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Abstract. It is shown that using Pade! approximants in the evaluation of the
plasma dispersion function Z for a Maxwellian plasma is equivalent to the exact
treatment for a plasma described by a ‘simple-pole distribution’, i.e. a
distribution function that is a sum of simple poles in the complex velocity plane
(v plane). In general, such a distribution function will have several zeros on the
real v axis, and negative values in some ranges of v. This is shown to be true for
the Pade! approximant of Z commonly used in numerical packages such as
WHAMP. The realization that an approximation of Z is equivalent to an
approximation of f(v) leads the way to the study of more general distribution
functions, and we compare the distribution corresponding to the Pade!
approximant used in WHAMP with a strictly positive and monotonically
decreasing approximation of a Maxwellian.

1. Introduction

Dispersion relations are fundamental for understanding the linear properties of
homogeneous plasmas. To derive a dispersion relation in kinetic plasma theory,
a distribution function for each particle species is introduced to describe the
unperturbed plasma. As an equilibrium plasma is described by a Maxwellian
velocity distribution, this distribution is widely used in textbooks as well as in
research papers. Even in cases where the plasma is clearly non-Maxwellian,
sums and products of Maxwellians are often used (see e.g. Maggs 1976;
Gustafsson et al. 1990). The reason for this seems to be more that already-
established and well-known results for the Maxwellian distribution can be used,
rather than a belief that a combination of Maxwellians actually gives an
optimal description of the situation. However, it is also possible to model the
plasma without reference to the Maxwellian, and the best known way is
probably to use the Lorentzian or kappa distribution (Summers and Thorne
1991). In this paper, we want to shed light on an approximation frequently used
in the wave theory of Maxwellian plasmas by comparison with results obtained
by using another class of distribution functions, the simple-pole distributions
introduced by Lo$ fgren and Gunell (1997).

The Maxwellian distribution can be written

f
M
(v)¯

1

oπ
e−v

#, (1.1)
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Figure 1. The ‘Nautilus convention’. The integration path must always go below the pole
at v¯ s.

where the normalized velocity v is related to the particle velocity u by u¯ vv
t
,

v
t
¯ (2K

B
T}m)"/# is the thermal velocity, K

B
is Boltzmann’s constant and T is

the temperature. The derivation of a dispersion relation for waves in a plasma
with Maxwellian particle distribution leads to the plasma dispersion function
(Fried and Conte 1961)

Z(s)¯
1

oπ&
¢

−¢

e−v
#

v®s
dv, (Im s" 0), (1.2)

or some equivalent integral. For instance, the dispersion relation for an
unmagnetized plasma with M particle species is

k#¯ 3
M

α="

ω#
pα

v#
tα

Z!α(ω}k). (1.3)

Corresponding expressions for magnetized plasmas can readily be found in
standard textbooks (e.g. Brambilla 1998). Care must be taken to treat the pole
at v¯ s correctly when analytically continuing the definition (1.2) into the
lower complex v plane, leading to the ‘Nautilus convention’ shown in Fig. 1 (cf.
Swanson 1989) and the extended definition (cf. Brambilla 1998, p. 107)

Z(s)¯
1

oπ&
¢

−¢
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v®s
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0 (Im s" 0),

ioπe−s
# (Im s¯ 0),

2ioπe−s
# (Im s! 0),

(1.4)

valid for all complex s.
The integrand in (1.4) does not have any poles except v¯ s, and goes to

infinity as vU³i¢. In contrast to the class of distribution functions to be
considered in Sec. 2, the integral cannot be calculated using the residue
theorem, and Z(s) must in general be found by approximate or numerical
methods.

In addition to the obvious interest in studies of non-equilibrium plasmas,
there may thus be another reason to consider non-Maxwellian distributions: the
desire to simplify computations. Other distributions may allow analytical
calculation of the integral corresponding to (1.4), which we define as the
generalized plasma dispersion function

Z
G
(s)¯&

¢

−¢

f(v)

v®s
dv (Im s" 0) (1.5)

https://doi.org/10.1017/S0022377800008606 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377800008606


PadeU approximation of plasma dispersion function 289

In Sec. 2, we discuss the ‘simple-pole distribution’, for which we derive an
analytical expression for Z

G
(s). In Sec. 3, we compare this function with the

Pade! approximation used to calculate Z(s), for example by Ro$ nnmark (1982).
It is found that the Pade! approximation of Z(s) is identical to an exact
expression for Z

G
(s) for a unique simple-pole distribution, which turns out to be

piecewise-negative. Some other possible approximations of the Maxwellian
distribution are discussed and compared with the Pade! approximation in
Sec. 4. Finally, we discuss the results in Sec. 5.

