have a notion of positivity for opens of a topological space, a suitable definition of

apartness and equality of opens can give a result to this effect.

The following lemma collects the lattice properties resulting from our definition of

intervals and of lattice meet and join.

Lemma 3.1.

(i) (a, b)∧(c, d) 
 (e, f) ⊃ (a, b) 
 (e, f),

(ii) (a, b)∧(c, d) 
 (e, f) ⊃ (c, d) 
 (e, f),

(iii) (a, b) 
 (c, d)∨(e, f) ⊃ (a, b) 
 (c, d),

(iv) (a, b) 
 (c, d)∨(e, f) ⊃ (a, b) 
 (e, f),

(v) (a, b) 
 (c, d)∧(e, f) ⊃ (a, b) 
 (c, d) ∨ (a, b) 
 (e, f),

(vi) (a, b)∨(c, d) 
 (e, f) ⊃ (a, b) 
 (e, f) ∨ (c, d) 
 (e, f).

Proof. (i) If (a, b)∧(c, d) 
 (e, f), Definition (3.1) gives (max(a, c), min(b, d)) 
 (a, b) so by

the definition of interval excess (Definition 2.1),

max(a, c) < min(b, d) & (max(a, c) < e ∨ f < min(b, d)).

We have to prove that a < b & (a < e∨f < d). By max(a, c) < min(b, d), we get a < b. For the

rest, there are two cases: if max(a, c) < e, then a < e, and if f < min(b, d), then f < d. Laws

(ii)–(iv) are proved similarly. For (v), assume (a, b) 
 (c, d)∧(e, f), so

a < b & (a < max(c, e) ∨ min(d, f) < b).

If a < max(c, e), we have a < c ∨ a < e by LO6. If a < c, then (a, b) 
 (c, d), and if a < e,

then (a, b) 
 (e, f). If min(d, f) < b, the conclusion follows similarly by LO5. (vi) is proved

analogously.

The usual lattice laws are, up to a simple modification, contrapositions of the above ones.

If (a, b)∧(c, d) 
 (a, b), substitution of (a, b) for (e, f) in Lemma 3.1(i) gives an impossibility

so that (a, b)∧(c, d) 6 (a, b) follows, and a similar remark applies to (ii)–(iv). For (v)–(vi),

we take contrapositions to arrive at the following corollary.

Corollary 3.2.

(i) (a, b)∧(c, d) 6 (a, b),

(ii) (a, b)∧(c, d) 6 (c, d),

(iii) (a, b) 6 (a, b)∨(c, d),
(iv) (c, d) 6 (a, b)∨(c, d),
(v) (a, b) 6 (c, d) & (a, b) 6 (e, f) ⊃ (a, b) 6 (c, d)∧(e, f),

(vi) (a, b) 6 (e, f) & (c, d) 6 (e, f) ⊃ (a, b)∨(c, d) 6 (e, f).

In the other direction, of the laws given by Lemma 3.1, the first four can be derived

from the corresponding ones in the corollary, using splitting of excess, but the last two
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are constructively stronger than the usual uniqueness principles for lattice meet and join.

A characteristic consequence of 3.1(i)–(vi), one that cannot be proved from 3.2(i)–(vi), is

the following result about the meet and join operations.

Theorem 3.3.

(i) (a1, b1)∧(c1, d1) 
 (a2, b2)∧(c2, d2) ⊃ (a1, b1) 
 (a2, b2) ∨ (c1, d1) 
 (c2, d2),

(ii) (a1, b1)∨(c1, d1) 
 (a2, b2)∨(c2, d2) ⊃ (a1, b1) 
 (a2, b2) ∨ (c1, d1) 
 (c2, d2).

Proof. By Lemma 3.1(v), antecedent of (i) gives

(a1, b1)∧(c1, d1) 
 (a2, b2) ∨ (a1, b1)∧(c1, d1) 
 (c2, d2).

In the first case, we have by splitting,

(a1, b1)∧(c1, d1) 
 (a1, b1) ∨ (a1, b1) 
 (a2, b2),

but the former is impossible by Corollary 3.2(i), so (a1, b1) 
 (a2, b2) follows. In the second

case, we similarly get (c1, d1) 
 (c2, d2). Law (ii) is proved analogously.

It is easy to see that we can replace the excess relations in the above result by apartnesses.

This leads to what can be called, following the general terminology of Troelstra and van

Dalen (1988, p. 386), strong extensionality of the meet and join for intervals. We can go

further in the arguments of meet and join: it follows almost by definition that in general,

(a, b) 6= (c, d) ⊃ a 6= c ∨ b 6= d. (3.3)

We then get the promised result as the following corollary.

Corollary 3.4.

(i) (a1, b1)∧(c1, d1) 6= (a2, b2)∧(c2, d2) ⊃ a1 6= a2 ∨ b1 6= b2 ∨ c1 6= c2 ∨ d1 6= d2,

(ii) (a1, b1)∨(c1, d1) 6= (a2, b2)∨(c2, d2) ⊃ a1 6= a2 ∨ b1 6= b2 ∨ c1 6= c2 ∨ d1 6= d2.

Strong extensionality has as a consequence, through contraposition, the substitution

principle of equals in the meet and join operations.

4. Relation to earlier literature

In earlier literature, Scott (1968) comes closest to the structure we have given to order

in the intuitionistic continuum. We find there the two axioms of constructive linear

order, and apartness, equality and weak order as defined from strict linear order, but no

axiomatization of minimum and maximum. The two axioms are also found in Bridges

(1989), and various metamathematical independence proofs are given in Bridges (1991).

Brouwer (1927, 1950) studies properties of the relation we write as ∼∼a < b, which he calls

‘the non–contradictory of the measurable natural order on the continuum’. Heyting (1956,

p. 110) studies what we call constructive linear order, but treats equality as primitive.

Axiom LO2 is explicit, and LO1 follows from Heyting’s (somewhat redundant) set of

axioms. (Say, if a < b & b < a, transitivity gives a < a, and then ∼a = a by Heyting’s Axiom

(1), which is impossible.) In Kleene and Vesley (1965, p. 143), we find as properties of the

strict order relation on the continuum Axiom LO2, then a < b ⊃ ∼b < a and (redundantly)

∼a < a.
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As for the lattice structure of open intervals of the intuitionistic continuum, it needs

axiomatically introduced operations of minimum and maximum, and a solution to the

uniformity problem of the lattice meet operation. The only consideration in this direction

we have found is in Heyting (1956, p. 26), where he proves properties of computable reals.

There we find as theorems some results corresponding to the first two axioms of min and

max, namely LO3 and LO4.

Since order in the continuum is not decidable, it behaves rather like a partial order. This

is indicated already in Brouwer’s early paper Brouwer (1927). However, constructivization

of partial order cannot be based on a strict partial order relation and an apartness

relation. For example, such constructively valid properties as strong extensionality of lattice

operations, do not follow from axiomatizations with strict partial order and apartness.

The notion of excess and its characteristic properties of irreflexivity and splitting, as in

Lemma 2.2, show a simple way out here.
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