2. The simple-pole distribution

We model the distribution function of a plasma particle species as a sum of
simple poles in the complex velocity plane,

f(v)¯3
j

a
j

v®b
j

, (2.1)

which we call the ‘simple-pole distribution’. This was introduced by Lo$ fgren
and Gunell (1997), who also derived the corresponding dispersion relation in an
unmagnetized plasma. Nakamura and Hoshino (1998) have used a related
approach for studying weakly relativistic effects on waves in a magnetized
plasma.

In general, the distribution function (2.1) will be complex-valued for real v.
To restrict to real values, we shall always assume that each pole v¯ b with
residue a has a counterpart v¯ b* with residue a*, where * denotes complex
conjugation, so that

f(v)¯3
j

0 a
j

v®b
j

­
a$
j

v®b$
j

1 . (2.2)

To further ensure that f(v)& 0, it is for example possible to square the term in
parentheses. Some other possibilities for writing distribution functions in terms
of simple poles have been considered by Tjulin (1999). We shall not consider this
issue here.

We may note that if the condition

Re03
j

a
j1¯ 0 (2.3)

is fulfilled, we can see that for rvrU¢, f(v) goes to zero at least as fast as 1}rvr#
in all directions in the complex v plane. The condition (2.3) is satisfied for all
functions f(v) of the type (2.1) that are even ( f(v)¯ f(®v)). These are the only
functions that we shall consider from here on.

It has now been shown that it is possible to close the integration contour in
(1.5) by a semicircle to infinity in the lower (Fig. 2) or upper half-plane,

Z
G
(s)¯&

¢

−¢

3
j

a
j

v®b
j

1

v®s
dv¯+

C

3
j

a
j

v®b
j

1

v®s
dv. (2.4)

The integral may now be calculated by the residue theorem, yielding

Z
G
(s)¯®2πi 3

bj
`,

a
j

b
j
®s

, (2.5)
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Im v

Re v

Figure 2. The integration contour in (2.5). The poles in the distribution function are denoted
by crosses and the pole at v¯ s by a circle.

where the summation is over all poles b
j
of f(v) that lie in the lower complex half-

plane ,. Note that for an analytic continuation of Z
G
(s) to Im s! 0, the pole at

v¯ s should not be included in the sum (Fig. 2). As the sum in (2.5) refers only
to the poles of f(v), it is clear that this requirement is satisfied. Thus (2.5) is a
valid expression for Z

G
(s) for all s, and there is no need to treat special cases as

in (1.4).
Instead of closing the contour C in the lower half-plane, we might just as well

have closed it in the upper half-plane. In that case, the contribution from the
pole at v¯ s must be included in the sum. It is straightforward to show that the
expression obtained in this way is equivalent to (2.5).

3. Pade! approximation of Z(s)

As noted above, the integral in the definition (1.4) of Z(s) for a Maxwellian
distribution cannot be evaluated analytically. Some sort of approximation is
therefore needed. Martı!n and Gonza! les (1979) introduced a Pade! method, which
was extended and used by Ro$ nnmark (1982) in the widely used software
package WHAMP. The Pade! approximant used by Ro$ nnmark can be written
as

Z
P
(s)¯3

j

A
j

s®B
j

, (3.1)

with coefficients A
j
and B

j
listed in Table 1 (Ro$ nnmark 1982).

Comparing the expressions for Z
G
(s) and Z

P
(s) in (2.5) and (3.1), it is obvious

that the Pade! approximant of Z(s) corresponds to an exact Z
G
(s) for a plasma

described by a simple-pole distribution (2.1). We may call this particular
simple-pole distribution function f

P
(v), and we shall now derive the poles b

j
and

residues a
j
describing it.
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Table 1. The coefficients A
j
and B

j
used by Ro$ nnmark (1982).

j A
j

1 ®0±01734012457471826®0±04630639291680322i
2 ®0±01734012457471826­0±04630639291680322i
3 ®0±7399169923225014­0±8395179978099844i
4 ®0±7399169923225014®0±8395179978099844i
5 5±840628642184073­0±9536009057643667i
6 5±840628642184073®0±9536009057643667i
7 ®5±583371525286853®11±20854319126599i
8 ®5±583371525286853­11±20854319126599i

j B
j

1 2±237687789201900®1±625940856173727i
2 ®2±237687789201900®1±625940856173727i
3 1±465234126106004®1±789620129162444i
4 ®1±465234126106004®1±789620129162444i
5 0±8392539817232638®1±891995045765206i
6 ®0±8392539817232638®1±891995045765206i
7 0±2739362226285564®1±941786875844713i
8 ®0±2739362226285564®1±941786875844713i

As all poles in (3.1) are in the lower half of the complex plane (Table 1), it is
possible to write

Z
P
(s)¯3

j

A
j

s®B
j

¯ 3
Bj

`,

A
j

s®B
j

. (3.2)

From comparison with (2.5), it is clear that this corresponds to an integral

Z
P
(s)¯ 3

Bj
`,

A
j

s®B
j

¯®2πi 0 1

2πi
3
Bj

`,

A
j

B
j
®s1

¯&
¢

−¢

1

2πi 03
j

A
j

v®B
j

­G(v)1 1

v®s
dv, (3.3)

where G(v) is an unspecified function that (i) may only have poles in the upper
complex half-plane and (ii) goes to zero when v goes to infinity for the integral
to be finite. These requirements uniquely identify G(v), and we get

f
P
(v)¯

1

2πi
3
j

0 A
j

v®B
j

®
A$

j

v®B$
j

1 . (3.4)

This expression is unique in the sense that it is the only physically acceptable
(in the sense of being real-valued for real v) simple-pole distribution function
that has a plasma dispersion function exactly equal to (3.1). The use of the Pade!
approximant of Z(s) is thus equivalent to an unique approximation of the
Maxwellian by a simple-pole distribution. In other words, a simple-pole
distribution is implicitly assumed when using the Pade! approximant.

We may note that there is no guarantee that the corresponding simple-pole
distribution f

P
(v) is positive. Indeed, Fig. 3 shows that the function f

P
(v), in this
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case, is piecewise-negative, and also has regions of df
P
(v)}dv" 0. The

consequences of this will be discussed in the next section.

4. Comparison of distribution functions

We shall now compare the distribution function f
P

with the Maxwellian, and
with another simple-pole approximation of the Maxwellian introduced by
Lo$ fgren and Gunell (1997). They wrote the Maxwellian (1.1) as

f
M
(v)¯

1

oπ

1

ev#
¯

1

oπ

1

3
¢

j=!

v#j

j !

, (4.1)

using the common Taylor expansion of ev# and truncating at some arbitrary
j¯N. The resulting function obviously is positive on the real axis and
monotonically decreasing, thus overcoming the principal difficulties with f

P
.

The denominator is a polynomial of v of degree 2N with equally many distinct
roots, so fN

M
(v) has 2N simple poles v¯ b

j
in the complex v plane. By solving the

polynomial equation obtained by putting the denominator equal to zero, it is
straightforward to find the poles b

j
and their corresponding residues a

j
. We thus

get a simple-pole distribution

f (N)
M

(v)¯
1

K
3
N

j="

a
j

v®b
j

, (4.2)

where K¯&
¢

−¢

f(N)
M

(v) dv¯®2πi 3
bj

`,

a
j

(4.3)

has been introduced in order to ensure unit value of the zeroth-order moment.
We shall also compare these distribution functions with the one-dimensional

kappa distribution (or generalized Lorentzian) (Summers and Thorne 1991),
which is of the form

fκ(v)¯K01­
v#

κ 1
−κ

. (4.4)

K is chosen so that the zeroth-order moment attains unit value. Clearly,
fκ(v)U f

M
(v) as vU¢.

Using the coefficients A
j
and B

j
used by Ro$ nnmark (1982) in the WHAMP

code (Table 1), we plot the distribution function f
P
(v) in Fig. 3. Also plotted are

an exact Maxwellian f ())
M

(v) and fκ(v) for κ¯ 8. The particular value N¯ 8 is
chosen so that the truncated Taylor expansion has the same number of poles as
f
P
(v), and the value κ¯ 8 is chosen so that the kappa distribution has the same

behaviour as the truncated Taylor expansion for large values of v. As can be
seen from Fig. 3, the four different distribution functions are very similar in
overall shape.

Comparing the distributions in Fig. 3, we find that the truncated Taylor
expansion is generally better than the kappa distribution in approximating the
Maxwellian. For large v, these two functions behave like 1}v#N, and thus are
better approximations to the Maxwellian than f

P
(v), for which only the zeroth-
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Figure 3. A comparison between four different distribution functions: [[[[[[[[[, the true
Maxwellian distribution function as in (1.1) ; ———, the distribution function f

P
(v), from

(3.4) and Table 1, implicitly used by Ro$ nnmark (1982) ; ––––, the truncated inverted Taylor
expansion of the Maxwellian f (N)

M
(v), from (4.2) used by Lo$ fgren and Gunell (1997), for N¯

8; [–[–[–, the one-dimensional kappa distribution (Summers and Thorne 1991), from (4.4)
with κ¯ 8. (a) Linear scale. No major differences are visible. (b) Magnification of part of (a).
(c) Logarithmic plot of the magnitude of the distributions, where zeros show as negative
spikes.

order moment converges. However, for v# 4, f
P
(v) is seen to follow the true

Maxwellian with very good accuracy. On the other hand, f
P
(v) is negative for

a range of values approximately between v¯ 5±082 and v¯ 9±796.
Although we do not see any immediate physical consequences of f(v)! 0 for

a limited range of velocities, an indirect implication is that the distribution
function will have positive derivative between v¯ 5±707 and v¯ 11±141, which
is seen in Fig. 4. As a positive slope in the distribution function causes an
instability, a calculation based on the plasma dispersion function (3.1) with
coefficients as in Table 1 must lead to spurious instabilities. That such spurious
or numerical instabilities indeed exist in this approach was noted already by
Ro$ nnmark (1982). By studying the difference between the imaginary parts of
the Pade! approximant and the plasma dispersion function, he showed that this
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Figure 4. A comparison between the derivatives df}dv of four different distribution functions
f(v). The distribution functions are the same as in Fig. 3. (a) Linear scale. No difference is
visible. (b) Magnification of part of (a). (c) Greater magnification of part of (a).

error generally is small and seldom significant. In our approach, we find that the
imaginary part of Z

P
(s) for real s can be calculated straightforwardly as

ImZ
P
(s)¯ Im03

j

A
j

s®B
j

1¯
1

2i
3
j

0 A
j

s®B
j

®
A$

j

s®B$
j

1 . (4.5)

If we use (3.4) we immediately find that

ImZ
P
(s)¯πf

P
(s). (4.6)

This implies that the difference between f
P
(v) and f

M
(v) (plotted in Fig. 5) only

differs from the absolute error of ImZ
P
(s) (plotted in Fig. 4 of Ro$ nnmark 1982)

by a factor of π.
The result that spurious instabilities appear when approximating the plasma

dispersion function by the Pade! approximant exist is thus not new; what is new
is our physical interpretation of this behaviour in terms of the properties of the
distribution function (3.4). The appearance of this numerical problem is here
seen to be a natural consequence of a region of positive slope in the distribution
function that is implicitly assumed.
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Figure 5. The difference between f
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(v) and f
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(v).

5. Conclusions

We have seen that the Pade! approximant of a Maxwellian that is used in
WHAMP corresponds to using a simple-pole distribution function to describe
the plasma particles. This function is shown to be non-positive for a range of v,
which implies that there is a region of positive df}dv and hence also instabilities.
The result that spurious instabilities appear when approximating the plasma
dispersion function by a Pade! approximant is not new (see e.g. Ro$ nnmark 1982,
but what is new is our physical interpretation of this behaviour in terms of the
properties of the distribution function (3.4). In our approach, this numerical
problem is seen to be a natural consequence of a region of positive slope in the
distribution function that is implicitly assumed.

Sometimes the problem of numerical instabilities must be avoided. An
alternative may then be to use some other simple-pole approximation to the
Maxwell distribution – for example the inverse of the truncated Taylor
expansion (4.2). However, it should be realized that for purposes such as
calculating the plasma dispersion function, the advantage of avoiding the
spurious instabilities will in most cases not motivate the less accurate
approximation of the Maxwellian at small velocities, and there will be little or
no advantage in leaving the efficient Pade! method. Whatever approximation
method is used, our method of interpreting approximations of the plasma
dispersion function in terms of the equivalent approximation of the particle
distribution function is a powerful tool giving additional physical insight.
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